概率论初步古典概型

合集下载

概率论与数理统计-古典概型

概率论与数理统计-古典概型
设 ij : 取出的两球的号码为i, j (1 i j 5), 则,
{12 ,13,14 ,15 ,23,24 ,25 ,34 ,35 ,45}, A {12 ,13 ,23},
从而,
P( A) 3 0.3. 10
表达方法:
样本空间中基本事件总数: N
设 Ak 表示第k 次取得次品,则 Ak 包含的基本事件
总数为: M PNk11 M (N 1)(N 2)(N k 1),
于是,P( Ak
)

M
P k 1 N 1
PNk

M N
(N (N
1)( N 1)( N
2)(N 2)(N
k k
1) 1)
第一章 随机事件及其概率
§1.4 概率的古典定义
一、古典概型的定义
定义 设E是随机试验, 若E满足下列条件: 1。试验的样本空间只包含有限个元素; 2。试验中每个基本事件发生的可能性相同. 则称E为等可能概型. 等可能概型的试验大量存在, 它在概率论发 展初期是主要研究对象. 等可能概型的一些概念 具有直观、容易理解的特点, 应用非常广泛.

M N
.
P(Ak ) 与 k 无关!
* 2.几何概型
假设随机试验包含无穷多个基本事件,且每个基 本事件都是等可能的.
定义 假设试验的样本空间 包含无穷多个基本
事件,其总量可用某种几何特征进行度量;事件A包含 的基本事件可用同样的几何特征度量. 事件A的概率定 义为:
P( A) A的的度度量量.

29876 10 9 8 7 6

1 5
这就是抽签的公正性
[例4] 一批产品共有N 件,其中有M 件次品.每次从

古典概型的定义

古典概型的定义

古典概型的定义
古典概型,也叫统计学的古典概率,是一种基本的概率计算方法。

所谓“古典”,指的是它适用于那些有限个基本事件、每个事件的发
生概率相等的样本空间。

具体来说,对于一个由有限个基本事件组成的样本空间,假设每
个基本事件出现的可能性相等,那么该事件发生的概率就可以通过排
列组合求出。

以一枚硬币抛掷为例,它的古典概型是:正面朝上概率
为1/2,反面朝上概率为1/2。

古典概型的定义包含了以下三个要素:样本空间、基本事件和等
可能性原理。

1.样本空间:指所有可能发生的事件的集合,用S表示。

比如,
扔一枚骰子的样本空间为{1,2,3,4,5,6}。

2.基本事件:是样本空间S中每个元素本身,每个基本事件是互
斥的。

比如,扔一枚硬币时,正面朝上和反面朝上就是两个基本事件。

3.等可能性原理:是指每个基本事件发生的概率相等。

在扔一枚
硬币的例子中,正面朝上和反面朝上的概率都是1/2。

按古典概型定义,基本事件的概率是指每个基本事件出现的可能
性大小,因此它是介于0和1之间的一个实数。

所有的基本事件发生
概率之和为1。

应用古典概型,可以计算出概率问题的答案。

比如,如果一副扑
克牌中,从中随机取出一张牌,求取到一张红桃牌的概率是多少?根
据扑克牌的样本空间和等可能性原理,可以得到红桃牌的数量是13张,总牌数为52张,因此概率为13/52 = 1/4。

总之,古典概型是概率论中最基本的概率计算方法,适用于等可
能性的事件。

通过这种方法,可以方便地计算概率问题,为概率统计
学提供了重要的基础。

古典概型的概率公式

古典概型的概率公式

古典概型的概率公式古典概型是概率学中最基础也是最重要的概念。

它定义了概率学的基本理论,提出了许多有趣的假设和结论,也服务于数学和计算机科学的发展。

简而言之,古典概型就是通过观察事件是否发生来计算概率的方法,即在一定条件下某事件发生的条件概率,用数学形式来表达就是古典概率公式。

古典概型的概率公式是:P(A)=n(A)/n(S),其中P为概率,A为某事件,S为试验空间,n(A)/n(S)为该事件发生的概率。

其中,n(A)表示满足A条件的结果的数目,n(S)表示满足S条件的结果的总数。

古典概型的概率公式提出的基本概念是:若实验开展了n次,其中A事件发生m次,则A事件发生的概率等于m除以n:P (A)=m/n。

古代概率公式比较简单,却蕴含着丰富的数学内涵。

在概率论的基本原理分布定理的框架下,古典概型的概率公式可以用来计算试验空间中某事件发生的期望值、方差、及独立事件之间的关系。

古典概型概率公式也为基于古典概型的相关概率学的理论发展提供了基础,形成了一套完整的概率学理论体系,为后来新兴的概率学分支研究提供了基础。

古典概型概率公式也为其他科学领域提供了参考和指导,特别是在计算机技术和信息处理方面更是如此。

古典概型概率公式可以用来建立合理的评估模型,用来估计某事件发生的可能性,也可以用来估计系统中各个组件的可靠度,以及各个系统模型的可信度。

这些估计的结果可以用来衡量分析系统的性能,基于此可以设计出更高效,稳定,可靠的系统。

此外,古典概型的概率公式还可以应用于更多的领域,比如统计、金融学、决策理论、运筹学、社会科学等。

在这些领域,古典概型概率公式通常被用于研究不确定风险及结果,以做出明智的抉择,帮助采取最佳决策。

总之,古典概型的概率公式和它所涵盖的概率学理论,是目前所有概率学的基础。

它有助于更好地理解不确定事件的发展趋势,也为更加明智的决策提供了指导。

古典概型的概率公式也可以用于许多领域,从数学建模到计算机技术等,都有其重要作用,它已成为概率学及其相关领域的重要理论和工具支持。

古典概型的特征与概率计算公式

古典概型的特征与概率计算公式

古典概型的特征与概率计算公式古典概型是概率论中最基本的概型之一,它的特点是每个事件的可能性相等。

在古典概型中,我们可以通过计算样本空间和事件空间的大小来计算事件发生的概率。

1.等可能性:在古典概型中,每个事件的发生概率都是相等的。

2.有限性:古典概型中的样本空间是有限的,即所有可能的结果有限个。

3.独立性:古典概型中的事件之间是相互独立的,即一个事件的发生不会影响其他事件的发生概率。

根据这些特征,我们可以通过以下公式计算古典概型中事件的概率:1.概率的定义:事件A的概率P(A)定义为事件A发生的可能性与样本空间Ω中所有可能结果发生的总可能性的比值。

即:P(A)=N(A)/N(Ω),其中N(A)表示事件A的结果数目,N(Ω)表示样本空间Ω中所有可能结果的数目。

2.互斥事件:如果两个事件A和B是互斥的(即A和B不可能同时发生),则它们的概率之和为各自概率的和。

即:P(A∪B)=P(A)+P(B)。

3.相互独立事件:如果两个事件A和B是相互独立的(即A的发生不会影响B的发生概率),则它们的概率乘积等于各自概率的乘积。

即:P(A∩B)=P(A)*P(B)。

4.补事件:事件A的对立事件为A的补事件,记作A'。

补事件是指样本空间中不属于事件A的结果。

事件A的发生与A'的不发生是互斥的。

因此,P(A')=1-P(A)。

5.复合事件:如果事件A和B是两个独立事件,则同时发生的概率为两个事件的概率乘积。

即:P(A∩B)=P(A)*P(B)。

通过以上公式,我们可以计算古典概型中事件的概率。

需要注意的是,在应用这些公式时,必须满足古典概型的特征,即事件是等可能发生的、样本空间是有限的,并且各事件之间是相互独立的。

《古典概型》 知识清单

《古典概型》 知识清单

《古典概型》知识清单一、什么是古典概型古典概型是概率论中一种最基本、最简单的概率模型。

它具有以下两个特点:1、试验中所有可能出现的基本事件只有有限个。

2、每个基本事件出现的可能性相等。

比如说掷一枚质地均匀的硬币,结果只有正面和反面两种,而且出现正面和反面的可能性是相等的,这就是一个古典概型的例子。

再比如掷一个质地均匀的骰子,出现 1 点、2 点、3 点、4 点、5 点、6 点的可能性相同,这也是古典概型。

二、古典概型的概率计算公式在古典概型中,事件 A 的概率可以通过以下公式计算:P(A) =事件 A 包含的基本事件个数 m /基本事件的总数 n举个例子,掷一个质地均匀的骰子,求掷出奇数点的概率。

掷出奇数点有 3 种情况(1 点、3 点、5 点),而掷骰子总共 6 种可能结果,所以掷出奇数点的概率 P = 3 / 6 = 1 / 2 。

三、古典概型的计算步骤1、确定试验的基本事件总数 n 。

这需要我们清楚地知道试验中所有可能的结果有多少个。

2、确定事件 A 包含的基本事件个数 m 。

要准确找出满足事件 A 发生的所有可能情况。

3、代入公式计算 P(A) = m / n 。

比如从 1、2、3 这三个数字中随机抽取一个数字,求抽到奇数的概率。

基本事件总数 n = 3,事件“抽到奇数”包含的基本事件个数 m = 2(1 和 3),所以概率 P = 2 / 3 。

四、古典概型中的排列组合在计算古典概型的概率时,经常会用到排列组合的知识。

排列:从 n 个不同元素中取出 m(m ≤ n)个元素,按照一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列。

组合:从 n 个不同元素中取出 m(m ≤ n)个元素的组合数,记作C(n, m) 。

例如,从 5 个人中选 2 个人排成一排,有多少种排法?这就是排列问题,结果是 A(5, 2) = 20 种。

而从 5 个人中选 2 个人组成一组,不考虑顺序,有多少种选法?这就是组合问题,结果是 C(5, 2) = 10 种。

古典概型

古典概型
(2) 没有两位及两位以上乘客在同一层离开,即6位乘客必在十层中的任意6层离开,故有 种离开方式,于是
(3)恰有两位乘客在同一层离开,由于没有规定在哪一层离开,故有 种离开方式,有两人在某一层离开,有 种离开方式,其余4人的离开方式不在同一层离开,这有以下三种方式:4人在同一层离开共有 种离开方式;有3个人在同一层离开,另一个人在其余8层中的任一层离开,共有 种可能;4个人都不在同一层离开,共有 种结果.于是,有利结果数为
[例2] 一套五卷的选集,随机地放到书架上,求各册自左至右或自右至左恰成1、2、3、4、5的顺序的概率.
解:以a、b、c、d、e表示自左至右的书的卷号,这时一个放置的方式与一个向量(a,b,c,d,e)对应,而a、b、c、d、e只能在1、2、3、4、5中取值(而且不许重复取某一个值),故这种向量数共有5!=120.因为各卷书的安放是随机的,所以这120种放法是等可能的,这时就得到一个古典概型 ,而有利事件 发生只有两种可能性:或者卷号的排列为1、2、3、4、5,或者为5、4、3、2、1,所以
一、古典概型
一个随机试验,数学上是用样本空间 、事件域 和概率 来描述的.对一个随机事件 ,如何寻求它的概率 是概率论的一个基本问题.我们先讨论一类是简单的随机试验,它具有下述特征:
对于一个试验 ,如果具有:
(1)样本空间 的元素(即基本事件)只有有限个.不妨设为 个,并记它们为 ,
(2)每个基本事件出现的可能性是相等的,即有
.
[例7] 9名学生中有3名女生,将3名女生随机地分成3组,每组3人,求事件 :每一组有一名女生,及事件 :3 名女生在同一组中的概率.
解:(1)9名学生中有3名女生,将3名女生随机地分成3组,每组3人,共有 种分法.
对于事件 ,先将男生分到组里去,每组2名,这有 种,再将女生分到每一组,每组一名,共有3!种,因此 的有利样本点共有 种.所以

古典概型知识点总结

古典概型知识点总结

古典概型知识点总结关键信息项:1、古典概型的定义2、古典概型的特点3、古典概型的概率计算公式4、基本事件的概念5、基本事件的特点6、古典概型的常见例题7、古典概型与其他概率类型的区别11 古典概型的定义古典概型是一种概率模型,它具有以下两个特点:试验中所有可能出现的基本结果是有限的。

每个基本结果出现的可能性相等。

111 有限性意味着试验的结果是可以一一列举出来的,不是无穷无尽的。

112 等可能性表明每个基本结果发生的概率相同,不存在某些结果更容易发生的情况。

12 古典概型的特点确定性:试验的条件和结果都是明确的。

互斥性:不同的基本事件之间是相互排斥的,不会同时发生。

121 可重复性相同的条件下,重复进行试验,结果具有稳定性。

122 规范性符合概率的基本定义和性质,能够通过计算得出准确的概率值。

13 古典概型的概率计算公式假设试验的基本事件总数为 n,事件 A 包含的基本事件数为 m,则事件 A 发生的概率 P(A) = m / n 。

131 计算步骤确定基本事件的总数 n 。

确定事件 A 包含的基本事件数 m 。

代入公式计算 P(A) 。

132 注意事项计算要准确,避免遗漏或重复计算基本事件。

确保对基本事件的界定清晰无误。

14 基本事件的概念基本事件是试验中不能再分的最简单的随机事件,其他事件可以由基本事件组合而成。

141 基本事件的性质独立性:每个基本事件的发生与否互不影响。

完整性:所有基本事件的集合构成了试验的全部可能结果。

15 基本事件的特点最小性:不能再分解为更小的随机事件。

明确性:能够清晰地定义和区分。

151 基本事件的表示通常用简单的符号或数字来表示。

152 基本事件的数量确定根据试验的具体情况,通过分析得出。

16 古典概型的常见例题掷骰子问题:计算掷出特定点数的概率。

抽奖问题:在有限数量的抽奖券中计算中奖的概率。

摸球问题:从装有不同颜色球的容器中摸出特定颜色球的概率。

161 例题分析详细阐述如何确定基本事件和所求事件包含的基本事件数。

古典概型及其概率计算公式

古典概型及其概率计算公式

古典概型及其概率计算公式古典概型是概率论中最简单的模型之一,适用于试验结果只有有限个可能结果、这些结果发生的概率相等的情况。

在古典概型中,可以使用概率计算公式来计算特定事件发生的概率。

首先,我们来了解一下古典概型的基本概念和特点。

古典概型由以下两个要素组成:1.试验空间:试验的所有可能结果构成的集合,记为S。

例如,一次掷硬币的试验空间为S={正面,反面}。

2.事件:试验空间的子集,即试验的一些结果或一些结果组成的集合。

事件可以用大写字母A、B、C等表示。

在古典概型中,如果试验的所有可能结果有n个,且这些结果发生的概率相等,则每个结果发生的概率为1/n。

这种情况下,事件A的概率可以用以下公式计算:P(A)=n(A)/n(S)其中,n(A)表示事件A中的结果个数,n(S)表示试验的结果个数。

接下来,我们通过几个具体的例子来进一步理解和应用古典概型及其概率计算公式。

例子1:一枚骰子的掷出结果。

试验空间S={1,2,3,4,5,6},共有6个可能的结果,每个结果发生的概率为1/6事件A:出现偶数点数;事件B:出现奇数点数。

n(A)=3,n(B)=3因此,事件A的概率为P(A)=n(A)/n(S)=3/6=1/2;事件B的概率为P(B)=n(B)/n(S)=3/6=1/2例子2:一副扑克牌中抽出一张牌的结果。

试验空间S={52张不同的牌},共有52个可能的结果,每个结果发生的概率为1/52事件A:抽出一张红心牌;事件B:抽出一张大于10的牌。

n(A)=26,n(B)=16因此,事件A的概率为P(A)=n(A)/n(S)=26/52=1/2;事件B的概率为P(B)=n(B)/n(S)=16/52=4/13例子3:一个有5个不同颜色的球的盒子中抽出3个球的结果。

试验空间S={所有可能的颜色组合},共有C(5,3)=10个可能的结果,每个结果发生的概率为1/10。

事件A:抽出的3个球颜色不相同。

n(A)=C(5,3)=10。

古典概型知识点总结

古典概型知识点总结

古典概型知识点总结古典概型是概率论中的一个重要内容,它是指在相同的条件下,可能的结果均等可能的情况下,通过计算各种结果出现的可能性的概率。

在古典概型中主要涉及排列、组合、二项式定理、排列组合概率等基础知识。

下面就各个知识点做详细介绍。

一、排列排列是指从n个不同元素中取出m个进行排列,如果这m个元素的顺序不同则视为不同的排列。

排列数用P(n,m)表示,表示n中取m的排列数。

公式为P(n,m) = n!/(n-m)!例如,从5个不同的元素中取出3个元素进行排列,那么排列数就是P(5,3) = 5!/(5-3)! = 5*4*3 = 60。

二、组合组合是指从n个不同元素中取出m个进行组合,不考虑元素的排列顺序。

组合数用C(n,m)表示,表示n中取m的组合数。

公式为C(n,m) = n!/(m!*(n-m)!)例如,从5个不同的元素中取出3个元素进行组合,那么组合数就是C(5,3) = 5!/(3!*(5-3)!) = 10。

三、二项式定理二项式定理是代数中一个重要的定理,它包括二项式系数的公式以及二项式的展开式。

二项式系数的公式为C(n,m) = n!/(m!*(n-m)!)二项式展开式为(a+b)^n = C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + ... + C(n,n)*a^0*b^n例如,(a+b)^3 = C(3,0)*a^3*b^0 + C(3,1)*a^2*b^1 + C(3,2)*a^1*b^2 + C(3,3)*a^0*b^3 = a^3 + 3*a^2*b + 3*a*b^2 + b^3。

四、排列组合概率排列组合概率是指在进行某种排列或组合的情况下,发生一定事件的概率。

在排列组合概率中,一般会出现某个事件的发生总数以及排列或组合的总数,然后通过计算得出该事件的概率。

例如,从一副扑克牌中随机取5张牌,计算得到顺子的概率。

我们可以计算出顺子的排列数,即5个元素的排列数P(5,5)=5!=120,然后计算出总的排列数,即从52张牌中取5张的排列数P(52,5)=52!/(52-5)!=2,598,960,最后通过计算得出顺子的概率为120/2,598,960≈0.000046。

概率论与数理统计-古典概型_图文

概率论与数理统计-古典概型_图文

思考题
从0,1,2, ,9共十个数字中任意选出三个不同的数字, 试求下列事件的概率:
从0,1,2, ,9共十个数字中任意选出三个不同的数字, 试求下列事件的概率:
从0,1,2, ,9共十个数字中任意选出三个不同的数字, 试求下列事件的概率:
则有
该式称为等可能概型中事件概率的计算公式.
[例1]
表达方法:
[例 2]
解:(1) 有放回情形 样本空间中基本事件总数:
所包含的基本事件总数: 于是,
(2) 无放回情形 样本空间中基本事件总数:
所包含的基本事件总数:
于是,
[例3](继上题) 将抽样方式改为“一次任取 件样品”,求相应
的概率. 解: 样本空间中基本事件总数为:
解:基本事件总数为:
* 2.几何概型
假设随机试验包含无穷多个基本事件,且每个基本 事件都是等可能的. 定义
小结
1. 古典概型:构建合适的样本空间,正确计算样本 点个数.构建样本空间时,要特别注意样本点的等可能 性.
2. 两个重要的概率模型---无放回抽样(超几何分 布),抽签次序无关性.
3. 几何概型---古典概型的推广:样本空间为无穷 集合.
所包含的基本事件总数为:
于是,
附:不放回依次抽样与一次抽样的等价性
例4 在10张奖券中有2张中奖券,有10人依次逐个 抽取一张奖
[例4] 一批产品共有 件,其中有 件次品.每次从中 任取一件,取出后不放回,接连取 个产品.求第 次取 得次品的概率.
概率论与数理统计-古典概型_图文.ppt
一、古典概型的定义
定义 1。试验的样本空间只包含有限个元素; 2。试验中每个基本事件发生的可能性相同.
等可能概型的试验大量存在, 它在概率论发 展初期是主要研究对象. 等可能概型的一些概念 具有直观、容易理解的特点, 应用非常广泛.

《古典概型》ppt课件

《古典概型》ppt课件

有限性
样本空间中包含的基本事件是有 限的。,每个基本
事件都有确定的概率。
这一性质使得古典概型在实际应 用中具有可操作性和实用性。
互斥性
两个或多个基本事件不能同时发 生。
在古典概型中,由于每个基本事 件发生的概率是相等的,因此它 们之间是互斥的,即不可能同时
在统计学中的应用
样本统计
在统计学中,样本统计量是用来描述数据特征的重要工具。 古典概型可用于计算样本统计量的概率分布,如样本均值、 样本方差等。
假设检验
古典概型在假设检验中也有应用,特别是在使用似然比检验 和贝叶斯统计时。通过比较不同假设下的概率,可以判断哪 个假设更合理。
在实际生活中的应用
决策制定
发生。
互斥性是古典概型中一个重要的 性质,它确保了概率计算的正确
性和合理性。
03
古典概型的应用
在概率论中的应用
概率计算
古典概型提供了一种计算概率的简单 方法,特别是对于离散随机事件。通 过列举所有可能的结果和满足条件的 结果,可以直接计算概率。
概率分布
在概率论中,古典概型常用于推导离 散随机变量的概率分布,如二项分布 、泊松分布等。这些分布在实际应用 中具有广泛的应用价值。
古典概型可以帮助人们在不确定的情况下做出决策。例如,在赌博游戏中,玩 家可以使用古典概型来计算获胜的概率。
风险评估
在风险评估中,古典概型可以用来计算风险事件发生的概率。例如,在保险行 业中,保险公司可以使用古典概型来评估不同风险事件的发生概率和损失程度。
04
古典概型与现代概率论的联系
古典概型在现代概率论中的地位
古典概型是现代概率论的基础
古典概型为概率论的发展提供了基本的概念和原理,为后续的概率模型和理论奠 定了基础。

古典概型的概率计算例题和知识点总结

古典概型的概率计算例题和知识点总结

古典概型的概率计算例题和知识点总结在概率论中,古典概型是一种非常基础且重要的概率模型。

它具有简单直观、易于理解和计算的特点。

接下来,我们将通过一些具体的例题来深入理解古典概型的概率计算方法,并对相关知识点进行总结。

一、古典概型的定义与特点古典概型是指试验中所有可能的结果是有限的,并且每个结果出现的可能性相等。

例如,掷一枚均匀的硬币,结果只有正面和反面两种,且出现正面和反面的可能性相等;掷一个均匀的骰子,结果有 1、2、3、4、5、6六种,每种结果出现的概率都是 1/6。

二、古典概型的概率计算公式如果一个试验有n 个等可能的结果,事件A 包含其中的m 个结果,那么事件 A 发生的概率 P(A) = m / n 。

三、例题解析例 1:从装有 3 个红球和 2 个白球的口袋中随机取出 2 个球,求取出的 2 个球都是红球的概率。

解:从 5 个球中取出 2 个球的组合数为 C(5, 2) = 10 种。

取出 2 个红球的组合数为 C(3, 2) = 3 种。

所以取出 2 个球都是红球的概率为 3 / 10 。

例 2:一个盒子里有 5 个完全相同的球,分别标有数字 1、2、3、4、5,从中随机摸出一个球,求摸到奇数球的概率。

解:总共有 5 个球,摸到每个球的可能性相等。

奇数球有 1、3、5 三个。

所以摸到奇数球的概率为 3 / 5 。

例 3:同时掷两个均匀的骰子,求点数之和为 7 的概率。

解:同时掷两个骰子,总的结果数为 6 × 6 = 36 种。

点数之和为7 的情况有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),共 6 种。

所以点数之和为 7 的概率为 6 / 36 = 1 / 6 。

四、古典概型概率计算的注意事项1、要确保试验结果的等可能性。

如果试验结果不是等可能的,就不能使用古典概型的概率计算公式。

2、计算基本事件总数和事件包含的基本事件数时,要注意不重不漏。

3、对于复杂的问题,可以通过分类讨论或分步计算来解决。

概率论初步

概率论初步

概率论初步一、知识要点(一)等可能事件(古典概型)的概率:P(A)=等可能事件概率的计算步骤:①计算一次实验的基本事件总数n;②设所求事件A,并计算事件A包含的基本事件的个数m;③依公式P(A)=求值.(二)几何概型(1)几何概率模型:每个事件发生的概率只与构成该事件区域的长度(面积或体积)成正比(2)几何概型的概率公式:P(A)=构成事件的区域长度(面积或体积)实验的全部结果所构成的区域长度(面积或体积)二、经典例题例1、从52张扑克牌(无大小王)中任取一张,取到“黑桃A”的概率是多少?取到“A”的概率又是多少?例2 、将一个圆盘8等分,指针绕着中心较快的旋转,令指针突然停止,求指针停在偶数区域内的可能性大小。

例3、选择题(1)下列事件中是必然事件的是( ).A .从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球B .小丹的自行车轮胎被钉子扎坏C .小红期末考试数学成绩一定得满分D .将豆油滴入水中,豆油会浮在水面上(2)同时投掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.下列事件中是不可能事件的是( ). A .点数之和为12 B .点数之和小于3 C .点数之和大于4且小于8 D .点数之和为13(3)下列说法中正确的是( ).A .抛一枚均匀的硬币,出现正面、反面的机会不能确定B .抛一枚均匀的硬币,出现正面的机会比较大C .抛一枚均匀的硬币,出现反面的机会比较大D .抛一枚均匀的硬币,出现正面与反面的机会相等(4)从不透明的口袋中摸出红球的概率为51,若袋中红球有3个,则袋中共有球( ). A .5个 B .8个C .10个D .15个例4、在如图所示的图案中,黑白两色的直角三角形都全等.甲、乙两人将它 作为一个游戏盘,游戏规则是:按一定距离向盘中投镖一次,扎在黑色区域为甲胜,扎在白色区域为乙胜.你认为这个游戏公平吗?为什么?三、巩固提升1、同时掷两枚普通的骰子,“出现数字之积为奇数”与“出现数字之积为偶数”的概率分别是______,______.2、有10张卡片,每张卡片分别写有1,2,3,4,5,6,7,8,9,10,从中任意摸取一张卡片,问摸到2的倍数的卡片的概率是多少?3的倍数呢?5的倍数呢?3、小李新买了一部手机,并设置了六位数的开机密码(每位数码都是0~9这10 个数字中的一个),第二天小李忘记了密码中间的两个数字,他一次就能打开手机的概率是多少?4、有两组相同的牌,每组4张,它们的牌面数字分别是1,2,3,4,那么从每组中各摸出一张牌,两张牌的牌面数字之和等于5的概率是多少?两张牌的牌面数字之和等于几的概率最小?5、口袋里有红、绿、黄三种颜色的球,除颜色外其余都相同.其中有红球4个,1求:(1)口袋里黄球的个数;(2)任意绿球5个,任意摸出1个绿球的概率是3摸出1个红球的概率.四、知识总结1.古典概型的适用条件:实验结果的有限性和所有结果的等可能性.2.几何概型的特点:①实验中所有可能出现的结果(基本事件)有无限多个;②每个基本事件出现的可能性相等. 3.概率的性质①非负性:在随机试验E 中,对其中任意一个事件A ,有0≤P (A )≤1; ②规范性:必然事件P (E )=1; 不可能事件:P (∅)=0; 对立事件:P ( )=1-P (A ) 五、课后作业1.一道选择题共有4个答案,其中有且只有一个是正确的,有一位同学随意地选了一个答案,那么他选对的概率为( ). A .1B .21C .31D .412.掷一枚均匀的正方体骰子,骰子6个面分别标有数字1,1,2,2,3,3,则“3”朝上的概率为( ). A .61B .41C .31D .213.一个口袋共有50个球,其中白球20个,红球20个,蓝球10个,则摸到不是白球的概率是( ). A .54B .53C .52D .514. 用力旋转如图所示的甲转盘和乙转盘的指针,如果指针停在蓝色区域就称为成功.A 同学说:“乙转盘大,相应的蓝色部分的面积也大,所以选乙转盘成功的机会比较大.”B 同学说:“转盘上只有两种颜色,指针不是停在红色上就是停在蓝色上,因此两个转盘成功的机会都是50%.”你同意两人的说法吗?如果不同意,请你预言旋转两个转盘成功的机会有多大?。

古典概型知识点总结

古典概型知识点总结

古典概型知识点总结在概率论中,古典概型是一个基础且重要的概念。

它为我们理解和解决许多概率问题提供了简单而直观的方法。

接下来,让我们一起深入探讨古典概型的相关知识点。

一、古典概型的定义古典概型是指试验中所有可能出现的基本事件是有限的,并且每个基本事件出现的可能性相等的概率模型。

例如,掷一枚均匀的硬币,出现正面和反面就是两个基本事件,且它们出现的可能性相等,这就是一个古典概型的例子。

二、古典概型的概率计算公式如果一个古典概型中,一共有 n 个基本事件,事件 A 包含的基本事件数为 m,那么事件 A 发生的概率 P(A) = m / n 。

这个公式是古典概型计算概率的核心,通过确定基本事件总数和事件 A 包含的基本事件数,就可以计算出事件 A 的概率。

三、古典概型的特点1、有限性:试验中所有可能出现的基本事件是有限的。

2、等可能性:每个基本事件出现的可能性相等。

这两个特点是判断一个概率模型是否为古典概型的关键。

四、计算古典概型概率的步骤1、确定试验的基本事件总数 n 。

2、确定所求事件 A 包含的基本事件数 m 。

3、代入公式 P(A) = m / n 计算概率。

例如,一个盒子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。

基本事件总数 n = 8 (5 个红球+ 3 个白球),事件“取出红球”包含的基本事件数 m = 5 ,所以取出红球的概率 P =5 / 8 。

五、古典概型的常见题型1、摸球问题比如,一个袋子里有若干个不同颜色的球,从中摸出特定颜色球的概率。

2、掷骰子问题计算掷出特定点数或特定点数组合的概率。

3、抽奖问题在抽奖活动中,计算中奖的概率。

4、排列组合问题与古典概型的结合通过排列组合的方法确定基本事件总数和事件包含的基本事件数。

六、古典概型的应用1、决策分析在面临不确定性的决策时,可以通过计算不同结果的概率来辅助决策。

2、风险评估评估某些事件发生的可能性和风险程度。

概率论与数理统计古典概型

概率论与数理统计古典概型
例1. 抛一枚硬币,问硬币落地后正面向上的概率是多少? 解:显然,基本事件为:{正面向上},{反面向上},因而样本空间
Ω={{正面向上},{反面向上}}, 所以Ω的基本事件总数为2。 设A={正面向上} [或设A表示“正面向上”事件],则A包含
的基 本事件为{正面向上},即它包含的基本事件总数为1。
何时用排列何时用组合?一般来讲,当考虑“顺序”时用排列,不考虑
“顺序”时用组合。另外,当考虑“顺序”时,样本空间及所关心的事 件A 所包含的基本事件总数的计算,都要用排列,反之亦然。
《概率统计》 返回 下页 结束
古典概型
4.3 古典概型的概率计算举例(利用运算性质)
例6.口袋中有6只球,其中白球4只,黑球2只。现从中任取1只(取 后不放回),然后再任取1只,求:(1)取到2只白球的概率?(2)取到 两个颜色相同的球的概率?(3)至少取到1只白球的概率? 解:6只球中的任意2只球的一种排列,是一个基本事件,因此,所 有可能的基本事件总数为P62。 设A={取到2只白球},B={取到2只黑球} ,C={取到两个颜色相同 的球} ,D={至少取到1只白球} 。 则A包含的基本事件总数为P42,B包含的基本事件总数为P22, 则P(A),P(B)可求。 而显然,C=A∪B=A+B;D+B=Ω(即D与B互逆), 从而有,P(C)= P(A)+P(A); P(D)=1- P(B)。
§1.3 古典概型
一、古典概型的定义
二、古典概型计算公式 三、古典概型计算步骤 四、古典概型计算举例 五、几何概型及其计算
《概率统计》
返回
下页
结束
1. 古典概型
古典概型
若试验E具有以下两个特征: (1) 所有可能的试验结果(基本事件)为有限个, 即Ω={ω1,ω2,…,ωn}; (2) 每个基本事件发生的可能性相同, 即 P(ω1)=P(ω2)=…=P(ωn)。 则称这类试验的数学模型为等可能概型(古典概型)。

古典概型知识点总结

古典概型知识点总结

古典概型知识点总结古典概型是概率论中最基础、最简单的一种模型。

它是指在所有可能的结果中,每个结果的概率相等的模型。

本文将总结古典概型的相关知识点,并探讨其应用场景和注意事项。

一、基础定义1. 古典概型的定义古典概型是指在所有可能的结果中,每个结果的概率相等的模型。

例如,掷一次骰子,每个点数出现的概率都是1/6。

2. 样本空间样本空间是指古典概型中所有可能结果的集合。

例如,掷一枚硬币的样本空间为{正面,反面}。

3. 事件事件是样本空间的子集,表示发生某种结果的可能性。

例如,掷一枚硬币出现正面的事件为{正面}。

4. 概率概率是指某个事件发生的可能性大小,通常用小数表示,取值范围在0到1之间。

在古典概型中,概率可以用公式“事件发生的次数÷样本空间中总的可能结果数”来计算。

二、应用场景古典概型主要应用于以下场景:1. 骰子、硬币等随机游戏例如,掷骰子、抛硬币等游戏中,每个结果的概率都相等,符合古典概型的条件。

2. 假设检验在做假设检验时,常常需要确定某种情况下出现某种结果的概率。

如果符合古典概型条件,可以直接根据概率公式计算概率。

3. 统计学在统计学中,古典概型被广泛应用于概率分布的研究与推导。

三、注意事项在使用古典概型时,需要注意以下事项:1. 每个结果的概率相等古典概型中的最重要条件是每个结果的概率相等。

如果存在某些结果概率不等的情况,就不能使用古典概型进行概率计算了。

2. 互斥事件在计算概率时,需要注意事件之间是否互斥。

如果两个事件不互斥,那么它们的概率应该加在一起。

3. 独立事件在计算概率时,需要注意事件之间是否独立。

如果两个事件是独立的,那么它们的概率应该相乘。

四、结论古典概型是概率论中最基础、最简单的一种模型,应用范围广泛。

在使用古典概型进行概率计算时,需要注意每个结果的概率相等、事件之间是否互斥、事件之间是否独立等问题,才能准确计算概率,避免出现错误的结果。

古典概型的特征和概率计算公式完美正规版

古典概型的特征和概率计算公式完美正规版

古典概型的特征和概率计算公式完美正规版古典概型是概率论中最简单的一种概率模型,它采用了等可能性的假设,即每一个样本点出现的概率都是相等的。

这个模型的特征及其概率计算公式如下:1.样本空间:古典概型中的样本空间是一个有限个数的集合,用Ω表示。

例如,掷骰子的样本空间为Ω={1,2,3,4,5,6},抛硬币的样本空间为Ω={正面,反面}。

2.事件:在古典概型中,事件是样本空间的子集,用A表示。

例如,在掷骰子的样本空间中,事件A可以表示为"出现奇数点数",事件B可以表示为"出现偶数点数"。

3.等可能性假设:古典概型中的一个重要假设是每一个样本点出现的概率都是相等的。

例如,在掷骰子的样本空间中,每一个点数出现的概率都是1/64.概率计算公式:根据等可能性假设,我们可以使用计数的方法来计算事件的概率。

事件A的概率表示为P(A),计算公式为:P(A)=N(A)/N(Ω)其中,N(A)表示事件A中样本点的个数,N(Ω)表示样本空间中样本点的个数。

例如,对于掷骰子的样本空间Ω={1,2,3,4,5,6},事件A表示出现奇数点数,其样本点为{1,3,5},样本点个数为N(A)=3;样本空间Ω中的样本点个数为N(Ω)=6、因此,事件A的概率为:P(A)=N(A)/N(Ω)=3/6=1/2这个公式可以扩展到多个事件的情况下。

例如,对于掷骰子的样本空间Ω={1,2,3,4,5,6},事件A表示出现奇数点数,事件B表示出现偶数点数,这两个事件是互斥事件,即事件A和事件B不能同时发生。

因此,事件A和事件B的概率可以通过以下计算公式得到:P(A)=N(A)/N(Ω)=3/6=1/2P(B)=N(B)/N(Ω)=3/6=1/2请注意,在古典概型中,当事件A和事件B互斥时,它们的概率相加等于1,即P(A)+P(B)=1总结起来,古典概型的特征是样本空间有限、等可能性假设成立;概率计算公式是P(A)=N(A)/N(Ω)。

概率2 古典概型

概率2 古典概型

由于事件A比较复杂,可考虑它的对立事件,即“输入由0,3,2,5组成的
一个四位数字,恰是密码”显然它只有一种结果四个数字0,3,2,5随机编
排顺序 所有可能结果可用树状图表示,如图7-10。
2
3 5
5 3
0
3 5
例5 某网站登录密码由四位数字组成.某同学注册时将自己生日的四 个数字0,3,2,5重新编排了一个顺序作为密码.由于长时间末登录该网站, 他忘记了密码.若登录时随机输入由0,3,2,5组成的一个四位数字,则该 同学不能顺利登录的概率是多少?
解:用事件A表示“输入由0,3,2,5组成的的一个四位数字,但不是密码”.
牌是红心”,试探究P(A),P(B)与P(A∪B)的关系。
将上述探究的结果填入表7-2(课本P200).
E
E5
E12
A与B的关系
P(A)
P(B)
P(A∪B)
P(A)+P(B)
知识探究·素养培育 探究点一互斥事件的概率加法公式
[问题1] 在集合{1,2,3,4,5,6,7}中随机取一个数, (1)设事件A表示“取到数字1”,事件B表示“取到数字2或3”,求 P(A),P(B),P(A∪B); (2)设事件A表示“取到数字1或2”,事件B表示“取到数字2或3”,求 P(A),P(B),P(A∪B).
例3 口袋里共有4个球,其中有2个是白球,2个是黑球,这4个球除颜色 外完全相同.4个人按顺序依次从中摸出一个球(不放回),试计算第二个 人摸到白球的概率. 解法4:进一步简化,只考虑第二个人摸球的情况.
考察试验E11:4个人按顺序依次从中摸出一 个球,只记录第二个人摸
出球的情况. 把2个白球、2个黑球分别编上序号1,2,记摸到1,2号白球的结果分别

古典概型的特征和概率计算公式完美正规版

古典概型的特征和概率计算公式完美正规版

古典概型的特征和概率计算公式完美正规版古典概型是概率论中最简单的模型之一,适用于试验结果相互独立且每个结果发生的概率相等的情况。

在古典概型中,试验的结果可以通过一个有限的样本空间来描述,样本空间中的每个样本点都是一个可能的结果。

下面将介绍古典概型的特征以及概率计算公式的完美正规版。

一、古典概型的特征1.试验结果相互独立:古典概型中的试验结果之间是相互独立的,即一个结果的发生不会影响其他结果的发生。

2.每个结果发生的概率相等:古典概型中每个结果发生的概率是相等的,即每个结果发生的可能性相同。

在古典概型中,我们通常希望计算一些事件的概率,即该事件发生的可能性。

为了计算概率,我们需要以下两个关键步骤:确定样本空间和确定事件。

1.确定样本空间:样本空间是指试验的所有可能结果的集合。

对于古典概型来说,样本空间可以通过列举出所有可能结果来确定。

样本空间的个数通常表示为n。

2.确定事件:事件是样本空间中的一个子集,表示我们感兴趣的试验结果。

可以通过列举出所有可能的事件来确定。

根据古典概型的特征,事件A发生的概率可以通过以下公式计算:P(A)=事件A包含的样本点数/样本空间的样本点数这个计算公式适用于古典概型中任何一个事件的概率计算。

下面通过一个例子来解释该公式的使用。

例子:假设有一个卡片盒,里面有5张红色卡片和3张蓝色卡片。

现在从卡片盒中随机抽取一张卡片,求该卡片是红色的概率。

解答:样本空间为{红,红,红,红,红,蓝,蓝,蓝},样本空间的样本点数为8事件A表示抽取一张红色卡片,包含的样本点数为5根据概率计算公式,可得:P(A)=5/8因此,该卡片是红色的概率为5/8总结:古典概型是概率论中最简单的模型之一,适用于试验结果相互独立且每个结果发生的概率相等的情况。

古典概型的特征是试验结果相互独立,并且每个结果发生的概率相等。

在古典概型中,可以使用概率计算公式P(A)=事件A包含的样本点数/样本空间的样本点数来计算事件发生的概率。

古典概型知识点总结

古典概型知识点总结

古典概型知识点总结古典概型是概率论中最基本、最简单的概率模型之一。

在我们的日常生活和学习中,经常会遇到与古典概型相关的问题。

下面,让我们来系统地总结一下古典概型的相关知识点。

一、古典概型的定义如果一个随机试验具有以下两个特征:1、试验的样本空间Ω中样本点的总数是有限的。

2、每个样本点出现的可能性相等。

那么称这样的随机试验为古典概型。

例如,掷一枚均匀的硬币,观察正反面出现的情况;掷一颗均匀的骰子,观察出现的点数等,都是古典概型的例子。

二、古典概型的概率计算公式在古典概型中,事件 A 的概率定义为:P(A) = A 包含的基本事件个数 m /基本事件的总数 n例如,掷一颗均匀的骰子,出现点数为偶数的概率。

基本事件的总数n =6,事件“出现点数为偶数”包含的基本事件有3 个(2、4、6),所以其概率 P = 3/6 = 1/2 。

三、古典概型的计算步骤1、确定试验的基本事件总数 n 。

2、确定事件 A 所包含的基本事件个数 m 。

3、代入公式计算 P(A) = m / n 。

例如,从装有 3 个红球和 2 个白球的口袋中随机取出 2 个球,求取出的 2 个球都是红球的概率。

首先,基本事件总数 n = C(5, 2) = 10 (组合数,表示从 5 个球中选 2 个的组合数)。

事件“取出的 2 个球都是红球”包含的基本事件个数 m = C(3, 2) =3 。

所以,取出的 2 个球都是红球的概率 P = 3/10 。

四、古典概型的性质1、0 ≤ P(A) ≤ 1 :任何事件的概率都在 0 到 1 之间。

2、P(Ω) = 1 :必然事件的概率为 1 。

3、 P(∅)= 0 :不可能事件的概率为 0 。

五、古典概型的应用1、抽奖问题例如,在一次抽奖活动中,共有 1000 张奖券,其中只有 10 张是中奖券。

某人随机抽取一张,求他中奖的概率。

基本事件总数 n = 1000 ,事件“中奖”包含的基本事件个数 m = 10 ,所以中奖的概率 P = 10/1000 = 1/100 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

将5卷文集任意排放,共有 P55种不同的排法.
A:1 2 3 4 5或5 4 3 2 1共2种
所以
P A 2 1
P55 60
三、等可能事件和对立事件的概率
1.等可能事件及其概率:一次试验有n种等可能 出现的结果.其中事件A包含m种,则P( A) m n
2.对立事件及其概率: 事件E、F满足:E U F ,且E I F , 则E、F叫对立事件,
m1
THT, TTH},
CHale Waihona Puke 1 3,P( A1)m1 n
3 8
(2)A2={HHH, HHT, HTH, THH, HTT, THT, TTH }
m2
8 1,P( A 2)
m2 n
7 8
例2.一部5卷文集,将其按任意顺序排放在书 架上试求其恰好按先后顺序排放的概率.
解:设 A={5卷文集按先后顺序排放}
一、随机事件与古典概型 必然现象:必然会出现的现象 不可能现象:必然不会出现的现象 随机现象:在一定条件下有可能出现也有
可能不出现且有统计规律的现象
判断下列现象是否为随机现象? (1)在标准大气压下,水在0oC时结冰。 (2)明年上海5月份的平均温度为20oC
对随机现象的观察、记录、试验统称为随机试验。
如果一次试验的等可能基本事件共有n个,那么每一 个基本事件的概率都是 1 。
n
如果某个事件A包含了其中m个等可能基本事 件,那么事件A的概率 P( A) m
n
注意:
(1) 0 P( A) 1
(2)P() 1, P() 0
(3)若 {1,2,2,L ,n }, 则P(1 ) P(2 ) L P(n ) 1
解:10个同学出生的基本事件数为1210;
记"10个同学在不同的月份出生"为A,
则A所包含的事件数为P1120,
P( A)
P 10 12
1210
0.0039
P( A)
1
P( A)
0.9961
例3.一个袋子中有10个红色球,5个蓝色球, 10个无色球,这些球的质地、形状都一样, 同时抽取2个球. (1) 都是有色球的概率是多少? (2) 至少有一个是无色球的概率是多少?
随机抛掷两颗骰子,朝上的面的两数和为多
少的可能性最大?
卡当曾予言说押7最好 !
点数之和分别可为2~12共11种。从图中可
知,7是最容易出现(6次)。 则7出现的概率是6/36=1/6
123456 1234567 2345678 3456789 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6 7 8 9 10 11 12
解:抛掷三枚均匀的硬币的基本事件数为23 8;
(1)记"三枚硬币都是字朝上"为A, 则A所包含的事件数为1, P( A) 1 8
( 2)记 " 三枚硬币中至少一枚字朝上,一枚图朝上 "
为B,"三枚都是字朝上或图朝上"为C,则B C,
显然C包含的事件数为2.
P(C ) 2 1 P(B) P(C ) 1 1 3
概率:对随机事件出现可能性大小的数值 度量叫做这个随机事件的概率。
随机事件A的概率记做P( A)
古典概型
生活中有这样一类试验,它们的共同特点是:
基本事件只有有限个; 每个基本事件发生的可能性相同 具有这两个特点的概率模型叫古典概型.。
显然P(
A)
随机事件A所包含的事件数 试验中所有的事件数
二、古典概型的求解步骤
17.1 概 率论 初 步 --古典概型
《重要的艺术》一书的作者、意大利医生兼 数学家卡当,曾大量的进行过赌博。他在赌 博时研究不输的方法,实际是概率论的萌芽。
据说卡当曾参加过这样的赌法:把两颗骰 子掷出去,以每个骰子的点数之和作为赌博 的内容。已知骰子的六个面上分别为1~6点, 那么,赌注下在多少点上最有利
记A的对立事件为A,则P( A) P( A) 1
例1.在100件产品中有90件一等品和10件二等
品,从中随机取出4件产品.求(1) 恰有一件二
等品的概率;(2)至少含有一件二等品的概率.
解:在100件产品中取出4件产品,所有的基本
事件数为C1400; (1)记"随机取出的4件产品中恰有1件二等品"
例1 .将一枚硬币抛掷三次。设:
(1)事件 A1为“恰有一次出现正面”, (2)事件 A2为“至少有一次出现正面”,
求 P (A1 ), P (A2 )。 解:设H为正面;T为反面,
Ω={HHH, HHT, HTH, THH, HTT, THT, TTH,TTT},
n = 2×2×2=8,
(1)A1={HTT,
为A,则A所包含的事件数为C930C110,
P( A)
C930C110 C4
100
1424 4753
0.30
(2)记"随机取出的4件产品中至少含有1件二等品"
为B,则B的对立事件B所包含的事件数为C940,
P(B)
C940 C4
100
0.65
P(B)
1
P(B)
0.35
例2.求随机抽取的10个同学中,至少有2个在 同一月份出生的概率.
17世纪中期,喜欢赌博的贵族梅莱向友人 数学家帕斯卡(1623~1662,法国数学家、物 理学家、哲学家)写信提了好多问题.事实
上概率论正是从梅莱的这封信开始的.帕斯
卡收到信以后和费马交换了意见,发展成了 概率论.
帕斯卡
费马
拉普拉斯
引例:掷一颗均匀的骰子,求下列事件的概率:
(1) 出现5点; (2) 出现奇数点; (3) 出现的点数大于4; (4) 出现7点; (5) 出现的点数小于7;
试验的所有可能的结果都叫做试验结果或基本事件 所有可能的基本事件所组成的集合叫做基本事件全集
记作: {1,2,2,L ,n }
必然事件 : 试验后必定出现的事件,
不可能事件 : 在一定条件下不可能发生的事件, 记作。
随机事件所组成的集合常用A、B…表示,它是Ω的子 集。必然事件和不可能事件都是随机事件.
解:25个球中任意抽取
2个的基本事件数为C
2;
25
(1)记"抽取的2个球中都是有色球"为A,
则A所包含的事件数为C125,
P( A)
C125 C225
7 20
(2)记"抽取的2个球中至少有一个无色球"为B,
则B A, P(B) P( A) 1 P( A) 13 20
例4.抛掷三枚均匀的硬币,求下列事件的概 率: (1)三枚硬币都是字朝上; (2) 至少有一 枚字朝上,一枚图朝上.
相关文档
最新文档