上海市2015年重点中学自主招生数学模拟试题(含答案)

合集下载

(高清打印版)2015上海数学自招复旦分校真题

(高清打印版)2015上海数学自招复旦分校真题

/////////////////2015年复旦分校自主招生测试题数学试题1、若4,129x y z xy y +=+=+-,求32x y z ++。

2、若抛物线2y ax bx c =++与x 轴交于A B 、,与y 轴交于C ,且三角形ABC 是直角三角形,求ac 。

3、正方形DEFG EHLB NMKL 、、,边长分别为c a b 、、,求a b c 、、,满足的关系式。

4、若不等式组1252x x x a <->⎧⎪⎨-<<⎪⎩或只有整数2-一个解,求a 的取值范围。

5、若2(1)2(1)0a x x a -+-+=的根都是整数,则整数a 的取值范围?6、已知:Rt ABC ∆,3,4,BC AC D ==为AB 上一动点,作DE BC ⊥,求EF的最小值。

7、从1,2,...,100中取两个不同的数,使两数之和大于100,则有______种不同取法。

8、若12...n x x x 、、、只能取2,0,1-,且满足12...17,n x x x ++=-+22212...37,n x x x ++=+则33312..._______n x x x +++=。

9、已知:等腰ABC ∆,两圆外切且都与AB AC 、相切,两圆半径为1和2,求ABC ∆的面积。

10、已知:正五边形1AG =,_____FG JH DC ++=。

11、已知ABC ∆外接于O ,且AO BC ⊥,垂足为D ,且AB BC=(1)证明:ABC ∆是正三角形;(2)若1,=,,AB AE x PE y ==求y 关于x 的解析是及定义域;(3)在(2)的条件下,,PAC EPC αβ∠=∠=,当y 取何值时,22sin sin 1αβ+=。

12、(1)当04x <<,解22[]0x x x --=;(2)求所有实数x ,使3[]43x x =+。

2015年上海中学自招数学试卷及答案解析

2015年上海中学自招数学试卷及答案解析

2015年上海中学自招数学试卷一. 填空题1、 1a 、2a 、⋅⋅⋅、7a 是{1,2,3,,7}⋅⋅⋅的一个排列,12233471||||||||a a a a a a a a -+-+-+⋅⋅⋅+-的最大值为_________【答案】24【解析】原式最大值=12233471||||||||a a a a a a a a -+-+-+⋅⋅⋅+-=71166225533447-+-+-+-+-+-+-=654321324++++++=2、已知a 、b 为正整数,满足5374a b <<,当b 最小时,a b +=_________ 【答案】19 【解析】Q 5374a b <<,得5743b a a b <⎧⎨<⎩,∴201521a b a <<,当1b =时,a 无解;当2b =时,a 无解;……当11b =时,8a =,此时b 最小,且81119a b +=+=3、已知53x y z xy yz zx ++=⎧⎨++=⎩,x 、y 、z 均为实数,则z 的最大值为_________ 【答案】133【解析】Q 53x y z xy yz zx ++=⎧⎨++=⎩∴()53x y z xy x y z +=-⎧⎪⎨=-+⎪⎩∴2535x y z xy z z+=-⎧⎨=-+⎩∴x 与y 是方程()225530m z m z z +-+-+=的两根,∴()()2254530z z z ∆=---+≥解得1313z -≤≤ 4、已知25370x x --=,求22(2)(1)1(1)(2)x x x x -+--=--__________ 【答案】2【解析】Q 25370x x --=∴24441x x x -+=+,()2241x x -=+ ∴221338x x x -+=+∴()21338x x -=+∴()()()()()()2221212212x x x x x x ---=-+----⎡⎤⎣⎦∴()()141338212x x x x=+++---∴()()12239x x x--=+原式=4133812239x xx+++-=+5、交流会,两两相互送礼,校方准备礼物,增加n个人,原有m个人(17)m<,增加34份礼物,则m=____________【答案】8【解析】根据题意有()()()1341m m m n m n-+=++-,()2134n m n∴+-=,∴12134nm n=⎧⎨+-=⎩或22117nm n=⎧⎨+-=⎩或17212nm n=⎧⎨+-=⎩或34211nm n=⎧⎨+-=⎩解得:117nn=⎧⎨=⎩(舍)或28nn=⎧⎨=⎩或177nn=⎧⎨=-⎩(舍)或3416nn=⎧⎨=-⎩(舍)8m∴=6、正ABCV的内切圆半径为1,P为圆上一点,则12BP CP+的最小值为_________ 【答案】212【解析】如图,联结CO,PO,在CO上取点D,使得1122DO r==,联结PD,由计算可得2CO=,在PODV与COPV中,12POD COPOD OPOP OC∠=∠⎧⎪⎨==⎪⎩∴PODV:COPV,∴12PD PC=∴12122BP CP BP PD BD+=+≥=二. 解答题 7、(1){1,2,3,,10}⋅⋅⋅,求其中任意两个元素乘积之和;(2)111{1,,,,}2310⋅⋅⋅,求其中任意偶数个元素乘积之和. 【答案】(1)1320;(2)92 【解析】(1)原式()()123102341910=⨯++⋅⋅⋅++⨯++⋅⋅⋅++⋅⋅⋅+⨯1320=(2)设任意偶数个元素乘积之和为S ,任意奇数个元素乘积之和为H ,则()1111111112310S H ⎛⎫⎛⎫⎛⎫+=+++⋅⋅⋅+- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭()1111111112310S H ⎛⎫⎛⎫⎛⎫-=---⋅⋅⋅-- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭∴()()922S H S H S ++-==8、ABCD 为梯形,EP PQ QF ==,EF 不平行AB .(1)求证:BDF CDF ACE CDE S S S S ⨯=⨯V V V V ;(2)求:AB CD 的值.【答案】(1)见解析;(2)12【解析】(1)联结BE ,AF ,有22BDF BDE CDE CDE S S AB S S CD ==⨯V V V V ;22ACE ACF CDF CDF S S AB S S CD ==⨯V V V V ∴BDF CDF ACE CDE S S S S ⨯=⨯V V V V 得证;(2)Q BDF CDF ACE CDE S S S S +=+V V V V 且BDF CDF ACE CDES S S S ⨯=⨯V V V V ∴BDF ACE CDF CDE S S S S =⎧⎨=⎩V V V V (舍)或BDF CDE CDF ACES S S S =⎧⎨=⎩V V V V ∴21AB CD = ∴1:2AB CD = 附:无答案试卷一. 填空题1、 1a 、2a 、⋅⋅⋅、7a 是{1,2,3,,7}⋅⋅⋅的一个排列,12233471||||||||a a a a a a a a -+-+-+⋅⋅⋅+-的最大值为_________2、已知a 、b 为正整数,满足5374a b <<,当b 最小时,a b +=_________ 3、已知53x y z xy yz zx ++=⎧⎨++=⎩,x 、y 、z 均为实数,则z 的最大值为_________4、已知25370x x --=,求22(2)(1)1(1)(2)x x x x -+--=--__________ 5、交流会,两两相互送礼,校方准备礼物,增加n 个人,原有m 个人(17)m <,增加34 份礼物,则m =____________6、正ABC V 的内切圆半径为1,P 为圆上一点,则12BP CP +的最小值为_________二. 解答题7、(1){1,2,3,,10}⋅⋅⋅,求其中任意两个元素乘积之和;(2)111{1,,,,}2310⋅⋅⋅,求其中任意偶数个元素乘积之和. 8、ABCD 为梯形,EP PQ QF ==,EF 不平行AB .(1)求证:BDF CDF ACE CDE S S S S ⨯=⨯V V V V ;(2)求:AB CD 的值.。

【解析版】上海市闸北区2015届中考数学一模试卷

【解析版】上海市闸北区2015届中考数学一模试卷

2015年上海市闸北区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.如果点G是△ABC的重心,联结AG并延长,交对边BC于点D,那么AG:AD是()A.2:3 B.1:2 C.1:3 D.3:42.已知点D、E分别在△ABC的边AB、AC上,下列给出的条件中,不能判定DE∥BC 的是()A.BD:AB=CE:AC B.DE:BC=AB:AD C.AB:AC=AD:AE D.AD:DB=AE:EC3.下列有关向量的等式中,不一定成立的是()A.=﹣B.||=|| C.+=D.|+|=||+||4.在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是()A.cosA=B.tanA=C.sinA=D.cosA=5.在下列y关于x的函数中,一定是二次函数的是()A.y=x2 B.y=C.y=kx2 D.y=k2x6.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米B.6米C.7.2米D.8米二、填空题(本大题共12题,每题4分,满分48分)7.已知=,则的值是.8.点P是线段AB的黄金分割点(AP>BP),则=.9.如图,在平行四边形ABCD中,点E在BC边上,且CE:BC=2:3,AC与DE相交于点F,若S△AFD=9,则S△EFC=.10.如果α是锐角,且tanα=cot20°,那么α=度.11.计算:2sin60°+tan45°=.12.如果一段斜坡的坡角是30°,那么这段斜坡的坡度是.(请写成1:m的形式)13.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是.14.将抛物线y=﹣(x﹣3)2+5向下平移6个单位,所得到的抛物线的顶点坐标为.15.已知抛物线经过A(0,﹣3)、B(2,﹣3)、C(4,5),判断点D(﹣2,5)是否在该抛物线上.你的结论是:(填“是”或“否”).16.如图,正方形DEFG内接于Rt△ABC,∠C=90°,AE=4,BF=9,则tanA=.17.如图,梯形ABCD中,AD∥BC,AB=DC,点P是AD边上一点,联结PB、PC,且AB2=AP•PD,则图中有对相似三角形.18.如图,在Rt△ABC中,∠C=90°,点D在边AB上,线段DC绕点D逆时针旋转,端点C恰巧落在边AC上的点E处.如果=m,=n.那么m与n满足的关系式是:m=(用含n的代数式表示m).三、解答题(本大题共7题,满分48分)19.解方程:﹣=2.20.已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).(1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y=a(x+m)2+k的形式;(2)写出该抛物线顶点C的坐标,并求出△CAO的面积.21.如图,已知点E在平行四边形ABCD的边AD上,AE=3ED,延长CE到点F,使得EF=CE,设=,=,试用、分别表示向量和.22.如图7,某人在C处看到远处有一凉亭B,在凉亭B正东方向有一棵大树A,这时此人在C处测得B在北偏西45°方向上,测得A在北偏东35°方向上.又测得A、C之间的距离为100米,求A、B之间的距离.(精确到1米).(参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)23.如图,已知等腰梯形ABCD中,AD∥BC,AD=1,BC=3,AB=CD=2,点E在BC边上,AE与BD交于点F,∠BAE=∠DBC.(1)求证:△ABE∽△BCD;(2)求tan∠DBC的值;(3)求线段BF的长.24.如图,在平面直角坐标系内,已知直线y=x+4与x轴、y轴分别相交于点A和点C,抛物线y=x2+kx+k﹣1图象过点A和点C,抛物线与x轴的另一交点是B,(1)求出此抛物线的解析式、对称轴以及B点坐标;(2)若在y轴负半轴上存在点D,能使得以A、C、D为顶点的三角形与△ABC相似,请求出点D的坐标.25.如图,已知在等腰Rt△ABC中,∠C=90°,斜边AB=2,若将△ABC翻折,折痕EF分别交边AC、边BC于点E和点F(点E不与A点重合,点F不与B点重合),且点C落在AB边上,记作点D.过点D作DK⊥AB,交射线AC于点K,设AD=x,y=cot∠CFE,(1)求证:△DEK∽△DFB;(2)求y关于x的函数解析式并写出定义域;(3)联结CD,当=时,求x的值.2015年上海市闸北区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.如果点G是△ABC的重心,联结AG并延长,交对边BC于点D,那么AG:AD是()A.2:3 B.1:2 C.1:3 D.3:4考点:三角形的重心.分析:根据三角形的重心到顶点的距离等于到对边中点的距离的2倍可得AG=2DG,那么AD=AG+DG=3DG,代入即可求得AG:AD的值.解答:解:如图,∵点G是△ABC的重心,∴AG=2DG,∴AD=AG+DG=3DG,∴==.故选A.点评:本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.2.已知点D、E分别在△ABC的边AB、AC上,下列给出的条件中,不能判定DE∥BC 的是()A.BD:AB=CE:AC B.DE:BC=AB:AD C.AB:AC=AD:AE D.AD:DB=AE:EC考点:平行线分线段成比例.分析:根据已知选项只要能推出=或=,再根据相似三角形的判定推出△ADE∽△ABC,推出∠ADE=∠B,根据平行线的判定推出DE∥BC,即可得出选项.解答:解:A、∵BD:AB=CE:AC,∴=,∴=,∴1﹣=1﹣,∴=,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,正确,故本选项错误;B、∵根据DE:BC=AB:AD不能推出△ADE∽△ABC,∴不能推出∠ADE=∠B,∴不能推出DE∥BC,错误,故本选项正确;C、∵AB:AC=AD:AE,∴=,∴=,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,正确,故本选项错误;D、∵AD:DB=AE:EC,∴=,∴=,∴=,∴﹣1=﹣1,∴=,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,正确,故本选项错误;故选B.点评:本题考查了平行线分线段成比例定理和相似三角形的性质和判定,平行线的判定的应用,解此题的关键是能推出△ADE≌△ABC,题目比较好,难度适中.3.下列有关向量的等式中,不一定成立的是()A.=﹣B.||=|| C.+=D.|+|=||+||考点:*平面向量.分析:根据相反向量的知识可得=﹣,根据向量模的定义,可得||=||,由三角形法则,可得+=,即可得|+|≤||+||.解答:解:A、根据相反向量的知识,可得=﹣,故正确;B、根据向量模的定义,可得||=||,故正确;C、+=,故正确;D、|+|≤||+||,故错误.故选D.点评:此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则的应用.4.在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是()A.cosA=B.tanA=C.sinA=D.cosA=考点:锐角三角函数的定义.分析:根据三角函数定义:(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.(3)正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.分别进行分析即可.解答:解:在直角△ABC中,∠C=90°,则A、cosA=,故本选项错误;B、tanA=,故本选项错误;C、sinA=,故本选项正确;D、cosA=,故本选项错误;故选:C.点评:此题主要考查了锐角三角函数的定义,关键是熟练掌握锐角三角函数的定义.5.在下列y关于x的函数中,一定是二次函数的是()A.y=x2 B.y=C.y=kx2 D.y=k2x考点:二次函数的定义.分析:根据二次函数的定义形如y=ax2+bx+c (a≠0)是二次函数.解答:解:A、是二次函数,故A符合题意;B、是分式方程,故B错误;C、k=0时,不是函数,故C错误;D、k=0是常数函数,故D错误;故选:A.点评:本题考查二次函数的定义,形如y=ax2+bx+c (a≠0)是二次函数.6.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米B.6米C.7.2米D.8米考点:相似三角形的应用.专题:压轴题;转化思想.分析:由于人和地面是垂直的,即和路灯到地面的垂线平行,构成两组相似.根据对应边成比例,列方程解答即可.解答:解:如图,GC⊥BC,AB⊥BC,∴GC∥AB,∴△GCD∽△ABD(两个角对应相等的两个三角形相似),∴,设BC=x,则,同理,得,∴,∴x=3,∴,∴AB=6.故选:B.点评:本题考查相似三角形性质的应用.在解答相似三角形的有关问题时,遇到有公共边的两对相似三角形,往往会用到中介比,它是解题的桥梁,如该题中的“”.二、填空题(本大题共12题,每题4分,满分48分)7.已知=,则的值是.考点:比例的性质.分析:根据分比性质,可得答案.解答:解:由分比性质,得==,故答案为:.点评:本题考查了比例的性质,利用了分比性质:=⇒=.8.点P是线段AB的黄金分割点(AP>BP),则=.考点:黄金分割.分析:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值叫做黄金比.解答:解:∵点P是线段AB的黄金分割点(AP>BP),∴==.故答案为.点评:本题考查了黄金分割的定义,牢记黄金分割比是解题的关键.9.如图,在平行四边形ABCD中,点E在BC边上,且CE:BC=2:3,AC与DE相交于点F,若S△AFD=9,则S△EFC=4.考点:相似三角形的判定与性质;平行四边形的性质.专题:推理填空题.分析:由于四边形ABCD是平行四边形,所以得到BC∥AD、BC=AD,而CE:BC=2:3,由此即可得到△AFD∽△CFE,它们的相似比为3:2,最后利用相似三角形的性质即可求解.解答:解:∵四边形ABCD是平行四边形,∴BC∥AD、BC=AD,而CE:BC=2:3,∴△AFD∽△CFE,且它们的相似比为3:2,∴S△AFD:S△EFC=()2,而S△AFD=9,∴S△EFC=4.故答案为:4.点评:此题主要考查了相似三角形的判定与性质,解题首先利用平行四边形的构造相似三角形的相似条件,然后利用其性质即可求解.10.如果α是锐角,且tanα=cot20°,那么α=70度.考点:互余两角三角函数的关系.分析:根据一个角的正切值等于它的余角的余切值即可求解.解答:解:∵tanα=cot20°,∴∠α+20°=90°,即∠α=90°﹣20°=70°.故答案为70.点评:本题考查了互为余角的锐角三角函数关系:一个角的正切值等于它的余角的余切值.11.计算:2sin60°+tan45°=+1.考点:特殊角的三角函数值.分析:根据特殊三角函数值,可得答案.解答:解:原式=2×+1=+1,故答案为:+1.点评:本题考查了特殊角的三角函数值,解决此类题目的关键是熟记特殊角的三角函数值.12.如果一段斜坡的坡角是30°,那么这段斜坡的坡度是1:.(请写成1:m的形式)考点:解直角三角形的应用-坡度坡角问题.分析:坡比等于坡角的正切值,据此即可求解.解答:解:i=tanα=tan30°==1:,故答案是:1:.点评:本题主要考查了坡比与坡角的关系,注意坡比一般表示成1:a的形式.13.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是m>1.考点:二次函数的性质.分析:根据二次函数的性质可知,当抛物线开口向上时,二次项系数m﹣1>0.解答:解:因为抛物线y=(m﹣1)x2的开口向上,所以m﹣1>0,即m>1,故m的取值范围是m>1.点评:解答此题要掌握二次函数图象的特点.14.将抛物线y=﹣(x﹣3)2+5向下平移6个单位,所得到的抛物线的顶点坐标为(3,﹣1).考点:二次函数图象与几何变换.专题:计算题.分析:根据二次函数的性质得抛物线y=﹣(x﹣3)2+5的顶点坐标为(3,5),然后根据点平移的规律,点(3,5)经过平移后得到对应点的坐标为(3,﹣1),从而得到新抛物线的顶点坐标.解答:解:抛物线y=﹣(x﹣3)2+5的顶点坐标为(3,5),点(3,5)向下平移6个单位得到对应点的坐标为(3,﹣1),所以新抛物线的顶点坐标为(3,﹣1).故答案为(3,﹣1).点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.15.已知抛物线经过A(0,﹣3)、B(2,﹣3)、C(4,5),判断点D(﹣2,5)是否在该抛物线上.你的结论是:是(填“是”或“否”).考点:二次函数图象上点的坐标特征.专题:计算题.分析:利用点A与点B的坐标特征得到抛物线的对称轴为直线x=1,然后根据抛物线的对称性可判断点C(4,5与点D(﹣2,5)是抛物线上的对称点.解答:解:∵抛物线经过A(0,﹣3)、B(2,﹣3),而点A与点B关于直线x=1对称,∴抛物线的对称轴为直线x=1,∴点C(4,5)关于直线x=1的对称点D(﹣2,5)在抛物线上.故答案为:是.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了抛物线的对称性.16.如图,正方形DEFG内接于Rt△ABC,∠C=90°,AE=4,BF=9,则tanA=.考点:相似三角形的判定与性质;锐角三角函数的定义.分析:根据条件可证明△ADE∽△GFB,利用相似三角形的性质可求得DE,在Rt△ADE 中,由正切函数的定义可求得tanA.解答:解:∵四边形DEFG为正方形,∴∠DEA=∠GFB=90°,DE=GF,∵∠C=90°,∴∠A+∠B=∠A+∠ADE=90°,∴∠ADE=∠B,∴△ADE∽△GFB,∴=,即=,解得DE=6,∴tanA===,故答案为:.点评:本题主要考查相似三角形的判定和性质,由条件证明三角形相似求得DE的长是解题的关键.17.如图,梯形ABCD中,AD∥BC,AB=DC,点P是AD边上一点,联结PB、PC,且AB2=AP•PD,则图中有3对相似三角形.考点:相似三角形的判定.分析:由AD∥BC,AB=DC可判断梯形ABCD为等腰梯形,则∠A=∠D,由AB2=AP•PD 得AB•CD=AP•PD,于是根据两组对应边的比相等且夹角对应相等的两个三角形相似判断△ABP∽△DPC,由相似的性质得∠ABP=∠DPC,接着利用AD∥BC得到∠DPC=∠PCB,∠APB=∠PBC,则∠PCB=∠ABP,于是根据有两组角对应相等的两个三角形相似得到△ABP ∽△PCB,所以△DPC∽△DPC.解答:解:∵AD∥BC,AB=DC,∴梯形ABCD为等腰梯形,∴∠A=∠D,∵AB2=AP•PD,∴AB•CD=AP•PD,即=,∴△ABP∽△DPC,∴∠ABP=∠DPC,∵AD∥BC,∴∠DPC=∠PCB,∠APB=∠PBC,∴∠PCB=∠ABP,∴△ABP∽△PCB,∴△DPC∽△DPC.故答案为3.点评:本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.18.如图,在Rt△ABC中,∠C=90°,点D在边AB上,线段DC绕点D逆时针旋转,端点C恰巧落在边AC上的点E处.如果=m,=n.那么m与n满足的关系式是:m=2n+1(用含n的代数式表示m).考点:平行线分线段成比例;旋转的性质.专题:计算题.分析:作DH⊥AC于H,如图,根据旋转的性质得DE=DC,则利用等腰三角形的性质得EH=CH,由=n可得AE=2nEH=2nCH,再根据平行线分线段成比例,由DH∥BC得到=,所以m=,然后用等线段代换后约分即可.解答:解:作DH⊥AC于H,如图,∵线段DC绕点D逆时针旋转,端点C恰巧落在边AC上的点E处,∴DE=DC,∴EH=CH,∵=n,即AE=nEC,∴AE=2nEH=2nCH,∵∠C=90°,∴DH∥BC,∴=,即m===2n+1.故答案为:2n+1.点评:本题考查了平行线分线段成比例定理的应用,解此题的关键是能根据定理得出比例式,注意:一组平行线截两条直线,所截得的线段对应成比例.也考查了旋转的性质和等腰三角形的性质.三、解答题(本大题共7题,满分48分)19.解方程:﹣=2.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2﹣3x+x+2=2x2﹣8,整理得:x2+x﹣6=0,即(x﹣2)(x+3)=0,解得:x=2或x=﹣3,经检验x=2是增根,分式方程的解为x=﹣3.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).(1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y=a(x+m)2+k的形式;(2)写出该抛物线顶点C的坐标,并求出△CAO的面积.考点:二次函数的三种形式.分析:(1)将A(0,4)和B(1,﹣2)代入y=﹣2x2+bx+c求得b,c的值,得到此函数的解析式;再利用配方法先提出二次项系数,然后加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式;(2)由顶点式可得顶点C的坐标,再根据三角形的面积公式即可求出△CAO的面积.解答:解:(1)将A(0,4)和B(1,﹣2)代入y=﹣2x2+bx+c,得,解得,所以此函数的解析式为y=﹣2x2﹣4x+4;y=﹣2x2﹣4x+4=﹣2(x2+2x+1)+2+4=﹣2(x+1)2+6;(2)∵y=﹣2(x+1)2+6,∴C(﹣1,6),∴△CAO的面积=×4×1=2.点评:本题考查了用待定系数法求二次函数的解析式,二次函数解析式的三种形式,二次函数的性质以及三角形的面积,难度适中.正确求出函数的解析式是解题的关键.21.如图,已知点E在平行四边形ABCD的边AD上,AE=3ED,延长CE到点F,使得EF=CE,设=,=,试用、分别表示向量和.考点:*平面向量.分析:由四边形ABCD是平行四边形,可得==,==,又由AE=3ED,即可求得与的长,然后由三角形法则,求得向量和.解答:解:∵四边形ABCD是平行四边形,∴==,==,∵AE=3ED,∴==,==,∴=﹣=﹣;∵EF=CE,∴==﹣,∴=+=+﹣=+.点评:此题考查了平面向量的知识.此题难度适中,注意掌握三角形法则的应用,注意掌握数形结合思想的应用.22.如图7,某人在C处看到远处有一凉亭B,在凉亭B正东方向有一棵大树A,这时此人在C处测得B在北偏西45°方向上,测得A在北偏东35°方向上.又测得A、C之间的距离为100米,求A、B之间的距离.(精确到1米).(参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)考点:解直角三角形的应用-仰角俯角问题.分析:过点C⊥AB于点D,在Rt△ACD中,求出AD、CD的值,然后在Rt△BCD中求出BD的长度,继而可求得AB的长度.解答:解:过点C⊥AB于点D,在Rt△ACD中,∵∠ACD=35°,AC=100m,∴AD=100•sin∠ACD=100×0.574=57.4(m),CD=100•cos∠ACD=100×0.819=81.9(m),在Rt△BCD中,∵∠BCD=45°,∴BD=CD=81.9m,则AB=AD+BD=57.4+81.9≈139(m).答:A、B之间的距离约为139米.点评:本题考查了直角三角形的应用,解答本题的关键是根据方向角构造直角三角形,利用三角函数解直角三角形.23.如图,已知等腰梯形ABCD中,AD∥BC,AD=1,BC=3,AB=CD=2,点E在BC边上,AE与BD交于点F,∠BAE=∠DBC.(1)求证:△ABE∽△BCD;(2)求tan∠DBC的值;(3)求线段BF的长.考点:相似三角形的判定与性质;等腰梯形的性质.分析:(1)根据等腰梯形可得到∠ABE=∠C,结合条件可证得结论;(2)过D作DG⊥BC,则可求得BG、CG,在Rt△DCG中可求得DG,在Rt△BGD中由正切函数的定义可求得tan∠DBC;(3)由(2)可求得BD,结合(1)中的相似可求得BE,再利用平行线分线段成比例得到=,代入可求得BF.解答:(1)证明:∵四边形ABCD为等腰梯形,∴∠ABE=∠C,且∠BAE=∠DBC,∴△ABE∽△BCD;(2)解:过D作DG⊥BC于点G,∵AD=1,BC=3,∴CG=(BC﹣AD)=1,BG=2,又∵在Rt△DGC中,CD=2,CG=1,∴DG=,在Rt△BDG中,tan∠DBC==;(3)解:由(2)在Rt△BGD中,由勾股定理可求得BD=,由(1)△ABE∽△BCD可得=,即==,解得BE=,又∵AD∥BC,∴=,且DF=BD﹣BF,∴=,解得BF=.点评:本题主要考查相似三角形的判定和性质及三角函数的定义,在(2)中构造直角三角形,求得DG是解题的关键,在(3)中求得BE、BD的长是解题的关键.24.如图,在平面直角坐标系内,已知直线y=x+4与x轴、y轴分别相交于点A和点C,抛物线y=x2+kx+k﹣1图象过点A和点C,抛物线与x轴的另一交点是B,(1)求出此抛物线的解析式、对称轴以及B点坐标;(2)若在y轴负半轴上存在点D,能使得以A、C、D为顶点的三角形与△ABC相似,请求出点D的坐标.考点:二次函数综合题.专题:综合题.分析:(1)先求出A、C两点的坐标,再代入抛物线的解析式,就可求出该抛物线的解析式,然后根据抛物线的对称轴方程x=﹣求出抛物线的对称轴,根据抛物线上点的坐标特征求出点B的坐标;(2)易得∠OAC=∠OCA,∠ABC>∠ADC,由此根据条件即可得到△CAD∽△ABC,然后运用相似三角形的性质可求出CD的长,由此可得到OD的长,就可解决问题.解答:解:(1)由x=0得y=0+4=4,则点C的坐标为(0,4);由y=0得x+4=0,解得x=﹣4,则点A的坐标为(﹣4,0);把点C(0,4)代入y=x2+kx+k﹣1,得k﹣1=4,解得:k=5,∴此抛物线的解析式为y=x2+5x+4,∴此抛物线的对称轴为x=﹣=﹣.令y=0得x2+5x+4=0,解得:x1=﹣1,x2=﹣4,∴点B的坐标为(﹣1,0).(2)∵A(﹣4,0),C(0,4),∴OA=OC=4,∴∠OCA=∠OAC.∵∠AOC=90°,OB=1,OC=OA=4,∴AC==4,AB=OA﹣OB=4﹣1=3.∵点D在y轴负半轴上,∴∠ADC<∠AOC,即∠ADC<90°.又∵∠ABC>∠BOC,即∠ABC>90°,∴∠ABC>∠ADC.∴由条件“以A、C、D为顶点的三角形与△ABC相似”可得△CAD∽△ABC,∴=,即=,解得:CD=,∴OD=CD﹣CO=﹣4=,∴点D的坐标为(0,﹣).点评:本题主要考查了用待定系数法求二次函数的解析式、解一元二次方程、相似三角形的性质、勾股定理、等腰三角形的性质等知识,弄清两相似三角形的对应关系是解决第(2)小题的关键.25.如图,已知在等腰Rt△ABC中,∠C=90°,斜边AB=2,若将△ABC翻折,折痕EF分别交边AC、边BC于点E和点F(点E不与A点重合,点F不与B点重合),且点C落在AB边上,记作点D.过点D作DK⊥AB,交射线AC于点K,设AD=x,y=cot∠CFE,(1)求证:△DEK∽△DFB;(2)求y关于x的函数解析式并写出定义域;(3)联结CD,当=时,求x的值.考点:相似形综合题;等腰三角形的判定与性质;等边三角形的判定与性质;直角三角形斜边上的中线;轴对称的性质;锐角三角函数的定义;特殊角的三角函数值.专题:综合题;分类讨论.分析:(1)要证△DEK∽△DFB,只需证到∠EKD=∠FBD,∠EDK=∠FDB即可;(2)易得DK=DA=x,DB=2﹣x,由△DFB∽△DEK可得到=,从而可得y=cot∠CFE=cot∠DFE===;然后只需先求出在两个临界位置(点F在点B处、点E在点A处)下的x值,就可得到该函数的定义域;(3)取线段EF的中点O,连接OC、OD,根据直角三角形斜边上的中线等于斜边的一半可得OC=OD=EF.设EF与CD交点为H,根据轴对称的性质可得EF⊥CD,且CH=DH=CD.由=可得tan∠HOC==,从而得到∠HOC=60°.①若点K在线段AC上,如图2,由∠HOC=60°可求得∠OFC=30°,由此可得到y的值,再把y的值代入函数解析式就可求出x的值;②若点K在线段AC的延长线上,如图3,由∠HOC=60°可求得∠OFC=60°,由此可得到y的值,再把y的值代入函数解析式就可求出x的值.解答:(1)证明:如图1,由折叠可得:∠EDF=∠C=90°,∠DFE=∠CFE.∵△ABC是等腰直角三角形,∠C=90°,∴∠A=∠B=45°.∵DK⊥AB,∴∠ADK=∠BDK=90°,∴∠AKD=45°,∠EDF=∠KDB=90°,∴∠EKD=∠FBD,∠EDK=∠FDB,∴△DEK∽△DFB;(2)解:∵∠A=∠AKD=45°,∴DK=DA=x.∵AB=2,∴DB=2﹣x.∵△DFB∽△DEK,∴=,∴y=cot∠CFE=cot∠DFE===.当点F在点B处时,DB=BC=AB•sinA=2×=,AD=AB﹣AD=2﹣;当点E在点A处时,AD=AC=AB•cosA=2×=;∴该函数的解析式为y=,定义域为2﹣<x<;(3)取线段EF的中点O,连接OC、OD,∵∠ECF=∠EDF=90°,∴OC=OD=EF.设EF与CD交点为H,根据轴对称的性质可得EF⊥CD,且CH=DH=CD.∵=,∴tan∠HOC==,∴∠HOC=60°①若点K在线段AC上,如图2,∵CO=EF=OF,∴∠OCF=∠OFC=∠HOC=30°,∴y=cot30°=,∴=,解得:x=﹣1;②若点K在线段AC的延长线上,如图3,∵OC=OF,∠FOC=60°,∴△OFC是等边三角形,∴∠OFC=60°,∴y=cot60°=,∴=,解得:x=3﹣;综上所述:x的值为﹣1或3﹣.点评:本题主要考查了相似三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质、锐角三角函数的定义、特殊角的三角函数值、直角三角形斜边上的中线等于斜边的一半等知识,在解决本题的过程中还用到了临界值法、分类讨论的思想,而运用(1)中的结论则是解决第(2)小题的关键,取EF的中点O,将转化为则是解决第(3)小题的关键.。

【自招】2004-2015年上海自主招生数学试题

【自招】2004-2015年上海自主招生数学试题

6
2011 年华师二附自主招生数学试题及答案
一、 填空题(每题 4 分) 1. 已知关于 x 的多项式 ax7 bx5 x2 x 12 ( a 、 b 为常数),且当 x 2 时,该多项 式的值为 8 ,则当 x 2 时,该多项式的值为__________.
2. 已知关于 x 的方程 x2 a 2 x a 1 0 的两实根 x1 、 x2 满足 x12 x22 4 ,则实
15. 某养鱼户为了估计鱼塘内鱼的条数和重量,先网出 100 条鱼,做上标记后全部放回
鱼塘,过些时候捕捞出 90 条鱼,发现其中有 4 条鱼带有标记,估计该鱼塘内养鱼
约有_________条.
16. 如图,四边形 ABCD 中, ADC 和 ABC 都是直角,
D
DE 垂直于 AB , AD 边与 CD 边长度相等.已知四边
C 形 ABCD 的 面 积 为 16 , 那 么 线 段 DE 的 长 度 是
_________. A
17. 在 ABC 中, D 为 BC 的中点, E 为 AD 的中点,如
果延长 BE 交 AC 于 F ,那么 AF : FC ________.
E
B
第 16 题
18. 如图, ABC 中,已知 AB AC , DEF 是 ABC 的内接正三角形, BDF ,
圆括号内),一律得零分.
1
1.
计算
3
4
3
9 2
32


1 9

2
,得()
A. 11 9
B. 1
C. 5 9
D. 1 9
2. 如果 a b ,那么下列结论正确的是()

上海市重点中学自主招生数学模拟试题含答案

上海市重点中学自主招生数学模拟试题含答案

F上海市2015年重点中学自主招生数学模拟试题答题时注意:1、试卷满分150分;考试时间:120分钟.2、试卷共三大题,计16道题。

考试结束后,将本卷及演算的草稿纸一并上交。

一、选择题(共5小题,每题6分,共30分.以下每小题均给出了代号为A,B,C,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号内.不填、多填或错填均不得分)1、如果关于x 的方程2230x ax a -+-=至少有一个正根,则实数a 的取值范围是( )A 、22<<-aB 、23≤<aC 、23≤<-aD 、23≤≤-a2、如图,已知:点E 、F 分别是正方形ABCD 的边BC AB 、的中点,DF BD 、分别交CE 于点H G 、,若正方形ABCD 的面积是240,则四边形BFHG 的面积等于……………………( ) A 、26 B 、28 C 、24 D 、303 、设z y x 、、是两两不等的实数,且满足下列等式:66633633)()(z x x y x z x x y x ---=-+-,则代数式xyz z y x 3333-++的值是………………… ( )A 、0B 、1C 、3D 、条件不足,无法计算4、如图,四边形BDCE 内接于以BC 为直径的⊙A ︒=∠=∠=30,53cos ,10BCE BCD BC ,则线段DE 的长是………………… ( )A 、89B 、73C 、4+33D 、3+435、某学校共有3125名学生,一次活动中全体学生被排成 一个n 排的等腰梯形阵,且这n 排学生数按每排都比前一排多一人的规律排列,则当n 取到最大值时,排在这等腰梯形阵最外面的一周的学生总人数是………………… ( )A 、296B 、221C 、225D 、641二、填空题:(共5小题,每题6分,共30分)6、已知:实常数d c b a 、、、同时满足下列两个等式:⑴0cos sin =-+c b a θθ; ⑵0sin cos =+-d b a θθ(其中θ为任意锐角),则d c b a 、、、之间的关系式是:。

2015年全国重点高中阶段自主招生考试数学模拟试题(一)(历年真题汇总)

2015年全国重点高中阶段自主招生考试数学模拟试题(一)(历年真题汇总)

2015年全国重点高中阶段自主招生考试数学模拟试题(一)(历年真题汇总)数学试卷(满分:150分;考试时间:120分钟)学校 班级 姓名 号数 准考证号亲爱的同学:欢迎你参加本次考试!请细心审题,用心思考,耐心解答.祝你成功!答题时请注意:请将答案或解答过程写在答题卡...的相应位置上,写在试卷上不得分. 一、选择题(共10小题,每小题4分,满分40分.每小题只有..一个..正确的选项,请把正确答案的代号填写在答题..卡.中相应的表格内) 1.下列计算正确的是A .32a a a =•B . 523)(a a = C . 32a a a =+ D . 326a a a =÷ 2.不等式组⎩⎨⎧≥->+0401x x 的解集是A .41≤≤-xB .41≥-<x x 或C .41<<-xD .41≤<-x3.一组数据:3,4,5,x ,7的众数是4,则x 的值是A .3B .4C .5D .64.下列图案中,既是中心对称又是轴对称的图案是A B C D5.已知两圆的半径分别为6和1,当它们外切时,圆心距为A .5B .6C .7D .86.如果一个定值电阻R 两端所加电压为5伏时,通过它的电流为1安培,那么通过这一电阻的电流I随它的两端电压U 变化的图像是7.下列事件是必然事件的是A .直线b x y +=3经过第一象限;B .方程0222=-+-x x x 的解是2=x ;C .方程34-=+x 有实数根;D .当a 是一切实数时,a a =2.8.如图示,将矩形纸片ABCD 沿虚线EF 折叠,使点A 落在点G 上,点D 落在点H 上;然后再沿虚线GH 折叠,使B 落在点E 上,点C 落在点F 上;叠完后,剪一个直径在BC 上的半圆,再展开,则展开后的图形为9.如图,△ABC 内接于⊙O ,∠BAC=120°,AB=AC=4 ,BD 为⊙O 的直径,则BD 等于A.4B.6C.8D.1210.如图,将n 个边长都为1cm 的正方形按如图所示摆放,点A 1、A 2、…、A n 分别是正方形的中心,则n 个这样的正方形重叠部分的面积和为A .41-n cm 2B .4n cm 2C .41cm 2D .n)41( cm 2二、填空题(共8小题,每小题4分,满分32分.请将答案填在答题卡...的相应位置上)11.2009-的相反数是 .12.分解因式:222-m = .13.生物学家发现目前备受关注的甲H1N1病毒的长度约为0.000056毫米,用科学记数法表示为毫米.14.正方形网格中,∠AOB 如图放置,则cos ∠AOB= .15.海峡两岸血浓于水,“两岸三通”有了新发展,最近大陆与台湾的包机航班改为定期航班,受到两岸人民的欢迎.如图是我国政区图,根据图上信息,台北与北京的实际距离<直线距离>约是 千米(精确到千米).A B D C H G E F F BCG(A) H(D) E G(A)H(D)F(C) E(B) B DC A A B C O A 'B 'C '北京* 台北 * 600千米 O DCBA 第9题 第10题第第14题 第15题16.如图,菱形OABC 中,120A =o ∠,1OA =,将菱形OABC 绕点O 按顺时针方向旋转90o,则图中由弧,,A B B B '''C ,A '弧CB 围成的阴影部分的面积是 .(结果保留根号) 17.若方程组⎩⎨⎧=-=+a by x b y x 2的解是⎩⎨⎧==12y x ,那么b a -= .18.从1-,1,2这三个数中,任取两个不同的数作为一次函数y ax b =+的系数,a b ,则一次函数y ax b =+的图象不经过第三象限的概率是 . 三、解答题(共8小题,满分78分. 请将答案写在答题卡...的相应位置上) 19.(满分8分)计算:20)2(30sin 2)23(-+--ο20.(满分8分)小明和小颖在玩“石头、剪刀、布”的一次游戏中,他们平局的概率是多少?(请列表或画树状图分析)21.(满分8分)如图, 将矩形EFBC 一条对角线FC 向两端延伸,使AF=DC ,连接AB 、ED .求证:AB ∥ED .22.(满分10分)2009年10月1日是中华人民共和国成立六十周年纪念日,某中学举行了一次“建国知识竞赛”,并从中抽取了部分学生成绩(得分取整数,满分为100分)作为样本,绘制了如下的统计图.请根据图中的信息回答下列问题:(1)此样本抽取了多少名学生的成绩?(2)此样本数据的中位数落在哪一个范围内?(请直接写出该组的分数范围)(3)若这次竞赛成绩高于80分为优秀,已知该校有900名学生参加了这次竞赛活动,请估计该校获得优秀成绩的学生人数约为多少名?23.(满分8分)为了更好地宣传“2010年上海世博会”,“和谐之旅”号京沪城际铁路于2009年5月1日正式开通运营,预计高速列车在北京、上海间单程直达运行时间为半小时.某次试车时,试验列车由北京到上海的行驶时间比预计时间多用了6分钟,由上海返回北京的行驶时间与预计时间相同.如果这次试车时,由上海返回北京比去上海时平均每小时多行驶40千米,那么这次试车时由上海返回北京的平均速度是每小时多少千米?24.(满分10分)阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c .过点A作AD ⊥BC 于点D (如图), 则 sin B =c AD ,sin C =bAD ,即AD =c sin B ,AD =b sin C , 于是c sin B =b sin C ,即C c B b sin sin =. A B C D E F 第21题 第22题 学生数50.5 60.5 70.5 80.5 90.5 100.5 222 28 0 32 36同理有A a C c sin sin =,Bb A a sin sin =. 所以 Cc B b A a sin sin sin ==………(*) 即:在一个三角形中,各边和它所对角的正弦的比相等.(1)在锐角三角形中,若已知三个元素a 、b 、∠B ,运用上述结论....(*)...和有关定理.....就可以求出其余三个未知元素c 、∠A 、∠C ,请你按照下列步骤填空,完成求解过程:第一步:由条件 a 、b 、∠B∠A ; 第二步:由条件 ∠A 、∠B ∠C ; 第三步:由条件 c .(2)如图,已知:∠A =60°,∠C =75°,a =6,运用上述结论(*)试求b .25.(满分12分)如图,抛物线)0(2≠++=a c bx ax y 与y 轴正半轴交于点C ,与x 轴交于点),(、08)0,2(B A ,OBC OCA ∠=∠。

上海市2015年重点中学自主招生数学模拟试题(含答案)

上海市2015年重点中学自主招生数学模拟试题(含答案)

2016年重点中学自主招生数学模抵试題参考答案与并分标程一、选择题(共5小题,每題6分,共30分.以下每小题均给出了代号为A, B, C,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号壊入题后的括号内.不壊、多填或错填均不得分)1、如果关于x的方程x2-ax + a2-3 = Q至少有一个正根.则实数a的取值范围是(C )A、-2<a<2B、>/3<a<2C、-75<a<2D、-V5<a<22、如图,己知:点£、F分别是正方形ABCD的边刀8、8C的中点,BD、QF分别交CE于点G、H .若正方形的面枳是240,则四边形8FHG的面积等于(B )A、26B、28C、24 D. 303、设x、y、z是两两不等的实数,且满足下列等式:归3一4 +仏%・4 = 缶二-伝二.则代数式x + y + z ^^xyz的值是............... (A )A、0B、1C、3D、条件不足,无法计算4、如图.四边形8DCE内接于以BC为直径的QA.巳知:8C = 10,cosZBCD = |, ZBCE = 30°.则线段DE 的长是............. (D )A、789B、7 73C、4+3 V3D、3+4 右5、某学校共有3125名学生,一次活动中全体学生被排成一个〃排的等腰梯形阵,且这〃排学生数按每排都比前一拝多一人的规律排列,则当〃取到最大值时.排在这等腰梯形阵最外面的一周的学生总人数是............... (B )A、296B、221C、225D、641二、填空题:(共5小题,每题6分,共30分。

不设中间分)6、己知:实常数a、b、c、d同时満足下列两个等式:⑴asin0 + 8cosQ-c = O:(2)acosQ-Z)sin0 + d = O (其中。

为任意锐角),则。

、如c、d之间的关系式是:_a2 +b2 =c2 +d2_o7、函数J,= |x-1| + 2|x-2| + 3|x-3| + 4|x-4|的最小值是8 ________ .8、己知一个三角形的周长和面积分别是84、210. 一个单位圆在它的内部沿着三边勾速无摩擦地滾动一周后回到原来的位置(如图),则这个三角形的内部以及边界没有被单位圆滚过的部分的面积是84-^9、己知:x=疽则可用含x的V5 + V2有理系数三次多项式来表示为:41 =1 3 11---- X ------ X。

2015年上海各区中考数学二模压轴题24、25题图文解析

2015年上海各区中考数学二模压轴题24、25题图文解析

《2015年上海各区中考数学二模压轴题图文解析》目录2015年上海各区中考数学二模第24、25题例1 2015年宝山区嘉定区中考数学二模第24、25题图文解析/2例2 2015年奉贤区中考数学二模第24、25题图文解析/6例3 2015年虹口区中考数学二模第24、25题图文解析/10例4 2015年黄浦区中考数学二模第24、25题图文解析14例5 2015年金山区中考数学二模第24、25题图文解析/18例6 2015年静安区青浦区中考数学二模第24、25题图文解析/22例7 2015年闵行区中考数学二模第24、25题图文解析/26例8 2015年浦东新区中考数学二模第24、25题图文解析/30例9 2015年普陀区中考数学二模第24、25题图文解析34例10 2015年松江区中考数学二模第24、25题图文解析38例11 2015年徐汇区中考数学二模第24、25题图文解析42例12 2015年杨浦区中考数学二模第24、25题图文解析/46例13 2015年长宁区中考数学二模第24、25题图文解析/50例14 2015年崇明县中考数学二模第24、25题图文解析/54例15 2015年闸北区中考数学二模第24、25题图文解析/592015年上海各区中考数学二模第18题例1 2015年宝山区嘉定区中考数学二模第18题图文解析/63例2 2015年奉贤区中考数学二模第18题图文解析/64例3 2015年虹口区中考数学二模第18题图文解析/615例4 2015年黄浦区中考数学二模第18题图文解析/66例5 2015年金山区中考数学二模第18题图文解析/67例6 2015年静安区青浦区中考数学二模第18题图文解析/68例7 2015年闵行区中考数学二模第18题图文解析/69例8 2015年浦东新区中考数学二模第18题图文解析/70例9 2015年普陀区中考数学二模第18题图文解析/71例10 2015年松江区中考数学二模第18题图文解析/72例11 2015年徐汇区中考数学二模第18题图文解析/73例12 2015年杨浦区中考数学二模第18题图文解析/74例13 2015年长宁区中考数学二模第18题图文解析/75例14 2015年崇明县中考数学二模第18题图文解析/76例15 2015年闸北区中考数学二模第18题图文解析/77例 2015年上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线kyx=(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入kyx=,得k=8.(2)将点B(n, 2),代入8yx=,得n=4.所以点B的坐标为(4, 2).设直线BC为y=x+b,代入点B(4, 2),得b=-2.所以点C的坐标为(0,-2).由A(2, 4) 、B(4, 2) 、C (0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距离都是4.所以AB=22,BC=42,∠ABC=90°.图22所以S△ABC=12BA BC⋅=122422⨯⨯=8.(3)由A(2, 4) 、D(0, 2) 、C (0,-2),得AD=22,AC=210.由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.所以△ACE与△ACD相似,分两种情况:①如图3,当CE ADCA AC=时,CE=AD=22.此时△ACD≌△CAE,相似比为1.②如图4,当CE ACCA AD=时,21021022CE=.解得CE=102.此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4考点伸展第(2)题我们在计算△ABC的面积时,恰好△ABC是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图54例 2015年上海市宝山区嘉定区中考模拟第25题在Rt △ABC 中,∠C =90°,BC =2,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE .过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合(如图1),求cot ∠BAE 的值;(2)若点M 在边BC 上(如图2),设边长AC =x ,BM =y ,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)若∠BAE =∠EBM ,求斜边AB 的长.图1 图2动感体验请打开几何画板文件名“15宝山嘉定25”,拖动点A 上下运动,可以体验到,△ABE 保持等腰三角形,∠BAE =∠EBM 按照点M 与点B 的位置关系存在两种情况. 思路点拨1.第(1)题的特殊性是∠DEB =∠CAB =∠EBD ,△EDB 是等腰直角三角形.2.第(1)题暗示了第(2)题中蕴含着三个等角,因此寻找相似三角形.3.第(3)题∠BAE =∠EBM 要分两种情况考虑,各有各的特殊性.满分解答(1)如图3,当点M 与点B 重合时,EB //AC .所以∠CAB =∠EBD .又因为旋转前后∠CAB =∠DEB ,所以∠EBD =∠DEB .所以△EDB 和△ACB 是等腰直角三角形.已知BC =2,所以AC =2,AB =22. 在Rt △AED 中,ED =2,AD =222-,所以cot ∠BAE =AD ED=2222-=21-.图3 图4(2)在Rt △ABC 中,BC =2,AC =x ,所以AB =24x +. 如图4,设EM 与AB 交于点F .由FM //AC ,得BM BF BC BA =,即224y BFx =+.所以BF =242y x +. 由于BD =BC =2,所以DF =2422y x +-. 由∠DEB =∠CAB =∠DFE ,∠EDB 是公共角,得△DEB ∽△DFE .所以DE 2=DF ·DB ,即2242(2)2y x x +=-.整理,得2244x y x -=+. 定义域是0<x <2.(3)已知BA =BE ,所以∠BAE =∠BEA .当∠BAE =∠EBM 时,∠BAE =∠BEA =∠EBM .按照M 、B 的位置分两种情况: ①如图5,当M 在B 右侧时,由∠BEA =∠EBM ,得AE //CM .此时∠BAE =∠ABC .又已知∠ABC =∠EBD ,所以∠ABC =∠EBD =∠EBM =60°.在Rt △ABC 中,AB =2BC =4.②如图6,当M 在B 左侧时,在△BAE 中,∠BAE =∠BEA =2∠ABE .所以∠ABE =36°,∠BAE =∠BEA =72°.延长EA 交BC 的延长线于G ,那么∠G =36°,AG =AB ,GE =GB =2CB =4. 由于点A 是GE 的黄金分割点,所以512AG GE -=.所以AB =AG =252-.图5 图6考点伸展第(3)题的第②种情况,我们直接应用了黄金分割数,也可以用相似比来解. 由∠BAE =∠BEA =∠MBE ,容易得到GB =GE =4,AG =AB =BE .由△GBE ∽△BAE ,得到EB 2=EA ·EG .设AB =BE =m .于是得到24(4)m m =-.整理,得m 2+4m -16=0.解得252m =.6例 2015年上海市奉贤区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2+x 的对称轴为直线x =2,顶点为A .(1)求抛物线的表达式及顶点A 的坐标;(2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物线于点B ,联结OB ,当∠OAP =∠OBP 时,求点B 的坐标.图1动感体验请打开几何画板文件名“15奉贤24”,拖动点P 在抛物线的对称轴上运动,可以体验到,△BNP ∽△PMO 保持不变,当∠OAP =∠OBP 时,△BOP ∽△AOH . 思路点拨1.根据等角的余角相等,通过已知的等角寻找未知的等角.2.过直角顶点P 向坐标轴画垂线,可以构造相似的直角三角形,于是通过对应边成比例,可以列方程.满分解答(1)由抛物线的对称轴为122x a =-=,可得14a =-. 所以抛物线的表达式为2211(2)144y x x x =-+=--+. 顶点A 的坐标为(2, 1).(2)①如图2,设AP 与x 轴交于点H .由A (2, 1),可得tan ∠OAH =2.当OA ⊥OP 时,∠POH =∠OAH .所以tan ∠POH =PH OH=2. 因此PH =2OH =4.所以OP =25. 图2②如图3,当∠OAP =∠OBP 时,tan ∠AOH =tan ∠BOP .所以2PO HO PB HA==.如图4,过点P 作PM ⊥y 轴于M ,过点B 作x 轴的垂线交直线PM 于N .由△OMP ∽△PNB ,得2OM MP PO PN NB BP===.所以OM =2PN ,MP =2NB . 设21(,)4B x x x -+,P (2, n ),那么2(2)n x -=-,2122()4x x n =-+-. 将n =4-2x 代入2114x x n -+-=,整理,得x 2-12x +20=0. 解得x =10,或x =2(B 与A 重合,舍去).所以点B 的坐标为(10, -15).图3 图4考点伸展如果应用四点共圆的知识,结合勾股定理,那么第(2)②题可以这样做:如图3,当∠OAP =∠OBP 时,A 、B 、P 、O 四点共圆.此时∠OAB =∠OPB =90°.所以OB 2=OA 2+AB 2.设21(,)4B x x x -+,那么22222211()5(2)(1)44x x x x x x ⎡⎤+-+=+-+-+-⎢⎥⎣⎦. 整理,得x 2-12x +20=0.解得x =10,或x =2.所以B (10, -15).例 2015年上海市奉贤区中考模拟第25题如图1,已知线段AB=8,以A为圆心,5为半径作⊙A,点C在⊙A上,过点C作CD//AB 交⊙A于点D(点D在点C右侧),联结BC、AD.(1)若CD=6,求四边形ABCD的面积;(2)设CD=x,BC=y,求y与x的函数关系式及自变量x的取值范围;(3)设BC的中点为M,AD的中点为N,线段MN交⊙A于点E,联结CE,当CD取何值时,CE//AD.图1 备用图动感体验请打开几何画板文件名“15奉贤25”,拖动点C在圆上运动,可以体验到,当CE//AD 时,四边形CEND是平行四边形,四边形CEAN是平行四边形,四边形CF AG是矩形.思路点拨1.已知△ABC的三边长分别为5,8,y,构造AB边上的高CK,那么CK为两个直角三角形的公共直角边,根据勾股定理列方程,可以得到y关于x的关系式.2.当CE//AD时,注意到CE与AN、DN的关系都是平行且相等.满分解答(1)如图2,过点A作AH⊥CD,垂足为H.在△ACD中,AC=AD=5,CD=6,所以CH=DH=3.所以AH=4.所以S梯形ABCD=1()2CD AB AH+⨯=1(68)42+⨯=28.图2 图3(2)如图3,作CK⊥AB,垂足为K,那么四边形CKAH为矩形.在△ACD中,AC=AD=5,CH=DH=12 x.8在△ABC 中,BC =y ,AC =5,AK =12x ,BK =182x -. 由CK 2=BC 2-BK 2=AC 2-AK 2,得222211(8)5()22y x x --=-. 整理,得898y x =-.自变量x 的取值范围是0<x <10.(3)如图4,已知MN 是梯形ABCD 的中位线,MN //CD ,当CE //AD 时,四边形CEND 是平行四边形,此时CE =DN =12AD =52. 由CE //NA ,CE =NA ,得四边形CEAN 是平行四边形.所以CN =EA =CA =5.作CG ⊥AN 于G ,那么AG =12AN =14AD =54.所以DG =515544-=. 在Rt △CAG 中,AG =54,CA =5,由勾股定理,得CG =5154. 在Rt △CDG 中,CG =5154,DG =154,由勾股定理,得CD =562.图4 图5考点伸展第(3)题还可以用相似比来解:如图5,设直线AE 与DC 的延长线交于点P ,与⊙A 交于点Q ,那么CE 是△P AD 的中位线,因此PC =CD =x ,PE =EA =AQ =5.由CE //DA ,得∠1=∠3,∠2=∠4.又因为∠1=∠2,所以∠3=∠4.于是可得∠Q =∠5=∠6.由△PCE ∽△PQD ,得PC PQ PE PD =.所以1552x x =.解得562x = 由△PDA ∽△PQD ,得PD PQ PA PD =.所以215102x x =.解得562x =例 2015年上海市虹口区中考模拟第24题如图1,在平面直角坐标系中,抛物线y=ax2+bx+c过A(-1,0)、B(3,0)、C(2, 3)三点,与y轴交于点D.(1)求该抛物线的解析式,并写出该抛物线的对称轴;(2)分别联结AD、DC、CB,直线y=4x+m与线段DC交于点E,当此直线将四边形ABCD的面积平分时,求m的值;(3)设点F为该抛物线对称轴上一点,当以A、B、C、F为顶点的四边形是梯形时,请直接写出所有满足条件的点F的坐标.图1动感体验请打开几何画板文件名“15虹口24”,拖动点P运动,可以体验到,经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.拖动点F在抛物线的对称轴上运动,可以体验到,以A、B、C、F为顶点的梯形有3个.思路点拨1.已知抛物线与x轴的两个交点,设两点式比较简便.2.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.3.过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3,0)两点,设y=a(x+1)(x-3).将点C(2, 3)代入,得3=-3a.解得a=-1.所以抛物线的解析式为y=-(x+1)(x-3)=-x2+2x+3.对称轴是直线x=1.(2)如图2,由C(2, 3)、D(0, 3),得CD//x轴.所以四边形ABCD是梯形.经过梯形中位线的中点,并且与两底相交的直线平分梯形的面积.梯形ABCD的中位线的中点为3(1,)2,将点3(1,)2代入y=4x+m,得m=52.(3)符合条件的点F有3个,坐标分别为(1, 3),(1,-2),(1,-6).10图2 图3考点伸展第(3)题这样解:过△ABC的3个顶点分别画对边的平行线,三条直线与抛物线的对称轴的3个交点,就是符合条件的点F.①如图3,当CF//AB时,点F的坐标是(1, 3).②如图4,当BF//AC时,由tan∠CAM=tan∠FBH,得CM FHAM BH=.所以332FH=.解得FH=2.此时点F的坐标为(1,-2).③如图5,当AF//CB时,由tan∠CBM=tan∠F AH,得CM FHBM AH=.所以312FH=.解得FH=6.此时点F的坐标为(1,-6).图4 图512例 2015年上海市虹口区中考模拟第25题如图1,在Rt △ABC 中,∠ACB =90°,AB =13,CD //AB ,点E 为射线CD 上一动点(不与点C 重合),联结AE 交边BC 于F ,∠BAE 的平分线交BC 于点G .(1)当CE =3时,求S △CEF ∶S △CAF 的值;(2)设CE =x ,AE =y ,当CG =2GB 时,求y 与x 之间的函数关系式;(3)当AC =5时,联结EG ,若△AEG 为直角三角形,求BG 的长.图1动感体验请打开几何画板文件名“15虹口25”,拖动直角顶点C 运动,可以体验到,CG =2GB 保持不变,△ABC 的形状在改变,EA =EM 保持不变.点击屏幕左下角的按钮“第(3)题”,拖动E 在射线CD 上运动,可以体验到,△AEG 可以两次成为直角三角形. 思路点拨1.第(1)题中的△CEF 和△CAF 是同高三角形,面积比等于底边的比.2.第(2)题中的△ABC 是斜边为定值的形状不确定的直角三角形.3.第(3)题中的直角三角形AEG 分两种情况讨论.满分解答(1)如图2,由CE //AB ,得313EF CE AF BA ==. 由于△CEF 与△CAF 是同高三角形,所以S △CEF ∶S △CAF =3∶13.(2)如图3,延长AG 交射线CD 于M . 图2由CM //AB ,得2CM CG AB BG==.所以CM =2AB =26. 由CM //AB ,得∠EMA =∠BAM .又因为AM 平分∠BAE ,所以∠BAM =∠EAM .所以∠EMA =∠EAM .所以y =EA =EM =26-x .图3 图4(3)在Rt△ABC中,AB=13,AC=5,所以BC=12.①如图4,当∠AGE=90°时,延长EG交AB于N,那么△AGE≌△AGN.所以G是EN的中点.所以G是BC的中点,BG=6.②如图5,当∠AEG=90°时,由△CAF∽△EGF,得FC FA FE FG=.由CE//AB,得FC FB FE FA=.所以FA FBFG FA=.又因为∠AFG=∠BF A,所以△AFG∽△BF A.所以∠F AG=∠B.所以∠GAB=∠B.所以GA=GB.作GH⊥AH,那么BH=AH=132.在Rt△GBH中,由cos∠B=BHBG,得BG=132÷1213=16924.图5 图6考点伸展第(3)题的第②种情况,当∠AEG=90°时的核心问题是说理GA=GB.如果用四点共圆,那么很容易.如图6,由A、C、E、G四点共圆,直接得到∠2=∠4.上海版教材不学习四点共圆,比较麻烦一点的思路还有:如图7,当∠AEG=90°时,设AG的中点为P,那么PC和PE分别是Rt△ACG和Rt △AEG斜边上的中线,所以PC=PE=P A=PG.所以∠1=2∠2,∠3=2∠5.如图8,在等腰△PCE中,∠CPE=180°-2(∠4+∠5),又因为∠CPE=180°-(∠1+∠3),所以∠1+∠3=2(∠4+∠5).所以∠1=2∠4.所以∠2=∠4=∠B.所以∠GAB=∠B.所以GA=GB.图7 图814例 2015年上海市黄浦区中考模拟第24题如图1,在平面直角坐标系中,已知点A 的坐标为(a , 3)(其中a >4),射线OA 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x =的图像上,且AB //x 轴,AC //y 轴.(1)当点P 的横坐标为6时,求直线AO 的表达式;(2)联结BO ,当AB =BO 时,求点A 的坐标;(3)联结BP 、CP ,试猜想ABP ACP S S △△的值是否随a 的变化而变化?如果不变,求出ABPACPS S △△的值;如果变化,请说明理由.图1 备用图动感体验请打开几何画板文件名“15黄浦24”,拖动点A 在点B 右侧运动,观察度量值,可以体验到,△ABP 与△ACP 的面积保持相等.事实上,四边形ABDC 是矩形,△ABP 与△ACP 是同底等高的两个三角形.思路点拨1.点B 是确定的,点C 、P 随点A 的改变而改变.2.已知a >4隐含了点A 在点B 的右侧这个条件.满分解答(1)如图1,当x =6时,12y x==2.所以点P 的坐标为(6, 2). 由O (0, 0)、P (6, 2),得直线AO 的解析式为13y x =. (2)如图2,因为AB //x 轴,A (a , 3),所以点B 的纵坐标为3.又因为点B 在反比例函数12y x=的图像上,所以B (4, 3).因此OB =5. 所以当AB =BO =5时,点A 的坐标为(9, 3).(3)如图3,过点B 向x 轴作垂线交OA 于点D ,联结CD .由于直线OA 的解析式为3y x a =,所以点D 的坐标为12(4)a,.由于AC //y 轴,所以点C 的坐标为12()a a ,. 所以CD //x 轴.因此四边形ABDC 是矩形. 所以点B 、C 到对角线AP 的距离相等.因此△ABP 与△ACP 是同底等高的两个三角形,它们的面积相等.所以ABP ACPS S △△=1.图2 图3考点伸展第(3)题也可以这样说理:如图3,ABP ABD S S △△=AP AD ,ACP ACD S S △△=AP AD,而S △ABD =S △ACD ,所以ABP ACP S S △△=1. 第(3)题还可以计算说理:如图4,作PM ⊥AB 于M ,作PN ⊥AC 于N .设点P 的坐标为12()m m ,.将点P 12()m m,代入直线OA 的解析式3y x a=,可以得到24m a =. 于是,由A (a , 3)、B (4, 3)、C 12()a a ,、P 12()m m,,可得 S △ABP =12AB PM ⋅=112(4)(3)2a m --=3416(4)2a a m m--+=2316(4)24m m m --+, S △ACP =12AC PN ⋅=112(3)()2a m a --=34(4)2m a m a--+=2316(4)24m m m --+. 所以S △ABP =S △ACP .而事实上,如图5,由于S 1=S 2,所以S △ABO =S △ACO .所以B 、C 到AO 的距离相等.于是△ABP 与△ACP 就是同底等高的三角形.图4 图5例 2015年上海市黄浦区中考模拟第25题如图1,Rt△ABC中,∠C=90°,∠A=30°,BC=2,CD是斜边AB上的高,点E 为边AC上一点(点E不与点A、C重合),联结DE,作CF⊥DE,CF与边AB、线段DE 分别交于点F、G.(1)求线段CD、AD的长;(2)设CE=x,DF=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EF,当△EFG与△CDG相似时,求线段CE的长.图1动感体验请打开几何画板文件名“15黄浦25”,拖动点E在AC边上运动,可以体验到,△EFG 与△CDG相似存在两种情况.一种情况是FC垂直平分DE,另一种情况是EF⊥AB.思路点拨1.图形中的垂直关系较多,因此互余的角较多,相等的角较多.把相等的角都标注出来,便于分析题意.2.求y关于x的函数关系式,设法构造相似三角形.3.△EFG与△CDG都是直角三角形,分两种情况讨论相似.按照对应的锐角相等,可以推出相似时的特殊的位置关系.满分解答(1)在Rt△ABC中,∠A=30°,BC=2,所以AB=4,AC=23.在Rt△ACD中,∠A =30°,AC=23,所以CD=3,AD=3.(2)如图2,∠CDE与∠BFC都是∠EDF的余角,所以∠CDE=∠BFC.又因为∠DCE=∠B=60°,所以△CDE∽△BFD.所以CD BFCE BC=,即312yx+=.整理,得23xyx-=.定义域是32≤x<23.图2(3)△EFG与△CDG都是直角三角形,分两种情况讨论相似:①如图3,当∠FEG=∠DCG时,由于∠FDG=∠DCG,所以∠FEG=∠FDG.因此FE=FD.所以FC垂直平分DE.此时CE=CD=3.16②如图4,当∠FEG=∠CDG时,EF//CD.此时EF⊥AB.作EH⊥CD于H,那么四边形EFDH是矩形,DF=HE.所以y=32x.解2332xxx-=,得3393x-±=.此时3933CE-=.图3 图4考点伸展第(2)题也可以这样思考:如图5,过点E作EH⊥CD,垂足为H.在Rt△CEH中,∠CEH=30°,CE=x,所以CH=12x,EH=32x.如图6,由tan∠DEH=tan∠DCF,得13(3)::322x x y-=.整理,得23xyx-=.图5 图6 图7 第(2)题还可以如图6这样,过点C作AB的平行线交DE的延长线于M.由tan∠M=tan∠DCF,得CD DFCM DC=.所以CM=23CDDF y=.由MC//AD,得CM CEAD AE=.所以323xCMx=-.由3323xy x=-,得23xyx-=.定义域的两个临界值,如图8,CE=12CD=32;如图9,CE=CA=23.图8 图9例 2015年上海市金山区中考模拟第24题已知抛物线y=ax2+bx-8(a≠0)经过A(-2,0)、B(4, 0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx-8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;(3)直线y=kx+2 与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M的坐标.图1动感体验请打开几何画板文件名“15金山24”,拖动点M在AC上运动,可以体验到,△MNC 与△AOC相似存在两种情况.思路点拨1.用面积法求等腰三角形P AB的腰上的高,进而可以求顶角的正弦值.2.探求△MNC与△AOC相似,可以转化为探求直角三角形MNC.满分解答(1)因为抛物线y=ax2+bx-8与x轴交于A(-2,0)、B(4, 0)两点,设y=a(x+2)(x-4)=ax2-2ax-8a.所以-8a=-8.解得a=1.所以y=x2-2x-8=(x-1)2-9.所以顶点P的坐标为(1,-9).(2)如图2,由A(-2,0)、B(4, 0)、P(1,-9),得AB=6,PB=P A=310.作PG⊥AB,AH⊥PB,垂足分别为G、H.由S△P AB=1122AB PG PB AH⋅=⋅,得699105310AB PGAHPB⋅⨯===.在Rt△APH中,sin∠APB=910331055AHPA=÷=.图2 (3)由y=kx+2,得点N的坐标为(0, 2).由A(-2,0)、C(0, -8),得直线AC的解析式为y=-4x-8.因为△MNC与△AOC有公共的锐角∠ACO,所以分两种情况讨论相似:18①如图3,当∠MNC=90°时,14NM OANC OC==.所以1105442NM NC===.此时点M的坐标为5(,2)2-.②如图4,当∠NMC=90°时,过点M作x轴的垂线,过点N、C分别作y轴的垂线,构造直角三角形NEM和直角三角形MFC,那么△NEM∽△MFC.所以EN FM EM FC=.设点M的坐标为(x, -4x-8),那么(48)(8)2(48)x xx x-----=----.解得4017x=-.此时点M的坐标为4024(,)1717-.图3 图4 图5考点伸展第(3)题也可以这样解:①如图3,当∠MNC=90°时,MN//x轴,所以y M=2.解方程-4x-8=2,得52x=-.此时点M的坐标为5(,2)2-.②如图5,当∠NMC=90°时,设直线NM交x轴于K,那么△NOK≌△AOC.所以OK=OC=8.所以直线NM的解析式为124y x=+.联立y=-4x-8和124y x=+,解得4017x=-,2417y=.此时M4024(,)1717-.例 2015年上海市金山区中考模拟第25题如图1,已知在△ABC中,AB=AC=10,tan∠B=43.(1)求BC的长;(2)点D、E 分别是AB、AC的中点,不重合的两动点M、N在边BC上(点M、N不与点B、C重合),且点N始终在点M的右边,联结DN、EM交于点O.设MN=x,四边形ADOE的面积为y.①求y与x的函数关系式,并写出定义域;②当△OMN是等腰三角形且BM=1时,求MN的长.图1动感体验请打开几何画板文件名“15金山25”,拖动点N在MC上运动,可以体验到,等腰三角形OMN存在两种情况.思路点拨1.把四边形ADOE分割为△ADE和△DOE,△DOE与△NOM是相似的.2.分三种情况讨论等腰三角形OMN,其中NM=NO是不存在的.满分解答(1)如图2,作AF⊥BC,垂足为F.在Rt△ABF中,AB=10,tan∠B=43,设BF=3m,AF=4m,那么AB=5m.所以5m=10.解得m=2.所以BF=6,AF=8.因为AB=AC,AF⊥BC,所以BC=2BF=12.图2(2)①如图3,S△ABC=1112848 22BC AF⋅=⨯⨯=.因为DE是△ABC的中位线,所以DE=12BC=6,S△ADE=14S△ABC=12.过点O作BC的垂线,垂足为H,交DE于G,那么GH=12AF=4.由DE//BC,得DE GONM HO=,即64GOx GO=-.所以246GOx=+.因此S△DOE=11247262266 DE GOx x⋅=⨯⨯=++.所以y=S四边形ADOE=S△ADE+S△DOE=7212144 1266xx x++=++.定义域是0<x<12.②如图4,作EQ⊥BC,垂足为Q.在Rt△ECQ中,EC=5,所以EQ=4,CQ=3.20在Rt△EMQ中,MQ=11-3=8,EQ=4,所以EM=45.如图5,在Rt△DMP中,DP=4,MP=3-1=2,所以DM=25.图3 图4 图5 因为△OMN∽△OED,所以讨论等腰△OMN可以转化为讨论等腰△OED.(I)如图6,当OM=ON时,OE=OD.此时点O在ED的垂直平分线上.所以BN=CM=11.此时MN=22-12=10..(II)如图7,当MO=MN时,EO=ED=6.此时MN=MO=45x(III)如果NM=NO,那么DO=DE=6.如图8,因为DM=25<6,所以以D为圆心,DE为半径的⊙D与线段ME只有一个交点E,因此不存在NM=NO的情况.图6 图7 图8考点伸展我们把图8局部放大,如图9,⊙D与直线ME的两个交点为E、O,此时点O在EM的延长线上,点N与点B重合,在点M的左侧,NO=NM.图922例 2015年上海市静安区青浦区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax +c 与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,它的对称轴与x 轴交于点C ,且∠OBC =∠OAB ,AC =3.(1)求此抛物线的表达式;(2)如果点D 在此抛物线上,DF ⊥OA ,垂足为F ,DF 与线段AB 相交于点G ,且32ADG AFG S S =△△,求点D 的坐标.图1动感体验请打开几何画板文件名“15静安青浦24”,拖动点D 在抛物线上运动,观察度量值,可以体验到,DG 与GF 的比值可以等于1.5,此时点D 的横坐标为3.思路点拨1.抛物线的解析式中待定两个系数,需要代入A 、B 两点的坐标列方程组.2.△ADG 与△AFG 是同高三角形,面积比等于对应的底边的比.3.把DG ∶GF =3∶2转化为GF ∶DF =2∶5,运算就简便一些.满分解答(1)由y =ax 2-2ax +c ,得抛物线的对称轴是直线x =1.因为AC =3,所以点A 的坐标为(4,0).如图2,由∠OBC =∠OAB ,∠BOC =∠AOB ,得△BOC ∽△AOB .于是可得OB 2=OC ·OA =4.所以OB =2,B (0, 2).将A (4,0)、B (0, 2)分别代入y =ax 2-2ax +c ,得1680,2.a a c c -+=⎧⎨=⎩ 解得14a =-,c =2.所以抛物线的表达式是211242y x x =-++.图2 图3(2)如图3,因为△ADG 与△AFG 是同高三角形,所以32ADG AFG S DG S GF ==△△. 所以25GF DF =. 由A (4,0)、B (0, 2),得直线AB 的解析式为122y x =-+. 设D 211(,2)42x x x -++,G 1(,2)2x x -+,那么21222115242x x x -+=-++ 解得x =3,或x =4(与A 重合,舍去).所以点D 的坐标是5(3,)4. 考点伸展第(2)题凭直觉,△ADG 的面积总要比△AFG 的面积小,但是32ADG AFG S S =△△确实是有解的. 我们分析一下方程21222115242x x x -+=-++,等号左边是可以化简、约分的. 因为1(4)222125(2)(4)4x x x x --==+-+-,所以原分式方程总有一个增根x =4,另一个就是一元一次方程的根.24例 2015年上海市静安区青浦区中考模拟第25题 在⊙O 中,OC ⊥弦AB ,垂足为C ,点D 在⊙O 上.(1)如图1,已知OA =5,AB =6,如果OD //AB ,CD 与半径OB 相交于点E ,求DE 的长;(2)已知OA =5,AB =6(如图2),如果射线OD 与AB 的延长线相交于点F ,且 △OCD 是等腰三角形,求AF 的长;(3)如果OD //AB ,CD ⊥OB ,垂足为E ,求sin ∠ODC 的值.图1 备用图动感体验请打开几何画板文件名“15静安青浦25”,拖动点C 运动,观察度量值,可以体验到,当CD ⊥OB 时,sin ∠ODC 的值就是黄金分割数啊.思路点拨1.反反复复的勾股定理和三角比的运算,要仔细哦.2.第(2)题等腰三角形OCD 只存在两种情况,因为OC <OD .3.第(3)题中的所有直角三角形都是相似的.怎样简化错综复杂的线段间的关系呢?设⊙的半径为1,设sin ∠ODC =x ,然后把其他线段用x 表示出来.这个设法不多见哦. 满分解答(1)如图2,因为弦心距OC ⊥弦AB ,所以OC 平分AB .在Rt △OAC 中,OA =5,AC =3,所以OC =4.在Rt △OCD 中,OC =4,OD =5,所以DC =224541+=.由OD//CB ,得53DE OD CE BC ==.所以554188DE DC ==.图2 图3 图4(2)因为OC <OD ,所以等腰三角形OCD 存在两种情况:①如图3,当DO =DC 时,作DH ⊥OC ,那么DH 是△OCF 的中位线.在Rt △ODH 中,OD =5,OH =2,所以DH =225221-=. 所以FC =2DH =221.此时AF =AC +FC =3221+.②如图4,当CO =CD 时,作CM ⊥OD ,那么CM 平分OD .在Rt △OCM 中,OC =4,OM =12OD =52,所以CM =22539422⎛⎫-= ⎪⎝⎭. 由tan ∠COF =CM FC OM OC=,得3954394225CM OC FC OM ⋅==⨯÷=. 此时AF =AC +FC =43935+. (3)设⊙O 的半径为1,设sin ∠ODC =x .如果OD //AB ,CD ⊥OB ,那么∠COD =90°,∠ODC =∠BOC .如图5,在Rt △ODE 中,由sin ∠ODC =OE OD=x ,得OE =x . 如图6,在Rt △OBC 中,由sin ∠BOC =BC OB=x ,得BC =x . 如图7,由OD //CB ,得OD OE BC BE =.所以11x x x =-. 整理,得x 2+x -1=0.解得152x -±=.所以sin ∠ODC =512-.图5 图6 图7考点伸展看到第(3)题的结果,不由得想起了黄金分割数,那么图形中的黄金分割点在哪里? 如图7,因为51DE OE OE DC OB OD -===,所以点E 是线段OB 的黄金分割点,点E 也是线段CD 的黄金分割点.26例 2015年上海市闵行区中考模拟第24题如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -4与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(-3,0),点D 在线段AB 上,AD =AC .(1)求这条抛物线的解析式,并求出抛物线的对称轴;(2)如果以DB 为半径的⊙D 与⊙C 外切,求⊙C 的半径;(3)设点M 在线段AB 上,点N 在线段BC 上,如果线段MN 被直线CD 垂直平分,求BN CN的值.图1动感体验请打开几何画板文件名“15闵行24”,拖动点N 在BC 上运动,可以体验到,当DC 垂直平分MN 时,∠NDC =∠ADC =∠ACD ,此时DN //AC .思路点拨1.准确描绘A 、B 、C 、D 的位置,把相等的角标注出来,利于寻找等量关系.2.第(3)题在图形中模拟比划MN 的位置,近似DC 垂直平分MN 时,把新产生的等角与前面存在的等角对比,思路就有了.满分解答(1)将点A (-3,0)代入y =ax 2-2ax -4,得15a -4=0.解得415a =.所以抛物线的解析式为24841515y x x =--. 抛物线的对称轴为直线x =1. (2)由24844(3)(5)151515y x x x x =--=+-,得B (5, 0),C (0,-4). 由A (-3,0)、B (5, 0)、C (0,-4),得 AB =8,AC =5.当AD =AC =5时,⊙D 的半径DB =3.由D (2, 0)、C (0,-4),得DC =25因此当⊙D 与⊙C 外切时,⊙C 的半径为253(如图2所示).(3)如图3,因为AD =AC ,所以∠ACD =∠ADC .如果线段MN 被直线CD 垂直平分,那么∠ADC =∠NDC .这时∠ACD=∠NDC.所以DN//AC.于是35BN BDCN AD==.图2 图3考点伸展解第(3)题画示意图的时候,容易误入歧途,以为M就是点O.这是为什么呢?我们反过来计算:当DN//AC,35BNCN=时,38DNAC=,因此DM=DN=31588AC=.而DO=2,你看M、O相距是多么的近啊.放大还原事实的真相,如图4所示.图4例 2015年上海市闵行区中考模拟第25题如图1,已知梯形ABCD中,AD//BC,AB=DC=5,AD=4.M、N分别是边AD、BC 上的任意一点,联结AN、DN.点E、F分别在线段AN、DN上,且ME//DN,MF//AN,联结EF.(1)如图2,如果EF//BC,求EF的长;(2)如果四边形MENF的面积是△AND 面积的38,求AM的长;(3)如果BC=10,试探求△ABN、△AND、△DNC能否两两相似?如果能,求AN的长;如果不能,请说明理由.图1 图2动感体验请打开几何画板文件名“15闵行25”,拖动点M在AD上运动,可以体验到,当EF//BC 时,EF是△AND的中位线.还可以体验到,当N是BC的中点时,△ABN、△AND和△DNC 是三个底角相等的等腰三角形.思路点拨1.由平行四边形MENF和平行四边形AEFM,可以得到E是AN的中点.2.第(2)题把四边形MENF与△AND的面积比,转化为△AEM与△MFD的和与△AND的面积比.再根据相似三角形的面积比等于对应边的比的平方列方程.3.第(3)题先探求两个三角形相似,再验证是否与第三个三角形相似.满分解答(1)如图3,由ME//DN,MF//AN,得四边形MENF是平行四边形.所以MF=EN.如果EF//BC,那么四边形AEFM是平行四边形.所以MF=AE.所以E是AN的中点.同理F是DN的中点.所以EF是△AND的中位线,此时EF=12AD=2.图3 图4 (2)如图4,设AM的长为x.28由ME //DF ,得224AEM AND S AM x S AD ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 由MF //AN ,得2244MFD AND S DM x S AD -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭△△. 所以22(4)16AEM MFD AND S S x x S ++-=△△△. 如果四边形MENF 的面积是△AND 面积的38,那么22(4)5=168x x +-. 整理,得x 2-4x +3=0.解得x =1,或x =3.(3)如图5,在等腰梯形ABCD 中,保持AB =DC ,∠B =∠C ,∠1=∠2,∠3=∠4. 在△ABN 、△AND 、△DNC 中,保持不变的是∠B =∠C .因此△ABN 与△DCN 相似时,存在两种可能:①如果=BA CD BN CN,那么BN =CN .所以N 是BC 的中点. ②如果=BA CN BN CD ,那么510=5BN BN -.解得BN =5.所以N 也是BC 的中点. 当点N 是BC 的中点时,△ABN 与△DCN 是两个全等的等腰三角形.此时△AND 也是等腰三角形,∠1=∠2=∠4=∠3.因此△ABN 、△AND 、△DNC 两两相似.由=AB AN AN AD ,得5=4AN AN .所以=25AN .图5考点伸展有一种传说叫做数学典型题.这道题目里的3个题目,都是典型图,都有典型结论. 如图3,联结三角形三边中点得到的三角形与原三角形相似,而且与其它三个小三角形全等.第(3)题可以推广为:如果等腰梯形ABCD 的下底BC 等于腰长的2倍,N 是下底BC 的中点,那么△ABN ∽△NCD ∽AND .。

2015年上海市浦东新区中考数学一模试卷及答案解析(pdf版)

2015年上海市浦东新区中考数学一模试卷及答案解析(pdf版)


17.(4 分)(2015•尤溪县校级质检)已知不等臂跷跷板 AB 长为 3 米,当 AB 的一端点 A 碰到地面时(如图 1),AB 与地面的夹角为 30°;当 AB 的另一端点 B 碰到地面时(如图 2),
AB 与地面的夹角的正弦值为 ,那么跷跷板 AB 的支撑点 O 到地面的距离 OH= 米.
=
=
=…;
(2)用含 30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个
等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算 都至少出现一次,且这个
等式的结果等于 1,即填空:1=

23.(12 分)(2015•青浦区一模)已知如图,D 是△ ABC 的边 AB 上一点,DE∥BC,交边 AC 于点 E,延长 DE 至点 F,使 EF=DE,联结 BF,交边 AC 于点 G,联结 CF (1)求证: = ;
20.(10 分)(2015•静安区一模)如图,已知在△ ABC 中,AD 是边 BC 上的中线,设 = ,
=;
(1)求 (用向量 , 的式子表示);
(2)如果点 E 在中线 AD 上,求作 在 , 方向上的分向量;(不要求写作法,但要保 留作图痕迹,并指出所作图中表示结论的分向量).
21.(10 分)(2015•大庆模拟)如图,某幢大楼的外墙边上竖直安装着一根旗杆 CD,小明 在离旗杆下方大楼底部 E 点 24 米的点 A 处放置一台测角仪,测角仪的高度 AB 为 1.5 米, 并在点 B 处测得旗杆下端 C 的仰角为 40°,上端 D 的仰角为 45°,求旗杆 CD 的长度;(结 果精确到 0.1 米,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)

2015同济自招数学模拟卷

2015同济自招数学模拟卷

,直线 y x 1 与其相交于 M、N 两点, 5.已知双曲线中心在原点且一个焦点为 F( 7 ,0) MN 中点的横坐标为
2 ,则此双曲线的方程是_________. 3
4 的两个根,则 a b __________. 3 1 7.底面半径为 1cm 的圆柱形容器里放有四个半径为 cm 的实心铁球,四个球两两相切,其 2
9.已知函数 f ( x) 2cos x 2 3 sin x cos x .求
2
(1)函数 f ( x) 的最小正周期; (2)函数 f ( x) 的单调递减区间;
名学堂自主招生——沪上首家自主招生咨询机构 名学堂和你一起努力,成功自招! !咨询热线:4006334478 (3)函数 f ( x) 在区间 [0,
名学堂自主招生——沪上首家自主招生咨询机构 名学堂和你一起努力,成功自招! !咨询热线:4006334478
2015 同济自招数学模拟卷
一、选择填空题 1.已知 ,0) ,
x ( 2
(A) 7 24
2n 1
cos x
4 ,则 tan 2 x 5

) (D)
(B) 7 24

6
) 1
(1)最小正周期 T
2 ;……………………2 分 2
( 2 )当 2k

2
2x

6
2k
3 2 ,即 k x k 2 6 3
k Z 时,
函数 f ( x) 单调递减, 所以函数 f ( x) 的单调递减区间为 [k
6.已知 a, b 是方程 log3 x 3 log 27 (3x) 中底层两球与容器底面相切 . 现往容器里注水,使水面恰好浸没所有铁球,则需要注水 ________cm3

上海市普陀区2015届中考数学一模试卷解析

上海市普陀区2015届中考数学一模试卷解析

1.如图,直线l1∥l2∥l3,两直线AC和DF与l1,l2,l3分别相交于点A,B,C和点D,E,F.下列各式中,不一定成立的是()A.B.C.D.2.用一个2倍放大镜照一个△ABC,下面说法中错误的是()A.△ABC放大后,是原来的2倍B.△ABC放大后,各边长是原来的2倍C.△ABC放大后,周长是原来的2倍D.△ABC放大后,面积是原来的4倍3.在Rt△ABC中,已知∠ACB=90°,BC=1,AB=2,那么下列结论正确的是()A.sinA=B.tanA=C.cosB=D.cotB=4.如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么()A.a<0,b>0,c>0B.a>0,b<0,c>0C.a>0,b<0,c<0D.a>0,b>0,c<05.下列命题中,正确的个数是()(1)三点确定一个圆;(2)平分弦的直径垂直于弦;(3)相等的圆心角所对的弧相等;(4)正五边形是轴对称图形.A.1个B.2个C.3个D.4个6.下列判断错误的是()A.0•=B.如果(为非零向量),那么∥C.设为单位向量,那么||=1D.如果,那么或7.已知x:y=5:2,那么(x+y):y=.8.计算:=.9.如图,在△ABC中,DE∥BC,DE与边AB相交于点D,与边AC相交于点E,如果AD=3,BD=4,AE=2,那么AC=.10.已知线段MN的长为2厘米,点P是线段MN的黄金分割点,那么较长的线段MP的长是厘米11.二次函数y=x2﹣2x﹣3的图象与y轴的交点坐标是.12.如果将抛物线y=﹣2x2平移,使顶点移到点P(﹣3,1)的位置,那么所得新抛物线的表达式是.14.用一根长50厘米的铁丝,把它弯成一个矩形框,设矩形框的一边长为x厘米,面积为y平方厘米,写出y关于x的函数解析式:.15.离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α,如果测角仪高为1.5米,那么旗杆的高为米(用含α的三角函数表示).17.我们定义:如果一个图形上的点A′、B′、…、P′和另一个图形上的点A、B、…、P分别对应,并且满足:(1)直线AA′、BB′、…、PP′都经过同一点O;(2)==…==k,那么这两个图形叫做位似图形,点O叫做位似中心,k叫做位似比.如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且OB=BB′,如果点A(,3),那么点A′的坐标为.18.如图,已知△ABC中,AB=AC,tanB=2,AD⊥BC于点D,G是△ABC的重心,将△ABC绕着重心G旋转,得到△A1B1C1,并且点B1在直线AD上,联结CC1,那么tanCC1B1的值等于.三.解答题19.计算:.20.如图,已知AB∥CD,AD与BC相交于点O,且=.(1)求的值.(2)如果,请用表示.21.如图,已知二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,6),对称轴为直线x=2,求二次函数解析式并写出图象最低点坐标.23.如图,已知在△ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足.(1)求证:AC2=AF•AD;(2)联结EF,求证:AE•DB=AD•EF.24.如图,在平面直角坐标系xOy中,点A(﹣m,0)和点B(0,2m)(m>0),点C在x轴上(不与点A重合)(1)当△BOC与△AOB相似时,请直接写出点C的坐标(用m表示)(2)当△BOC与△AOB全等时,二次函数y=﹣x2+bx+c的图象经过A、B、C三点,求m的值,并求点C 的坐标(3)P是(2)的二次函数图象上的一点,∠APC=90°,求点P的坐标及∠ACP的度数.25.如图,等边△ABC,AB=4,点P是射线AC上的一动点,联结BP,作BP的垂直平分线交线段BD 于点D,交射线BA于点Q,分别联结PD,PQ.(1)当点P在线段AC的延长线上时,①求∠DPQ的度数,并求证:△DCP∽△PAQ;②设CP=x,AQ=y,求y关于x的函数解析式,并写出它的定义域;(2)如果△PCD是等腰三角形,求△APQ的面积.2015年上海市普陀区中考数学一模试卷参考答案与试题解析一.选择题1.如图,直线l1∥l2∥l3,两直线AC和DF与l1,l2,l3分别相交于点A,B,C和点D,E,F.下列各式中,不一定成立的是()A.B.C.D.考点:平行线分线段成比例.分析:根据平行线分线段成比例的性质(三条平行线截两条直线,所得的对应线段成比例),逐项分析推出正确的比例式,运用排除法即可找到正确的选项.解答:解:如图,∵直线l1∥l2∥l3,∴,,,∴A、B、D选项中的等式成立,C选项中的等式不一定成立.故选择C.点评:本题主要考查平行线分线段成比例的性质,关键在于认真的逐项分析找到成比例的线段.2.用一个2倍放大镜照一个△ABC,下面说法中错误的是()A.△ABC放大后,是原来的2倍B.△ABC放大后,各边长是原来的2倍C.△ABC放大后,周长是原来的2倍D.△ABC放大后,面积是原来的4倍考点:相似图形.分析:用2倍的放大镜放大一个△ABC,得到一个与原三角形相似的三角形;根据相似三角形的性质:相似三角形的面积比等于相似比的平方,周长比等于相似比.可知:放大后三角形的面积是原来的4倍,边长和周长是原来的2倍,而内角的度数不会改变.解答:解:∵放大前后的三角形相似,∴放大后三角形的内角度数不变,面积为原来的4倍,周长和边长均为原来的2倍.故本题选A.点评:本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.3.在Rt△ABC中,已知∠ACB=90°,BC=1,AB=2,那么下列结论正确的是()A.sinA=B.tanA=C.cosB=D.cotB=考点:特殊角的三角函数值.分析:直接利用锐角三角函数关系分别求出即可.解答:解:如图所示:∵∠ACB=90°,BC=1,AB=2,∴AC=,∴sinA=,故选项A错误;tanA==,故选项B错误;cosB=,故选项C错误;cotB=,正确.故选:D.点评:此题主要考查了锐角三角函数关系,正确记忆相关比例关系是解题关键.4.如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么()A.a<0,b>0,c>0B.a>0,b<0,c>0C.a>0,b<0,c<0D.a>0,b>0,c<0考点:二次函数图象与系数的关系.分析:首先根据开口方向确定a的符号,再依据对称轴的正负和a的符号即可判断b的符号,然后根据与y轴的交点的纵坐标即可判断c的正负,由此得出答案即可.解答:解:∵图象开口方向向上,∴a>0;∵图象的对称轴在x轴的正半轴上,∴﹣>0,∵a>0,∵图象与Y轴交点在y轴的负半轴上,∴c<0;∴a>0,b<0,c<0.故选:C.点评:本题主要考查二次函数的图象与系数的关系,能根据图象正确确定各个系数的符号是解决此题的关键,运用了数形结合思想.5.下列命题中,正确的个数是()(1)三点确定一个圆;(2)平分弦的直径垂直于弦;(3)相等的圆心角所对的弧相等;(4)正五边形是轴对称图形.A.1个B.2个C.3个D.4个考点:命题与定理.分析:利用确定圆的条件、垂径定理、等弧的定义及正五边形的性质分别判断后即可确定正确的选项.解答:解:(1)不在同一直线上的三点确定一个圆,错误;(2)平分弦(不是直径)的直径垂直于弦,错误;(3)相等的圆心角所对的弧相等,错误;(4)正五边形是轴对称图形,正确.故选A.点评:本题考查了命题与定理的知识,解题的关键是了解确定圆的条件、垂径定理、等弧的定义及正五边形的性质,难度不大.6.下列判断错误的是()A.0•=B.如果(为非零向量),那么∥C.设为单位向量,那么||=1D.如果,那么或考点:*平面向量.分析:根据单位向量、平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.解答:解:A、0•=,故正确;B、如果(为非零向量),那么∥;故正确;C、设为单位向量,那么||=1,故正确;D、如果,没法判断与的关系;故错误.点评:此题考查了平面向量的知识.此题难度不大,注意熟记定义是解此题的关键.二.填空题7.已知x:y=5:2,那么(x+y):y=7:2.考点:比例的性质.分析:根据合比性质,可得答案.解答:解:由合比性质,得(x+y):y=7:2,故答案为:7:2.点评:本题考查了比例的性质,利用了合比性质:=⇒=.8.计算:=﹣+5.考点:*平面向量.分析:直接利用平面向量的加减运算法则求解即可求得,注意去括号时符号的变化.解答:解:=2﹣3+5=﹣+5.故答案为:﹣+5.点评:此题考查了平面向量的运算.此题难度不大,注意掌握运算法则是解此题的关键.9.如图,在△ABC中,DE∥BC,DE与边AB相交于点D,与边AC相交于点E,如果AD=3,BD=4,AE=2,那么AC=.考点:平行线分线段成比例.分析:由平行可得到=,代入可求得EC,再利用线段的和可求得AC.解答:解:∵DE∥BC,∴=,即=,解得EC=,∴AC=AE+EC=2+=,故答案为:.点评:本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.10.已知线段MN的长为2厘米,点P是线段MN的黄金分割点,那么较长的线段MP的长是(﹣1)厘米.考点:黄金分割.专题:计算题.分析:直接根据黄金分割的定义求解.解答:解:∵点P是线段MN的黄金分割点,∴较长的线段MP的长=MN=×2=(﹣1)cm.故答案为(﹣1).点评:本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.11.二次函数y=x2﹣2x﹣3的图象与y轴的交点坐标是(0,﹣3).考点:二次函数图象上点的坐标特征.专题:计算题.分析:计算自变量为0时的函数值即可得到抛物线与y轴的交点坐标.解答:解:当x=0时,y=x2﹣2x﹣3=﹣3,所以二次函数y=x2﹣2x﹣3的图象与y轴的交点坐标为(0,﹣3).故答案为(0,﹣3).点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.12.如果将抛物线y=﹣2x2平移,使顶点移到点P(﹣3,1)的位置,那么所得新抛物线的表达式是y=﹣2(x+3)2+1.考点:二次函数图象与几何变换.专题:几何变换.分析:由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式.解答:解:抛物线y=﹣2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=﹣2(x+3)2+1.故答案为y=﹣2(x+3)2+1.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.正八边形的中心角等于45度.考点:正多边形和圆.分析:根据中心角是正多边形相邻的两个半径的夹角来解答.解答:解:正八边形的中心角等于360°÷8=45°;故答案为45.点评:本题考查了正多边形和圆的知识,解题的关键是牢记中心角的定义及求法.14.用一根长50厘米的铁丝,把它弯成一个矩形框,设矩形框的一边长为x厘米,面积为y平方厘米,写出y关于x的函数解析式:y=﹣x2+25x.考点:根据实际问题列二次函数关系式.分析:易得矩形另一边长为周长的一半减去已知边长,那么矩形的面积等于相邻两边长的积.解答:解:由题意得:矩形的另一边长=50÷2﹣x=25﹣x,则y=x(25﹣x)=﹣x2+25x.故答案为y=﹣x2+25x.点评:本题考查列二次函数关系式;掌握矩形的边长与所给周长与另一边长的关系是解决本题的突破点.15.离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α,如果测角仪高为1.5米,那么旗杆的高为(1.5+20tanα)米(用含α的三角函数表示).考点:解直角三角形的应用-仰角俯角问题.专题:计算题.分析:由题意得,在直角三角形中,知道了已知角的邻边求对边,用正切值计算即可.解答:解:根据题意可得:旗杆比仪器高20tanα,测角仪高为1.5米,故旗杆的高为(1.5+20tanα)米.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.16.如图,已知⊙O的半径为5,⊙O的一条弦AB长为8,那么以3为半径的同心圆与弦AB位置关系是相切.考点:圆与圆的位置关系;勾股定理;垂径定理.分析:过O作OC⊥AB于C,连接OA,根据垂径定理求出AC,根据勾股定理求出OC,再根据直线与圆的位置关系进行判断即可.解答:解:过O作OC⊥AB于C,连接OA,则∠OCA=90°,AC=BC=AB=×8=4,在Rt△OCA中,OA=5,AC=4,由勾股定理得:OC===3,\∵3=3,∴以3为半径的同心圆与弦AB位置关系是相切.故答案为:相切.点评:本题考查了勾股定理,垂径定理,直线与圆的位置关系的应用,解此题的关键是求出OC的长,注意:直线与圆的位置关系有:相离,相切,相交.17.我们定义:如果一个图形上的点A′、B′、…、P′和另一个图形上的点A、B、…、P分别对应,并且满足:(1)直线AA′、BB′、…、PP′都经过同一点O;(2)==…==k,那么这两个图形叫做位似图形,点O叫做位似中心,k叫做位似比.如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且OB=BB′,如果点A(,3),那么点A′的坐标为(5,6).考点:位似变换;坐标与图形性质.专题:计算题.分析:根据位似的性质得BC∥B′C′,根据平行线分线段成比例定理得到==,则△A′B′C′与△ABC的位似比为2,然后根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k进行求解.解答:解:∵△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,∴BC∥B′C′,∴==,∴△A′B′C′与△ABC的相似比为2,而点A(,3),∴点A′的坐标为(×2,3×2),即A′(5,6).故答案为(5,6).点评:本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.18.如图,已知△ABC中,AB=AC,tanB=2,AD⊥BC于点D,G是△ABC的重心,将△ABC绕着重心G旋转,得到△A1B1C1,并且点B1在直线AD上,联结CC1,那么tanCC1B1的值等于或.考点:三角形的重心;旋转的性质.专题:计算题.分析:分类讨论:当△ABC绕着重心G逆时针旋转得到△A1B1C1,如图1,设GD=x,根据等腰三角形的性质得BD=CD,再根据重心的性质得AG=2GD=2x,则AD=AG+DG=3x,在Rt△ABD中,利用正切定义得到BD=AD=x,则CD=x,接着根据勾股定理计算出CG=x,然后利用旋转的性质得到∠BGD=∠DGD1,GD=GD1=x,C1D1=CD=x,由于而GD⊥BC,所以GD1⊥B1C1,点D1在CG上,于是可得CD1=CG ﹣GD1=x,则在Rt△CC1D1中,利用正切的定义得到tan∠CC1D1==;当△ABC绕着重心G顺时针旋转得到△A1B1C1,如图2,设DG=x,与前面一样,可求得GD1=GD=x,C1D1=CD=x,则CD1=x,在Rt△CC1D1中,利用正切定理得到tan∠CC1D1==.解答:解:当△ABC绕着重心G逆时针旋转得到△A1B1C1,如图1,设GD=x,∵AB=AC,AD⊥BC于点D,∴BD=CD,∴重心G在AD上,∵G是△ABC的重心,∴AG=2GD=2x,∴AD=AG+DG=3x,在Rt△ABD中,∵tanB==2,∴BD=AD=x,∴CD=x,在Rt△CDG中,CG==x,∵△ABC绕着重心G旋转,得到△A1B1C1,并且点B1在直线AD上,∴∠BGD=∠DGD1,GD=GD1=x,C1D1=CD=x,而GD⊥BC,∴GD1⊥B1C1,点D1在CG上,∴CD1=CG﹣GD1=x﹣x=x,在Rt△CC1D1中,tan∠CC1D1===;当△ABC绕着重心G顺时针旋转得到△A1B1C1,如图2,设DG=x,与前面一样,可求得GD1=GD=x,C1D1=CD=x,则CD1=x+x=x,在Rt△CC1D1中,tan∠CC1D1===,综上所述,tanCC1B1的值等于或.故答案为或.点评:本题考查了三角形重心:三角形的重心是三角形三边中线的交点.重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了等腰三角形的性质、旋转的性质解直角三角形.三.解答题19.计算:.考点:特殊角的三角函数值.分析:根据特殊角三角函数值,可得答案.解答:解:原式=4×﹣×+×=1+3.点评:本题考查了特殊角三角函数值,解决此类题目的关键是熟记特殊角的三角函数值.20.如图,已知AB∥CD,AD与BC相交于点O,且=.(1)求的值.(2)如果,请用表示.考点:*平面向量.分析:(1)由AB∥CD,可得△AOB∽△DOC,然后由相似三角形的对应边成比例,求得的值.(2)由(1)可得=﹣=﹣.解答:解:(1)∵AB∥CD,∴△AOB∽△DOC,∴==,∴=;(2)由(1)知,AD=AO,∴=﹣=﹣.点评:此题考查了平面向量的知识以及相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.21.如图,已知二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,6),对称轴为直线x=2,求二次函数解析式并写出图象最低点坐标.考点:待定系数法求二次函数解析式;二次函数的最值.专题:计算题.分析:根据二次函数的对称轴为直线x=2,设出二次函数解析式,把A与C坐标代入求出a与k的值,确定出二次函数解析式,找出函数图象最低点坐标即可.解答:解:设二次函数解析式为y=a(x﹣2)2+k,把A(1,0),C(0,6)代入得:,解得:,则二次函数解析式为y=2(x﹣2)2﹣2=2x2﹣8x+6,二次函数图象的最低点,即顶点坐标为(2,﹣2).点评:此题考查了待定系数法求二次函数解析式,以及二次函数的最值,熟练掌握待定系数法是解本题的关键.22.如图,某新建公园有一个圆形人工湖,湖中心O处有一座喷泉,小明为测量湖的半径,在湖边选择A、B两个点,在A处测得∠OAB=45°,在AB延长线上的C处测得∠OCA=30°,已知BC=50米,求人工湖的半径.(结果保留根号)考点:垂径定理的应用.分析:过点O作OD⊥AC于点D,由垂径定理可知AD=BD,根据∠OAB=45°可知AD=OD,设AD=x,则OD=x,OA=x,CD=x+BC=(x+50)米,再根据∠OCA=30°即可得出x的值,进而得出结论.解答:解:过点O作OD⊥AC于点D,则AD=BD,∵∠OAB=45°,∴AD=OD,∴设AD=x,则OD=x,OA=x,CD=x+BC=x+50).∵∠OCA=30°,∴=tan30°,即=,解得x=25﹣25,∴OA=x=×(25﹣25)=(25﹣25)(米).答:人工湖的半径为(25﹣25)米.点评:本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.如图,已知在△ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足.(1)求证:AC2=AF•AD;(2)联结EF,求证:AE•DB=AD•EF.考点:相似三角形的判定与性质.分析:(1)证明△ACD∽△AFC,得到,即可解决问题.(2)证明A、E、F、C四点共圆,得到∠AFE=∠ACE,这是解决该问题的关键性结论;证明∠AFE=∠B,结合∠FAE=∠BAD,得到△AEF∽△ADB,列出比例式即可解决问题.解答:解:(1)如图,∵∠ACB=90°,CF⊥AD,∴∠ACD=∠AFC,而∠CAD=∠FAC,∴△ACD∽△AFC,∴,∴AC2=AF•AD.(2)如图,∵CE⊥AB,CF⊥AD,∴∠AEC=∠AFC=90°,∴A、E、F、C四点共圆,∴∠AFE=∠ACE;而∠ACE+∠CAE=∠CAE+∠B,∴∠ACE=∠B,∠AFE=∠B;∵∠FAE=∠BAD,∴△AEF∽△ADB,∴AE:AD=BD:EF,∴AE•DB=AD•EF.点评:该题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用相似三角形的判定及其性质来分析、判断、推理或解答.24.如图,在平面直角坐标系xOy中,点A(﹣m,0)和点B(0,2m)(m>0),点C在x轴上(不与点A重合)(1)当△BOC与△AOB相似时,请直接写出点C的坐标(用m表示)(2)当△BOC与△AOB全等时,二次函数y=﹣x2+bx+c的图象经过A、B、C三点,求m的值,并求点C 的坐标(3)P是(2)的二次函数图象上的一点,∠APC=90°,求点P的坐标及∠ACP的度数.考点:二次函数综合题.分析:(1)分类讨论:△BOC∽△BOA,△BOC∽△AOB,根据相似三角形的性质,可得答案;(2)根据全等三角形的性质,可得C点坐标,根据待定系数法,可得函数解析式;(3)根据相似三角形的性质,可得关于a的方程,根据解方程,可得a的值可得p点坐标,分类讨论:当点P的坐标为(,1)时,根据正弦函数据,可得∠COP的度数,根据等腰三角形得到性质,可得答案;当点P的坐标为(﹣,1)时,根据正弦函数据,可得∠AOP的度数,根据三角形外角的性质,可得答案.解答:解:(1)点C的坐标为(m,0)或(4m,0).或(﹣4m,0);(2)当△BOC与△AOB全等时,点C的坐标为(m,0),二次函数y=﹣x2+bx+c的图象经过A、B、C三点,,解得.二次函数解析式为y=﹣x2+4,点C的坐标为(2,0);(3)作PH⊥AC于H,设点P的坐标为(a,﹣a2+4),∵∠AHP=∠PHC=90°,∠APH=∠PCH=90°﹣∠CPH,∴△APH∽△PCH,∴=,即PH2=AH•CH,(﹣a2+4)2=(a+2)(2﹣a).解得a=,或a=﹣,即P(,1)或(﹣,1),如图:当点P1的坐标为(,1)时,OP1=2=OC,sin∠P1OE==∴∠COP=30°,∴∠ACP==75°当点P的坐标为(﹣,1)时,sin∠P2OF==,∠P2OF=30°.由三角形外角的性质,得∠P2OF=2∠ACP,即∠ACP=15°.点评:本题考查了二次函数综合题,(1)利用了相似三角形的性质,分类讨论是解题关键;(2)利用全等三角形的性质,解三元一次方程组;(3)利用了相似三角形的性质,分类讨论是解题关键,正弦函数及等腰三角形的性质,三角形外角的性质.25.如图,等边△ABC,AB=4,点P是射线AC上的一动点,联结BP,作BP的垂直平分线交线段BD 于点D,交射线BA于点Q,分别联结PD,PQ.(1)当点P在线段AC的延长线上时,①求∠DPQ的度数,并求证:△DCP∽△PAQ;②设CP=x,AQ=y,求y关于x的函数解析式,并写出它的定义域;(2)如果△PCD是等腰三角形,求△APQ的面积.考点:相似形综合题;三角形的外角性质;全等三角形的判定与性质;线段垂直平分线的性质;等腰三角形的性质.专题:综合题.分析:(1)①根据线段垂直平分线的性质可得BD=PD,BQ=PQ,即可证到△BDQ≌△PDQ,从而有∠DPQ=∠DBQ=60°;易证∠APQ=∠CDP,∠DCP=∠QAP,就可证到△DCP∽△PAQ;②利用△DCP∽△PAQ可求出CD、BD(用x、y的代数式表示),然后根据CD+BD=BC=4就可得到y关于x的函数解析式,然后根据x、y均为正数可求出x的范围;(2)①当点P在AC的延长线上时,∠DCP=120°,由△PCD是等腰三角形,可得CP=CD,由此可得到y=x+4,把它代入函数关系式,就可求出x的值,从而可求出CP、AP、AQ的值,就可求出△APQ的面积;②当点P在线段AC上时,∠C=60°,由△PCD是等腰三角形可得△PCD是等边三角形,从而有∠BDP=120°,进而可求出∠DPB=30°,∠BPC=90°,根据等腰三角形的性质可得AP=CP=2.由△DCP∽△PAQ,△PCD是等边三角形可得△APQ也是等边三角形,就可求出△APQ的面积.解答:解:(1)①如图1,∵DQ是线段BP的中垂线,∴BD=PD,BQ=PQ.在△BDQ和△PDQ中,,∴△BDQ≌△PDQ(SSS),∴∠DPQ=∠DBQ=60°,∴∠CPD+∠APQ=60°.又∵∠ACB=∠CDP+∠CPD=60°,∴∠APQ=∠CDP.又∵∠DCP=∠QAP=120°,∴△DCP∽△PAQ;②∵△DCP∽△PAQ,∴==,∴==,∴CD=,BD=,∵BC=BD+CD=4,∴+=4,整理得:y=.∵x>0,y>0,∴0<x<4.∴y关于x的函数解析式为y=,它的定义域为0<x<4;(2)①当点P在线段AC的延长线上时,∠DCP=120°.∴当△PCD是等腰三角形时,CD=CP,∴=x,∴y=x+4,∴=x+4,解得:x1=﹣2﹣2(舍去),x2=﹣2+2,∴CP=﹣2+2,∴AQ=AP=AC+CP=4﹣2+2=2+2.过点Q作QH⊥AP,交PA的延长线于点H,如图2,=AP•QH=AP•AQ•sin∠HAQ∴S△APQ=×(2+2)2×=4+6;②当点P在线段AC上时,∠C=60°,∴当△PCD是等腰三角形时,△PCD是等边三角形,∴∠BDP=120°.又∵BD=DP,∴∠DBP=∠DPB=30°,∴∠BPC=90°,即BP⊥AC.∵BC=BA,∴AP=CP=2.∵△DCP∽△PAQ,△PCD是等边三角形,∴△APQ是等边三角形,∴AP=AQ.过点Q作QH⊥AP于H,如图3,═AP•QH=AP•AQ•sin∠HAQ=×2×2×=.∴S△APQ点评:本题主要考查了相似三角形的判定与性质、线段垂直平分线的性质、全等三角形的判定与性质、等腰三角形的性质、等边三角形的性质等知识,运用(1)中结论求出CD、BD(用x、y的代数式表示),并利用CD+BD=BC=4建立等式是解决第(2)小题的关键,运用分类讨论的思想是解决第(3)小题的关键.。

上海中学自招数学真题(含答案)

上海中学自招数学真题(含答案)

上海中学自主招生试题1、因式分解:326114x x x -++=.【答案】()()()13421x x x --+.【解析】容易发现1x =是方程3261140x x x -++=的解,因此原式可以提出因式(1)x -,得到2(1)(654)x x x ---,对2(654)x x --用十字相乘可以得到原式等于(1)(34)(21)x x x --+.2、设0a b >>,224a b ab +=,则a ba b+=- .【解析】由条件可得2()6a b ab +=,2()2a b ab -=.因此22()63()2a b aba b ab+==-.由于0a b +>,0a b ->,所以a ba b+=-3、若210x x +-=,则3223x x ++=.【答案】4.【解析】对多项式用带余除法可得32223(1)(1)4x x x x x ++=+-++,而由条件2(1)(1)0x x x +-+=,因此原式的值等于4.4、已知()()()24b c a b c a -=--,且0a ≠,则b ca+=_________. 【答案】2.【解析】令a b m -=,c a n -=,则c b m n -=+, 代入()()()24b c a b c a -=--中得()24m n mn +=, ()20m n ∴-=,m n ∴=,即a b c a -=-,即2a b c =+,2b ca+∴=.5、一个袋子里装有两个红球和一个白球(仅颜色不同),第一次从中取出一个球,记下颜色后放回,摇匀,第二次从中取出一个球,则两次都是红球的概率是 .【答案】49.【解析】第一次取出红球的概率为23,且无论第一次取出什么球,第二次取出红球的概率仍为23,因此两次都是红球的概率是224339⨯=.6、直线:l y =与x 、y 轴交于点A 、B ,AOB ∆关于直线AB 对称得到ACB ∆,则点C 的坐标是.【答案】32⎛ ⎝⎭.【解析】根据函数解析式可以算出A 、B 的坐标分别为(1,0)A,B .由于ACB 是AOB 关于直线AB 对称得到的,所以AC AO =,BC BO =.设(,)C m n,则可列方程组2222(1)1(3m n m n ⎧-+=⎪⎨+=⎪⎩,解得32m n ⎧=⎪⎪⎨⎪=⎪⎩O重合,舍去.因此3(2C .7、一张矩形纸片ABCD ,9AD =,12AB =,将纸片折叠,使A 、C 两点重合,折痕长是. 【答案】454. 【解析】由题意知折痕是线段AC 的中垂线,设它与AB ,CD 分别交于,M N .设MB x =,则由MC MA =可列方程2229(12)x x +=-,解得218x =.同理有218DN =.作ME CD ⊥,垂足为E ,则四边形MECB 是矩形,因此9ME BC ==,218CE BM ==.可知274NE CD DN CE =--=.而454MN ===.因此折痕长为454.8、任给一个正整数n ,如果n 是偶数,就将它减半——得到2n,如果n 是奇数,则将它乘以3加1——得到31n +,不断重复这样的运算,如果对正整数n (视为首项)按照上述规则实施变换后(有些书可能多次出现)的第8项为1,则n 的所有可能取值为________. 【答案】128,21,20,3,16,2.【解析】设某一项为k ,则它的前一项应该为2k 或者13k -. 其中13k -必为奇数,即()4mod 6k ≡, 按照上述方法从1开始反向操作7次即可.9、正六边形ABCDED 的面积是6平方厘米,联结AC 、CE 、EA 、BD 、DF 、FB ,求阴影部分小正六边形的面积为.【答案】22cm .【解析】右图中,阴影部分是正六边形,且与正六边形ABCDEF的相似比为1:3.因为ABCDEF 的面积是26cm ,所以阴影部分的面积为2632()cm ÷=.10、已知()()21244y x m x m =+-+-与2y mx =在x 取任意实数时,1y ,2y 至少有一个是正数,m 的取值范围是________. 【答案】4m <.【解析】取0x =,则14y m =-,20y =,40m ∴->,4m <, 此时函数1y 的对称轴404mx -=-<, 则对任意0x ≥总有10y >,只需考虑0x <; 若04m ≤<,此时20y ≤, 则对任意0x <,有10y >,()()24840m m ∴∆=---<,解得04m ≤<;若0m <,此时20y >对0x <恒成立; 综上,4m <.11、已知a ,b ,c 是互不相等的实数,x 是任意实数,化简:()()()()()()()()()222x a x b x c a b a c c b a b c a c b ---++=------________.【答案】1.【解析】令()()()()()()()()()()2222x a x b x c f x mx nx k a b a c c b a b c a c b ---=++=++------, ()()()1f a f b f c ∴===,即222111ma na k mb nb k mc nc k ⎧++=⎪++=⎨⎪++=⎩,01m n k ==⎧∴⎨=⎩ ,即()1f x ≡.12、已知实数a ,b 满足221a ab b ++=,22t ab a b =--,则t 的取值范围是________.【答案】133t -≤≤-.【解析】方法一:考虑基本不等式222a b ab +≥. 则2212a b ab ab +=-≥,则113ab -≤≤, 又2221t ab a b ab =--=-,133t ∴-≤≤-,其中1a =,1b =-时,3t =-成立;a b ==时,13t =-成立. 方法二:逆用韦达定理. 12t ab +=,()2302t a b ++=≥,3t ∴≥-,a b +=,故a ,b 是方程2102t x ++=的两个根, 314022t t ++∴∆=-⨯≥,解得13t ≤-,133t ∴-≤≤-.13、(1)求边长为1的正五边形对角线长;(2)求sin18︒.【答案】(1(2. 【解析】(1)设正五边形ABCDE ,联结,AC BE ,且设它们交于点M .可以计算得到36ABM ABC ∠=∠=︒,因此ABM ACB ,可得2AB AM AC =⋅.同时,72BMC CBM ∠=∠=︒,所以BC MC =.若正五边形边长为1,则1AB BC CM ===,设AC x =,则由2AB AM AC =⋅可列方程21(1)x x =-,解得x去). (2)根据诱导公式,sin18cos72︒=︒.在(1)的五边形中,BM AM AC CM ==-=.作CH BM ⊥,垂足为H ,则等腰三角形BMC 中12BH HM BM ===72CBM ∠=︒,所以sin18cos72BH BC ︒=︒==.14、(1)()32f x x ax bx c =+++,()()()01233f f f <-=-=-≤,求c 的取值范围;(2)()432f x x ax bx cx d =++++,()110f =,()220f =,()330f =,求()()106f f +-.【答案】(1)69c <≤ ;(2)8104.【解析】(1)()()()01233f f f <-=-=-≤,()0f x k ∴-=有三个实根1,2,3x =---,()()()()123f x k x x x ∴-=+++,展开得6c k =+,69c ∴<≤;(2)方程()100f x x -=有三个实根1,2,3x =,记第4个根为x p =,则()()()()()10123f x x x p x x x -=----,()()()()()12310f x x p x x x x ∴=----+,()()()()()()()106109871006789608104f f p p ∴+-=-⨯⨯⨯++--⨯-⨯-⨯--=.15、我们学过直线与圆的位置关系,根据材料完成问题(1)(2)类似给出背景知识:平面:0Ax By Cz D α+++=; 球:()()()2222x a y b z c R -+-+-=;点(),,a b c 到平面:0Ax By Cz D α+++=的距离公式:d =;球心到平面的距离为d ,当d R <时,球与平面相交,当d R =时,球与平面相切,当d R >时,球与平面相离;问题(1):若实数m 、n 、k 满足1m n k ++=,求222m n k ++的最小值; 问题(2)()12x y z =++. 【答案】(1)13;(2)123x y z =⎧⎪=⎨⎪=⎩.【解析】(1)条件可转化为点(,,)m n k 在平面10x y z ++-=上,而222m n k ++的最小值即该点到原点距离平方的最小值.这个距离最小为原点到平面10x y z ++-=的距离,而原点到平面的距离可由材料公式计算得到:3d ==,因此222m n k ++的最小值为213d =,等号在13m n k ===时取到.(2)移项后配方可以得到2221111)1)1)0222-+-+=,因此必有101010-==-=,于是解得123xyz=⎧⎪=⎨⎪=⎩.。

2015年上海市闸北区中考数学一模试卷

2015年上海市闸北区中考数学一模试卷

2015年上海市闸北区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.(4分)如果点G是△ABC的重心,联结AG并延长,交对边BC于点D,那么AG:AD是()A.2:3 B.1:2 C.1:3 D.3:4【考点】M33L 三角形重心、内心、外心【难度】容易题【分析】如图点G是△ABC的重心,根据三角形的重心到顶点的距离等于到对边中点的距离的2倍可得AG=2DG,那么AD=AG+DG=3DG,代入即可求得==.故选A.【解答】A.【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.2.(4分)(2015•闸北区一模)已知点D、E分别在△ABC的边AB、AC上,下列给出的条件中,不能判定DE∥BC的是()A.BD:AB=CE:AC B.DE:BC=AB:AD C.AB:AC=AD:AE D.AD:DB=AE:EC 【考点】M33I 平行线分线段成比例定理M33M 相似三角形性质、判定【难度】中等题【分析】解:A、∵BD:AB=CE:AC,∴=,∴=,∴1﹣=1﹣,∴=,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,正确,故本选项错误;B、∵根据DE:BC=AB:AD不能推出△ADE∽△ABC,∴不能推出∠ADE=∠B,∴不能推出DE∥BC,错误,故本选项正确;C、∵AB:AC=AD:AE,∴=,∴=,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,正确,故本选项错误;D、∵AD:DB=AE:EC,∴=,∴=,∴=,∴﹣1=﹣1,∴=,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,正确,故本选项错误;故选B.【解答】B.【点评】本题考查了平行线分线段成比例定理和相似三角形的性质和判定,平行线的判定的应用,解此题的关键是能推出△ADE≌△ABC,题目比较好,难度适中.3.(4分)(2015•闸北区一模)下列有关向量的等式中,不一定成立的是()A.=﹣B.||=||C.+=D.|+|=||+||【考点】M382 向量的加法与减法M383 实数与向量的乘法M384 向量的线性运算【难度】容易题【分析】A、根据相反向量的知识,可得=﹣,故正确;B、根据向量模的定义,可得||=||,故正确;C、由三角形法则,可得+=,故正确;D、|+|≤||+||,故错误.故选D.【解答】D.【点评】此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则的应用.4.(4分)在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是()A.cosA=B.tanA=C.sinA=D.cosA=【考点】M361 锐角的三角比的概念(正切、余切、正弦、余弦)【难度】容易题【分析】在直角△ABC中,∠C=90°,则A、cosA=,故本选项错误;B、tanA=,故本选项错误;C、sinA=,故本选项正确;D、cosA=,故本选项错误;故选:C.【解答】C.【点评】此题主要考查了锐角三角函数的定义,关键是熟练掌握锐角三角函数的定义:(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.(3)正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.分别进行分析即可.5.(4分)(2015•闸北区一模)在下列y关于x的函数中,一定是二次函数的是()A.y=x2 B.y=C.y=kx2D.y=k2x【考点】M441 二次函数的定义M443 二次函数的关系式【难度】容易题【分析】根据二次函数的定义形如y=ax2+bx+c (a≠0)是二次函数.则:A、是二次函数,故A符合题意;B、是分式方程,故B错误;C、k=0时,不是函数,故C错误;D、k=0是常数函数,故D错误;故选:A.【解答】A.【点评】本题考查二次函数的定义,形如y=ax2+bx+c (a≠0)是二次函数.6.(4分)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米B.6米C.7.2米D.8米【考点】M253 分式方程M33M 相似三角形性质、判定【难度】中等题【分析】如图,GC⊥BC,AB⊥BC,∴GC∥AB,∴△GCD∽△ABD(两个角对应相等的两个三角形相似),∴,设BC=x,则,同理,得,∴,∴x=3,∴,∴AB=6.故选:B.【解答】B.【点评】本题考查相似三角形性质的应用.在解答相似三角形的有关问题时,遇到有公共边的两对相似三角形,往往会用到中介比,它是解题的桥梁,如该题中的“”.二、填空题(本大题共12题,每题4分,满分48分)7.(4分)(2015•闸北区一模)已知=,则的值是.【考点】M33H 比例的性质【难度】容易题【分析】根据分比性质,可得得==,故答案为:.【解答】.考生要注意【点评】本题考查了比例的性质,利用了分比性质:=⇒=,掌握。

2015年上海市松江、青浦、静安区中考数学一模试卷

2015年上海市松江、青浦、静安区中考数学一模试卷

2015年上海市松江区中考数学一模试卷参考答案与试题解析一.选择题(本大题满分4&#215;6=24分)1.(4分)如果把Rt△ABC的三边长度都扩大2倍,那么锐角A的四个三角比的值()A.都扩大到原来的2倍B.都缩小到原来的C.都没有变化D.都不能确定【考点】M361 锐角的三角比的概念(正切、余切、正弦、余弦)【难度】容易题【分析】根据三角形三边扩大相同的倍数,可得边的比不变,根据锐角三角函数的定义,可得:如果把Rt△ABC的三边长度都扩大2倍,锐角A不变,锐角三角函数值不变,故选:C.【解答】C.【点评】本题考查了锐角三角函数,注意锐角不变,锐角三角函数值不变.2.(4分)将抛物线y=(x﹣1)2向左平移2个单位,所得抛物线的表达式为()A.y=(x+1)2B.y=(x﹣3)2C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣2【考点】M41A 函数图像的几何变换M442 二次函数的图象、性质【难度】容易题【分析】先根据二次函数的性质得到抛物线y=(x﹣1)2的顶点坐标为(1,0),再利用点平移的规律得到点(1,0)平移后对应点的坐标为(﹣1,0),然后根据顶点式写出平移后抛物线的表达式为y=(x+1)2.故选A.【解答】A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.3.(4分)一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A.1米B.3米C.5米D.6米【考点】M443 求二次函数的关系式M444 二次函数的应用【难度】容易题【分析】直接利用配方法求出二次函数最值,即:h=﹣5t2+10t+1=﹣5(t2﹣2t)+1=﹣5(t﹣1)2+6,故小球到达最高点时距离地面的高度是:6m.故选:D.【解答】D.【点评】此题主要考查了二次函数的应用,正确利用配方法求出是解题关键.4.(4分)如图,已知AB∥CD∥EF,AD:AF=3:5,BE=12,那么CE的长等于()A.2 B.4 C.D.【考点】M33I 平行线分线段成比例定理【难度】容易题【分析】根据平行线分线段成比例得到=,即=,可计算出BC=,则CE=BE﹣BC=12﹣=.故选C.【解答】C.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.属于中考高频考点,考生要注意!5.(4分)已知在△ABC中,AB=AC=m,∠B=α,那么边BC的长等于()A.2m•sinαB.2m•cosαC.2m•tanαD.2m•cotα【考点】M339 等腰三角形的性质和判定M361 锐角的三角比的概念(正切、余切、正弦、余弦)【难度】中等题【分析】过点A作AD⊥BC于点D,构建直角△ABD,通过解该直角三角形得到BD=m•cosα.然后利用等腰三角形“三线合一”的性质来求BC=2BD=2m•cosα.故选:B.【解答】B.【点评】此题主要考查了锐角三角函数的定义,正确区分正弦余弦三角函数是解决问题的关键.6.(4分)如图,已知在梯形ABCD中,AD∥BC,BC=2AD,如果对角线AC与BD相交于点O,△AOB、△BOC、△COD、△DOA的面积分别记作S1、S2、S3、S4,那么下列结论中,不正确的是()A.S1=S3B.S2=2S4C.S2=2S1D.S1•S3=S2•S4【考点】M33O 三角形面积M33M 相似三角形性质、判定M345 梯形的概念【难度】较难题【分析】证三角形相似,再根据三角形的面积公式和相似三角形的面积比等于相似比的平方,以及三角形的面积公式即可得出:A、∵△ABD和△ACD同底、同高,则S△ABD=S△ACD,∴S1=S3,故命题正确;B、∵AD∥BC,∴△AOD∽△COB,又∵BC=2AD,∴=()2=,则S2=2S4正确.故命题错误;C、作MN⊥BC于点N,交AD于点M.∵△AOD∽△COB,又∵BC=2AD,∴==,即=,∴=,则设S△OBC=2x,则S△ABC=3x,则S△AOB=x,即S2=2S1,故命题正确;D、设AD=y,则BC=2y,设OM=z,则ON=2z,则S2=×2y×2z=2yz,S4=×y×z=yz,S△ABC=BC•MN=×2y•3z=3yz,则S1=S3=3yz﹣2yz=yz,则S1•S3=y2z2,S2•S4=y2z2,故S1•S3=S2•S4正确.故选B.【解答】B.【点评】本题考查了相似三角形的判定与性质,相似三角形面的比等于相似比的平方,高线的比等于相似比,正确表示出S1、S2、S3、S4,是解决本题的关键.二.填空题(本大题满分4&#215;12=48分)7.(4分)已知=,那么=.【考点】M33H 比例的性质M215 分式的基本性质【难度】容易题【分析】由比例的性质,得x=.当x=时,===,故答案为:.【解答】.【点评】本题考查了比例的性质,利用比例的性质用y表示x是解题关键.8.(4分)计算:=.【考点】M382 向量的加法与减法M383 实数与向量的乘法M384 向量的线性运算【难度】容易题【分析】先去括号,然后直接进行向量的加减运算即:原式=﹣+﹣=﹣﹣.故答案为:﹣﹣.【解答】﹣﹣.【点评】本题考查了平面向量的知识,属于基础题,掌握平面向量的运算是关键.9.(4分)已知线段a=4 cm,b=9 cm,则线段a,b的比例中项为cm.【考点】M33H 比例的性质【难度】容易题【分析】根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.设它们的比例中项是x,则x2=4×9,x=±6,(线段是正数,负值舍去),故填6.【解答】6.【点评】本题要求理解比例中项的概念,这里注意线段不能是负数.10.(4分)二次函数y=﹣2x2﹣5x+3的图象与y轴的交点坐标为.【考点】M416 函数图像的交点问题M417 不同位置的点的坐标的特征M442 二次函数的图象、性质【难度】容易题【分析】根据y轴上点的坐标特征得到二次函数y=﹣2x2﹣5x+3的图象与y轴的交点的横坐标为0,则当x=0时,y=﹣2x2﹣5x+3=3,所以抛物线与y轴的交点坐标为(0,3).故答案为(0,3).【解答】(0,3).【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.11.(4分)在Rt△ABC中,∠C=90°,如果AB=6,cosA=,那么AC=.【考点】M361 锐角的三角比的概念(正切、余切、正弦、余弦)M364 解直角三角形【难度】容易题【分析】如图所示,在Rt△ABC中,∠C=90°,AB=6,cosA=,∴cosA==,则AC=AB=×6=4,故答案为:4.【解答】4.【点评】此题考查了解直角三角形,熟练掌握锐角三角函数定义是解本题的关键.12.(4分)如图,已知D,E分别是△ABC的边BC和AC上的点,AE=2,CE=3,要使DE∥AB,那么BC:CD应等于.【考点】M33I 平行线分线段成比例定理【难度】容易题【分析】直接根据平行线分线段成比例进行计算.即:====.故答案为.【解答】.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.13.(4分)如果抛物线y=(a+3)x2﹣5不经过第一象限,那么a的取值范围是.【考点】M236 解一元一次不等式(组)M41B 平面直角坐标系M442 二次函数的图象、性质【难度】容易题【分析】根据抛物线y=(a+3)x2﹣5不经过第一象限可以确定不等式的开口向下,从而确定a+3<0,解得:a<﹣3,故答案为:a<﹣3.【解答】a<﹣3.【点评】考查了二次函数的性质,根据抛物线的开口方向,与y轴的交点,对称轴判断抛物线经过的象限.14.(4分)已知点G是面积为27cm2的△ABC的重心,那么△AGC的面积等于.【考点】M33O 三角形面积M33H 比例的性质M33L 三角形重心、内心、外心【难度】中等题【分析】首先根据题意画出图形,由三角形重心的性质得出AG:GD=2:1,则S△AGC=2S△CGD,S△AGC=S△ACD,又D为BC中点,则S△ACD=S△ABC,S△AGC=×S△ABC=S△ABC=×27=9(cm2).故答案为:9cm2.【解答】9cm2.【点评】此题考查了三角形的重心的性质:三角形的重心到顶点的距离是它到对边中点的距离的2倍.根据题意得出S△AGC=S△ABC是解题的关键.15.(4分)如图,当小杰沿坡度i=1:5的坡面由B到A行走了26米时,小杰实际上升高度AC=米.(可以用根号表示)【考点】M124 实数大小比较M241 一元二次方程的概念、解法M364 解直角三角形M365 仰角、俯角、坡度、坡角【难度】容易题【分析】由坡度易得AC与BC的比为1:5,设AC为x,则BC为5x,利用勾股定理可得x2+(5x)2=262,又x>0,则x=.故答案为:.【解答】.【点评】本题考查了解直角三角形及勾股定理;理解坡度的意义是解决本题的关键.16.(4分)已知二次函数的图象经过点(1,3),对称轴为直线x=﹣1,由此可知这个二次函数的图象一定经过除点(1,3)外的另一点,这点的坐标是.【考点】M417 不同位置的点的坐标的特征M442 二次函数的图象、性质【难度】容易题【分析】先确定点(1,3)关于直线x=﹣1的对称点的坐标为(﹣3,3),然后根据抛物线的对称性求解得这个二次函数的图象一定点(﹣3,3).故答案为(﹣3,3).【解答】(﹣3,3).【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了抛物线的对称性.17.(4分)已知不等臂跷跷板AB长为3米,当AB的一端点A碰到地面时(如图1),AB 与地面的夹角为30°;当AB的另一端点B碰到地面时(如图2),AB与地面的夹角的正弦值为,那么跷跷板AB的支撑点O到地面的距离OH=米.【考点】M232 一元一次方程的概念、解法M362 特殊角的锐角三角函数值M364 解直角三角形【难度】中等题【分析】利用锐角三角函数关系以及特殊角的三角函数关系表示出AB的长,进而求出即可.具体为:设OH=x,∵当AB的一端点A碰到地面时,AB与地面的夹角为30°,∴AO=2xm,∵当AB的另一端点B碰到地面时,AB与地面的夹角的正弦值为,∴BO=3xm,则AO+BO=2x+3x=3m,解得;x=.故答案为:.【解答】.【点评】此题主要考查了解直角三角形的应用,正确用未知数表示出AB的长是解题关键.18.(4分)把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T﹣变换,这个顶点称为T﹣变换中心,旋转角称为T﹣变换角,三角形与原三角形的对应边之比称为T﹣变换比;已知△ABC在直角坐标平面内,点A(0,﹣1),B(﹣,2),C(0,2),将△ABC进行T﹣变换,T﹣变换中心为点A,T﹣变换角为60°,T﹣变换比为,那么经过T﹣变换后点C所对应的点的坐标为.【考点】M33D 直角三角形的性质和判定M372 图形的旋转与旋转对称图形【难度】较难题【分析】根据题意判断△ABC为直角三角形,得到∠BAC=30°,根据T﹣变换角为60°,得到经过T﹣变换后点C所对应的点C′在x轴上,又T﹣变换比为,AC=3,则AC′=2,OC′=,∴经过T﹣变换后点C所对应的点的坐标为(﹣,0).【解答】(﹣,0).【点评】本题考查的是坐标与图形变化,理解新定义和旋转的概念是解题的关键,注意旋转中心、旋转方向和旋转角在旋转中的应用.三.解答题(本大题满分10+10+10+10+12+12+14=78分)19.(10分)已知在直角坐标平面内,抛物线y=x2+bx+6经过x轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C;(1)求抛物线的表达式;(2)求△ABC的面积.【考点】M33O 三角形面积M414 用待定系数法求函数关系式M442 二次函数的图象、性质M443 求二次函数的关系式【难度】容易题【分析】(1)把点B的坐标(3,0)代入抛物线y=x2+bx+6,即可得出抛物线的表达式y=x2﹣5x+6;(2)先求出A(2,0),B(3,0),C(0,6),再利用三角形面积公式求解即可.【解答】解:(1)把点B的坐标(3,0)代入抛物线y=x2+bx+6得0=9+3b+6,解得b=﹣5, (3)所以抛物线的表达式y=x2﹣5x+6; (5)(2)∵抛物线的表达式y=x2﹣5x+6;∴A(2,0),B(3,0),C(0,6), (8)∴S△ABC=×1×6=3. (10)【点评】本题主要考查了用待定系数法求二次函数的解析式,解题的关键是正确的设出抛物线的解析式.20.(10分)如图,已知在△ABC中,AD是边BC上的中线,设=,=;(1)求(用向量,的式子表示);(2)如果点E在中线AD上,求作在,方向上的分向量;(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量).【考点】M382 向量的加法与减法M383 实数与向量的乘法M384 向量的线性运算【难度】容易题【分析】(1)由AD是边BC上的中线,=,可求得,然后由三角形法则,求得;(2)利用平行四边形法则,即可求得在,方向上的分向量.【解答】解:(1)∵AD是边BC上的中线,=,∴==, (3)∴=﹣=﹣; (5)(2)如图,过点E作EM∥BC,EN∥AB, (7)则、分别是在,方向上的分向量. (10)【点评】此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则与平行四边形法则的应用,注意掌握数形结合思想的应用.21.(10分)如图,某幢大楼的外墙边上竖直安装着一根旗杆CD,小明在离旗杆下方大楼底部E点24米的点A处放置一台测角仪,测角仪的高度AB为1.5米,并在点B处测得旗杆下端C的仰角为40°,上端D的仰角为45°,求旗杆CD的长度;(结果精确到0.1米,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)【考点】M344 平行四边形(包括矩形、菱形、正方形)的判定与性质M364 解直角三角形M365 仰角、俯角、坡度、坡角【难度】容易题【分析】过点B作BF⊥DE于点F,可得四边形ABFE为矩形,先在△BCF中求出CF的长度,然后在△BDF中求出DF的长度,最后DF﹣CF可求得CD的长度.【解答】解:过点B作BF⊥DE于点F, (1)则四边形ABFE为矩形,在△BCF中,∵∠CBF=40°,∠CFB=90°,BF=AE=24m,∴=tan40°, (3)∴CF=0.84×24≈20.16(m), (5)在△BDF中,∵∠DBF=45°,∴DF=24m, (7)则CD=DF﹣CF=24﹣20.16=3.84≈3.8(m). (9)故旗杆CD的长为3.8m. (10)【点评】本题考查了直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形.22.(10分)用含30°、45°、60°这三个特殊角的四个三角比及其组合可以表示某些实数,如:可表示为=sin30°=cos60°=tan45°•sin30°=…;仿照上述材料,完成下列问题:(1)用含30°、45°、60°这三个特殊角的三角比或其组合表示,即填空:=== =…;(2)用含30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算都至少出现一次,且这个等式的结果等于1,即填空:1=.【考点】M361 锐角的三角比的概念(正切、余切、正弦、余弦)M362 特殊角的锐角三角函数值【难度】容易题【分析】(1)根据30°、45°、60°这三个特殊角的三角比进行填空;(2)因为该等式的要求是:等式中须含有这三个特殊角的三角比,上述四种运算都至少出现一次,且这个等式的结果等于1,所以首先考虑到tan45°=cot45°=1.【解答】解:(1)∵sin60°=cos30°=,tan45°=1,∴=sin60°=cos30°=tan45°•sin60°=…;故答案是:=sin60°;cos30°;tan45°•sin60°; (5)(2)∵=sin30°=cos60°,tan45°=cot45°=1.∴该等式可以是1=(sin30°+cos60°)•tan45°÷cot45°.故答案是:(sin30°+cos60°)•tan45°÷cot45°(答案不唯一). (10)【点评】本题考查了特殊角的三角函数值.解决此类题目的关键是熟记特殊角的三角函数值.23.(12分)已知如图,D是△ABC的边AB上一点,DE∥BC,交边AC于点E,延长DE 至点F,使EF=DE,联结BF,交边AC于点G,联结CF(1)求证:=;(2)如果CF2=FG•FB,求证:CG•CE=BC•DE.【考点】M323 平行线的判定、性质M33M 相似三角形性质、判定【难度】中等题【分析】(1)首先证明△ADE∽△ABC,△EFG∽△CBG,根据相似三角形的对应边的比相等,以及DE=EF即可证得;此问简单(2)首先证明△CFG∽△BFC,证得=,∠FCE=∠CBF,然后根据平行线的性质证明∠FEG=∠CEF,即可证得△EFG∽△ECF,则==,即可证得=,则所证结论即可得到.此问中等【解答】证明:(1)∵DE∥BC,∴△ADE∽△ABC,△EFG∽△CBG,∴=,=, (2)又∵DE=EF,∴=,∴=; (5)(2)∵CF2=FG•FB,∴=, (6)又∵∠CFG=∠CFB,∴△CFG∽△BFC,∴=,∠FCE=∠CBF, (8)又∵DF∥BC,∴∠EFG=∠CBF,∴∠FCE=∠EFG, (10)又∵∠FEG=∠CEF,∴△EFG∽△ECF,∴==,∴=,即CG•CE=BC•DE. (12)【点评】本题考查了相似三角形的判定与性质,正确理解相似三角形的判定方法,证明∠FEG=∠CEF,证得△EFG∽△ECF是解决本题的关键.24.(12分)已知在平面直角坐标系xOy中,二次函数y=ax2+bx的图象经过点(1,﹣3)和点(﹣1,5);(1)求这个二次函数的解析式;(2)将这个二次函数的图象向上平移,交y轴于点C,其纵坐标为m,请用m的代数式表示平移后函数图象顶点M的坐标;(3)在第(2)小题的条件下,如果点P的坐标为(2,3),CM平分∠PCO,求m的值.【考点】M233 二元一次方程(组)的概念、解法M252 特殊的高次方程(二项方程、双二次方程)M324 角平分线及其性质M33F 全等三角形概念、判定、性质M413 结合图像对函数关系进行分析M414 用待定系数法求函数关系式M41A 函数图像的几何变换M41B 平面直角坐标系M442 二次函数的图象、性质M443 求二次函数的关系式M444 二次函数的应用【难度】中等题【分析】(1)根据待定系数法,可得函数解析式;此问简单(2)根据顶点坐标公式,可得顶点坐标,根据图象的平移,可得M点的坐标;此问简单(3)根据角平分线的性质,可得全等三角形,根据全等三角形的性质,可得方程组,根据解方程组,可得答案.此问中等【解答】解:(1)由二次函数y=ax2+bx的图象经过点(1,﹣3)和点(﹣1,5),得, (1)解得. (3)二次函数的解析式y=x2﹣4x; (4)(2)y=x2﹣4x的顶点M坐标(2,﹣4), (5)这个二次函数的图象向上平移,交y轴于点C,其纵坐标为m,顶点M坐标向上平移m,即M(2,m﹣4); (7)(3)由待定系数法,得CP的解析式为y=x+m,如图:作MG⊥PC于G,设G(a,a+m).由角平分线上的点到角两边的距离相等,DM=MG. (9)在Rt△DCM和Rt△GCM中,Rt△DCM≌Rt△GCM(HL).CG=DC=4,MG=DM=2, (10),化简,得8m=36,解得m=. (12)【点评】本题属于二次函数综合题,属于中考常考题型;注意:(1)利用了待定系数法求函数解析式,(2)利用了二次函数顶点坐标公式,图象的平移方法;(3)利用了角平分线的性质,全等三角形的性质.均属于中考常考知识点,考生要注意掌握25.(14分)已知在矩形ABCD中,P是边AD上的一动点,联结BP、CP,过点B作射线交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y;(1)求y关于x的函数解析式,并写出它的定义域;(2)当AP=4时,求∠EBP的正切值;(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.【考点】M124 实数大小比较M232 一元一次方程的概念、解法M241 一元二次方程的概念、解法M323 平行线的判定、性质M339 等腰三角形的性质和判定M33E 勾股定理M33F 全等三角形概念、判定、性质M33M 相似三角形性质、判定M344 平行四边形(包括矩形、菱形、正方形)的判定与性质M361 锐角的三角比的概念(正切、余切、正弦、余弦)M711 数学综合与实践【难度】较难题【分析】(1)易证△ABM∽△APB,然后根据相似三角形的性质就可得到y关于x的函数解析式,由P是边AD上的一动点可得0≤x≤5,再由y>0就可求出该函数的定义域;此问简单(2)过点M作MH⊥BP于H,由AP=x=4可求出MP、AM、BM、BP,然后根据面积法可求出MH,从而可求出BH,就可求出∠EBP的正切值;此问中等(3)可分EB=EC和CB=CE两种情况讨论:①当EB=EC时,可证到△AMB≌△DPC,则有AM=DP,从而有x﹣y=5﹣x,即y=2x﹣5,代入(1)中函数解析式就可求出x的值;②当CB=CE时,可得到PC=EC﹣EP=BC﹣MP=5﹣y,在Rt△DPC中根据勾股定理可得到x与y的关系,然后结合y关于x的函数解析式,就可求出x的值.此问较难【解答】解:(1)∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=5,∠A=∠D=90°,AD∥BC,∴∠APB=∠PBC.∵∠ABE=∠CBP,∴∠ABM=∠APB. (2)又∵∠A=∠A,∴△ABM∽△APB,∴=,∴=,∴y=x﹣. (4)∵P是边AD上的一动点,∴0≤x≤5.∵y>0,∴x﹣>0,∴x>2,∴函数的定义域为2<x≤5; (5)(2)过点M作MH⊥BP于H,如图.∵AP=x=4,∴y=x﹣=3,∴MP=3,AM=1,∴BM==,BP==2. (6)∵S△BMP=MP•AB=BP•MH,∴MH==,∴BH==,∴tan∠EBP==; (8)(3)①若EB=EC,则有∠EBC=∠ECB.∵AD∥BC,∴∠AMB=∠EBC,∠DPC=∠ECB,∴∠AMB=∠DPC. (9)在△AMB和△DPC中,,∴△AMB≌△DPC, (10)∴AM=DP,∴x﹣y=5﹣x,∴y=2x﹣5,∴x﹣=2x﹣5,解得:x1=1,x2=4.∵2<x≤5,∴AP=x=4; (11)②若CE=CB,则∠EBC=∠E.∵AD∥BC,∴∠EMP=∠EBC=∠E,∴PE=PM=y,∴PC=EC﹣EP=5﹣y, (12)∴在Rt△DPC中,(5﹣y)2﹣(5﹣x)2=22,∴(10﹣x﹣y)(x﹣y)=4,∴(10﹣x﹣x+)(x﹣x+)=4,整理得:3x2﹣10x﹣4=0,解得:x3=,x4=(舍负).∴AP=x=.终上所述:AP的值为4或. (14)【点评】本题主要考查了相似三角形的判定与性质、全等三角形的判定与性质、矩形的性质、勾股定理、解一元二次方程、三角函数等知识,证到△ABM∽△APB是解决第(1)小题的关键,把∠EBP放到直角三角形中是解决第(2)小题的关键,运用勾股定理建立x与y的等量关系是解决第(3)小题的关键.。

全国重点高中XXX2015年自主招生(理科实验班)预录考试数学模拟试题(A卷)(附答案)

全国重点高中XXX2015年自主招生(理科实验班)预录考试数学模拟试题(A卷)(附答案)

全国重点高中XXX2015年自主招生(理科实验班)预录考试数学模拟试题(A卷)(附答案)XXX2015年自主招生(理科实验班)预录考试数学模拟试题(A卷)时间:120分钟,满分:120分一、选择题(每小题5分,共30分)1.已知 $x-\frac{5x-2012}{x-2}$,则代数式的值是()。

A。

2013.B。

2015.C。

2016.D。

20172.已知$S=\frac{1}{1980}+\frac{1}{1981}+\frac{1}{1982}+。

+\frac{1}{2012}$,则 $S$ 的整数部分是()。

A。

59.B。

60.C。

61.D。

633.已知四边形 $ABCD$,下列条件:①$AB∥CD$;②$BC∥AD$;③$AB=CD$;④$BC=AD$;⑤$\angleA=\angle C$;⑥$\angle B=\angle D$。

任取其中两个,可以得出“四边形 $ABCD$ 是平行四边形”的概率是()。

A。

$\frac{2}{3}$。

B。

$\frac{3}{4}$。

C。

$\frac{3}{5}$。

D。

$\frac{7}{15}$4.如图,矩形 $ABCD$ 的长为6,宽为3,点 $O_1$ 为矩形的中心,$⊙O_2$ 的半径为1,$O_1O_2⊥AB$于点 $P$,$O_1O_2=6$。

若 $⊙O_2$ 绕点 $P$ 按顺时针方向旋转360°,在旋转过程中,$⊙O_2$ 与矩形的边只有一个公共点的情况一共出现()。

A。

3次。

B。

4次。

C。

5次。

D。

6次5.如图,$ABCD$ 是正方形场地,点 $E$ 在 $DC$ 的延长线上,$AE$ 与 $BC$ 相交于点 $F$。

有甲、乙、丙三名同学同时从点 $A$ 出发,甲沿着 $A-B-F-C$ 的路径行走至 $C$,乙沿着 $A-F-E-C-D$ 的路径行走至 $D$,丙沿着 $A-F-C-D$ 的路径行走至 $D$。

若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F 上海市2015年重点中学自主招生数学模拟试题 答题时注意:1、试卷满分150分;考试时间:120分钟.2、试卷共三大题,计16道题。

考试结束后,将本卷及演算的草稿纸一并上交。

一、选择题(共5小题,每题6分,共30分.以下每小题均给出了代号为A,B,C,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号内.不填、多填或错填均不得分)1、如果关于x 的方程2230x ax a -+-=至少有一个正根,则实数a 的取值范围是( )A 、22<<-aB 、23≤<a C 、23≤<-a D 、23≤≤-a 2、如图,已知:点E 、F 分别是正方形ABCD 的边BC AB 、的中点,DF BD 、分别交CE 于点H G 、,若正方形ABCD 的面积是240,则四边形BFHG 的面积等于……………………( ) A 、26 B 、28C 、24D 、303 、设z y x 、、是两两不等的实数,且满足下列等式: 66633633)()(z x x y x z x x y x ---=-+-,则代数式xyz z y x 3333-++的值是………………… ( )A 、0B 、1C 、3D 、条件不足,无法计算4、如图,四边形BDCE 内接于以BC ⊙A ,已知:︒=∠=∠=30,53cos ,10BCE BCD BC ,则线段DE 的长是………………… ( )A 、89B 、73C 、4+33D 、3+43 5、某学校共有3125名学生,一次活动中全体学生被排成 一个n 排的等腰梯形阵,且这n 排学生数按每排都比前一排 多一人的规律排列,则当n 取到最大值时,排在这等腰梯形阵最外面的一周的学生总人数是………………… ( )A 、296B 、221C 、225D 、641二、填空题:(共5小题,每题6分,共30分)6、已知:实常数d c b a 、、、同时满足下列两个等式:⑴0cos sin =-+c b a θθ;⑵0sin cos =+-d b a θθ(其中θ为任意锐角),则d c b a 、、、之间的关系式是:。

7、函数4433221-+-+-+-=x x x x y 的最小值是 。

8、已知一个三角形的周长和面积分别是84、210,一个单位圆的位置(如图),没有被单位圆滚过的部分的面积是 。

9、已知:,则2可用含x 的 有理系数三次多项式来表示为:2= 。

10、设p 、q 、r 为素数,则方程 2223r q p p ++= 的所有可能的解p 、q 、r 组成的三元数组( p , q , r )是 。

三、解答题(共6题,共90分)11、(本题满分12分)赵岩,徐婷婷,韩磊不但是同班同学,而且是非常要好的朋友,三个人的学习成绩不相伯仲,且在整个年级中都遥遥领先,高中毕业后三个人都如愿的考入自己心慕以久的大学.后来三个人应母校邀请给全校学生作一次报告.报告后三个人还出了一道数学题:有一种密码把英文按字母分解,英文中的26a b c z ,,,,个字母(不论大小写)依次用12326,,,,这26个自然数表示,并给出如下一个变换公式:⎪⎩⎪⎨⎧+++=的正偶数)是不超过其中的正奇数)是不超过其中26(13]21[26(1]2[x x x x y ;已知对于任意的实数x ,记号[x ]表示不超过x 的最大整数;将英文字母转化成密码,如,即q h 变成 ,再如,即f k 变成。

他们给出下列一组密码:etwcvcjw ej ncjwwcabqcv ,把它翻译出来就是一句很好的临别赠言。

现在就请你把它翻译出来,并简单地写出翻译过程。

12、(本题满分15分)如果有理数m 可以表示成22562y xy x +-(其中y x 、是任意有理数)的形式,我们就称m 为“世博数”。

⑴个“世博数”b a 、之积也是“世博数”吗?为什么? ⑵ 证明:两个“世博数”b a 、(0≠b )之商也是“世博数”。

13、(本题满分15分)如图,在四边形ABCD 中,已知△ABC 、△BCD 、△ACD 的面积D 之比是3∶1∶4,点E 在边AD 上,CE 交BD 于G ,设。

⑴求32207+k 的值;⑵若点H 分线段BE 成的两2p ,试用含p 的代数式表示△ 14、(本题满分16分) 观察下列各个等式: ,304321,14321,521,112222222222=+++=++=+=。

⑴你能从中推导出计算222224321n +++++ 的公式吗?请写出你的推导过程;⑵请你用⑴中推导出的公式来解决下列问题:已知:如图,抛物线322++-=x x y 及x 、y 轴的正半轴分别交于点B A 、,将线段OAn 等分,分点从左到右依次为1654321-n A A A A A A A 、、、、、、、 ,分别过这1-n 个点作x 轴的垂线依次交抛物线于点1654321-n B B B B B B B 、、、、、、、 ,设△1OBA 、△211A B A 、△322A B A 、△433A B A 、…、△A B A n n 11--的面积依次为n S S S S S 、、、、、 4321 。

①当2010n =时,求123452010S S S S S S ++++++的值;②试探究:当n取到无穷无尽时,题中所有三角形的面积和将是什么值?为什么?15、(本题满分16分)有如图所示的五种塑料薄板(厚度不计):①两直角边分别为3、4的直角三角形ABC;②腰长为4、顶角为︒36的等腰三角形JKL;③腰长为5、顶角为︒120的等腰三角形OMN;④两对角线和一边长都是4且另三边长相等的凸四边形PQRS;⑤长为4且宽(小于长)及长的比是黄金分割比的黄金矩形WXYZ。

它们都不能折叠,现在将它们一一穿过一个内、外径分别为2.4、2.7的铁圆环。

我们规定:如果塑料板能穿过铁环内圈,则称为此板“可操作”;Y 否则,便称为“不可操作”。

⑴证明:第④种塑料板“可操作”;⑵求:从这五种塑料板中任意取两种至少有一种“不可操作”的概率。

16、(本题满分16分)定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆。

如图所示,已知:⊙I 是△ABC 的BC 边上的旁切圆,F E 、分别是切点,IC AD ⊥于点D 。

⑴试探究:F E D 、、三点是否同在一条直线上?证明你的结论。

⑵设,6,5===BC AC AB 如果△DIE 和△AEF 的面积之比等于m ,,方程。

2015年重点中学自主招生数学模拟试题参考答案及评分标准F 一、选择题(共5小题,每题6分,共30分.以下每小题均给出了代号为A,B,C,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号内.不填、多填或错填均不得分)1、如果关于x 的方程2230x ax a -+-=至少有一个正根,则实数a 的取值范围是( C )A 、22<<-aB 、23≤<a C 、23≤<-a D 、23≤≤-a 2、如图,已知:点E 、F 分别是正方形ABCD 的边BC AB 、的中点,DF BD 、分别交CE 于点H G 、,若正方形ABCD 的面积是240,则四边形BFHG 的面积等于……………………( B ) A 、26 B 、28C 、24D 、30 3 、设z y x 、、是两两不等的实数,且满足下列等式: 66633633)()(z x x y x z x x y x ---=-+-,则代数式xyz z y x 3333-++的值是………………… ( A )A 、0B 、1C 、3D 、条件不足,无法计算上海市20154、如图,四边形BDCE 内接于以BC ⊙A ,已知:︒=∠=∠=30,53cos ,10BCE BCD BC ,则线段DE 的长是………………… ( D ) A 、89 B 、73 C 、4+33 D 、3+43 5、某学校共有3125名学生,一次活动中全体学生被排成 一个n 排的等腰梯形阵,且这n 排学生数按每排都比前一排 多一人的规律排列,则当n 取到最大值时,排在这等腰梯形阵最外面的一周的学生总人数是………………… ( B )A 、296B 、221C 、225D 、641二、填空题:(共5小题,每题6分,共30分。

不设中间分)6、已知:实常数d c b a 、、、同时满足下列两个等式:⑴0cos sin =-+c b a θθ;⑵0sin cos =+-d b a θθ(其中θ为任意锐角),则d c b a 、、、之间的关系式是: 2222d c b a +=+ 。

7、函数4433221-+-+-+-=x x x x y 的最小值是 8 。

上海市2015年重点中学自主招生数学模拟试题(含答案)8、已知一个三角形的周长和面积分别是84、210,一个单位圆的位置(如图)没有被单位圆滚过的部分的面积是84—。

9、已知:,则2可用含x的有理系数三次多项式来表示为:2=。

10、设p、q、r 为素数,则方程23r22+=的所有可能的p+pq解p、q、r组成的三元数组( p, q, r )是)3,3,3(。

三、解答题(共6题,共90分。

学生若有其它解法,也按标准给分)11、(本题满分12分)赵岩,徐婷婷,韩磊不但是同班同学,而且是非常要好的朋友,三个人的学习成绩不相伯仲,且在整个年级中都遥遥领先,高中毕业后三个人都如愿的考入自己心慕以久的大学,后来三个人应母校邀请给全校学生作一次报告。

报告后三个人还出了一道数学题:有一种密码把英文按字母分解,英文中的,,,,这26个自,,,,个字母(不论大小写)依次用12326a b c z26然数表示,并给出如下一个变换公式:⎪⎩⎪⎨⎧+++=的正偶数)是不超过其中的正奇数)是不超过其中26(13]21[26(1]2[x x x x y ;已知对于任意的实数x ,记号[x ]表示不超过x 的最大整数。

将英文字母转化成密码,如,即q h 变成 ,再如,即f k 变成。

他们给出下列一组密码:etwcvcjw ej ncjwwcabqcv ,把它翻译出来就是一句很好的临别赠言。

现在就请你把它翻译出来,并简单地写出翻译过程。

略解:由题意,密码etwcvcjw 对应的英语单词是interest, ej 对应的英语单词是is, ncjw 对应的英语单词是best, wcabqcv 对应的英语单词是teacher. (9分)所以,翻译出来的一句英语是Interest is best teacher,意思是“兴趣是最好的老师”。

(3分)12、(本题满分15分)如果有理数m 可以表示成22562y xy x +-(其中y x 、是任意有理数)的形式,我们就称m 为“世博数”。

相关文档
最新文档