矩阵的概念及其运算

合集下载

矩阵的基本概念和运算

矩阵的基本概念和运算

矩阵的基本概念和运算矩阵是线性代数中的重要概念,广泛应用于数学、物理、工程等领域。

本文将介绍矩阵的基本概念以及常见的矩阵运算。

一、矩阵的基本概念1.1 定义矩阵是一个由m行n列元素组成的矩形数组,记作A=[a_ij],其中i表示行数,j表示列数,a_ij表示矩阵A中第i行第j列的元素。

1.2 矩阵的类型根据矩阵元素的性质和特点,矩阵可以分为以下几种类型:- 零矩阵:所有元素都为0的矩阵,记作O。

- 方阵:行数等于列数的矩阵,记作A(m×m)。

- 行矩阵:只有一行的矩阵,记作A(1×n)。

- 列矩阵:只有一列的矩阵,记作A(m×1)。

- 对角矩阵:非主对角线上的元素都为0的方阵。

1.3 矩阵的运算矩阵的运算包括加法、减法、数乘以及矩阵乘法等。

二、矩阵的运算2.1 矩阵的加法和减法设有两个m×n的矩阵A=[a_ij]和B=[b_ij],则它们的和记作C=A+B,差记作D=A-B。

矩阵的加法和减法满足以下性质:- 交换律:A+B=B+A,A-B≠B-A。

- 结合律:(A+B)+C=A+(B+C),(A-B)-C=A-(B-C)。

- 零元素:A+O=A,A-O=A。

- 负元素:A+(-A)=O。

2.2 矩阵的数乘设有一个m×n的矩阵A=[a_ij],数k,则kA记作E=[ka_ij],即矩阵A中的每个元素乘以k。

2.3 矩阵的乘法设有一个m×n的矩阵A=[a_ij]和一个n×p的矩阵B=[b_ij],它们的乘积记作C=A•B,其中C的第i行第j列的元素为:c_ij = a_i1 * b_1j + a_i2 * b_2j + ... + a_in * b_nj矩阵的乘法需要满足以下条件:- 矩阵A的列数等于矩阵B的行数时,才能进行乘法运算。

- 乘法不满足交换律,即A•B≠B•A。

- 结合律成立:(A•B)•C=A•(B•C)。

2.4 矩阵的转置设有一个m×n的矩阵A=[a_ij],A的转置记作A^T,其中A^T 的第i行第j列的元素为a_ji。

2_1_2矩阵的概念与矩阵运算

2_1_2矩阵的概念与矩阵运算
首页 上页 返回
;两边加A 的负矩阵 ;交换律 ;约定(减法) ;性质4 ;性质3 ;数乘运算 ;恒等变换 ;性质8
下页 结束 ֠
3 5 7 2 1 3 2 0 例4.已知 A= 2 0 4 3 , B = 2 1 5 7 , . 0 1 2 3 0 6 4 8 且A+2X=B,求X。 解:
− 2 − 2 − 5 − 2 1 从而得 X = ½ ∗(B-A) = 0 1 1 4 2 0 5 2 5
本章重点
用初等变换求逆矩阵及求矩阵的秩的方法.
首页
上页
返回
下页
结束
֠
§1 矩阵的概念
在某些问题中,存在若干个具有相同长度的有序数组.比如线性方程 组的每个方程对应一个有序数组:
a11x1 + a12x2 + ⋅⋅⋅ + a1nxn =b1 a21x1 + a22x2 + ⋅⋅⋅ + a2nxn =b2 ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ am1x1+ am2x2 + ⋅⋅⋅ + amnxn =bm
首页
上页
返回
下页
结束
֠
都是m× 矩阵 容易证明, 矩阵.容易证明 设A,B,C都是 ×n矩阵 容易证明,矩阵的加法满足如下运 都是 算规律: 算规律 (1)交换律: A+B=B+A; )交换律: (2)结合律:(A+B)+C=A+(B+C); )结合律: 是与A同型的零矩阵 (3)A+O=A,其中 是与 同型的零矩阵 ) ,其中O是与 同型的零矩阵; (4)A+(-A)=O,其中 是与 同型的零矩阵 是与A同型的零矩阵 ) ,其中O是与 同型的零矩阵. 矩阵的减法可定义为: 矩阵的减法可定义为: 减法可定义为

矩阵的基本概念与运算

矩阵的基本概念与运算

矩阵的基本概念与运算矩阵是线性代数中的重要概念之一,在数学和计算机科学中广泛运用。

它是由数个数按矩形排列而成的矩形阵列,可以表示向量、方程组以及线性变换等。

一、矩阵的基本概念矩阵由m行n列的数按一定顺序排列而成,通常用大写字母表示。

例如,一个3行2列的矩阵可以表示为:A = [a11, a12;a21, a22;a31, a32]其中的aij表示矩阵A中第i行第j列的元素。

矩阵的行数m和列数n分别称为其维度,m×n为矩阵的规模。

二、矩阵的运算1. 矩阵的加法若矩阵A和B的维度相等(均为m行n列),则它们可以相加。

矩阵相加的结果为一个新的维度相同的矩阵C,其元素由对应位置的矩阵A和B的元素相加得到。

即:C = A + B = [a11 + b11, a12 + b12;a21 + b21, a22 + b22;a31 + b31, a32 + b32]2. 矩阵的减法矩阵的减法与加法类似,只需将相应位置上的元素相减即可。

例如:C = A - B = [a11 - b11, a12 - b12;a21 - b21, a22 - b22;a31 - b31, a32 - b32]3. 矩阵的数乘矩阵的数乘指的是将矩阵的每个元素乘以一个常数k。

结果仍为同一维度的矩阵。

记为:C = kA = [ka11, ka12;ka21, ka22;ka31, ka32]4. 矩阵的乘法矩阵的乘法是指将一个m行n列的矩阵A与一个n行p列的矩阵B相乘得到一个m行p列的矩阵C。

矩阵乘法的运算规则如下:C = AB = [c11, c12, ..., c1p;c21, c22, ..., c2p;...cm1, cm2, ..., cmp]其中,cij表示矩阵C中第i行第j列的元素,计算公式为:cij = a1i * b1j + a2i * b2j + ... + ani * bnj5. 矩阵的转置矩阵的转置是指将矩阵的行与列对调。

3_1矩阵的概念及运算

3_1矩阵的概念及运算
零矩阵, (3)元素全为零的矩阵称为零矩阵, × n 零 )元素全为零的矩阵称为零矩阵 m 矩阵记作 om×n 或 o .
3.同型矩阵与矩阵相等的概念 3.同型矩阵与矩阵相等的概念 (1)两个矩阵的行数相等 列数相等时,称为同型 两个矩阵的行数相等, (1)两个矩阵的行数相等,列数相等时,称为同型 矩阵. 矩阵 1 2 14 3 同型矩阵. 例如 5 6 与 8 4 为同型矩阵 3 7 3 9 同型矩阵, (2) 两个矩阵 A = aij 与B = bij 为同型矩阵 并且对应元素相等,即 并且对应元素相等 即
a11 a21 M am 1
a12 a22 M
L a1n L a2 n M
am 2 L amn
称为m行 列矩阵 列矩阵. 矩阵. 称为 行n列矩阵.简称 m × n 矩阵. 记作
a11 a 21 A= L a m1
简记为 A,
a12 a22 L am 1
ij
L a1n L a2 n L L L amn
A A B C D
0 1 1 0
1
B
C
D
1 1
0 0 1
0 0
0 0 1 0
这个数表反映了四城市间交通联接情况. 这个数表反映了四城市间交通联接情况
用矩阵表示
0 1 1 0 1 1 0 0 1 0 0 0 1 1 0 0
二、矩阵的概念
1. 定义 由 m × n 个数 aij (i = 1,2,L, m; j = 1,2,L, n ) 排成的 m行 n 列的数表
的解取决于 系数
aij (i, j = 1,2,L, n),
常数项 bi (i = 1,2,L,n)

矩阵的基本概念与运算

矩阵的基本概念与运算

矩阵的基本概念与运算矩阵是线性代数中的重要概念,广泛应用于数学、物理、计算机科学等领域。

本文将介绍矩阵的基本概念、运算规则以及常见的应用。

一、矩阵的基本概念矩阵是由数个数排列成的矩形阵列。

矩阵可以用方括号表示,例如:A = [a11, a12, a13;a21, a22, a23;a31, a32, a33]其中a11、a12等为矩阵元素,按行排列。

矩阵的行数为m,列数为n,则该矩阵称为m×n矩阵。

矩阵可以是实数矩阵,也可以是复数矩阵。

实数矩阵的元素全为实数,复数矩阵的元素可以是复数。

例如:B = [3+2i, -4-7i, 5+6i;-2+3i, 1-5i, -2i]二、矩阵的运算1. 矩阵的加法和减法若A、B为同型矩阵(行数和列数相同),则有:A +B = [a11+b11, a12+b12, a13+b13;a21+b21, a22+b22, a23+b23;a31+b31, a32+b32, a33+b33]A -B = [a11-b11, a12-b12, a13-b13;a21-b21, a22-b22, a23-b23;a31-b31, a32-b32, a33-b33]2. 矩阵的数乘若A为m×n矩阵,k为标量,则有:kA = [ka11, ka12, ka13;ka21, ka22, ka23;ka31, ka32, ka33]3. 矩阵的乘法若A为m×n矩阵,B为n×p矩阵,则它们的乘积AB为m×p矩阵,满足:AB = [c11, c12, c13;c21, c22, c23;c31, c32, c33]其中:c11 = a11b11 + a12b21 + a13b31c12 = a11b12 + a12b22 + a13b32c13 = a11b13 + a12b23 + a13b33...c33 = a31b13 + a32b23 + a33b334. 矩阵的转置若A为m×n矩阵,则其转置记作A^T,为n×m矩阵,满足:A^T = [a11, a21, a31;a12, a22, a32;a13, a23, a33]三、矩阵的应用1. 网络图论矩阵可以用于表示和分析网络图论中的关系和连接。

mathematics矩阵运算

mathematics矩阵运算

mathematics矩阵运算矩阵运算是线性代数中重要的概念之一,广泛应用于各个领域,包括物理、工程、计算机科学和金融等。

本文将一步一步地介绍矩阵的定义、基本运算、特殊类型的矩阵以及一些常见的矩阵运算。

一、矩阵的定义矩阵是一个按照矩形排列的数的集合,可以用方括号表示。

例如,一个3行2列的矩阵可以表示为:\[A =\begin{bmatrix}a_{1,1} & a_{1,2} \\a_{2,1} & a_{2,2} \\a_{3,1} & a_{3,2} \\\end{bmatrix}\]其中,\[a_{i,j}\]表示矩阵A中第i行第j列的元素。

矩阵中的元素可以是实数或者复数。

二、基本运算1. 矩阵的加法和减法:两个相同大小的矩阵可以进行加法和减法运算。

对应位置上的元素相加或相减,得到的结果矩阵具有相同的大小。

例如,对于两个3行2列的矩阵\[A\]和\[B\],它们的和\[A + B\]可以表示为:\[A + B =\begin{bmatrix}a_{1,1}+b_{1,1} & a_{1,2}+b_{1,2} \\a_{2,1}+b_{2,1} & a_{2,2}+b_{2,2} \\a_{3,1}+b_{3,1} & a_{3,2}+b_{3,2} \\\end{bmatrix}\]2. 矩阵的标量乘法:矩阵可以与一个实数或者复数进行乘法运算,我们称之为标量乘法。

将矩阵中的每一个元素与标量相乘,得到的结果矩阵具有相同的大小。

例如,对于一个3行2列的矩阵\[A\]和一个标量\[k\],它们的乘积\[k \cdot A\]可以表示为:\[k \cdot A =\begin{bmatrix}k \cdot a_{1,1} & k \cdot a_{1,2} \\k \cdot a_{2,1} & k \cdot a_{2,2} \\k \cdot a_{3,1} & k \cdot a_{3,2} \\\end{bmatrix}\]3. 矩阵的乘法:矩阵的乘法是定义在两个矩阵之间的运算,它不同于矩阵加法和减法。

高中数学中的矩阵定义及其运算法则

高中数学中的矩阵定义及其运算法则

高中数学中的矩阵定义及其运算法则矩阵是一种常见的数学工具,可以描述线性方程组、向量、转化为矢量空间等等。

在高中数学中,矩阵是一个重要的概念。

本文将会引导您深入了解矩阵的定义、性质及其运算法则。

一、矩阵的定义矩阵可以用一个矩形的数字表格表示,该表格中的每一个数字称为矩阵的一个元素。

矩阵的大小由它的行数和列数来确定。

例如,一个名为A的矩阵可以写作:A = [a11 a12 a13][a21 a22 a23][a31 a32 a33]在上面的矩阵中,a11、a12、a13等数字是矩阵的元素,第一行的三个数字是第一行中的三个元素。

同样,第一列的三个数字是第一列中的三个元素。

二、矩阵的特殊矩阵有几种特殊的矩阵在高中数学中具有重要的地位,下面是其中一些:1. 零矩阵零矩阵也称为零矩阵或零矩阵,表示所有元素都是0。

例如:0 0 00 0 00 0 02. 单位矩阵单位矩阵也称为单位矩阵或标准矩阵,表示矩阵的对角线上的元素都是1和其他元素都是0。

例如:1 0 00 1 00 0 13. 对称矩阵如果一个矩阵A等于其转置矩阵AT,则称矩阵A是对称矩阵。

例如:1 2 32 0 43 4 5三、矩阵的运算法则在高中数学中,矩阵的运算法则包括加法、减法、数与矩阵的乘法和矩阵之间的乘法。

这里将一一介绍。

1. 矩阵的加法矩阵的加法规则很简单,对应元素相加。

例如,如果有两个矩阵A和B:A = [1 2 3]B = [2 4 6][4 5 6] [2 2 2][7 8 9] [1 1 1]A和B的和是:A +B = [3 6 9][6 7 8][8 9 10]2. 矩阵的减法矩阵的减法规则也很简单,对应元素相减。

例如,如果有两个矩阵A和B:A = [1 2 3]B = [2 4 6][4 5 6] [2 2 2][7 8 9] [1 1 1]A和B的差是:A -B = [-1 -2 -3][2 3 4][6 7 8]3. 数与矩阵的乘法数与矩阵的乘法非常简单,只需要将每个元素乘以该数即可。

矩阵的定义及其运算规则

矩阵的定义及其运算规则

矩阵的定义及其运算规则1、矩阵的定义一般而言,所谓矩阵就是由一组数的全体,在括号()内排列成m行n 列(横的称行,纵的称列)的一个数表,并称它为m×n阵。

矩阵通常是用大写字母A 、B …来表示。

例如一个m 行n 列的矩阵可以简记为:,或。

即:(2-3)我们称(2-3)式中的为矩阵A的元素,a的第一个注脚字母,表示矩阵的行数,第二个注脚字母j(j=1,2,…,n)表示矩阵的列数。

当m=n时,则称为n阶方阵,并用表示。

当矩阵(a ij)的元素仅有一行或一列时,则称它为行矩阵或列矩阵。

设两个矩阵,有相同的行数和相同的列数,而且它们的对应元素一一相等,即,则称该两矩阵相等,记为A=B。

2、三角形矩阵由i=j的元素组成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素。

如果在方阵中主对角线一侧的元素全为零,而另外一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵。

例如,以下矩阵都是三角形矩阵:,,,。

3、单位矩阵与零矩阵在方阵中,如果只有的元素不等于零,而其他元素全为零,如:则称为对角矩阵,可记为。

如果在对角矩阵中所有的彼此都相等且均为1,如:,则称为单位矩阵。

单位矩阵常用E来表示,即:当矩阵中所有的元素都等于零时,叫做零矩阵,并用符号“0”来表示。

4、矩阵的加法矩阵A=(a ij)m×n和B=(b ij)m×n相加时,必须要有相同的行数和列数。

如以C=(c ij)m ×n表示矩阵A及B的和,则有:式中:。

即矩阵C的元素等于矩阵A和B的对应元素之和。

由上述定义可知,矩阵的加法具有下列性质(设A、B、C都是m×n矩阵):(1)交换律:A+B=B+A(2)结合律:(A+B)+C=A+(B+C)5、数与矩阵的乘法我们定义用k右乘矩阵A或左乘矩阵A,其积均等于矩阵中的所有元素都乘上k之后所得的矩阵。

如:由上述定义可知,数与矩阵相乘具有下列性质:设A、B都是m×n矩阵,k、h为任意常数,则:(1)k(A+B)=kA+kB(2)(k+h)A=kA+hA(3)k(hA)=khA6、矩阵的乘法若矩阵乘矩阵,则只有在前者的列数等于后者的行数时才有意义。

矩阵的基本运算与应用知识点总结

矩阵的基本运算与应用知识点总结

矩阵的基本运算与应用知识点总结矩阵是线性代数中的重要概念,具有广泛的应用。

它不仅在数学领域有重要作用,还在物理学、统计学、计算机科学等领域得到广泛应用。

本文将对矩阵的基本运算和应用进行总结。

一、矩阵的定义与表示矩阵是一个由m行和n列元素排列成的矩形数组。

一个m×n矩阵的大小通常表示为m×n。

矩阵中的元素可以是实数、复数或其他数域中的元素。

矩阵常用大写字母表示,如A、B。

二、矩阵的基本运算1. 矩阵的加法矩阵的加法规则是对应元素相加,要求两个矩阵的行数和列数相等。

设A、B是同型矩阵,则它们的和A+B也是同型矩阵,其定义为:(A+B)ij = Aij + Bij。

2. 矩阵的减法矩阵的减法与加法类似,也是对应元素相减。

两个矩阵相减要求行数和列数相等。

设A、B是同型矩阵,则它们的差A-B也是同型矩阵,其定义为:(A-B)ij = Aij - Bij。

3. 矩阵的数乘矩阵的数乘是将矩阵的每个元素都乘以一个实数或复数称为数乘。

设A为一个矩阵,k为实数或复数,则数乘后的矩阵kA,其中矩阵kA 的每个元素均为k乘以A相应元素的积。

4. 矩阵的乘法矩阵的乘法不同于数乘,它是指矩阵之间的乘法运算。

设A为m×n 矩阵,B为n×p矩阵,那么它们的乘积AB为m×p矩阵,其定义为:(AB)ij = ΣAikBkj,其中k的范围是1到n。

三、矩阵的应用1. 线性方程组的求解矩阵在线性方程组的求解中发挥着重要作用。

通过矩阵的系数矩阵和常数矩阵,可以将线性方程组转化为矩阵乘法的形式,进而用矩阵运算求解方程组的解。

2. 特征值与特征向量矩阵的特征值与特征向量是矩阵在线性代数中的重要概念。

特征值表示了矩阵的某个线性变换的影响程度,而特征向量表示了在该变换下不变的方向。

3. 矩阵的转置矩阵的转置是指将矩阵的行与列对换得到的新矩阵。

转置后的矩阵在一些应用中具有特殊的性质,并且在计算中常常用到。

2.1 矩阵的概念 2.2矩阵的运算

2.1 矩阵的概念    2.2矩阵的运算

a11 b11 a 21 b21 a b m1 m1
a12 b12 a 22 b22 a m 2 bm 2
a1n b1n a 2 n b2 n a mn bmn
简记为:A B (aij ) (bij ) (aij bij )
三、矩阵与矩阵的乘法
定义2· 5
B 设矩阵 A (aij ) ms , (bij ) sn,由元素
cij ai1b1 j ai 2b2 j aisbsj aikbkj
k 1
s
构成的矩阵 C (cij ) mn称为矩阵A与矩阵B的乘积。 记为 即:
a11 a i1 a m1
a12 a 22 am2

a1n a2n a mn

1.
矩阵概念与行列式概念的区别:
a11 a12 a1n a 21 a 22 a 2 n 一个行列式 D a n1 a n 2 a nn
代表一个数
(*)
把方程组中系数aij及常数项 bi 按原来次序取出, 作一个矩阵
a11 a 21 a m1 a12 a 22 a1n a2n b1 b2 bm m×(n+1)
=A
增广矩阵
a m 2 a mn
则线性方程组(*)与 A 之间的关系是1-1对应的
则称矩阵A与矩阵B相等。记为:A=B
1 a c 1 1 例如:若 A B 且A=B 2 b 3 0 d
则有c=0; a=-1; b=2; d=3
一、矩阵的加法

1-1矩阵的基本概念及运算

1-1矩阵的基本概念及运算

作业2
2.
即 AB AC× B C.
但也有例外,比如设
A 2 0, 0 2
B 1 1, 1 1
则有 AB 2 2, 2 2
BA 2 2
2 2
AB BA.
这属于特例,称之 为“可交换矩阵”。
4. 单位矩阵——如同数和乘法中的 1
单位矩阵是一个方阵,并且除左上角到右下角的对 角线(称为主对角线)上的元素均为1以外,其他元素 全都为0, 即
一般的线性方程组
a11x1 a12 x2
a21x1
a22 x2
am1x1 am2 x2
a1n xn b1 a2n xn b2
amn xn bm
可以非常简单地表示为矩阵方程 AX B
a11 a12
这里,
A
a21
a22
am1 am2
a1n
x1 b1
a2n
X
2 0
5 T 1
4 2 5
2
0
1
1 2 3 4 2
0
1
0 2
0
2 1 3 5 1
A BT = AT BT .
2、矩阵的倍数 (即数与矩阵相乘)
1) 定义
数与矩阵A的乘积记作A或A , 规定为
a11
A
A
a21
a12
a22
a1n
a2n
.
am1 am1 amn
2) 数乘矩阵的运算规律
这里,Aj为列向量,Bi为行向量。
B1
B2
Bm
特殊矩阵
特殊矩阵
零矩阵:所有元素全等于零的矩阵。 矩阵相等:
①行数和列数分别相等; ②对应的元素都相等。

矩阵的概念和运算

矩阵的概念和运算

矩阵的概念和运算矩阵是线性代数中的重要概念,广泛应用于数学、物理、经济学等各个领域中。

本文将介绍矩阵的基本概念和运算,以及其在实际问题中的应用。

一、矩阵的定义和表示矩阵是由m行n列的数量排列在一个矩形阵列中的数或者符号所组成的矩形数表。

一般用大写字母表示矩阵,例如A、B、C等。

矩阵可以表示为:A = [a_ij],其中1 ≤ i ≤ m,1 ≤ j ≤ n其中a_ij表示矩阵A中第i行第j列的元素。

二、矩阵的基本运算1. 矩阵的加法矩阵的加法满足相同位置元素相加的规则,即相同位置的元素相加得到新矩阵的对应位置元素。

例如:A = [a_ij],B = [b_ij],C = [c_ij]A +B = [a_ij + b_ij] = C2. 矩阵的数乘矩阵的数乘指将一个数与矩阵中的每个元素相乘,得到新矩阵。

例如:A = [a_ij],k为实数kA = [ka_ij]3. 矩阵的乘法矩阵的乘法是指两个矩阵相乘得到新矩阵的运算。

矩阵的乘法满足“行乘列”规则,即第一个矩阵的行元素与第二个矩阵的列元素相乘并求和得到新矩阵的对应位置元素。

例如:A = [a_ij],B = [b_ij],C = [c_ij]AB = C,其中c_ij = ∑(a_ik * b_kj)4. 矩阵的转置矩阵的转置是指将矩阵的行和列互换得到新矩阵。

若A为m行n 列的矩阵,其转置矩阵记作A^T,则A^T为n行m列的矩阵,且A的第i行第j列的元素等于A^T的第j行第i列的元素。

三、矩阵的应用1. 线性方程组矩阵可以用来表示线性方程组,通过矩阵的运算可以更方便地求解线性方程组的解。

例如:Ax = b其中A为系数矩阵,x为未知数向量,b为常数向量。

通过矩阵的运算,可以求解出未知数向量x。

2. 矩阵的特征值和特征向量矩阵的特征值和特征向量是线性代数中的重要概念,用于描述矩阵在向量空间中的变换性质。

特征向量是指在矩阵变换下保持方向不变的非零向量,特征值是指对应于特征向量的标量。

矩阵教学课件

矩阵教学课件

例如:
13 2
6 2
5 2
是一个3 阶方阵.
2 2 2
(2) 只有一行的矩阵 A a1,a2 ,,an ,称为行矩阵(或行向量).
(3) 只有一列的矩阵
a1
B
a2
,
an
称为列矩阵(或列向量).
第二章 矩阵
§1 矩阵的概念
(4) 元素全为零的矩阵称为零矩阵, 记作O.
注意:不同阶数的零矩阵是不相等的.
例8: 设列矩阵X = (x1 x2 ···xn)T, 满足XTX = 1, E为n 阶单位 矩阵, H = E – 2XXT, 证明: H为对称矩阵, 且HHT = E.
证明: 自学 (见P49)
第二章 矩阵
§2 矩阵的运算
五、方阵的行列式 定义:由n阶方阵A的元素所构成的行列式(各元素的位
置不变),称为方阵A的行列式,记作|A| 或det A. 例
第二章 矩阵
§1 矩阵的概念 §2 矩阵的运算 §3 逆矩阵 §4 分块矩阵 §5 矩阵的初等变换 §6 矩阵的秩
第二章 矩阵
§1 矩阵的概念
一、矩阵的定义 定义: 由m×n个数aij (i = 1,2, ∙ ∙ ∙, m ; j = 1,2, ∙ ∙ ∙, n) 排
成的m行n列的数表
称为m行n列矩阵,简称m×n矩阵.
y1 a11x1 a12 x2 a1n xn ,
y2 a21x1 a22 x2 a2n xn ,
ym am1 x1 am2 x2 amn xn .
表示一个从变量x1、x2、…xn到变量y1、y2、…ym的线性变换,
其中aij为常数。
第二章 矩阵
§1 矩阵的概念
,
x

矩阵的概念及其线性运算

矩阵的概念及其线性运算

.第二章 矩阵§2.1 矩阵的概念及其线性运算学习本节内容,特别要注意与行列式的有关概念、运算相区别。

一.矩阵的概念矩阵是一张简化了的表格,一般地⎪⎪⎪⎪⎪⎭⎫ ⎝⎛mn m m n n a a a a a a a a a 212222111211 称为n m ⨯矩阵,它有m 行、n 列,共n m ⨯个元素,其中第i 行、第j 列的元素用j i a 表示。

通常我们用大写黑体字母A 、B 、C ……表示矩阵。

为了标明矩阵的行数m 和列数n ,可用n m ⨯A 或()i jm na ⨯表示。

矩阵既然是一张表,就不能象行列式那样算出一个数来。

所有元素均为0的矩阵,称为零矩阵,记作O 。

两个矩阵A 、B 相等,意味着不仅它们的行、列数相同,而且所有对应元素都相同。

记作B A =。

如果矩阵A 的行、列数都是n ,则称A 为n 阶矩阵,或称为n 阶方阵。

n 阶矩阵有一条从左上角到右下角的主对角线。

n 阶矩阵A 的元素按原次序构成的n 阶行列式,称为矩阵A 的行列式,记作A 。

在n 阶矩阵中,若主对角线左下侧的元素全为零,则称之为上三角矩阵;若主对角线右上侧的元素全为零,则称之为下三角矩阵;若主对角线两侧的元素全为零,则称之为对角矩阵。

主对角线上元素全为1的对角矩阵,叫做单位矩阵,记为E ,即⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=100010001E n ⨯1矩阵(只有一行)又称为n 维行向量;1⨯n 矩阵(只有一列)又称为n 维列向量。

行向量、列向量统称为向量。

向量通常用小写黑体字母a ,b ,x ,y ……表示。

向量中的元素又称为向量的分量。

11⨯矩阵因只有一个元素,故视之为数量,即()a a =。

二.矩阵的加、减运算如果矩阵A 、B 的行数和列数都相同,那么它们可以相加、相减,记为B A +、B A -。

分别称为矩阵A 、B 的和与差。

B A ±表示将A 、B 中所有对应位置的元素相加、减得到的矩阵。

矩阵的基本概念与运算

矩阵的基本概念与运算

矩阵的基本概念与运算矩阵是线性代数中的基本概念之一,它具有广泛的应用。

本文将介绍矩阵的基本概念以及涉及的运算方法。

一、矩阵的定义与表示方法矩阵是一个按照矩形排列的数阵,它由m行n列的数构成。

一个矩阵可以用一个大写字母加上下标的方式表示,例如A、B、C等。

如果一个矩阵共有m行n列,我们将其记作A(m×n)。

二、矩阵的基本运算1. 矩阵的加法设有两个矩阵A(m×n)和B(m×n),矩阵A与矩阵B的和记作A + B,其定义为矩阵中对应元素相加所得的新矩阵,即(A + B)(i,j) = A(i,j) +B(i,j)。

需要注意的是,两个矩阵进行加法运算时,必须满足相加的两个矩阵具有相同的行数和列数。

2. 矩阵的数乘设有一个矩阵A(m×n)和一个常数k,矩阵A乘以常数k的结果记作kA,其定义为将矩阵A的每个元素都乘以k所得的新矩阵,即(kA)(i,j) = k * A(i,j)。

同样需要注意的是,常数与矩阵的乘法满足交换律,即kA = Ak。

3. 矩阵的乘法矩阵的乘法是矩阵运算中的重要一环。

设有两个矩阵A(m×n)和B(n×p),这两个矩阵可以相乘得到一个新的矩阵C,记作C = A * B。

新矩阵C的元素由矩阵A的行向量与矩阵B的列向量的内积所得,即C(i,j) = A(i,1) * B(1,j) + A(i,2) * B(2,j) + ... + A(i,n) * B(n,j)。

4. 矩阵的转置设有一个矩阵A(m×n),将A的行换成列,列换成行所得到的新矩阵称为A的转置矩阵,记作A^T。

三、矩阵的特殊类型1. 零矩阵零矩阵是指所有元素都为零的矩阵,记作O。

零矩阵的尺寸通常根据上下文来确定。

2. 方阵方阵是行数与列数相等的矩阵,记作A(n×n)。

方阵具有许多重要的性质和特点。

3. 单位矩阵单位矩阵是一个主对角线上元素都为1,其余元素都为零的方阵,记作I。

第二章 矩阵及其运算总结

第二章 矩阵及其运算总结

§1 矩阵及其运算一、矩阵的基本概念(必考)矩阵,是由m*n个数组成的一个m行n列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素在矩阵中的位置.比如,或表示一个m*n 矩阵,下标ij 表示元素位于该矩阵的第行、第列.元素全为零的矩阵称为零矩阵. 特别地,一个m*1矩阵,也称为一个 m维列向量;而一个 1*n矩阵B=(b1,b2,…,bn),也称为一个 n维行向量.当一个矩阵的行数m与烈数n 相等时,该矩阵称为一个 n阶方阵.若一个n阶方阵的主对角线上的元素都是,而其余元素都是零,则称为单位矩阵,记为,即: .单位矩阵与实数中的‘1’的运算相近.如一个阶方阵的主对角线上(下)方的元素都是零,则称为下(上)三角矩阵是一个阶下三角矩阵.例题:1.A既是上三角矩阵,又是下三角矩阵,则A必是对角矩阵2.两矩阵既可相加又可相乘的充要条件是两矩阵为同阶方阵.3.A=(l≠n),则A的主对角线上个元素的和为 (设矩阵为2行3列的矩阵,找规律)二、矩阵的运算1、矩阵的加法:如果是两个同型矩阵(即它们具有相同的行数和列数,比如说),则定义它们的和仍为与它们同型的矩阵(即),的元素为和对应元素的和,即:.给定矩阵,我们定义其负矩阵为: .这样我们可以定义同型矩阵的减法为: .由于矩阵的加法运算归结为其元素的加法运算,容易验证,矩阵的加法满足下列运算律:(1)交换律:; (2)结合律:;(3)存在零元:;(4)存在负元:.2 、数与矩阵的乘法的运算律:(1);(2);(3);(4) .3 、矩阵的乘法(必考)设为距阵,为距阵,则矩阵可以左乘矩阵(注意:距阵的列数等与矩阵的行数),所得的积为一个距阵,即,其中,并且(即左行乘右列)矩阵的乘法满足下列运算律(假定下面的运算均有意义):(1)结合律:; (2)左分配律:;(3)右分配律:;(4)数与矩阵乘法的结合律:;(5)单位矩阵的存在性:.若为阶方阵,则对任意正整数,我们定义:,并规定:由于矩阵乘法满足结合律,我们有:, .注意:矩阵的乘法与通常数的乘法有很大区别,特别应该注意的是:(必考重要)(1)矩阵乘法不满足交换律:一般来讲即便有意义,也未必有意义;倘使都有意义,二者也未必相等.正是由于这个原因,一般来讲,在实数中的某些运算不再适应,如,,反过来,这些公式成立的条件又恰是A、B 可逆.例:A,B,C 是同阶矩阵,A ≠0,若AB=BC,必有B=C,则A满足可逆(2)两个非零矩阵的乘积可能是零矩阵,即未必能推出或者. 同理,A ≠0,B ≠0,而AB却肯能等于0.例题:(选择题5、6)(3)矩阵的乘法不满足消去律:如果并且,未必有 .4 、矩阵的转置:定义:设为矩阵,我们定义的转置为一个矩阵,并用表示的转置,即:.矩阵的转置运算满足下列运算律:(1);(2);(3);(4) (重要).5、对称矩阵:n 阶方阵若满足条件:,则称为对称矩阵;若满足条件:,则称为反对称矩阵.若设,则为对称矩阵,当且仅当对任意的成立;为反对称矩阵,当且仅当对任意的成立.从而反对称矩阵对角线上的元素必为零.对称矩阵具有如下性质:(1)对于任意矩阵,为阶对称矩阵;而为阶对称矩阵;(2)两个同阶(反)对称矩阵的和,仍为(反)对称矩阵;(3)如果两个同阶(反)对称矩阵可交换,即,则它们的乘积必为对称矩阵,即.运算性质:1) (2) (3)(4) (5)三、逆矩阵1.定义 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得E BA AB ==.则A 称为可逆矩阵或非奇异矩阵.B 称为A 的逆矩阵,.由定义可得,A 与B 一定是同阶的,而且A 如果可逆,则A 的逆矩阵是唯一的.这是因为(反证法),如果1B 、2B 都是A 的逆矩阵,则有E A B AB ==11,E A B AB ==22,那么22212111)()(B EB B A B AB B E B B =====所以逆矩阵是唯一的.我们把矩阵A 的逆矩阵记作1-A .逆矩阵有下列性质: (1)如果A 可逆,则1-A 也可逆,且A A =--11)(.由可逆的定义,显然有A 与1-A 是互逆的. (2)如果A 、B 是两个同阶可逆矩阵,则)(AB 也可逆,且111)(---=A B AB .(必考重点) 这是因为 E A A AEA ABB A A B AB =⋅===------111111)())((E B B EB B B A A B AB A B ====------111111)())((,所以111)(---=A B AB .(必考重点)这个结论也可以推广到有限个可逆矩阵想乘的情形. (3)可逆矩阵A 的转置矩阵T A 也是可逆矩阵,且T T A A )()(11--=.这是因为E E A A A A T T TT===--)()(11,E E AA A A T T T T ===--)()(11所以 T TA A )()(11--=.(4)如果A 是可逆矩阵,则有11--=A A .这是因为E AA=-1,两边取行列式有 11=⋅-A A ,所以111--==A AA . 矩阵可逆的条件(1)n 阶方阵A 可逆的充分必要条件是| A | ≠ 0(也即r (A )= n );(2)n 阶方阵A 可逆的充分必要条件是A 可以通过初等变换(特别是只通过初等行(列)变换)化为n 阶单位矩阵;(3)n 阶方阵A 可逆的充分必要条件是A 可以写成一些初等矩阵的乘积;(4)n 阶方阵A 可逆的充分必要条件是A 的n 个特征值不为零;(5)对于n 阶方阵A ,若存在n 阶方阵B 使得AB = E (或BA = E ),则A 可逆,且A -1= B. 逆矩阵的有关结论及运算必考 ——求法方法1 定义法:设A 是数域P 上的一个n 阶方阵,如果存在P 上的n 阶方阵B ,使得AB = BA= E ,则称A 是可逆的,又称B 为A 的逆矩阵.当矩阵A 可逆时,逆矩阵由A 惟一确定,记为A -1.例1:设A 为n 阶矩阵,且满足22A - 3A + 5E = 0,求A -1.【解】22 2 -12A - 3A + 5E = 02A - 3A = - 5E23-A - A =E 552323A (- A - E) = - A - E = E555523A A = - A - E55∴∴∴∴可逆且方法 2 伴随矩阵法:A -1= 1|A|A*.定理n 阶矩阵A = a ij 为可逆的充分必要条件是A 非奇异.且11211122221121n n nnnn A A A A A A A A A A A -⎛⎫ ⎪ ⎪=⎪ ⎪⎝⎭其中A ij 是|A|中元素a ij 的代数余子式.矩阵112111222212n n nnnn A A A A A A A A A ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵,记作A*,于是有A -1=1|A|A*. 注 ①对于阶数较低(一般不超过3阶)或元素的代数余子式易于计算的矩阵可用此法求其逆矩阵.注意A* = (A ji )n ×n 元素的位置及符号.特别对于2阶方阵11122122a a A a a ⎛⎫= ⎪⎝⎭,其伴随矩阵22122111*a a A a a -⎛⎫=⎪-⎝⎭,即伴随矩阵具有“主对角元素互换,次对角元素变号”的规律.②对于分块矩阵A B C D ⎛⎫⎪⎝⎭不能按上述规律求伴随矩阵.例2:已知101A=210325⎛⎫ ⎪ ⎪ ⎪--⎝⎭,求A -1.【解】 ∵| A | = 2 ≠ 0 ∴A 可逆.由已知得111213212223313233A = - 5, A = 10, A = 7A = 2, A = - 2, A = - 2A = - 1, A = 2, A = 1 , A -1= 1|A| A* = 5115212211022511272171122⎛⎫-- ⎪--⎛⎫ ⎪⎪-=- ⎪ ⎪ ⎪ ⎪-⎝⎭- ⎪⎝⎭方法3 初等变换法:注 ①对于阶数较高(n ≥3)的矩阵,采用初等行变换法求逆矩阵一般比用伴随矩阵法简便.在用上述方法求逆矩阵时,只允许施行初等行变换.②也可以利用1E A E A -⎛⎫⎛⎫−−−−→⎪ ⎪⎝⎭⎝⎭初等列变换求得A 的逆矩阵. ③当矩阵A 可逆时,可利用求解求得A -1B 和CA -1.这一方法的优点是不需求出A 的逆矩阵和进行矩阵乘法,仅通过初等变换即求出了A -1B 或CA -1.例3::用初等行变换求矩阵231A 013125⎛⎫⎪= ⎪ ⎪⎝⎭的逆矩阵.【解】()231100125001125001A E 01301001301001301012500123110000611212500112500101301001301001910211100166311341006631310122111001663⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎛⎫ ⎪⎛⎫⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪---⎝⎭-- ⎪⎝⎭⎛--→---⎝⎫⎪⎪⎪⎪ ⎪⎪ ⎪⎭1113410066313A 010********1663-⎛⎫--⎪ ⎪ ⎪=- ⎪ ⎪ ⎪-- ⎪⎝⎭故 方法4 用分块矩阵求逆矩阵:设A 、B 分别为P 、Q 阶可逆矩阵,则:1111111111111111A A 000B 0C O A A A CB A O A O BD B O B B DA B B O A O B B O AO ----------------⎛⎫⎛⎫⎛⎫-⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭例4:已知0052002112001100A ⎛⎫⎪ ⎪=⎪-⎪⎝⎭,求A -1.【解】 将A 分块如下:12005200211200110O A A A O ⎛⎫ ⎪ ⎪⎛⎫⎪== ⎪⎪⎝⎭- ⎪ ⎪⎝⎭其中 125212,2111A A -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭可求得 1*1*1122121212111,2511||||3A A A A A A ---⎛⎫⎛⎫==== ⎪ ⎪--⎝⎭⎝⎭ 从而11211120033110331200250O A A A O ---⎛⎫ ⎪ ⎪ ⎪-⎛⎫ ⎪== ⎪⎪⎝⎭ ⎪ ⎪- ⎪-⎝⎭方法5 恒等变形法求逆矩阵:有些计算命题表面上与求逆矩阵无关,但实质上只有求出矩 阵的逆矩阵才能算出来,而求逆矩阵须对所给的矩阵等式恒等变 形,且常变形为两矩阵的乘积等于单位矩阵的等式.例8 已知,且,试求.解 由题设条件得3.伴随矩阵 如果n 阶矩阵A 的行列式0≠A ,则称A 是非奇异的(或非退化的).否则,称A 是奇异的(或退化的).(n 阶矩阵A 可逆的充要条件是:|A|≠0)设n n ij a A ⨯=)(,ij A 是A 中元素)21(n j i a ij ,,,, =的代数余子式.矩阵 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n A A A A A A A A A A 212221212111*(顺序变化,重点)称为A 的伴随矩阵. 矩阵n n ij a A ⨯=)(为可逆矩阵的充分必要条件是A 为非奇异矩阵,并且当A 可逆时,有*11A AA =-,伴随矩阵 例1. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=313132121A 判断A 是否可逆,如果可逆,求1-A .解: 因为01313132121≠=---=A ,所以A 可逆.又.13221)1(11211)1(;11312)1(71321)1(;63311)1(53112)1(;11332)1(93312)1(;83113)1(333323321331322322221221311321121111=---==-==---=-=--=-=--=-=---==--==--==---=+++++++++A A A A A A A A A所以 ⎪⎪⎪⎭⎫⎝⎛---==-1711691581*1A A A 四、分块矩阵一、分块矩阵的概念对于行数和列数较高的矩阵, 为了简化运算,经常采用分块法,使大矩阵的运算化成若干小矩阵间的运算,同时也使原矩阵的结构显得简单而清晰. 具体做法是:将大矩阵用若干条纵线和横线分成多个小矩阵. 每个小矩阵称为A 的子块, 以子块为元素的形式上的矩阵称为分块矩阵.矩阵的分块有多种方式,可根据具体需要而定注:一个矩阵也可看作以n m ⨯个元素为1阶子块的分块矩阵. 二、分块矩阵的运算分块矩阵的运算与普通矩阵的运算规则相似. 分块时要注意,运算的两矩阵按块能运算,并且参与运算的子块也能运算,即,内外都能运算.1. 设矩阵A 与B 的行数相同、列数相同,采用相同的分块法, 若,,11111111⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=st s t st s t B B B B B A A A A A其中ij A 与ij B 的行数相同、列数相同, 则.11111111⎪⎪⎪⎭⎫ ⎝⎛++++=+st st s s t t B A B A B A B A B A2.设,1111⎪⎪⎪⎭⎫ ⎝⎛=st s t A A A A Ak 为数, 则.1111⎪⎪⎪⎭⎫ ⎝⎛=st s t kA kA kA kA kA 3.设A 为l m ⨯矩阵, B 为n l ⨯矩阵, 分块成,,11111111⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=tr t r st s t B B B B B A A A A A其中pt p p A A A ,,,21 的列数分别等于tq q q B B B ,,,21 的行数, 则,1111⎪⎪⎪⎭⎫ ⎝⎛=sr s r C C C C AB 其中).,,2,1;,,2,1(1r q s p B A C t k kqpk pq ===∑=4. 分块矩阵的转置设,1111⎪⎪⎪⎭⎫ ⎝⎛=st s t A A A A A则.1111⎪⎪⎪⎪⎭⎫ ⎝⎛=T st T tT s T TA A A A A 5. 设A 为n 阶矩阵, 若A 的分块矩阵只有在对角线上有非零子块, 其余子块都为零矩阵, 且在对角线上的子块都是方阵, 即⎪⎪⎪⎪⎪⎭⎫⎝⎛=s A O A O A A21, 其中),,2,1(s i A i =都是方阵, 则称A 为分块对角矩阵.分块对角矩阵具有以下性质:(1) 若 ),,2,1(0||s i A i =≠,则0||≠A ,且|;|||||||21s A A A A =(2) .112111⎪⎪⎪⎪⎪⎭⎫⎝⎛=----s A O A O A A(3) 同结构的对角分块矩阵的和、差、积、商仍是对角分块矩阵. 且运算表现为对应子块的运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、矩阵的引入 2、矩阵概念 3、特殊矩阵介绍 4、矩阵基本运算
一、矩阵概念的引入(matrix)
某航空公司在A,B,C,D四城 市之间开辟了若干航线 ,如 图所示表示了四城市间的航 A 班图,如果从A到B有航班,则 用带箭头的线连接 A 与B.
B
C D
四城市间的航班图情况常用表格来表示:
到站
k(A B) kA kB
结论:矩阵与数的线性结构相似
4.矩阵乘法运算(看课本,掌握矩阵乘法规则)
为了更好地学习矩阵乘法,通过例子 来演示。同时注意矩阵乘法的条件
23 例1.设 A 1 -2 , B = 1 -2 -3 ,求AB及BA .
2 -1 0 31
23 解: AB 1 -2
31
也可用 Amn 或 (aij )mn 来表示.
思考题
矩阵与行列式的有何区别?
三、几种特殊形式的矩阵
0
0
1.零矩阵 Omn 0
0
注:零矩阵不唯一,不同于数字0
2.单位阵
1

En
1
3. 对角阵
a11




ann
4. 三角阵
a11
2、加减法:对应元素相加减。(看课本)
加减法满足前四条运算律
3.数乘运算

ka 11
ka 12

ka 1n

k
A

k
a 21
ka 22

ka 2n

每个元
素都乘
kam1 kam2 kamn
K
称为数与矩阵的乘法,简称为数乘。记作:kA
1A A
k(lA) (kl) A,(k l) A kA lA,
a12 …
a22 …
… am2 ……
.
am1 am2 … amn
a1n a2n … amn
转置矩阵有下列性质:
(1)(AT)TA;
(2)(AB)TATBT;
(3)(kA)TkAT;
(4)(AB)TBTAT .
6、方阵的行列式
定义6 设A是n阶方阵,由A的元素构成的n阶行列式 称为方阵A的行列式,记为|A|或det A .
即如果AB=O,不能推出A=O或B=O .
不同于 数字运


9.设
A


1 0
32
,B


1 0
04
,C


ቤተ መጻሕፍቲ ባይዱ
1 0
10 ,则有
ABC C
101 0
320 4100 1
100 1100 1
(2) ACBC / AB; (3) ABO / AO或BO ;
下页
谢 谢!
5、转置矩阵
定义4 将mn矩阵A的行与列互换,得到的nm矩阵,称 为矩阵A的转置矩阵,记为AT。即如果
a11 a12 … a1n
a11 a21 … am1
A
a21 …
a22 …
… a2n ……

则 AT
1 -2 -3 2 -1 0
8 -7 -6
(1)先行后列法
23 例1.设 A 1 -2 , B = 1 -2 -3 ,求AB及BA .
2 -1 0 31
23
8 -7 -6
解: AB 1 -2 1 -2 -3 -3 0 -3
3 1 2 -1 0
(1)先行后列法
23 例1.设 A 1 -2 , B = 1 -2 -3 ,求AB及BA .
练习
练习 1. 设A是3阶方阵,且 A -2 ,则A2 ( 4 ), 2A ( -16 ), - A ( 2 ).
练习 2. 若A,B都是2阶方阵,且A =2,B=-3E,
则 AT B =( 18 ).
谢 谢!
5 -7 -9
BA -9 4 . 38
例1:A


1 -1
-11, B


1 -1
-11
解: AB 00 00
BA


2 -2
2 -2

显然,1)矩阵乘法一般不满足交换律,即ABBA ;
2)两个非零矩阵相乘,乘积可能是零矩阵,
矩阵乘法的性质:
方阵的幂:
(1) (AB)CA(BC); (2) (AB)CACBC; (3) C(AB)CACB; (4) k(AB)(kA)BA(kB) .
应注意的问题:
(1) ABBA ;
对于方阵A及自然数k AkAA A (k个A相乘), 称为方阵A的k次幂. 方阵的幂有下列性质: (1)ArAsArs; (2) (Ar)sArs .
2 -1 0 31
23
8 -7 -6
解: AB 1 -2 1 -2 -3 -3 0 -3
3 1 2 -1 0
5 -7 -9
注:理解矩阵乘法的条件
23
练习
例2.设 A 1 -2 , B = 1 -2 -3 ,求AB及BA .
2 -1 0
31
8 -7 -6
解:
AB=

-3
0
-3

显然, |E|=1 .
性质:设A、B为n阶方阵,k为数,则 (1) |A|=|AT|; (2) |kA|=kn|A|;
(3) |AB|=|A||B| .
7、线性方程组的矩阵表达
a11x1 a12 x2 a1n xn b1 a21x1 a22x2 a2nxnb2 an1x1 an2x2 annxn bn
101 0,
B BC 1 0 10 0 4 040 1 10 0 1 10 100 1 101 0, C
这又是矩阵与数 字的不同
显然AC=BC,但AB .矩阵乘法不满足消去律.
2 0
3 0
4 0
0 0
0 0

4 4 3 2 1 1 2 3 0 0 1 0 0 0 0
不是!
请你记住阶梯型矩阵的特点,尊重阶梯矩阵的定义.
梯形阵是最常用的矩阵!
5.行矩阵、列矩阵
6.阶梯矩阵
7.同型矩阵
总结这些特殊矩阵 中哪些是方阵?
四、矩阵的运算
1.相等:两个矩阵相等是指这两个矩阵有相同 的行数与列数, 且对应元素相等.即“只和 自己相等”。(看课本)
二、矩阵的定义
这就是
矩阵

a11
a12

a1n

a21 a22 a2n 由mn个数按一定的
次序排成的m行n列的
am1
a m2

a mn

矩形数表称为mn矩 阵,简称矩阵.
a ij为矩阵第i行j列的元素.
矩阵一般用大写拉丁字母 A,B,C, 来表示,
A
B
C
D
A
发站 B C
D
其中 表示有航班.
为了便于计算,把表中的 0,就得到一个数表:
改成1,空白地方填上
A
B
C
D
A
B
C
D
0
1
1
0
1
0
1
0
1
0
0
1
0
1
0
0
这个数表反映了四城市间交通联接情况.
上述这些数表就是我们今天要学习的矩阵。 线性代数研究最多最基本的便是矩阵。矩阵 是线性代数最基本的概念。矩阵就是一个数 表,而这个数表可以进行变换,以形成新的 数表。如果你了解原始数表的含义,而且你 可以从中抽象出某种变化规律,你就可以用 线性代数的理论对你研究的数表进行变换, 并得出你想要的一些结论。
a12
a1n

a22
a2n

上三角阵

ann
下三角阵

a 11

a21
a 22

an1 an2 ann
5.行矩阵、列矩阵 6.阶梯矩阵(板书解释) 7.同型矩阵
它们是梯形阵吗?
1 0 0 0 0


5 0 6 0 0

相关文档
最新文档