概率论与数理统计浙大第四版
浙大第四版概率论与数理统计知识点总结
第1章随机事件及其概率
我们作了n 次试验,且满足
每次试验只有两种可能结果,A 发生或A 不发生; n 次试验是重复进行的,即A 发生的概率每次均一样; 每次试验是独立的,即每次试验A 发生与否与其他次试
验A 发生与否是互不影响的。
这种试验称为伯努利概型,或称为n 重伯努利试验。
用p 表示每次试验A 发生的概率,则A 发生的概率为q p =-1,用)(k P n 表示n 重伯努利试验中A 出现)0(n k k ≤≤次的概率, k n k k n n q p k P C -=)(,n k ,,2,1,0 =。
第二章 随机变量及其分布
第三章二维随机变量及其分布
第四章随机变量的数字特征
第五章大数定律和中心极限定理
第六章样本及抽样分布
第七章参数估计
第八章假设检验
单正态总体均值和方差的假设检验。
理学概率论与数理统计浙江大学第四版盛骤概率论部分
例:
✓ ✓ ✓ ✓
抛一枚硬币,观察试验结果; 对某路公交车某停靠站登记下车人数; 对某批电子产品测试其输入电压; 对听课人数进行一次登记;
9
§2 样本空间·随机事件
(一)样本空间
定义:随机试验E的所有结果构成的集合称为E的 样本空间,记为S={e},
例:
➢ ➢
称S中的元素e为基本事件或样本点.
一枚硬币抛一次 S={正面,反面}; 记录一城市一日中发生交通事故次数
概率论与数理统计是研究随机现象 数量规律的一门学科。
1
第一章 概率论的基本概念
• 1.1 随机试验 • 1.2 样本空间 • 1.3 概率和频率 • 1.4 等可能概型(古典概型) • 1.5 条件概率 • 1.6 独立性
第二章 随机变量及其分布
• 2.1 随机变量 • 2.2 离散型随机变量及其分布 • 2.3 随机变量的分布函数 • 2.4 连续型随机变量及其概率密度 • 2.5 随机变量的函数的分布
第十二章 平稳随机过程
• 12.1 平稳随机过程的概念 • 12.2 各态历经性 • 12.3 相关函数的性质 • 12.4 平稳过程的功率谱密度
5
概率论
第一章概率论的基本概念
6
第一章 概率论的基本概念
关键词: 样本空间 随机事件 频率和概率 条件概率 事件的独立性
7
§1 随机试验
确定性现象
解:假设接待站的接待时间没有规定,而各来访者在一周 的任一天中去接待站是等可能的,那么,12次接待来 访者都是在周二、周四的概率为 212/712 =0.000 000 3.
人们在长期的实践中总结得到“概率很小的事件在一次 试验中实际上几乎是不发生的”(称之为实际推断原理)。 现在概率很小的事件在一次试验中竟然发生了,因此有理由 怀疑假设的正确性,从而推断接待站不是每天都接待来访者, 即认为其接待时间是有规定的。
浙江大学概率论与数理统计第4版课后答案及笔记
浙江⼤学概率论与数理统计第4版课后答案及笔记浙江⼤学《概率论与数理统计》(第4版)笔记和课后习题(含考研真题)详解第1章 概率论的基本概念1.1 复习笔记⼀、随机事件1事件间的关系(见表1-1-1)表1-1-1 事件间的关系2事件的运算设A,B,C为事件,则有:(1)交换律:A∪B=B∪A;A∩B=B∩A;(2)结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C;(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C);(4)德摩根律:;。
⼆、频率与概率概率的性质(1)若A⊂B,则P(B-A)=P(B)-P(A)与P(B)≥P(A)(2)(逆事件的概率)P(A_)=1-P(A);(3)(加法公式)P(A∪B)=P(A)+P(B)-P(AB);推⼴:对于任意n个事件A1,A2,…,A n,三、等可能概型(古典概型)计算公式四、条件概率1乘法定理(1)乘法公式:若P(A)>0,则P(AB)=P(B|A)P(A)。
(2)若P(A1A2…A n-1)>0,则有2全概率公式和贝叶斯公式(1)全概率公式P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+…+P(A|B n)P(B n)(2)贝叶斯公式注:全概率公式和贝叶斯公式的最简单形式五、独⽴性1两个事件独⽴(1)P(AB)=P(A)P(B)(2)两个定理①若P(A)>0,A,B相互独⽴,则P(B|A)=P(B),反之同样。
②若事件A与B独⽴,则A与B_独⽴,A_与B独⽴,A_与B_独⽴。
2三个事件独⽴设A,B,C是三个事件,如果满⾜等式则称A,B,C两两独⽴,若也成⽴,则A,B,C相互独⽴。
3n个事件独⽴设A1,A2,…,A n是n(n≥2)个事件,∀1≤i<j<k<…≤n,则A1,A2,…,A n相互独⽴。
概率论与数理统计浙大四版习题答案第五章
第五章 大数定理和中心极限定理1. [一] 据以往经验某种电器元件的寿命服从均值为100小时的指数分布, 现在随机的抽取16只, 设它们的寿命是相互独立的, 求这16只元件寿命总和大于1920小时的概率。
解:设第i 只寿命为Xi, (1≤i ≤16), 故E (Xi )=100, D (Xi )=1002(l=1,2,…,16).依本章定理1知⎪⎪⎪⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎪⎪⎪⎭⎫⎝⎛⨯-≤⨯-=≤∑∑∑===8.040016001001616001920100161600)1920(1616161i i i i i i X P X P X P.7881.0)8.0(=Φ=从而.2119.07881.01)1920(1)1920(161161=-=≤-=>∑∑==i ii iXP XP3. [三] 计算机在进行加法时, 对每个加数取整(取为最接近它的整数), 设所有的取整误差是相互独立的, 且它们都在(-0.5, 0.5)上服从均匀分布,(1)若将1500个数相加, 问误差总和的绝对值超过15的概率是多少? (2)几个数相加在一起使得误差总和的绝对值小于10的概率不小于0.90 解:(1)设取整误差为Xi ( , 1500), 它们都在(-0.5, 0.5)上服从均匀分布。
于是:12112)]5.0(5.0[)(2=--=i X D 18.111251211500)(,0)(==⨯==i i X nD X nE ⎭⎬⎫⎩⎨⎧≤≤--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>∑∑∑===1515115115150011500115000i i i i i i X P X P X P⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤≤--=∑=18.111518.1118.1115115001i i X P1802.0]9099.01[2)]34.1(1[2)]34.1()34.1([1=-⨯=Φ-=-Φ-Φ-=8. 某药厂断言, 该厂生产的某种药品对于医治一种疑难的血液病的治愈率为0.8, 医院检验员任意抽查100个服用此药品的病人, 如果其中多于75人治愈, 就接受这一断言, 否则就拒绝这一断言。
(完整word版)(浙大第四版)概率论与数理统计知识点总结(可编辑修改word版)
第 1 章随机事件及其概率在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用来表示。
基本事件的全体,称为试验的样本空间,用Ω表示。
一个事件就是由Ω中的部分点(基本事件)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是Ω的子集。
Ω为必然事件,Ø 为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。
1°Ω={1,2 n },2°P() =P() = P() =1 。
1 2 n n设任一事件A,它是由1,2m组成的,则有P(A)= {(1 ) (2 ) (m )}= P(1 ) +P(2 ) + +P(m )=m=A所包含的基本事件数n 基本事件总数设随机变量X 的分布律为k-P( X =k ) = e ,> 0 ,k = 0,1,2 ,k!则称随机变量X 服从参数为的泊松分布,记为X ~ () 或者 P()。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
e-x , x≥0,f (x) =0, x < 0 ,其中> 0 ,则称随机变量X 服从参数为的指数分布。
X 的分布函数为1 -e-x, x≥0,F (x) =0,x<0。
记住积分公式:+∞⎰x n e -x dx =n!设随机变量 X 的密度函数为 21-( x -) f (x ) = e 2 2 , - ∞ < x < +∞ ,2其中、> 0 为常数,则称随机变量 X 服从参数为、 的正态分布或高斯( Gauss ) 分布, 记为 X ~ N (,2) 。
f (x ) 具有如下性质:1° f (x ) 的图形是关于 x = 对称的;2° 当 x = 时, f () = 1 为最大值; 2若X~ N(,2 )(t -)X 2 的分布函数为 F (x ) = 1 ⎰x e - 22dt 2 -∞。
概率论与数理统计第四版-课后习题答案_盛骤__浙江大学
完全版概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。
表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生 表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
(完整word版)(浙大第四版)概率论与数理统计知识点总结详解
(7)概率 的公理化 定义
Ai Ai
德摩根率: i1
i1
AB AB,AB AB
设 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满足下列三个条件:
件下,事件 B 发生的条件概率,记为 P(B / A) P( AB) 。 P( A)
条件概率是概率的一种,所有概率的性质都适合于条件概率。 例如 P(Ω/B)=1 P( B /A)=1-P(B/A) 乘法公式: P(AB) P(A)P(B / A) 更一般地,对事件 A1,A2,…An,若 P(A1A2…An-1)>0,则有
P( A1A2 … An) P( A1)P( A2 | A1)P( A3 | A1A2) …… P( An | A1A2 …
An 1) 。 ①两个事件的独立性
设事件 A 、B 满足 P(AB) P(A)P(B) ,则称事件 A 、B 是相互独 立的。
若事件 A 、 B 相互独立,且 P(A) 0 ,则有
A-B,也可表示为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。
1
概率论与数理统计 公式(全)
知识点总结
A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同
时发生,称事件 A 与事件 B 互不相容或者互斥。基本事件是互不 相容的。
-A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A 。它表示
1
概率论与数理统计 公式(全)
知识点总结
当 A=Ω时,P( B )=1- P(B)
概率论与数理统计第四版_习题答案_第四版_盛骤__浙江大学出版pdf
从 10 只中任取 4 只,取法有
10 种,每种取法等可能。 4
要 4 只都不配对,可在 5 双中任取 4 双,再在 4 双中的每一双里任取一只。取法有
5 24 4
P( A )
4 C5 24 4 C10
8 21 8 13 21 21
P( A) 1 P( A ) 1
4
后四个数全不同的排法有 A 10 ∴
P( A)
4 A10 0.504 104
10.[六]
在房间里有 10 人。 分别佩代着从 1 号到 10 号的纪念章, 任意选 3 人记录其纪念章的号码。
(1)求最小的号码为 5 的概率。 记“三人纪念章的最小号码为 5”为事件 A ∵ 10 人中任选 3 人为一组:选法有
1500 种,每种取法等可能。 200
200 个产品恰有 90 个次品,取法有
4001100 种 90 110
(浙大第四版)概率论与数理统计知识点总结(可编辑修改word版)
第 1 章随机事件及其概率②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用来表示。
基本事件的全体,称为试验的样本空间,用Ω表示。
一个事件就是由Ω中的部分点(基本事件)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是Ω的子集。
Ω为必然事件,?为不可能事件。
不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1 的事件也不一定是必然事件。
1° Ω={1,2 n },2°P() =P() = P() =1 。
1 2 n n设任一事件A,它是由1,2m组成的,则有P(A)= {(1 ) (2 ) (m )}= P(1 ) +P(2 ) + +P(m )。
p k= 1∞∑ k =12 , ( ) k = 1,2, , k ≥ 0 1 ( ) p |x 1, x 2, , x k , P ( X = x k ) p 1, p 2, , p k , 。
显然分布律应满足下列条件:设离散型随机变量 X 的可能取值为 X k (k=1,2,…)且取各个值的概率,即事件(X=X k )的概率为 P(X=x k )=p k ,k=1,2,…,则称上式为离散型随机变量 X 的概率分布或分布律。
有时也用分布列的形式给出:X( 1) 离散 型 随机 变 量的 分 布律第二章 随机变量及其分布设随机变量X 的分布律为k-P( X =k ) = e ,> 0 ,k = 0,1,2 ,k!则称随机变量X 服从参数为的泊松分布,记为X ~ () 或者P()。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
? e-x , x≥0,f (x) =?其0, 中> 0 ,则x称<随0机,变量X 服从参数为的指数分布。
X 的分布函数为1 -e-x, x≥0,F (x) =记0,住积分公式:x<0。
?设随机变量 X 的密度函数为 21 -( x -) f (x ) = e2 2, - ∞ < x < +∞ ,2其中、> 0 为常数,则称随机变量 X 服从参数为、 的正态分布或高斯( Gauss ) 分布, 记为 X ~ N (,2) 。
(浙大第四版)概率论与数理统计知识点总结
则称 P(A)为事件 A 的概率。
(8)古典 概型
1° 1, 2 n ,
2°
P(1 )
P( 2
)
P( n
)
1 n
。
设任一事件 A ,它是由1, 2 m 组成的,则有
P(A)= (1 ) (2 ) (m ) = P(1) P(2 ) P(m )
第 1 章 随机事件及其概率
(1)排列 组合公式
Pmn
m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能数
Cmn
m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能数
(2)加法 和乘法原 理
(3)一些 常见排列 (4)随机 试验和随 机事件
(5)基本 事件、样 本空间和 事件
如果一个试验在相同条件下可以重复进行,而每次试验的可能结果 不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则 称这种试验为随机试验。 试验的可能结果称为随机事件。 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事 件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。
(7)概率 的公理化 定义
Ai Ai
德摩根率: i1
i1
AB AB,AB AB
设 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满足下列三个条件:
1° 0≤P(A)≤1, 2° P(Ω) =1
3° 对于两两互不相容的事件 A1, A2 ,…有
P Ai P(Ai)
An 1) 。
①两个事件的独立性
设事件 A 、B 满足 P(AB) P(A)P(B) ,则称事件 A 、B 是相互独 立的。
(浙大第四版)概率论与数理统计知识点总结
基本事件的全体,称为试验的样本空间,用 表示。
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用
大写字母 A,B,C,…表示事件,它们是 的子集。 为必然事件,Ø 为不可能事件。 不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事 件;同理,必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定 是必然事件。 ①关系:
条件概率是概率的一种,所有概率的性质都适合于条件概率。 例如 P(Ω/B)=1 P( B /A)=1-P(B/A) 乘法公式: P(AB) P(A)P(B / A)
更一般地,对事件 A1,A2,…An,若 P(A1A2…An-1)>0,则有 P( A1A2 … An) P( A1)P( A2 | A1)P( A3 | A1A2) …… P( An | A1A2 …
A Bi
2°
i1 , P( ห้องสมุดไป่ตู้) 0 ,(已经知道结果 求原因
则
欢迎下载
3
—
( 17 ) 伯 努利概型
P(Bi / A)
P(Bi )P( A / Bi )
n
,i=1,2,…n。
P(Bj )P(A/ Bj )
j 1
此公式即为贝叶斯公式。
P(Bi ) ,( i 1, 2 ,…, n ),通常叫先验概率。 P(Bi / A) ,( i 1, 2 ,…, n ),通常称为后验概率。贝叶斯公式反映了“因果”的概
P(X=xk)=pk,k=1,2,…, 则称上式为离散型随机变量 X 的概率分布或分布律。有时也用分
布列的形式给出:
X P(X
xk )
|
x1, x2,, xk, p1, p2,, pk, 。
《概率论与数理统计》浙江大学第四版课后习题答案
概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n n n o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为: C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生。
表示为: C AB 或AB -ABC 或AB -C (3)A ,B ,C 中至少有一个发生 表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
浙江大学概率论与数理统计盛骤第四版数理统计部分
为什么?
答:只有(4)不是统计量。
17
随机变量独立性的两个定理
定理6.1:设X1, X 2 , , X n是相互独立的n个随机变量,
又设y gi x1, , xni , x1, , xni Rni , i 1, 2, k是k个连续函数,
且有n1 n2 nk n, 则k个随机变量:
[说明]:后面提到的样本均指简单随机样本,由概率论知,若总体X 具有概率密度f(x),
则样本(X1,X2,…,Xn)具有联合密度函数:
n
fn x1, x2, xn f xi
i 1
16
统计量:样本的不含任何未知参数的函数。
常用统计量:设(X1,X2,…,Xn)为取自总体X的样本
1.
样本均值
n
Yn x
lim P i1 n
n
x
x
证明略。
1
t2
e 2 dt
2
此定理表明,当n充分大时,Yn近似服从N 0,1.
n
即: X(i 近似)~N (n, n 2 ), i=1
从而,P(a
n i 1
Xi
b)
(b n ) ( a n ).
n
n
答案:N (, 2 )
n
9
定理5.5 德莫佛--拉普拉斯定理
解:设机器出故障的台数为X,则X b400,0.02,分别用三种方法计算:
1. 用二项分布计算
P X 2 1 P X 0 P X 1 1 0.98400 4000.020.98399 0.9972
2. 用泊松分布近似计算
np 400 0.02 8 查表得
P X 2 1 P X 0 P X 1 1 0.000335 0.002684 0.9969
浙江大学概率论与数理统计盛骤第四版数理统计部分2
• 3. 给定显著性水平,按照“在原假设H0成立时,拒绝原假 设的概率不大于显著性水平 ”这一原则,确定拒绝 域;
• 4.根据样本观测值作出决策,接受原假设还是拒绝原假 设。
4
例1 设某种清漆的9个样品,其干燥时间(以小时计)分别 为: 6.0 5.7 5.5 6.5 7.0 5.8 5.2 6.1 5.0 根据以往经验,干燥时间的总体服从正态分布N(6.0, 0.36), 现根据样本检验均值是否与以往有显著差异? 解:设 , 分别表示干燥时间总体的均值和标准差,
n1 n2
X Y
从而,拒绝域为:t Sw
1 n1
1 n2
t (n1 n2 2)
18
例4:某厂使用两种不同的原料A,B生产同一类型产品。 各在一周的产品中取样分析。取用原料A生产的样品220件, 测得平均重量为2.46(公斤),样本标准差s=0.57(公 斤)。取用原料B生产的样品205件,测得平均重量为2.55 (公斤),样本标准差为0.48(公斤)。设两样本独立, 来自两个方差相同的独立正态总体。问在水平0.05下能否 认为用原料B的产品平均重量较用原料A的为大。
PH0 ( X 6.0 c)
5
给定显著性水平 0.05, 当原假设成立时,
总体X
~
N (6.0, 0.62 ),因此,X
~
N (6.0,
) 0.62 9
X 6.0
P( X 6.0 c) P(
c
)
0.6 3 0.6 3
X 6.0 拒绝域为: 0.2 z 2 z0.025 1.96
20
分析:本题中每对数据的差异仅是由这两种种子的差异造成的,
浙大第四版概率论与数理统计知识点总结
第1章随机事件及其概率
我们作了n 次试验,且满足
每次试验只有两种可能结果,A 发生或A 不发生; n 次试验是重复进行的,即A 发生的概率每次均一样; 每次试验是独立的,即每次试验A 发生与否与其他次试
验A 发生与否是互不影响的。
这种试验称为伯努利概型,或称为n 重伯努利试验。
用p 表示每次试验A 发生的概率,则A 发生的概率为q p =-1,用)(k P n 表示n 重伯努利试验中A 出现)0(n k k ≤≤次的概率, k n k k n n q p k P C -=)(,n k ,,2,1,0Λ=。
第二章 随机变量及其分布
第三章二维随机变量及其分布
第四章随机变量的数字特征
第五章大数定律和中心极限定理
第六章样本及抽样分布
第七章参数估计
第八章假设检验
单正态总体均值和方差的假设检验。
浙大第四版概率论与数理统计知识点总结
第1章随机事件及其概率
我们作了n 次试验,且满足
每次试验只有两种可能结果,A 发生或A 不发生; n 次试验是重复进行的,即A 发生的概率每次均一样; 每次试验是独立的,即每次试验A 发生与否与其他次试
验A 发生与否是互不影响的。
这种试验称为伯努利概型,或称为n 重伯努利试验。
用p 表示每次试验A 发生的概率,则A 发生的概率为q p =-1,用)(k P n 表示n 重伯努利试验中A 出现)0(n k k ≤≤次的概率, k n k k n n q p k P C -=)(,n k ,,2,1,0Λ=。
第二章 随机变量及其分布
第三章二维随机变量及其分布
第四章随机变量的数字特征
第五章大数定律和中心极限定理
第六章样本及抽样分布
第七章参数估计
第八章假设检验
单正态总体均值和方差的假设检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不可能事件——不包含任何样本点的事件, 记为 ,每次试验必定不发生的事件.
事件的关系和运算 文氏图 ( Venn diagram )
A
随机事件的关系和运算 雷同集合的关系和运算
1. 事件的包含
A B —— A 包含于B
事件 A 发生必 导致事件 B 发生
非负性: A , P( A) 0
归一性: P( ) 1
可列可加性:P
i 1
Ai
P ( Ai )
i 1
其中 A1, A2 , 为两两互斥事件,
概率的性质
P() 0
有限可加性: 设 A1,A2,An 两两互斥
P
n i1
Ai
n i1
P(Ai )
P(A)1P(A) P(A)1
解 P(AB) P(A)P(B)P(AB)
P(AB) P(A) P(B) P(AB)
P(A)P(B)10.3 —— 最小值
最小值在 P( A B) 1 时取得
P( A B) P( A) 0.6 —— 最大值
最大值在 P(AB) P(B) 时取得
§1.4 古典概型
概率的 设 随机试验E 具有下列特点: 古典定义 基本事件的个数有限
(2) nB C31C122C150C55
P( A) 25 91
P(B) 6 91
例2 把标有 1,2,3,4 的 4 个球随机地放入 标有1,2,3,4 的 4 个盒子中,每盒放一球, 求有至少有一个盒子的号码与放入的球 的号码一致的概率。
解 n A44 4!
设 Ai 表示 i 号球入 i 号盒, i = 1,2,3,4
§1.1 随机事件
基本术语 对某事物特征进行观察, 统称试验. 若它有如下特点,则称为随机试验,用E表示
可在相同的条件下重复进行 试验结果不止一个,但能明确所有的结果
试验前不能预知出现哪种结果
样本空间—— 随机试验E 所有可能的结果 组成的集合称为样本空间 记为(或S)
样本空间的元素, 即E 的直接结果, 称为 样本点(or基本事件) 常记为 , = {}
小, 则称 p 为事件 A 的概率, 记作 P(A).
对本定义的评价
优点:直观 易懂
缺点:粗糙 不便 模糊 使用
概率的公理化定义
概率的公理化理论由前苏联数学家柯尔莫
哥洛夫(A.H.Колмогоров)1933年建立.
设 是随机试验E 的样本空间,若能找到 一个法则,使得对于E 的每一事件 A 赋于一个 实数,记为P ( A ), 称之为事件 A 的概率,这种 赋值满足下面的三条公理:
① 震级 7 级以上 ② 死亡 5000人以上
时间
地点
级别 死亡
1905.04.04 克什米尔地区
8.0
1906.08.17 智利瓦尔帕莱索港地区 8.4
1917.01.20 印度尼西亚巴厘岛
1920.12.16 中国甘肃
8.6
1923.09.01 日本关东地区
7.9
1935.05.30 巴基斯坦基达地区 7.5
AB —— A 与B 互斥 A
A、 B不可能同
时发生
B
A1, A2 ,, An 两两互斥 Ai Aj ,i j,i, j 1,2,,n
A1, A2 ,, An , 两两互斥
Ai Aj ,i j,i, j 1,2,
7. 事件的对立
AB , AB
B A
—— A 与B 互相对立
88 万 2万 1.5 万
10 万 14.2 万 5万
时间
地点
级别 死亡
1948.06.28 1970.01.05 1976.07.28 1978.09.16 1995.01.17 1999.08.17 2003.12.26 2004.12.26
日本福井地区
7.3
中国云南
7.7
中国河北省唐山 7.8
P( A B) P( A) P(B)
推广:
P(A B C) P(A) P(B) P(C) P(A B) P(AC) P(B C) P(A B C)
例 小王参加“智力大冲浪”游戏, 他能答 出甲、乙二类问题的概率分别为0.7和0.2, 两类问题都能答出的概率为0.1. 求小王
(1) 答出甲类而答不出乙类问题的概率 (2) 至少有一类问题能答出的概率 (3) 两类问题都答不出的概率
A
每次试验 A、 B中
有且只有一个发生
称B 为A的对立事件(or逆事件),
记为 B A
注意:“A 与B 互相对立”与 “A 与B 互斥”是不同的概念
8. 完备事件组 n
若 A1, A2,, An两两互斥,且 Ai
则称 A1, A2,, An为完备事件组 i1
或称 A1, A2,, An为 的一个划分
乘法原理在排列和组合的问题中被广泛的使用。
加法原理:如果完成一个过程有n类方法,第一类
方法有m1种不同的做法,第二类方法有m2种不同的 做法,……第n类方法有mn种不同的做法,则完成这 一过程有m1+m2+……+mn种做法。
加法原理在概率问题中被广泛的使用。
排列 从 n 个不同的元素中取出 r个 (不放
解 事件A , B分别表示“能答出甲,乙类问题”
(1) P(AB) P(A)P(AB) 0.70.10.6
(2) P(AB) P(A) P(B)P(AB) 0.8
(3) P( A B) P( A B) 0.2
例 设A , B满足 P ( A ) = 0.6, P ( B ) = 0.7, 在何条件下P(A∩B) 取得最大(小)值? 最大(小)值是多少?
AB
2. 事件的相等
AB AB 且 B A
3. 事件的并(和)
AB 或AB —— A 与B 的和事件
A B 发生 事件 A与事件B 至
少有一个发生
A
AB B
n
A1, A2 ,, An 的和事件 —— Ai
i1
A1, A2 ,, An , 的和事件 ——
Ai
i1
4. 事件的交(积)
A B 或 AB
A1
An
A2 A3
An1
运算律 事件 对应 集合
运算
运算
吸收律 A A A
A A A
A (AB) A A(A B) A
重余律 A A
幂等律 A A A A A A
差化积 A B AB A(AB)
交换)
随机事件 —— 的子集, 记为 A ,B…E… 它是满足某些条件的样本点所组成的集合.
例1 给出一组随机试验及相应的样本空间
E1 : 投一枚硬币3次,观察正面出现的次数
S1 {0,1,2,3}
有限样本空间
E2 :观察总机每天9:00~10:00接到的电话次数 S2 {0,1,2,3,, N }
事件 A, B互斥,则
非负性 归一性
fn(A B) fn(A) fn(B)
可加性
可推广到有限个两两互斥事件的和事件
lim
n
fn ( A) P( A)
稳定性
某一定数
频率稳定性的实例
蒲丰( Buffon )投币
投一枚硬币观察正面向上的次数
n = 4040, nH =2048, f n( H ) = 0.5069 皮尔逊( Pearson ) 投币
n = 12000, nH =6019, f n( H ) = 0.5016 n = 24000, nH =12012, f n( H ) = 0.5005
频率的应用
当试验次数较大时有
事件发生
的概 率
事件发生 的频 率
根据如下百年统计资料可得 世界每年发生大地震的概率
近百年世界重大地震
“重大”的标准
若 A B P(B A) P(B)P(A)
P(A) P(B)
对任意两个事件A, B, 有
P(B A) P(B) P( A B)
A
A∩B
B=A∩B+(B – A)
B - A∩BB
P(B)=P(A∩B) + P(B – A∩B)
加法公式:对任意两个事件A, B, 有
P(A B) P(A) P(B) P(A B)
4
则 A Ai i 1
P(
Ai
)
3! 4!
1 4
,
i=1时,表示1号 球放入1号盒,其
伊朗塔巴斯镇地区 7.9
日本阪神工业区 7.2
土耳其伊兹米特市 7.4
伊朗克尔曼省
6.8
印尼苏门答腊岛附近海域 9.0
0.51 万 1万 24.2 万 1.5 万 0.6 万 1.7 万 3万 15 万
世界每年发生大地震概率约为14%
概率的定义
概率的 统计定义 在相同条件下重复进行的 n 次
试验中, A 发生的频率fn(A)稳定地在某一 常数 p 附近摆动, 且随 n 越大摆动幅度越
( AB )C A(BC )
分配律 (AB)C (AC)(BC)
A (BC) (A B)(A C)
德摩根律 AB A B
n
n
Ai Ai
i1
i1
AB AB
n
n
Ai Ai
i1
i1
B A
分配律
图示
C
A(BC)
( A B)(A C)
B
A
C
例2 用图示法简化 (AB)(AB). AB
A ,B ,C 都不发生——
A B C ABC
A ,B ,C 不都发生——
ABC A B C
例5 在图书馆中随意抽取一本书,
事件 A 表示数学书, B 表示中文书, C 表示平装书.