高中数学 讲义

合集下载

高中数学复习讲义

高中数学复习讲义

高中数学复习讲义一、代数1.1 一元一次方程1.2 一元二次方程1.3 平面直角坐标系1.4 解析几何与向量1.5 指数与对数1.6 三角函数与三角恒等变换1.7 数列与数学归纳法二、几何2.1 平面与立体几何基本概念2.2 直线与角2.3 三角形与三角形的性质2.4 四边形与四边形的性质2.5 圆与圆的性质2.6 空间几何与立体几何三、概率与统计3.1 随机事件与概率的计算3.2 组合与排列3.3 抽样与统计四、数学思想方法4.1 推理与证明4.2 逻辑与谬误4.3 数学建模与解题策略五、应用题本讲义将针对高中数学涵盖的主要内容进行复习总结,旨在帮助大家全面复习数学知识,掌握解题方法和技巧,为高考做好充分准备。

一、代数1.1 一元一次方程一元一次方程是数学中最基础的方程形式之一,解一元一次方程需要掌握方程的基本性质和求解方法。

我们将重点讲解常见的一元一次方程类型,并提供解题思路和方法。

掌握一元一次方程的求解技巧对于解决实际问题具有重要意义。

1.2 一元二次方程一元二次方程在高中数学中起着重要的作用,解一元二次方程需要掌握配方法、因式分解法以及求根公式等知识点。

我们将介绍一元二次方程的基本概念和解法,并通过大量例题帮助大家提高解题能力。

1.3 平面直角坐标系平面直角坐标系是研究平面几何和解析几何的基础,了解坐标系的性质和坐标变换的规律对于解决几何问题至关重要。

我们将详细介绍直角坐标系的相关概念和性质,并结合实例进行讲解,帮助大家掌握平面直角坐标系的应用。

1.4 解析几何与向量解析几何是将代数与几何相结合的重要数学分支,研究空间中点、直线、平面等几何对象的解析表达和性质。

向量是解析几何中的重要工具,学习向量的表示方法和运算规律有助于解决几何问题。

我们将讲解解析几何基本概念和向量的数学性质,并通过练习题提高大家的解题能力。

1.5 指数与对数指数和对数是高中数学中重要的数学工具和运算方法,涉及到数学表达式的简化、方程的求解等。

高中数学 集合的表示讲义

高中数学 集合的表示讲义

第2讲:集合的表示【知识梳理】一、集合的表示【考点解读】考点一:用列举法表示集合例1.用列举法表示下列给定的集合:(1)不大于12的非负偶数组成的集合A ;(2)小于9的质数组成的集合B ;(3)方程2230x x --=的实数根组成的集合C ; (4)方程组42x y x y +=⎧⎨-=⎩的解集D .变式训练1:用列举法表示下列集合:(1)方程22x x =的所有实数解组成的集合;(2)直线21y x =+与y 轴的交点所组成的集合;(3)由所有正整数构成的集合.考点二:用描述法表示集合文字描述;式子描述例2.用描述法表示下列集合:(1)不等式231x -<的解组成的集合A ;(2)被3除余1的正整数的集合B ;(3){2,4,6,8,10}C =;(4)平面直角坐标系中第一象限内的点组成的集合D .变式训练1:用描述法表示下列集合:(1)比1大又比11小的实数组成的集合;(2)不等式342x x +≥的所有解;(3)到两坐标轴距离相等的点的集合.考点三:集合的表示综合例3.下列命题中正确的( )①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程2(1)(2)0x x --=的所有解的集合可表示为{1,1,2};④集合{|45}x x <<可以用列举法表示.A .只有①和④B .只有②和③C .只有②D .以上语句都不对变式训练1:方程组149x y x y +=⎧⎨-=⎩的解集是( )A .()2,1-B .()1,2-C .(){}1,2-D .(){}2,1-变式训练2:下列集合恰有2个元素的集合是( )A .2{0}x x -=B .2{|}x y x x =-C .2{|0}y y y -=D .2{|}y y x x =-变式训练3:已知集合{}21,1,3A a a a =+--,若1A ∈,则实数a 的值为__________.考点四:元素个数相同元素根据互异性,只能计算一次(主要考查互异性)例4.设集合{123}{45}}{|A C x B y x A y B ===+∈∈,,,,,,,则C 中元素的个数为( )A .3B .4C .5D .6变式训练1:已知集合{}1,2A =,{}2,4B =,则集合{},,M z z x y x A y B ==⋅∈∈中元素的个数为()A .1个B .2个C .3个D .4个变式训练2:设集合(){},1,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为( )A .3B .4C .5D .6变式训练3:集合{}2*70,A xx x x =-<∈N ∣,则*8{,}B y y A y =∈∈N ∣中元素的个数为( )A .1个B .2个C .3个D .4个考点五:元素个数(求参) 相同元素根据互异性,只能计算一个(主要考查互异性)例5.已知集合{}2|210,A x ax x a =++=∈R 只有一个元素,则a 的取值集合为( )A .{1}B .{0}C .{0,1,1}-D .{0,1}变式训练1:已知集合{}2310A x ax x =-+=中有且只有一个元素,则实数a 的取值集合是( )A .9{0,}4B .1{0,}3C .{0}D .9{}4变式训练2:式子22a b a a b a++________.变式训练3:已知集合{}2320,,A x ax x x R a R =-+=∈∈.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并求集合A ;(3)若A 中至多有一个元素,求a 的取值范围考点六:集合新定义例6.给定集合A ,若对于任意a 、b A ∈,有a b A +∈,且a b A -∈,则称集合A 为闭集合,给出如下三个结论:①集合{}4,2,0,2,4A =--为闭集合; ②集合{}3,A n n k k Z ==∈为闭集合;③若集合1A 、2A 为闭集合,则12A A 为闭集合. 其中正确结论的个数是( )A .0B .1C .2D .3变式训练1:已知集合A 中的元素均为整数,对于k A ∈,如果1k A -∉且1k A +∉,那么称k 是A 的一个“孤立元”.给定集合{1,2,3,4,5,6,7,8}S =,由S 中的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.变式训练2:已知集合{|31,},{|32,},{|63,}A x x n n B x x n n M x x n n ==+∈==+∈==+∈Z Z Z .(1)若m M ∈,则是否存在,a A b B ∈∈,使m a b =+成立?(2)对于任意,a A b B ∈∈,是否一定存在m M ∈,使a b m +=?证明你的结论.【课堂检测】1、若用列举法表示集合27{(,)|}2y x A x y x y -=⎧=⎨+=⎩,则下列表示正确的是( )A .{1,3}x y =-=B .{(-1,3)}C .{3,-1}D .{-1,3}2、已知集合{}1,2,3,4,5A =,(){},|,,B x y x A y A x y A =∈∈+∈,则集合B 中所含元素的个数为( )A .4B .6C .8D .103、已知集合{}2,2A =-,{}|,,B m m x y x A y A ==+∈∈,则集合B 等于( )A .{}4,4-B .{}4,0,4-C .{}4,0-D .{}04、已知{}232,2a a ∈++,则实数a 的值为( )A .1或1-B .1C .1-D .1-或05、下列四个命题:①{0}是空集;②若a ∈N ,则a -∉N ;③集合2{|210}x x x ∈-+=R 含有两个元素;④集合6{|}x Q N x ∈∈是有限集.其中正确命题的个数是( )A .1B .2C .3D .06、若集合{}210x ax x -+=中只有一个元素,则实数a 的值为( )A .14B .0C .4D .0或147、设P 是一个数集,且至少含有两个元素.若对任意的,a b P ∈,都有,,,a ab a b ab P b +-∈(除数0b ≠),则称P 是一个数域,例如有理数集Q 是一个数域,有下列说法正确的是( )A .数域必含有0,1两个数;B .整数集是数域;C .若有理数集Q M ⊆,则数集M 必为数域;D .数域必为无限集.8、设P 是一个数集,且至少含有两个数,若对任意a b P ∈、,都有+a b 、-a b 、ab 、a P b ∈(除数0b ≠)则称数集P 是一个数域.例如有理数集Q 是数域;数集{,}F a a b Q =+∈也是数域.下列命题是真命题的是( )A .整数集是数域B .若有理数集Q M ⊆,则数集M 必为数域C .数域必为无限集D .存在无穷多个数域9、用适当的方法表示下列集合:(1)大于2且小于5的有理数组成的集合.(2)30的正因数组成的集合.(3)由0,1,2这三个数字抽出一部分或全部数字(没有重复)所组成的自然数组成的集合.10、已知集合{}2210,A x ax x a R =++=∈.(1)若A 中只有一个元素,求a 的值;(2)若A 中至少有一个元素,求a 的取值范围;(3)若A 中至多有一个元素,求a 的取值范围.11、已知集合{}2|210A x R ax x =∈++=,其中a R ∈.(1)1是A 中的一个元素,用列举法表示A ;(2)若A 中至多有一个元素,试求a 的取值范围.。

高中数学讲义:充分条件与必要条件

高中数学讲义:充分条件与必要条件

充分条件与必要条件一、基础知识1、定义:(1)对于两个条件,p q ,如果命题“若p 则q ”是真命题,则称条件p 能够推出条件q ,记为p q Þ,(2)充分条件与必要条件:如果条件,p q 满足p q Þ,则称条件p 是条件q 的充分条件;称条件q 是条件p 的必要条件2、对于两个条件而言,往往以其中一个条件为主角,考虑另一个条件与它的关系,这种关系既包含充分方面,也包含必要方面。

所以在判断时既要判断“若p 则q ”的真假,也要判断“若q 则p ”真假3、两个条件之间可能的充分必要关系:(1)p 能推出q ,但q 推不出p ,则称p 是q 的充分不必要条件(2)p 推不出q ,但q 能推出p ,则称p 是q 的必要不充分条件(3)p 能推出q ,且q 能推出p ,记为p q Û,则称p 是q 的充要条件,也称,p q 等价(4)p 推不出q ,且q 推不出p ,则称p 是q 的既不充分也不必要条件4、如何判断两个条件的充分必要关系(1)通过命题手段,将两个条件用“若……,则……”组成命题,通过判断命题的真假来判断出条件能否相互推出,进而确定充分必要关系。

例如2:1;:10p x q x =-=,构造命题:“若1x =,则210x -=”为真命题,所以p q Þ,但“若210x -=,则1x =”为假命题(x 还有可能为1-),所以q 不能推出p ;综上,p 是q 的充分不必要条件(2)理解“充分”,“必要”词语的含义并定性的判断关系① 充分:可从日常用语中的“充分”来理解,比如“小明对明天的考试做了充分的准备”,何谓“充分”?这意味着小明不需要再做任何额外的工作,就可以直接考试了。

在逻辑中充分也是类似的含义,是指仅由p 就可以得到结论q ,而不需要再添加任何说明与补充。

以上题为例,对于条件:1p x =,不需再做任何说明或添加任何条件,就可以得到2:10q x -=所以可以说p 对q 是“充分的”,而反观q 对p ,由2:10q x -=,要想得到:1p x =,还要补充一个前提:x 不能取1-,那既然还要补充,则说明是“不充分的”② 必要:也可从日常用语中的“必要”来理解,比如“心脏是人的一个必要器官”,何谓“必要”?没有心脏,人不可活,但是仅有心脏,没有其他器官,人也一定可活么?所以“必要”体现的就是“没它不行,但是仅有它也未必行”的含义。

高中数学教案讲义

高中数学教案讲义

高中数学教案讲义
目标:学生能够理解平面直角坐标系的基本概念,掌握直线方程的求解方法,并能应用直线方程解决实际问题。

一、引入(5分钟)
1. 引导学生回顾平面几何中的基本概念,并介绍平面直角坐标系的概念和作用。

2. 提出问题:如何利用直线方程描述平面上的几何关系?
二、讲解(15分钟)
1. 介绍平面直角坐标系的建立方法和性质。

2. 解释直线的一般方程和斜截式方程的定义及求解方法。

3. 演示如何根据给定条件写出直线的方程。

4. 引导学生通过例题理解直线方程的求解过程。

三、练习(20分钟)
1. 学生进行小组讨论,解决给定的直线方程问题。

2. 学生尝试自己写出题目并解决。

3. 老师对学生的答案进行评价和指导。

四、应用(10分钟)
1. 给学生提出一个实际问题,要求用直线方程解决。

2. 学生组织答案并进行展示。

3. 老师对学生的表现进行点评和鼓励。

五、总结(5分钟)
1. 总结本节课的重点内容。

2. 提出学生可能存在的问题,并鼓励他们在课后进行复习和巩固。

六、拓展(5分钟)
1. 引导学生探索三维直角坐标系,了解空间直线的方程和性质。

2. 鼓励学生对平面直角坐标系进行更深入的研究和探索。

七、作业(2分钟)
1. 布置作业:完成课堂练习题和课后习题,加深对直线方程的理解和掌握。

教学反思:通过本节课的教学,学生能够初步掌握直线方程的求解方法,并能够运用所学知识解决实际问题。

在后续教学中,可以通过更多的实例引导学生对平面直角坐标系的应用有更深入的了解。

高中数学辅导讲义

高中数学辅导讲义

高中数学辅导讲义全文共四篇示例,供读者参考第一篇示例:高中数学辅导讲义一、高中数学的特点高中数学是一门抽象性强、逻辑性强的学科,是洞悉事物内在规律的有力工具。

高中数学包括数学分析、几何、代数、概率统计等内容,既是基础性学科,又是应用性学科,对培养学生的逻辑思维能力、创新能力和解决问题的能力具有重要作用。

二、高中数学的学习方法1. 夯实基础知识。

高中数学的学习需要建立在扎实的初中数学基础之上,因此一定要加强对基础知识的掌握。

特别是代数、几何等基础知识的理解和掌握十分关键。

2. 理解概念,掌握方法。

根据教材的内容,理解数学概念的本质和意义,掌握解题方法,而不是死记硬背,遇到新问题时也能灵活应用。

3. 多做练习,多总结归纳。

数学是一个需要不断实践的学科,只有通过不断练习才能提高解题能力。

要及时总结归纳解题方法,形成自己的学习笔记和知识框架。

4. 注重思辨能力的培养。

数学教学注重逻辑性和推理能力,因此在学习数学的过程中,培养自己的思辨能力,学会分析问题,寻求问题的解决方法十分重要。

5. 多与同学讨论,多请教老师。

数学是一个需要合作的科目,通过与同学讨论,可以相互学习,相互进步。

遇到困难时也要及时请教老师,不要让问题困扰自己。

1. 数列。

数列是高中数学的基础内容之一,包括等差数列、等比数列、数列的概念和性质等。

理解数列的概念和性质,掌握求和公式和通项公式的推导方法,能够熟练解决相关题目。

4. 概率统计。

概率统计是高中数学的应用内容之一,包括概率的基本概念、概率的计算方法、随机变量和分布等。

理解概率统计的基本原理和应用方法,能够熟练计算概率和应用统计方法解决实际问题。

四、高中数学常见问题及解决方法1. 能力不足。

如果在高中数学学习中遇到能力不足的情况,可以通过加强基础知识的学习和练习来提高解题能力,同时及时找老师请教解决问题。

2. 缺乏兴趣。

如果对高中数学缺乏兴趣,可以多跟同学交流讨论,寻找解题乐趣,也可以通过参加数学竞赛等活动来激发学习兴趣。

高中数学选修3-1基础精品讲义

高中数学选修3-1基础精品讲义

高中数学选修3-1基础精品讲义
一、函数的基本概念
- 函数的定义及表示方法
- 定义域、值域、对应关系和逆函数
- 函数的相等和不等关系
二、一次函数
- 一次函数的定义、性质和图像
- 一次函数的斜率和截距
- 求一次函数的解析式和图像
三、二次函数
- 二次函数的定义、性质和图像
- 二次函数的最值和对称轴
- 求二次函数的解析式和图像
四、指数函数
- 指数函数的定义、性质和图像
- 指数函数与对数函数的关系
- 指数函数的增长速度
五、对数函数
- 对数函数的定义、性质和图像
- 对数函数与指数函数的关系
- 对数函数的应用场景
六、三角函数
- 三角函数的定义、性质和图像
- 三角函数的周期性和奇偶性
- 三角函数的应用场景
七、数列与数学归纳法
- 数列的定义、性质和常见类型
- 数学归纳法的基本原理和应用
- 数列的求和公式和递推公式
八、排列与组合
- 排列和组合的基本概念和表示方法- 排列和组合的性质和运算规则
- 排列和组合的应用
以上是《高中数学选修3-1基础精品讲义》的主要内容,希望对同学们的学习有所帮助。

高中数学《导数》讲义(全)

高中数学《导数》讲义(全)

高中数学导数讲义完整版第一部分 导数的背景一、导入新课 1. 瞬时速度问题1:一个小球自由下落,它在下落3秒时的速度是多少? (221gt s =,其中g 是重力加速度).2. 切线的斜率问题2:P (1,1)是曲线2x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况.3. 边际成本问题3:设成本为C ,产量为q ,成本与产量的函数关系式为103)(2+=q q C ,我们来研究当q =50时,产量变化q ∆对成本的影响. 二、小结:瞬时速度是平均速度ts∆∆当t ∆趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率xy∆∆当x ∆趋近于0时的极限;边际成本是平均成本q C ∆∆当q ∆趋近于0时的极限.三、练习与作业:1. 某物体的运动方程为25)(t t s =(位移单位:m ,时间单位:s )求它在t =2s 时的速度. 2. 判断曲线22x y =在点P (1,2)处是否有切线,如果有,求出切线的方程. 3. 已知成本C 与产量q 的函数关系式为522+=q C ,求当产量q =80时的边际成本. 4. 一球沿某一斜面自由滚下,测得滚下的垂直距离h (单位:m )与时间t (单位:s )之间的函数关系为2t h =,求t =4s 时此球在垂直方向的瞬时速度. 5. 判断曲线221x y =在(1,21)处是否有切线,如果有,求出切线的方程.6. 已知成本C 与产量q 的函数关系为742+=q C ,求当产量q =30时的边际成本.第二部分 导数的概念一、新课:1.设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ∆时,则函数()y f x =相应地有增量)()(00x f x x f y -∆+=∆,如果0→∆x 时,y ∆与x ∆的比xy∆∆(也叫函数的平均变化率)有极限(即xy∆∆无限趋近于某个常数),我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0/x x y =,即xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/。

高中数学教案讲义模板

高中数学教案讲义模板

高中数学教案讲义模板标题:高中数学课程教学
教学内容:数学
教学目标:
1. 理解和掌握基本数学概念和方法;
2. 提高学生的数学思维能力和解题能力;
3. 培养学生的数学兴趣和学习能力。

教学重点:
1. 基本数学运算;
2. 代数方程与不等式;
3. 几何图形与空间几何。

教学难点:
1. 复杂数学运算;
2. 解决实际问题的数学建模;
3. 几何证明与推理。

教学流程:
一、复习与导入(5分钟)
1. 复习上节课内容,引出本节课的学习内容;
2. 提问学生对数学的认识和看法。

二、新知讲解(30分钟)
1. 介绍本节课的新知识点,详细讲解基本概念和方法;
2. 举例演示解题步骤,引导学生掌握解题技巧。

三、练习与训练(15分钟)
1. 布置练习题目,让学生独立解题;
2. 督促学生互相讨论与合作,共同解决问题。

四、检测与总结(10分钟)
1. 收集学生的作业,进行批改与评价;
2. 总结本节课的重点和难点,引导学生复习和提高。

五、课堂延伸(5分钟)
1. 辅导学生扩展相关知识,拓宽思维视野;
2. 鼓励学生进行自主学习和练习。

教学反思:本节课教师讲解清晰,学生参与积极,但仍需加强课后复习和练习,提高学生的解题能力和应用能力。

教学反馈:请学生整理本节课的知识点和练习题目,并反馈学习体会和建议。

高中数学课讲义教案

高中数学课讲义教案

高中数学课讲义教案
主题:线性方程组的解法
教学目标:
1. 了解线性方程组的基本概念,掌握解线性方程组的基本方法;
2. 能够灵活运用代数方法和图解方法求解线性方程组;
3. 能够解决实际问题中的线性方程组。

教学过程:
一、导入(5分钟)
引导学生回顾一元一次方程组的解法,并说明线性方程组的概念和解法对于解决实际问题
的重要性。

二、讲解(15分钟)
1. 线性方程组的定义和分类;
2. 代数方法求解线性方程组的步骤;
3. 图解方法求解线性方程组的步骤。

三、练习(20分钟)
1. 让学生完成一些代数方法求解线性方程组的练习题;
2. 让学生在坐标系上画出线性方程组的图像,并求解。

四、拓展(10分钟)
引导学生思考,如何将线性方程组应用到实际生活中的问题中,提高他们的综合应用能力。

五、总结(5分钟)
总结本节课的重点内容,巩固学生对线性方程组的理解和应用。

六、作业布置(5分钟)
布置相关作业,让学生巩固今天所学知识。

教学资源:
1. 教材相关知识点;
2. 锦囊,活动卡片等教学辅助资料;
3. 多媒体设备。

评估方式:
1. 课堂练习;
2. 作业完成情况;
3. 学生的课堂表现。

高中数学讲义

高中数学讲义

高中数学讲义数学是一门重要的科学学科,对于高中生来说,学好数学非常关键。

通过本讲义,我们将系统地介绍高中数学知识,帮助学生巩固基础、拓宽视野。

本讲义将按照数学的不同分支进行分类,包括代数、几何、概率统计等。

一、代数1.1 数与式1.1.1 自然数、整数、有理数、无理数的定义和性质1.1.2 等式和方程的概念1.1.3 一元一次方程和一元一次不等式1.2 函数与方程1.2.1 函数的概念及性质1.2.2 一元函数、二元函数的图像和性质1.2.3 一元一次函数、一元二次函数的基本特征1.3 不等式与不等关系1.3.1 不等式的基本性质1.3.2 一元一次不等式、一元二次不等式的解集1.3.3 不等关系的性质和运算二、几何2.1 二维几何2.1.1 角的概念和性质2.1.2 直线、射线、线段的定义和特性2.1.3 三角形、四边形和多边形的基本属性2.2 三维几何2.2.1 空间几何体的分类和性质2.2.2 空间几何体的表面积和体积计算2.2.3 空间向量的运算和性质2.3 解析几何2.3.1 平面直角坐标系与曲线的图像关系 2.3.2 点、直线、圆的方程和性质2.3.3 曲线的参数方程及其应用三、概率与统计3.1 概率基础3.1.1 随机事件、样本空间和概率的定义 3.1.2 概率的性质和计算方法3.1.3 独立事件与互斥事件的关系3.2 统计学基础3.2.1 数据的收集和整理3.2.2 数据的描述性统计和数据分析3.2.3 抽样调查和统计推断四、其他4.1 数学思维方法4.1.1 推理与证明4.1.2 抽象与建模4.1.3 计算与估算4.2 数学应用领域4.2.1 金融数学4.2.2 工程数学4.2.3 研究数学通过本讲义的学习,相信你们对高中数学的理解将更加深入,对数学能力的提升也将更有信心。

提醒大家,在学习数学的过程中要注重动手实践,做大量的练习题,加深对数学知识的理解和应用能力的培养。

希望本讲义能给你们带来帮助,祝愿大家在数学学习上取得优秀的成绩!。

高中数学讲义:数学归纳法

高中数学讲义:数学归纳法

数学归纳法一、基础知识:1、数学归纳法适用的范围:关于正整数n 的命题(例如数列,不等式,整除问题等),则可以考虑使用数学归纳法进行证明2、第一数学归纳法:通过假设n k =成立,再结合其它条件去证1n k =+成立即可。

证明的步骤如下:(1)归纳验证:验证0n n =(0n 是满足条件的最小整数)时,命题成立(2)归纳假设:假设()0,n k k n n N =³Î成立,证明当1n k =+时,命题也成立(3)归纳结论:得到结论:0,n n n N ³Î时,命题均成立3、第一归纳法要注意的地方:(1)数学归纳法所证命题不一定从1n =开始成立,可从任意一个正整数0n 开始,此时归纳验证从0n n =开始(2)归纳假设中,要注意0k n ³,保证递推的连续性(3)归纳假设中的n k =,命题成立,是证明1n k =+命题成立的重要条件。

在证明的过程中要注意寻找1n k =+与n k =的联系4、第二数学归纳法:在第一数学归纳法中有一个细节,就是在假设n k =命题成立时,可用的条件只有n k =,而不能默认其它n k £的时依然成立。

第二数学归纳法是对第一归纳法的补充,将归纳假设扩充为假设n k £,命题均成立,然后证明1n k =+命题成立。

可使用的条件要比第一归纳法多,证明的步骤如下:(1)归纳验证:验证0n n =(0n 是满足条件的最小整数)时,命题成立(2)归纳假设:假设()0,n k k n n N £³Î成立,证明当1n k =+时,命题也成立(3)归纳结论:得到结论:0,n n n N ³Î时,命题均成立二、典型例题例1:已知等比数列{}n a 的首项12a =,公比3q =,设n S 是它的前n 项和,求证:131n n S n S n++£思路:根据等比数列求和公式可化简所证不等式:321n n ³+,n k =时,不等式为321k k ³+;当1n k =+时,所证不等式为1323k k +³+,可明显看到n k =与1n k =+中,两个不等式的联系,从而想到利用数学归纳法进行证明证明:()11311n nn a q S q -==--,所证不等式为:1313131n n n n+-+£-()()()1313131n n n n +\-£+-1133331n n n n n n n ++Û×-£×+--321n n Û³+,下面用数学归纳法证明:(1)验证:1n =时,左边=右边,不等式成立(2)假设()1,n k k k N =³Î时,不等式成立,则1n k =+时,()()133332163211k k k k k +=׳+=+>++所以1n k =+时,不等式成立n N *\"Î,均有131n n S n S n++£小炼有话说:数学归纳法的证明过程,关键的地方在于寻找所证1n k =+与条件n k =之间的联系,一旦找到联系,则数学归纳法即可使用例2(2015,和平模拟):已知数列{}n a 满足0n a >,其前n 项和1n S >,且()()112,6n n n S a a n N *=++Î(1)求数列{}n a 的通项公式(2)设21log 1n n b a æö=+ç÷èø,并记n T 为数列{}n b 的前n 项和,求证:233log ,2n n a T n N *+æö>Îç÷èø解:(1)2632n n n S a a =++①()21116322,n n n S a a n n N *---=++³Î②①-②可得:()222211116333n n n n n n n n n a a a a a a a a a ----=-+-Þ+=-0n a >Q 所以两边同除以1n n a a -+可得:13n n a a --={}n a \是公差为3的等差数列()131n a a n \=+-,在2632n n n S a a =++中令1n =可得:211116321S a a a =++Þ=(舍)或12a =31n a n \=-(2)思路:利用(1)可求出n b 和n T ,从而简化不等式可得:33633225312n n n +æö×××>ç÷-èøL ,若直接证明则需要进行放缩,难度较大。

高中数学讲义:函数的极值

高中数学讲义:函数的极值

函数的极值一、基础知识:1、函数极值的概念:(1)极大值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有()()0f x f x <,就说()0f x 是函数()f x 的一个极大值,记作()0y f x =极大值,其中0x 是极大值点(2)极小值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有()()0f x f x >,就说()0f x 是函数()f x 的一个极小值,记作()0y f x =极小值,其中0x 是极小值点极大值与极小值统称为极值2、在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。

请注意以下几点:(1)极值是一个局部概念:由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小(2)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个(3)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点3、极值点的作用:(1)极值点为单调区间的分界点(2)极值点是函数最值点的候选点4、费马引理:()f x 在0x x =处可导,那么0x x =为()f x 的一个极值点Þ()0'0f x =说明:①前提条件:()f x 在0x x =处可导②单向箭头:在可导的前提下,极值点Þ导数0=,但是导数0=不能推出0x x =为()f x 的一个极值点,例如:3y x =在()0,0处导数值为0,但0x =不是极值点③费马引理告诉我们,判断极值点可以通过导数来进行,但是极值点的定义与导数无关(例如:y x =在()0,0处不可导,但是0x =为函数的极小值点)5、求极值点的步骤:(1)筛选:令()'0f x =求出()'f x 的零点(此时求出的点有可能是极值点)(2)精选:判断函数通过()'f x 的零点时,其单调性是否发生变化,若发生变化,则该点为极值点,否则不是极值点(3)定性:通过函数单调性判断出是极大值点还是极小值点:先增后减→极大值点,先减后增→极小值点6、在综合题分析一个函数时,可致力于求出函数的单调区间,当求出单调区间时,极值点作为单调区间的分界点也自然体现出来,并且可根据单调性判断是极大值点还是极小指点,换言之,求极值的过程实质就是求函数单调区间的过程。

高中数学必修一第五章讲义

高中数学必修一第五章讲义

5.1 任意角和弧度制知识点一 任意角 1.角的概念:角可以看成平面内一条 绕着它的端点 所成的 . 2.角的表示:如图所示:角α可记为“α”或“∠α”或“∠AOB ”,始边: ,终边: ,顶点 .3.角的分类:名称 定义图示正角一条射线绕其端点按 方向旋转形成的角负角 一条射线绕其端点按 方向旋转形成的角零角一条射线 做任何旋转形成的角设α,β是任意两个角, 为角α的相反角. (1)α+β:把角α的 旋转角β. (2)α-β:α-β= .知识点三 象限角把角放在平面直角坐标系中,使角的顶点与 重合,角的始边与x 轴的非负半轴重合,那么,角的 在第几象限,就说这个角是第几 ;如果角的终边在 ,就认为这个角不属于任何一个象限.知识点四 终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∠Z },即任一与角α终边相同的角,都可以表示成角α与整数个周角的和. 知识点五 度量角的两种制度角度制定义用度作为单位来度量角的单位制1度的角 1度的角等于周角的1360弧度制定义 以 作为单位来度量角的单位制 1弧度的角长度等于 的圆弧所对的圆心角知识点六 弧度数的计算 (1)弧度数正角的弧度数是一个 数. 负角的弧度数是一个 数. (2)零角的弧度数是 (3)弧度数的计算 公式:rl =α知识点七 角度与弧度的互化角度化弧度 弧度化角度 360°= rad 2π rad = 180°= rad π rad = 1°=π180 rad≈0.017 45 rad1 rad =⎝⎛⎭⎫180π°≈57.30° 度数×π180=弧度数弧度数×⎝⎛⎭⎫180π°=度数知识点八 弧度制下的弧长与扇形面积公式设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则 (1)弧长公式:l =αR .(2)扇形面积公式:S =12lR =12αR 2.1.与2022︒终边相同的角是( ) A .488-︒B .148-︒C .142︒D .222︒ 2.135-的角化为弧度制的结果为( ) A .32π-B .35π-C .34π-D .34π 3.下列说法正确的是( ) A .终边相同的角相等 B .相等的角终边相同 C .小于90︒的角是锐角 D .第一象限的角是正角4.如图所示的时钟显示的时刻为4:30,此时时针与分针的夹角为(0).ααπ<≤则α=( )A .2π B .4π C .8π D .16π 5.沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”.如图,AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在AB 上,CD AB ⊥.“会圆术”给出AB 后的弧长的近似值s 的计算公式:2CD s AB OA=+,记实际弧长为l .当2OA =,60AOB ∠=︒时,l s -的值约为( )(参考数据: 3.14π≈3 1.73≈)A .0.01B .0.05C .0.13D .0.536.把375-︒表示成2πk θ+,k Z ∈的形式,则θ的值可以是( ) A .π12B .π12-C .5π12D .5π12-7.角76π所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限8.已知一扇形的周长为6(0)a a >,则当该扇形的面积取得最大时,圆心角大小为( ) A .6π B .4π C .1 D .2二、多选题9.若α是第二象限角,则( ) A .πα-是第一象限角 B .2α是第一或第三象限角 C .32πα+是第二象限角 D .α-是第三或第四象限角10.设扇形的圆心角为α,半径为r ,弧长为l ,面积为S ,周长为L ,则( ) A .若α,r 确定,则L ,S 唯一确定 B .若α,l 确定,则L ,S 唯一确定 C .若S ,L 确定,则α,r 唯一确定 D .若S ,l 确定,则α,r 唯一确定11.下列结论中正确的是( )A .终边经过点()(),0m m m >的角的集合是2,4k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭;B .将表的分针拨慢10分钟,则分针转过的角的弧度数是3π; C .若α是第三象限角,则2α是第二象限角,2α为第一或第二象限角; D .{}4590,M x x k k Z ==︒+⋅︒∈,{}9045,N y y k k Z ==︒+⋅︒∈,则M N ⊆12.已知A ={第一象限角},B ={锐角},C ={小于90︒的角},那么A 、B 、C 关系是( ) A .B A C =⋂ B .C C =B ∪ C .B A B = D .A B C ==三、填空题13.写出两个与6π终边相同的角______.14.半径为2cm ,中心角为30的扇形的弧长为______cm .15.如图,扇环ABCD 中,弧4AD =,弧2BC =,1AB CD ==,则扇环ABCD 的面积S =__________.16.如图所示,一竖立在地面上的圆锥形物体的母线长为4,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥爬行一周后回到点P 处,若该小虫爬行的最短路程为43___________.四、解答题17.已知1690α=.(1)把α表示成2k πβ+的形式,其中k ∈Z ,[)0,2βπ∈; (2)求θ,使θ与α的终边相同,且[)4,2θππ∈--.18.已知一扇形的圆心角为α,半径为R ,弧长为()0L α>. (1)已知扇形的周长为10cm ,面积是24cm ,求扇形的圆心角;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?并求此扇形的最大面积.19.已知1570α=-︒,2750α=︒,135rad πβ=,23rad πβ=-.(1)将1α,2α用弧度制表示出来,并指出它们各自的终边所在的象限;(2)将1β,2β用角度制表示出来,并在{}720180ββ-︒≤≤-︒内找出与它们终边相同的所有角.5.2 三角函数的概念知识点一任意角的三角函数的定义条件如图,设α是一个任意角,α∠R,它的终边OP与单位圆交于点P(x,y)定义正弦点P的叫做α的正弦函数,记作sin α,即y=余弦点P的叫做α的余弦函数,记作cos α,即x=正切点P的纵坐标与横坐标的比值yx叫做α的正切,记作tan α,即yx=三角函数正弦函数y=sin x,x∠R余弦函数y=cos x,x∠R正切函数y=tan x,x≠π2+kπ,k∠Z知识点二正弦、余弦、正切函数值在各象限内的符号1.图示:2.口诀:“一全正,二正弦,三正切,四余弦”.知识点三公式一终边相同的角的同一三角函数的值.即=+)2sin(παk=+)2cos(παk=+)2tan(παk其中Zk∈知识点四 同角三角函数的基本关系关系式文字表述平方关系sin 2α+cos 2α= 同一个角α的正弦、余弦 的 等于 商数关系sin αcos α= ⎝⎛⎭⎫α≠π2+k π,k ∠Z同一个角α的正弦、余弦的商等于角α的一、单选题1.已知角α的终边与单位圆交于点132P ⎛- ⎝⎭,则sin α的值为( )A .3B .12-C 3D .122.已知角θ的终边经过点(,3)M m m -,且1tan 2θ=,则m =( ) A .12B .1C .2D .523.已知()2,P y -是角θ终边上一点,且22sin θ=y 的值是( ) A .22B .225C .434D 4344.若12cos 13α=,且α为第四象限角,则tan α的值为( ) A .125B .125-C .512D .512-5.已知π,π2α⎛⎫∈ ⎪⎝⎭,且3tan 4α=-,则cos α=( )A .35B .35C .45-D .456.已知α为第二象限角,则( ) A .sin 0α<B .tan 0α>C .cos 0α<D .sin cos 0αα>7.已知P 是半径为3cm 的圆形砂轮边缘上的一个质点,它从初始位置0P 开始,按逆时针方向做匀速圆周运动,角速度为πrad/s 2.如图,以砂轮圆心为原点,建立平面直角坐标系xOy ,若0π3P Ox ∠=,则点P 到x轴的距离d 关于时间t (单位:s )的函数关系为( )A .π3sin 43d t ⎛⎫=+ ⎪⎝⎭B .ππ3sin 23d t ⎛⎫=+ ⎪⎝⎭C .π3sin 43d t ⎛⎫=- ⎪⎝⎭D .ππ3sin 23d t ⎛⎫=- ⎪⎝⎭8.在平面直角坐标系xOy 中,P (x ,y )(xy ≠0)是角α终边上一点,P 与原点O 之间距离为r ,比值rx叫做角α的正割,记作sec α;比值r y 叫做角α的余割,记作csc α;比值xy叫做角α的余切,记作cot α.四名同学计算同一个角β的不同三角函数值如下:甲:5sec 4β=-;乙:5csc 3β=;丙:3tan 4β=-;丁:4cot 3β=. 如果只有一名同学的结果是错误的,则错误的同学是( ) A .甲 B .乙 C .丙 D .丁二、多选题9.下列说法错误的是( )A .将表的分针拨快5分钟,则分针转过的角度是6πB .若角2rad α=,则α角为第二象限角C .若角α为第一象限角,则角2α也是第一象限角 D .在区间ππ,22⎛⎫- ⎪⎝⎭内,函数tan y x =与sin y x =的图象有3个交点10.已知角α的终边与单位圆交于点3,55m P ⎛⎫⎪⎝⎭,则sin α的值可能是( )A .45B .35C .45-D .3511.已知角θ的终边经过点(2,3)--,且θ与α的终边关于x 轴对称,则( ) A .21sin 7θ=- B .α为钝角C .27cos 7α=-D .点(tan θ,tan α)在第四象限12.已知点()(),20P m m m -≠是角α终边上一点,则( ) A .tan 2α B .5cos 5α=C .sin cos 0αα<D .sin cos 0αα>三、填空题13.已知角α的终边经过点()1,2P ,sin 2cos sin cos αααα--+的值是____________.14.已知角2022α= , 则sin cos tan sin cos tan αααααα++= _______________________. 15.若π0,4θ⎛⎫∈ ⎪⎝⎭,记22cos sin P θθ=-,33cos sin Q θθ=-,44cos sin R θθ=-,则P 、Q 、R 的大小关系为_________.16.已知1sin cos 52παααπ⎛⎫+=-<< ⎪⎝⎭,则11sin cos αα-的值为___________.四、解答题17.已知第一象限角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边经过点()1P m m +,,且3cos 5α=. (1)求m 及tan α的值; (2)求()sin sin cos ααα+的值.18.已知tan 2α=,求下列各式的值. (1)1sin cos αα; (2)111sin 1sin αα+-+. 19.已知2212sin cos 2cos sin αααα+=-. (1)求tan α的值; (2)求222sin 3sin cos cos αααα+-的值.20.已知第二象限角α满足sin ,cos αα是关于x 的方程2255120x x --=的两个实根. (1)求1tan tan αα+的值; (2)求()22sin cos sin 2cos sin ααααα+-的值.5.3 诱导公式知识点一 公式二~四终边关系 图示公式公式二角π+α与角α的终边关于 对称sin(π+α)= , cos(π+α)= , tan(π+α)= 公式三角-α与角α的终边关于 轴对称sin(-α)= , cos(-α)= , tan(-α)= 公式四角π-α与角α的终边关于 轴对称sin(π-α)= , cos(π-α)= , tan(π-α)=知识点二 诱导公式五、六 (1)公式五=-)2sin(απ=-)2cos(απ(2)公式六=+)2sin(απ=+)2cos(απ一、单选题1.cos210︒的值等于( ) A .12 B .32C .32-D .22-2.已知5sin 5α=,则πcos 2α⎛⎫-= ⎪⎝⎭( )A .55B .55-C .255-D .2553.3cos()sin 2x x ππ⎛⎫-++= ⎪⎝⎭( ) A .2cos x -B .0C .2sin x -D .cos sin x x -4.已知()0,απ∈,()tan 3sin παα-=,则tan α=( ) A .22B 2C .2D .22-5.若()tan π3α-=,则sin 2cos sin cos αααα-=+( ) A .52B .52-C .14-D .146.若()1sin 2π3α+=,tan 0α<,则cos α=( )A .22B .13-C .13D 227.已知()113sin cos 2013cos 22ππαπαα⎛⎫⎛⎫-+-=-- ⎪ ⎪⎝⎭⎝⎭,则22sin sin cos ααα-=( ) A .2110 B .32C 3D .28.若α为任意角,则满足cos cos 2k παα⎛⎫+⋅=- ⎪⎝⎭的一个k 的值为( )A .1B .2C .3D .4二、多选题9.下列转化结果正确的有( ) A .171sin62π= B .113tan 6π⎛⎫-= ⎪⎝⎭C .150-化成弧度是76π-D .12π化成度是15 10.在∠ABC 中,下列关系式恒成立的有( ) A .()sin sin A B C += B .cos sin 22A B C +⎛⎫= ⎪⎝⎭C .()sin 22sin20A B C ++=D .()cos 22cos20A B C ++=11.在平面直角坐标系中,若α与β的终边关于y 轴对称,则下列等式恒成立的是( ) A .()sin sin απβ+= B .()sin sin απβ-= C .()sin 2sin παβ-=- D .()sin 2sin παβ+=12.下列说法正确的有( ) A .3sin 600tan 240︒+︒=B .若已知cos31m ︒=,则2sin 239tan1491m =-︒︒C .已知()1cos 753α︒+=,且18090α-︒<<-︒,则()22cos 15α︒-=D .函数()1f x ax =+在区间()1,1-上存在一个零点的充分必要条件是1a <-或1a > 三、填空题13.172053sin cos tan 636πππ⎛⎫⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.14.()()cos585tan 585sin 570︒=-︒+-︒__________. 15.已知π3cos 64α⎛⎫+=- ⎪⎝⎭,则5ππcos sin 63αα⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭__________.16.若tan()2πα-=-,则3cos(2)2cos 2sin()sin 2ππααππαα⎛⎫-+- ⎪⎝⎭=⎛⎫---- ⎪⎝⎭__________.四、解答题17.已知()4cos 5πα+=,且tan 0α>. (1)求tan α的值; (2)()()()2sin sin 22ππααπ⎛⎫-+- ⎪⎝⎭'的值.18.已知角α终边上一点()43P ,-,求下列各式的值.(1)sin cos sin cos αααα+- (2)()cos sin 2119cos sin 22παπαππαα⎛⎫+-- ⎪⎝⎭⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭19.(1)已知()1sin 3πα-=,求()sin 3,cos 2ππαα⎛⎫+- ⎪⎝⎭的值.(2)化简()()sin 2cos 3sin cos 22παπαππαα-⋅+⎛⎫⎛⎫+⋅- ⎪ ⎪⎝⎭⎝⎭.20.已知正弦三倍角公式:3sin 33sin 4sin x x x =-∠(1)试用公式∠推导余弦三倍角公式(仅用cos x 表示cos3x ); (2)若角α满足sin 33sin 2αα=,求cos3cos αα的值.5.4 三角函数的图象与性质知识点一正弦函数、余弦函数的图象函数y=sin x y=cos x图象图象画法五点法五点法关键五点,⎝⎛⎭⎫π2,1,,⎝⎛⎭⎫3π2,-1,(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1)正(余)弦曲线正(余)弦函数的叫做正(余)弦曲线知识点二函数的周期性1.函数的周期性一般地,设函数f(x)的定义域为D,如果存在一个,使得对每一个x∠D都有x+T∠D,且,那么函数f(x)就叫做周期函数.叫做这个函数的周期.2.最小正周期如果在周期函数f(x)的所有周期中存在一个,那么这个最小正数叫做f(x)的最小正周期.知识点三正弦函数、余弦函数的周期性和奇偶性函数y=sin x y=cos x图象定义域R R周期2kπ(k∠Z且k≠0)2kπ(k∠Z且k≠0)最小正周期2π奇偶性知识点四正弦函数、余弦函数的单调性与最值正弦函数 余弦函数图象定义域 RR值域单调性在每一个闭区间⎣⎡⎦⎤2k π-π2,2k π+π2(k ∠Z )上都单调递增,在每一个闭区间⎣⎡⎦⎤2k π+π2,2k π+3π2(k ∠Z )上都单调递减在每一个闭区间[2k π-π,2k π](k ∠Z )上都单调递增,在每一个闭区间[2k π,2k π+π] (k ∠Z )上都单调递减最值x =π2+2k π(k ∠Z )时,y max =1;x =-π2+2k π(k ∠Z )时,y min =-1x =2k π(k ∠Z )时,y max =1;x =2k π+π(k ∠Z )时,y min =-1知识点五 正切函数的图象与性质解析式y =tan x图象定义域 ⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π2+k π,k ∠Z 值域 R 最小正周期 π 奇偶性 奇函数单调性 在每一个区间⎝⎛⎭⎫-π2+k π,π2+k π(k ∠Z )上都单调递增 对称性对称中心⎝⎛⎭⎫k π2,0(k ∠Z )一、单选题1.下列关于函数tan 23y x π⎛⎫=-+ ⎪⎝⎭的说法正确的是( )A .最小正周期为πB .图像关于点5,012π⎛⎫⎪⎝⎭成中心对称C .在区间,312ππ⎛⎫-- ⎪⎝⎭上单调递增 D .图像关于直线12x π=-成轴对称2.与图中曲线对应的函数可能是( )A .sin y x =B .sin y x =C .sin y x =-D .sin y x =-3.函数sin(2)4y x π=-的单调减区间是( )A .3[,],(Z)88k k k ππππ-+∈ B .3[2,2],(Z)88k k k ππππ-+∈ C .37[2,2],(Z)88k k k ππππ++∈ D .37[,],(Z)88k k k ππππ++∈ 4.已知函数()sin()f x x ϕ=+为偶函数,则ϕ的取值可以为( ) A .π2-B .πC .π3D .05.已知函数()tan 24f x x π⎛⎫=- ⎪⎝⎭,下列说法正确的有( )∠函数()f x 最小正周期为2π; ∠定义域为|R,,Z 28k x x x k ππ⎧⎫∈≠+∈⎨⎬⎩⎭∠()f x 图象的所有对称中心为,0,Z 48k k ππ⎛⎫+∈⎪⎝⎭; ∠函数()f x 的单调递增区间为3,,Z 2828k k k ππππ⎛⎫-+∈ ⎪⎝⎭. A .1个 B .2个 C .3个 D .4个6.函数()()sin 2,0,6f x x x ππ⎛⎫=-∈ ⎪⎝⎭,若方程()2f x =的解为()1212,0x x x x π<<<,则()12sin x x -=( )A .23-B .33-C .73-D .26-7.记函数()sin()f x x ωϕ=+π0,02ωϕ⎛⎫><< ⎪⎝⎭的最小正周期为T ,若2()2f T =,3π4x =为()f x 的零点,则T的最大值为( ) A .πB .2πC .4πD .6π8.已知函数π()cos 22cos 2f x x x ⎛⎫=+- ⎪⎝⎭,给出下列结论:∠()f x 的最小正周期为2π: ∠()f x 是奇函数:∠()f x 的值域为33,2⎡⎤-⎢⎥⎣⎦; ∠()f x 在ππ,26⎡⎤-⎢⎥⎣⎦上单调递增.其中所有正确结论的序号是( ) A .∠∠ B .∠∠ C .∠∠∠ D .∠∠∠二、多选题9.下列函数以π02⎛⎫⎪⎝⎭,为对称中心的有( ) A .sin y x = B .tan y x = C .πsin 4y x ⎛⎫=+ ⎪⎝⎭D .sin 2y x =10.函数()π3sin 334g x x ⎛⎫=-- ⎪⎝⎭,则( )A .()g x 的最小正周期为6πB .()g x 的图像关于直线π4x =对称 C .()g x 的图像关于点5π,312⎛⎫- ⎪⎝⎭对称 D .()g x 在π0,3⎡⎤⎢⎥⎣⎦上单调递增11.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法错误的是( )A .函数()y f x =的图象关于点,06π⎛⎫- ⎪⎝⎭对称;B .函数()y f x =的图象关于直线512x π=-对称;C .函数()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦单调递减; D .该图象向右平移3π个单位可得2sin2y x =的图象. 12.已知函数()sin (0)4f x x πωω⎛⎫=+> ⎪⎝⎭,则下列命题正确的是( )A .若()f x 在[0,)π上有10个零点,则3943,44ω⎛⎤∈ ⎥⎝⎦B .若()f x 在[0,)π上有11条对称轴,则3943,44ω⎛⎤∈ ⎥⎝⎦C .若()f x 2在[0,)π上有12个解,则21,122ω⎛⎤∈ ⎥⎝⎦D .若()f x 在,32ππ⎛⎫⎪⎝⎭上单调递减,则35,42ω⎡⎤∈⎢⎥⎣⎦三、填空题13.函数()=sin2+1(0)f x x ωω>在ππ62⎡⎤⎢⎥⎣⎦,上单调递增,则ω取值范围为_____________14.已知函数()(25sin π,0,4f x x x ⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭,设方程(),(01)f x m m =<<的根从小到大依次为123,,x x x ,且2132x x x =,则m =___________.15.设函数2()|sin |2cos 1f x x x =+-,,22x ππ⎡⎤∈-⎢⎥⎣⎦,则函数()f x 的最小值是__________.16.设函数()()sin 03f x x πωω⎛⎫=-> ⎪⎝⎭,若()f x 在0,2π⎛⎫ ⎪⎝⎭上有且仅有2个零点,则实数ω的取值范围为______________.四、解答题17.已知函数()sin 62f x x π⎛⎫=+ ⎪⎝⎭.(1)求函数()f x 的单调递增区间;(2)求函数()f x 在区间[]0,2π上的所有零点之和.18.已知函数()sin()(R,0,0,0)2f x A x x A πωϕωϕ=+∈>><<的部分图象如图所示.(1)求()f x 的解析式; (2)求不等式()1f x >的解集.19.已知函数2π()sin(2)3f x x =+. (1)请用五点法做出()f x 一个周期内的图像;(2)若函数()()g x f x m =-在区间π[0,]2上有两个零点,请写出m 的取值范围,无需说明理由.20.已知函数()()2sin f x x ωϕ=+(0>ω,π<ϕ),其图象一条对称轴与相邻对称中心的横坐标相差π4,______;从以下两个条件中任选一个补充在空白横线中.∠函数()f x 向左平移π6个单位得到的图象关于y 轴对称且()00f <.∠函数()f x 的一条对称轴为π3x =-且()π16f f ⎛⎫< ⎪⎝⎭;(1)求函数()f x 的解析式;(2)若π17π,212x ⎡⎤∈⎢⎥⎣⎦,方程()()()2430f x a f x a +-+-=存在4个不相等的实数根,求实数a 的取值范围.勉,学习需坚持。

高中数学精讲精练讲义-从入门到精通 数列与不等式【数海漫游】

高中数学精讲精练讲义-从入门到精通 数列与不等式【数海漫游】

从入门到精通Chapter1·数列与不等式§1.通项公式➩方法一:构造类等差等比或类某函数进行递推【例1·★☆☆☆☆】已知数列{}n a 满足11a =,()122n n a a n *+=+∈N ,则n a =________.【例2·★★☆☆☆】已知数列{}n a 满足121a a ==,()212n n n a a a n *++=++∈N ,则n a =________.【例3·★★★☆☆】已知数列{}n a 满足11a =,22a =,()()2211n n n a a n a n *++=++∈N ,则n a =________.➫例题解答:【例1·★☆☆☆☆】已知数列{}n a 满足11a =,()122n n a a n *+=+∈N ,则n a =________.解析:()()1112222232322n n n n n n a a a a -++=+==+=⨯⇒=⨯- ,经检验,对1n =也成立.小tip:在求完通项后,带入1,2n =检验通项的正确性,可以提显著提高做题正确率。

【例2·★★☆☆☆】已知数列{}n a 满足121a a ==,()212n n n a a a n *++=++∈N ,则n a =________.解析:首先去掉末尾的2,21222n n n a a a +++=+++,令2n n b a =+,则21n n n b b b ++=+,下面就是很熟悉的斐波那契数列,可以用特征根法,也可以构造等比数列递推:()211111n n n n b b b b λλλ+++⎛⎫-=-- ⎪-⎝⎭,我们希望用等比数列1n n n c b b λ+=-换元,则需要让11512λλλ+=⇒=-(任取一根即可).此时,()()()()()()()12111121111131,nnn n n n n n n b b b b c c c b b λλλλλλλλ+++++-=--⇒=-==-=--=- 则()31nn c λ=-,故()131nn n n c b b λλ+=-=-,这里给到一个累加得小技巧:两边除以1n λ+,得1131nn nn n b b λλλλλ++-⎛⎫-= ⎪⎝⎭,则()()()1111112113131311111,1211nnn n n n b b λλλλλλλλλλλλλλλλλλλλ-++-⎛⎫-⎪⎡⎤⎡⎤------⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭-=+++==-⎢⎥⎢⎥⎪ ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦-则()()()()111113131311312121nn n n n n n b b λλλλλλλλλλλλ---++⎡⎤---⎛⎫⎡⎤=+-⇒=+--⎢⎥ ⎪⎣⎦--⎝⎭⎢⎥⎣⎦,则1122n n n n a b --=-=--⎝⎭⎝⎭,经检验,对1,2n =也成立.注:亦可以写成3515152522n nn a ⎡⎤⎛⎫⎛-⎢⎥=-- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦或其他等价形式.【例3·★★★☆☆】已知数列{}n a 满足11a =,22a =,()()2211n n n a a n a n *++=++∈N ,则n a =________.解析:这题其实更适合用方法四解决,这里先用一个不太自然的方法做出这道题,在方法四中会再次用归纳法解决这道题。

高中数学讲义

高中数学讲义

高中数学讲义数学作为一门基础学科,不仅在学术研究中占有重要地位,同时也在日常生活中扮演着重要的角色。

而在高中阶段,数学的学习显得更加关键,不仅需要掌握基本的数学知识,更需要培养逻辑思维能力和问题解决能力。

本文将从高中数学的基本概念、常见题型和解题技巧等方面进行详细介绍,帮助同学们更好地理解和掌握数学知识。

一、数学基本概念高中数学内容繁多,其中包含了许多基本概念。

首先,我们来了解几个重要的基本概念:1.函数:函数是数学中一个非常重要的概念,它描述了不同变量之间的关系。

函数的概念是数学中的一个重要基础,理解函数可以帮助我们更好地解决各种数学问题。

2.方程和不等式:方程和不等式是数学中常见的问题类型,解方程和不等式是数学学习的基础,通过解方程和不等式可以培养我们的逻辑思维能力。

3.几何:几何是研究空间形状、大小、位置关系和性质的数学学科。

通过学习几何知识,我们能够更好地理解周围世界的形状和结构。

以上是数学基本概念的介绍,对这些概念的理解是数学学习的基础,只有掌握了这些基本概念,我们才能更好地进行后续学习。

二、常见题型和解题技巧在高中数学学习中,有许多常见的题型,如代数、几何、概率等。

针对这些题型,我们需要掌握相应的解题技巧,下面列举几种常见题型和相应的解题技巧:1.代数题型:代数题型是高中数学中常见的题型,解代数题需要灵活运用代数式和方程,通过转化、代入等方法解决问题。

2.几何题型:几何题型是高中数学中较为抽象和复杂的题型,解几何题需要掌握几何知识,使用几何图形和相关定理解决问题。

3.概率题型:概率是高中数学中的一个重要概念,解概率题需要掌握概率计算方法,灵活应用概率定理解决问题。

通过掌握这些常见题型和解题技巧,我们能够更好地应对高中数学学习中的各种问题,提高解题效率和准确率。

三、数学学习方法和建议在高中数学学习中,掌握好学习方法和建议是十分重要的。

以下是一些在数学学习过程中的建议:1.理解概念:数学是建立在概念之上的学科,只有对概念有深刻的理解,才能更好地解决问题。

高中数学讲义

高中数学讲义

高中数学讲义
高中数学讲义
高中数学讲义是中学数学教学的重要参考书,也是很多中学生拿来练习、提高自己数学水平很好的一本教材。

高中数学讲义以引导学生理解数学原理,熟练使用数学工具为目的,按照学生学习能力梯度层层深入,自解决数学问题。

讲义由精心设计的练习题组成,既注重实践能力的培养,也加强理论知识的掌握,详尽的叙述,便于学生的学习。

高中数学讲义的结构一般分为理论部分和练习部分,理论部分介绍了数学知识的概念,公式,以及数学知识在实际生活中或者其它学科中的运用,同时也有许多实际例题供学生深入研究和探讨,给学生提供了一个较为完整的知识背景;而练习部分则以针对性的习题引导学生去对理论知识进行检验和实践,加深理解,培养学生的学习和推理能力。

高中数学讲义不仅可以帮助学生掌握和理解数学的基础知识,同时也是提高数学能力的一个强有力的抓手。

因此,中学生应充分利用高中数学讲义仔细学习,在学习中练习、试验,熟悉数学知识和运用数学工具,让数学变得容易上手,为实现自身价值奠定基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

\高中函数部分附高中必修一到四点直线,切线直线与方程标准圆,圆与圆圆与方程,曲线与方程 xy=+ k, - k 一次函数函数二次函数对称轴求根不等式,方程组三角函数,二倍角、曲线与方程在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点。

那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线。

求曲线的方程必修一一、集合一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}◆用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}◆集合的表示方法:列举法与描述法。

◆注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c ……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x ∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形} 4)Venn 图:4、集合的分类:(1)有限集 含有有限个元素的集合 (2)无限集 含有无限个元素的集合(3)空集 不含任何元素的集合 例:{x|x 2=-5} 二、集合间的基本关系 1.“包含”关系—子集注意:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合。

反之: 集合A 不包含于集合B,或集合B 不包含集合A,记作A ⊆/B 或B ⊇/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x 2-1=0} B={-1,1} “元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。

A ⊆A②真子集:如果A ⊆B,且A ≠ B 那就说集合A 是集合B 的真子集,记作A B(或B A)③如果 A ⊆B, B ⊆C ,那么 A ⊆C ④ 如果A ⊆B 同时 B ⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

有n 个元素的集合,含有2n 个子集,2n-1个真子集 二、函数1、函数定义域、值域求法综合2.、函数奇偶性与单调性问题的解题策略 3、恒成立问题的求解策略 4、反函数的几种题型及方法5、二次函数根的问题——一题多解 &指数函数y=a^xa^a*a^b=a^a+b(a>0,a 、b 属于Q) (a^a)^b=a^ab(a>0,a 、b 属于Q) (ab)^a=a^a*b^a(a>0,a 、b 属于Q) 指数函数对称规律:1、函数y=a^x 与y=a^-x 关于y 轴对称2、函数y=a^x 与y=-a^x 关于x 轴对称3、函数y=a^x 与y=-a^-x 关于坐标原点对称 &对数函数y=loga^x如果0>a ,且1≠a ,0>M ,0>N ,那么: ○1 M a (log ·=)N M a log +N a log ; ○2 =NMa log M a log -N a log ; ○3 n a M log n =M a log )(R n ∈. 注意:换底公式abb c c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 幂函数y=x^a(a 属于R)1、幂函数定义:一般地,形如αx y =)(R a ∈的函数称为幂函数,其中α为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1); (2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴. 方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。

即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点. 3、函数零点的求法:○1 (代数法)求方程0)(=x f 的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点:二次函数)0(2≠++=a c bx ax y . (1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点. (2)△=0,方程02=++c bx ax 有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点. 三、平面向量向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 相等向量:长度相等且方向相同的向量 &向量的运算 加法运算AB +BC =AC ,这种计算法则叫做向量加法的三角形法则。

已知两个从同一点O 出发的两个向量OA 、OB ,以OA 、OB 为邻边作平行四边形OACB ,则以O 为起点的对角线OC 就是向量OA 、OB 的和,这种计算法则叫做向量加法的平行四边形法则。

对于零向量和任意向量a ,有:0+a =a +0=a 。

|a +b|≤|a|+|b|。

向量的加法满足所有的加法运算定律。

减法运算与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

数乘运算实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ < 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。

设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λμ)a = λa μa(3)λ(a ± b) = λa ±λb(4)(-λ)a =-(λa) = λ(-a)。

向量的加法运算、减法运算、数乘运算统称线性运算。

向量的数量积已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。

零向量与任意向量的数量积为0。

a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。

两个向量的数量积等于它们对应坐标的乘积的和。

四、三角函数1、善于用“1“巧解题2、三角问题的非三角化解题策略3、三角函数有界性求最值解题方法4、三角函数向量综合题例析5、三角函数中的数学思想方法15、正弦函数、余弦函数和正切函数的图象与性质:图象定义域值域最值当22x kππ=+()k∈Z时,max1y=;当22x kππ=-()k∈Z时,min1y=-.当()2x k kπ=∈Z时,max1y=;当2x kππ=+()k∈Z时,min1y=-.既无最大值也无最小值函数性质周期性奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在 ()k ∈Z 上是减函数. 在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+ ()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭ 对称轴()x k k π=∈Z 对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴必修四角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度. 口诀:奇变偶不变,符号看象限. 公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2k π+α)=sin αcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,πα的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)其他三角函数知识:同角三角函数基本关系⒈同角三角函数的基本关系式倒数关系:tanα•cotα=1sinα•cscα=1cosα•secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)两角和差公式⒉两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα•tanβtanα-tanβtan(α-β)=——————1+tanα•tanβ倍角公式⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 2tanαtan2α=—————1-tan^2(α)半角公式⒋半角的正弦、余弦和正切公式(降幂扩角公式)1-cosαsin^2(α/2)=—————21+cosαcos^2(α/2)=—————21-cosαtan^2(α/2)=—————1+cosα万能公式⒌万能公式2tan(α/2)sinα=——————1+tan^2(α/2)1-tan^2(α/2)cosα=——————1+tan^2(α/2)2tan(α/2)tanα=——————1-tan^2(α/2)和差化积公式⒎三角函数的和差化积公式α+βα-βsinα+sinβ=2sin—----•cos—---2 2α+βα-βsinα-sinβ=2cos—----•sin—----2 2α+βα-βcosα+cosβ=2cos—-----•cos—-----2 2α+βα-βcosα-cosβ=-2sin—-----•sin—-----2 2积化和差公式⒏三角函数的积化和差公式sinα•cosβ=0.5[sin(α+β)+sin(α-β)] cosα•sinβ=0.5[sin(α+β)-sin(α-β)] cosα•cosβ=0.5[cos(α+β)+cos(α-β)] sinα•sinβ=- 0.5[cos(α+β)-cos(α-β)]。

相关文档
最新文档