高中数学 讲义

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

\

高中函数部分附高中必修一到四

直线,切线

直线与方程

标准圆,圆与圆

圆与方程,曲线与方程 xy=+ k, - k 一次函数函数二次函数

对称轴

求根

不等式,方程组

三角函数,二倍角

曲线与方程

在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:

(1)曲线上点的坐标都是这个方程的解;

(2)以这个方程的解为坐标的点都是曲线上的点。

那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线。

求曲线的方程

必修一

一、集合

一、集合有关概念

1.集合的含义

2.集合的中元素的三个特性:

(1)元素的确定性如:世界上最高的山

(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合

3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度

洋,北冰洋}

◆用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

◆集合的表示方法:列举法与描述法。

◆注意:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c ……}

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集

合的方法。{x ∈R| x-3>2} ,{x| x-3>2}

3)语言描述法:例:{不是直角三角形的三角形} 4)Venn 图:

4、集合的分类:

(1)有限集 含有有限个元素的集合 (2)无限集 含有无限个元素的集合

(3)空集 不含任何元素的集合 例:{x|x 2=-5} 二、集合间的基本关系 1.“包含”关系—子集

注意:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合。

反之: 集合A 不包含于集合B,或集合B 不包含集合A,记作A ⊆

/B 或B ⊇/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5)

实例:设 A={x|x 2-1=0} B={-1,1} “元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。A ⊆A

②真子集:如果A ⊆B,且A ≠ B 那就说集合A 是集合B 的真子集,记作A B(或B A)

③如果 A ⊆B, B ⊆C ,那么 A ⊆C ④ 如果A ⊆B 同时 B ⊆A 那么A=B

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 有n 个元素的集合,含有2n 个子集,2n-1个真子集 二、函数

1、函数定义域、值域求法综合

2.、函数奇偶性与单调性问题的解题策略 3、恒成立问题的求解策略 4、反函数的几种题型及方法

5、二次函数根的问题——一题多解 &指数函数y=a^x

a^a*a^b=a^a+b(a>0,a 、b 属于Q) (a^a)^b=a^ab(a>0,a 、b 属于Q) (ab)^a=a^a*b^a(a>0,a 、b 属于Q) 指数函数对称规律:

1、函数y=a^x 与y=a^-x 关于y 轴对称

2、函数y=a^x 与y=-a^x 关于x 轴对称

3、函数y=a^x 与y=-a^-x 关于坐标原点对称 &对数函数y=loga^x

如果0>a ,且1≠a ,0>M ,0>N ,那么: ○

1 M a (log ·=)N M a log +N a log ; ○

2 =N

M

a log M a log -N a log ; ○

3 n a M log n =M a log )(R n ∈. 注意:换底公式

a

b

b c c a log log log =

(0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 幂函数y=x^a(a 属于R)

1、幂函数定义:一般地,形如αx y =)(R a ∈的函数称为幂函数,其中α为常数.

2、幂函数性质归纳.

(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1); (2)0>α时,

幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;

(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴. 方程的根与函数的零点

1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。

即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点. 3、函数零点的求法:

1 (代数法)求方程0)(=x f 的实数根; ○

2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点:

二次函数)0(2≠++=a c bx ax y . (1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点. (2)△=0,方程02=++c bx ax 有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.

(3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点. 三、平面向量

向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.

有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.

单位向量:长度等于1个单位的向量. 相等向量:长度相等且方向相同的向量 &向量的运算 加法运算

AB +BC =AC ,这种计算法则叫做向量加法的三角形法则。

已知两个从同一点O 出发的两个向量OA 、OB ,以OA 、OB 为邻边作平行四边形OACB ,则以O 为起点的对角线OC 就是向量OA 、OB 的和,这种计算法则叫做向量加法的平行四边形法则。 对于零向量和任意向量a ,有:0+a =a +0=a 。 |a +b|≤|a|+|b|。

相关文档
最新文档