统计学原理第5章

合集下载

统计学:5方差分析

统计学:5方差分析

统计学
ST管AT理IST者ICS层次水平的不同是否会导致评分的显著差异? (第三版)
一家管理咨询公司为 高、中、初级管 理者提供人力资 源讲座。听完讲 座后随机抽取不 同层次管理者大 满意度评分,取 0.05 的 显 著 性 水 平,检验管理者 层次水平的不同 是否会导致评分 的显著差异?
高级 7 7 8 7 9
统计学
STATISTICS (第三版)
第 5 章 方差分析
5.1 方差分析的基本原理 5.2 单因素方差分析 5.3 双因素方差分析
7-1
2008年8月
统计学
STATISTICS (第三版)
学习目标
方差分析的基本思想和原理 单因素方差分析 多重比较 双因素方差分析的方法
7-2
2008年8月
STATISTICS (第三版)
方差分析的基本假定
1. 正态性(normality)。每个总体都应服从正态分布, 即对于因子的每一个水平,其观测值是来自正态 分布总体的简单随机样本
2. 方差齐性(homogeneity variance)。各个总体的方 差必须相同,对于分类变量的k个水平,有 12=22=…=k2
3. 独立性(independence)。每个样本数据是来自因 子各水平的独立样本(该假定不满足对结果影响较 大)
7-5
2008年8月
统5.1计学方差分析的基本原理
STATISTICS (第三版)
方差分析的基本假定
如果原假设成立,即H0 :m1=m2=……=mk
自变量对因变量没有显著影响
每个样本都来自均值为m、方差为 2的同一正态总体
中级 8 9 8 10 9 10 8
初级 5 6 5 7 4 8

统计学第四版5动态数列

统计学第四版5动态数列

2019-2019年某国电冰箱年平均增长量:
a29273万台
4
第 五 章
统 计 学 原
理 第三节 动态数列速度分析指标
& 一、发展速度与增长速度
& 二、平均发展速度与平均增长速度
第 五 章
统 计
一、发展速度与增长速度



㈠发展速度
发展速度 报基告期期水水平平
环比发展速度: a1 , a2 ,..... an
产量(万台) 768 918 980 1044 1060
环比发展速度% — 119.5 106.8 106.5 101.5
定基发展速度% 100 119.5 127.6 135.9 138.0
环比增长速度% — 19.5 6.8 6.5
1.5
定基增长速度% — 19.5 27.6 35.9 38.0
定基发展速度% 100 119.5 127.6 135.9 138.0
定基发展速度与环比发展速度的关系:
⒈定基发展速度等于环比发展速度的连乘积
an a1 a2 ..... an
a0 a0 a1
an1
⒉两个相邻的定基发展速度之比等于环比发展速度

五 章
a a n
n1
an
a0 a0
23499.9
24133.8
26967.2
26857.7
29896.3


学 原
如果用符号a0,a1,a2,a3, ……a n-1,an代

表数列中各个发展水平,则在本例中,如果以
2019年作为基期水平,记为a0,则2019年、2019 年、2019年、2019年进出口总额分别用a1、 a2、 a3、 a4表示,称为报告期水平或计算期水平。

3统计学原理作业3答案

3统计学原理作业3答案

统计学原理作业3第五章-第七章一、判断题1、抽样推断是利用样本资料对总体的数量特征进行估计的一种统计分析方法,因此不可避免的会产生误差,这种误差的大小是不能进行控制的。

(×)2、从全部总体单位中按照随机原则抽取部分单位组成样本,只可能组成一个样本。

(×)3、抽样估计的置信度就是表明抽样指标和总体指标的误差不超过一定范围的概率保证程度。

(√)4、抽样误差即代表性误差和登记性误差,这两种误差都是不可避免的。

(×)5、总体参数区间估计必须具备的三个要素是估计值、抽样误差范围、概率保证程度。

(×)6、在一定条件下,施肥量与收获率是正相关关系。

(√)7、甲产品产量与单位成本的相关系数是-0.8,乙产品单位成本与利润率的相关系数是-0.95,则乙比甲的相关程度高(√)8、利用一个回归方程,两个变量可以互相推算(×)二、单项选择题1、在一定的抽样平均误差条件下( A )A、扩大极限误差范围,可以提高推断的可*程度B、扩大极限误差范围,会降低推断的可*程度C、缩小极限误差范围,可以提高推断的可*程度D、缩小极限误差范围,不改变推断的可*程度2、反映样本指标与总体指标之间的平均误差程度的指标是( C )A、抽样误差系数B、概率度c、抽样平均误差 D、抽样极限误差3、抽样平均误差是( D )A、全及总体的标准差B、样本的标准差c、抽样指标的标准差D、抽样误差的平均差4、当成数等于( C )时,成数的方差最大A、1B、0 c、0.5 D、-15、对某行业职工收入情况进行抽样调查,得知其中80%的职工收入在800元以下,抽样平均误差为2%,当概率为95.45%时,该行业职工收入在800元以下所占比重是( C )A、等于78%B、大于84% c、在此76%与84%之间D、小于76%6、对甲乙两个工厂工人平均工资进行纯随机不重复抽样调查,调查的工人数一样,两工厂工资方差相同,但甲厂工人总数比乙厂工人总数多一倍,则抽样平均误差( B )A、甲厂比乙厂大 B、乙厂比甲厂大c、两个工厂一样大D、无法确定7、反映抽样指标与总体指标之间抽样误差可能范围的指标是( B )。

统计学原理第五章

统计学原理第五章

第五章综合指标学习要点:了解各种指标的概念及作用,掌握相对指标、平均指标的特点及计算方法,变异指标的计算方法。

§1、总量指标§2、相对指标§3、平均指标§4、变异指标学习知识点:前言:1、总量指标是反映社会经济现象发展的总规模、总水平的综合指标。

将总体单位数相加或总体单位标志值相加,就可以得到说明在一定时间、空间条件下某种现象总体的总规模、总水平的指标,即总量指标。

如:2010年年年末为1339724852亿,反映是我国人口的总规模。

总量指标的作用:第一、总量指标可以用来反映一个国家的基本国情国力,反映一个地区、一个部门或一个单位的人力、物力和财力,是人们对客观事物认识的起点。

第二、总量指标可以用来作为制定政策、制定计划和实行科学管理的基本依据,也是检查政策、计划执行情况,反映社会经济活动绝对效果的重要指标。

第三、总量指标可以用来研究客观现象的数量表现及其发展的变化趋势。

第四、总量指标是计算相对指标和平均指标的基础。

一、总量指标的种类:1、按其反映现象总体内容的不同:• 总体单位总量(简称单位总量):指总体内所有单位的总数,表示总体本身规模的大小。

对于一个确定的统计总体,其总体单位总量是唯一确定的。

• 总体标志总量(简称标志总量):指总体中各单位标志值总和。

对于确定的统计总体,标志总量不是唯一的,而是随着标志的不同可计算不同的标志。

• 例:我们研究某市三级医院的基本情况,则全市三级医院的总数量是总体单位总量,而全部三级医院职工总人数、全部三级医院职工工资总额等就是总体指标总量。

2、按反映时间状况的不同,可分为时期指标和时点指标。

• 时期指标指反映某社会经济现象在一段时间活动结果的总量指标,它反映的是一段时间连续发生变化过程。

如产品总量、货物运输量、商品销售量、国内生产总量等。

• 时点指标是反映社会经济现象在某一时间(瞬间)状况上的总量指标。

如人口数、职工数、设备台数等。

《统计学原理》课后练习答案

《统计学原理》课后练习答案

各章训练参考答案第一章统计概述一.填空题1.统计资料统计学统计工作统计资料统计学统计工作2.统计理论统计方法统计工作3.数量性总体性具体性社会性4.信息职能咨询职能监督职能信息职能5.统计设计统计数据采集统计数据整理和显示统计数据分析统计数据采集统计数据整理和显示统计数据分析6.同质性大量性差异性同质性7.总体单位名称总体单位8.品质标志数量标志标志值9.可变的数量标志连续型变量离散型变量10.数量指标质量指标11.统计指标体系12.同类社会经济现象总体范畴具体数值数量性综合性具体性二.单项选择题1.B 2.B 3.B 4.C 5.C 6.B 7.D 8.D 9.C 10.C 11.D 12.C 13.C 14.B 15.C三.多项选择题1.A E 2.ABCDE 3.ACD 4.ABDE 5.BCEF6.ACDE 7.DE 8.BDF 9.BC 10.ACE四.判断题1.错2.对3.对4.错5.错6.错7.对8.对9.对10.对五.论述题1.答:对统计指标进行分类可以从三个角度进行:从指标所反映现象的数量性能方面,可以将统计指标分为数量指标和质量指标两种,其中,数量指标反映现象的总规模或总水平,质量指标反映现象的相对水平或平均水平;从指标的计算形式方面,可以将统计指标分为总量指标、相对指标和平均指标三种;从指标的作用和功能方面,可以将统计指标分为描述性指标、评价性指标和预警性指标三种。

2.答:指标和标志之间既有区别又有联系:指标和标志的区别主要表现在:①所有统计指标都是可量的,而标志未必都可量,其中品质标志就不可量。

②指标是说明总体特征的,其承担者是统计总体;而标志是说明总体单位的特征或属性的,其承担者是总体单位。

③指标具有综合性,反映总体的综合特征;而标志一般不具有综合性能。

指标和标志的联系主要表现在:①指标的数值以总体单位的标志表现为基础,是由总体单位的标志表现经过综合汇总而得到的,没有单位的标志表现,就没有总体的指标数值。

统计学原理第5章:时间序列分析

统计学原理第5章:时间序列分析

a a

n 118729 129034 132616 132410 124000 5
127357.8
②时点序列
若是连续时点序列: 计算方法与时期序列一样; 若是间断时点序列: 则必须先假设两个条件,分别是 假设上期期末水平等于本期期初水平; 假设现象在间隔期内数量变化是均匀的。 间隔期相等的时点序列 采用一般首尾折半法计算。 例如:数列 a i , i 0,1,2, n 有 n 1 个数据,计算 期内的平均水平 a n a n 1 a 0 a1 a1 a 2
(3)联系
环比发展速度的乘积等于相应的定基发展速度,
n n i 0 i 1 i 1
相邻两期的定基发展速度之商等于后期的环比发展速度
i i 1 i 0 0 i 1
(二)增减速度
1、定义:增长量与基期水平之比 2、反映内容:现象的增长程度 3、公式:增长速度
0.55
二、时间序列的速度分析指标
(一)发展速度 (二)增长速度 (三)平均发展水平
(四)平均增长速度
(一)发展速度
1、定义:现象两个不同发展水平的比值 2、反映内容:反映社会经济现象发展变化快慢相对程度 3、公式:v 报告期水平 100%
基期水平
(1)定基发展速度
是时间数列中报告期期发展水平与固定基期发展水平对比所 得到的相对数,说明某种社会经济现象在较长时期内总的发 展方向和速度,故亦称为总速度。 (2)环比发展速度 是时间数列中报告期发展水平与前期发展水平之比,说明某 种社会经济现象的逐期发展方向和速度。
c

a
b
均为时期或时点数列,一个时期数列一个时点数列,注意平均的时间长度 ,比如计算季度的月平均数,时点数据需要四个月的数据,而时期数据则 只需要三个月的数据。

统计学导论 科学出版社 第五章 假设检验

统计学导论  科学出版社 第五章 假设检验

右侧检验

H1 : µ > µ0
H1 : µ > µ0
确定适当的检验统计量
什么检验统计量? 什么检验统计量?
用于假设检验问题的统计量 选择统计量的方法与参数估计相同, 选择统计量的方法与参数估计相同,需考虑
是大样本还是小样本 总体方差已知还是未知
检验统计量的基本形式为
z= x − µ0
σ
n
选择显著性水平α,确定临界值

☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺
抽取随机样本
均值 ☺ ☺ X = 20
假设检验的基本思想
抽样分布
这个值不像我 们应该得到的 样本均值 ... ... 因此我们拒 绝假设 µ = 50
... 如果这是总 体的真实均值 20
µ = 50 H0
样本均值
假设检验应用举例
例1:抽样检验食品包装机工作是否正常 : 例2:由样本推断产品次品率是否超标 : 例3:研究黑人儿童是否有民族意识 : 例4:检验电池寿命波动性是否有显著变化 : 5: 例5:判断男女职工看电视时间是否有显著差异 例6:检验新工艺是否比旧工艺更好 : 例7:研究生活习惯是否影响血压 : 例8:检验两次地震间的天数是否服从指数分布 : 例9:比较两公司进货次品率,作出进货决策 :比较两公司进货次品率,
3、特点 、
采用逻辑上的反证法 依据统计上的小概率原理
第一节 假设检验的基本原理
一. 假设检验的一般思想 二. 假设检验的步骤 三. 假设检验的两类错误
假设检验的过程
(提出假设→抽取样本→作出决策) 提出假设→抽取样本→作出决策)
提出假设 作出决策
拒绝假设! 拒绝假设 别无选择. 别无选择
总体

2021统计学原理-《统计学》第五章统计量及其抽样分布试题(精选试题)

2021统计学原理-《统计学》第五章统计量及其抽样分布试题(精选试题)

统计学原理-《统计学》第五章统计量及其抽样分布试题1、智商的得分服从均值为100,标准差为16的正态分布。

从总体中抽取一个容量为n的样本,样本均值的标准差为2,样本容量为____________。

2、样本均值与总体均值之间的差被称作____________。

3、从均值为50,标准差为5的无限总体中抽取容量为30的样本,则抽样分布的超过51的概率为____________。

4、某校大学生中,外国留学生占10%。

随机从该校学生中抽取100名学生,则样本中外国留学生比例的标准差为____________。

5、假设总体服从均匀分布,从此总体中抽取容量为36的样本,则样本均值的抽样分布( )。

A.服从非正态分布B.近似正态分布C.服从均匀分布D.服从x²分布6、从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,当样本容量增大时,样本均值的标准差( )。

A.保持不变B.增加C.减小D.无法确定7、总体均值为50,标准差为8,从此总体中随机抽取容量为64的样本,则样本均值的抽样分布的均值和标准误差分别为( )。

A.50,8B.50,1C.50,4D.8,88、某厂家生产的灯泡寿命的均值为60小时,标准差为4小时。

如果从中随机抽取30只灯泡进行检测,则样本均值( )。

A.抽样分布的标准差为4小时B.抽样分布近似等同于总体分布C.抽样分布的中位数为60小时D.抽样分布近似等同于正态分布,均值为60小时9、假设某学校学生的年龄分布是右偏的,均值为23岁,标准差为3岁。

如果随机抽取100名学生,下列关于样本均值抽样分布描述不正确的是( )。

A.抽样分布的标准差等于3B.抽样分布近似服从正态分布C.抽样分布的均值近似为23D.抽样分布为非正态分布10、从均值为200,标准差为50的总体中抽取容量为100的简单随机样本,样本均值的数学期望是( )。

A.150B.200C.100D.25011、从均值为200,标准差为50的总体中抽取容量为100的简单随机样本,样本均值的标准差是( )。

统计学原理习题第五章平均指标练习题

统计学原理习题第五章平均指标练习题

第五章平均指标和标志变异指标一、单项选择题1.平均指标反映( )。

A. 总体分布的集中趋势B. 总体分布的离散趋势C. 总体分布的大概趋势 D. 总体分布的一般趋势2.平均指标是说明( )。

A. 各类总体某一数量标志在一定历史条件下的一般水平B. 社会经济现象在一定历史条件下的一般水平C. 同质总体内某一数量标志在一定历史条件下的一般水平D. 大量社会经济现象在一定历史条件下的一般水平3.计算平均指标最常用的方法和最基本的形式:()A.中位数 B. 众数C. 调和平均数D. 算术平均数4.算术平均数的基本计算公式( )。

A.总体部分总量与总体单位数之比B.总体标志总量与另一总体总量之比C. 总体标志总量与总体单位数之比D. 总体标志总量与权数系数总量之比5.加权算术平均数中的权数为()。

A. 标志值B. 权数之和C. 单位数比重 D. 标志值总量6.权数对算术平均数的影响作用决定于()。

A. 权数的标志值 B. 权数的绝对值C. 权数的相对值 D. 权数的平均值7.加权算术平均数的大小()。

A. 主要受各组标志值大小的影响,而与各组次数的多少无关B. 主要受各组次数大小的影响,而与各组标志值的多少无关C. 既受各组标志值大小的影响,又受各组次数多少的影响D. 既与各组标志值的大小无关,也与各组次数的多少无关8.在变量数列中,若标志值较小的组权数较大时,计算出来的平均数()。

A. 接近于标志值小的一方B. 接近于标志值大的一方C. 接近于平均水平的标志值 D. 不受权数的影响9.假如各个标志值都增加5个单位,那么算术平均数会:( )。

A. 增加到5倍B. 增加5个单位C. 不变D. 不能预期平均数的变化10.各标志值与平均数离差之和()。

A.等于各变量平均数离差之和B. 等于各变量离差之和的平均数C. 等于零 D. 为最大值11.当计算一个时期到另一个时期的销售额的年平均增长速度时,应采用哪种平均数?( )A. 众数B. 中位数C. 算术平均数D. 几何平均数12.众数是()。

梁前德《统计学》(第二版)学习指导与习题训练答案:05第五章 统计指数分析 习题答案

梁前德《统计学》(第二版)学习指导与习题训练答案:05第五章  统计指数分析 习题答案

旗开得胜第五章统计指数分析习题答案一、名词解释用规范性的语言解释统计学中的名词。

1. 统计指数:是社会经济现象数量变化的相对数,说明不能直接相加的社会经济现象数量综合变化程度特殊相对数。

2. 总指数:反映复杂现象总体变化方向和程度的相对数。

3. 综合指数:通过综合两个总量指标对比计算的相对数,它是总指数的基本形式。

4. 同度量因素:计算总指数时起媒介作用和权数作用的因素。

5. 平均指数:由个体指数加权平均计算的总指数。

6. 指数体系:指经济上具有一定联系、数量上具有对等关系的三个或三个以上的指数组成的整体。

二、填空题根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。

1. 特殊相对数2. 数量指标指数、质量指标指数3. 个体指数、总指数4. 综合1旗开得胜25. 数量指标指数6. 质量指标指数7. 综合指数、平均指数8. 基期的质量指标、报告期的数量指标 9. 同度量因素、指数化因素 10. 数量指标指数、质量指标指数 11. 个体指数的12. 加权算术平均、加权调和平均 13. 1100p q p q14. 乘积,代数和 15. 因素分析 16. 5.66 % 17. 101.9 % 18. 各组结构19.固定构成、结构影响 20.指数体系三、单项选择从各题给出的四个备选答案中,选择一个最佳答案,填入相应的括号中。

1.C2.B3.C4.C5.B6.D7.A8.D9.B 10.C11.A 12.C 13.B 14.C 15.B16.C 17.D 18.A 19.D 20.D21.B 22.B 23.D 24.A 25.B26.D 27.B 28.C 29.C 30.D四、多项选择从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。

1.ACD 2.AB 3.ABCD 4.ABC 5.BC6.AD7.BD8.ABD9.CD 10.ABD11.BC 12. ABC 13.AD 14.AC 15.BCD16.AD 17.BC 18.ABD 19.ACD 20.ABCD21.ABCD 22.AC 23.AC 24.ABC 25.CD五、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。

电大统计学原理必考大题之二(第五章大题)

电大统计学原理必考大题之二(第五章大题)

x

n

80 4 400
计算抽样极限误差:
x zx 2 4 8
该乡水稻的平均亩产量范围为:
下限=609-8=601(斤)
上限 609 8 617(斤)
即 该乡水稻的平均亩产量范围是 601 617(斤) 所以, 该乡水稻的总产量范围为:
下限=601 20000=12020000(斤)
(类型:数量标志下的重复抽样估计, 题型属于给定 F 求 ) 3.解:由已知得 n 40, x 77, 10.54 计算抽样平均误差:
x

n

10.54 1.67 40
计算抽样极限误差:
x z x 2 1.67 3.34
全体职工业务考试成绩的区间范围是:
11608 12392(元)
(2)全乡农户年纯收入总额的区间为
5000 ( x x ) 5000 (12000 392)
计算得,全乡农户年纯收入总额的区间为
58040000 61960000(元)
化简得
5804 6196(万元)
所以,全乡农户年纯收入总额的区间为
[5804,6196] 万元
上限 617 20000=12340000(斤)
化简得
(万斤) 该乡水稻的总产量范围是 1202 1234
(2013 年 7 月第 19 题)(15 分) (类型:品质标志下的重复抽样估计, 题型属于给定 F 求 )
5.对一批成品按重复抽样方法抽选 100件,其中废品4件,当 概率为95.45%(z=2)时,可否认为这批产品的废品率不超过 6%?
下限= x x 75.6 2.828 72.77(分)

电子课件 [统计学原理与实务(第3版)][曹印革][电子教案和习题解答] 第五章平均指标

电子课件 [统计学原理与实务(第3版)][曹印革][电子教案和习题解答] 第五章平均指标

第五节 众数和中位数
某次数学考试,婷婷得到78分。 全班 共30人, 其他同学的成绩为1个100分,4 个90分, 22个80分,以及一个2分和一个10 分。婷婷计算出全班的平均分为77分,
所以婷婷告诉妈妈说,自己这次成绩在班 上处于“中上水平”。
一、中位数
将被研究总体各单位的标志值按大小顺 序排列,位于中间位置的那个标志值就 是中位数。在变量数列中,有一半单位 的标志值小于中位数,另一半单位的标 志值大于中位数,因而中位数也叫分割 值。
(一)标志变异指标的概念 标志变异指标是反映统计数列中以平均数为中 心,总体各单位标志值的差异大小范围或离差程 度的指标。
(二)标志变异指标的作用 (1)标志变异指标反映总体数据分布的离中趋势 (2)标志变异指标可以衡量平均数的代表性 (3)标志变异指标可以说明现象总体变动的均衡性、 稳定性 (4)标志变异指标是确定必要抽样单位数和计算抽 样误差的必要依据
2、平均指标的特点
1
将数量差异抽象化
2 将总体各个单位差异抽象化
3
反映总体分布的集中趋势
二、平均指标的作用
1、利用平均指标,可用于同类现象在不同空间条 件下的对比
2、利用平均指标,可用于同一现象在不同时间的 对比
3、利用平均指标,可以概括说明总体的一般水平 4.利用平均指标,可以分析现象之间的依存关系 5.利用平均指标,可以进行数量上的估算
X
n
n
[公式5—2]
[例5—1] 某机械厂某生产班组有10名工人,生产 某种零件,每个工人的日产量分别为45件,48件,52 件,62件,69件,44件,52件,58件,38件,64件。 试用简单算术平均数法计算工人平均日产量。
X X n 45 48 52 62 69 44 52 58 38 64

统计学--假设检验(第五章)-(1)-2

统计学--假设检验(第五章)-(1)-2

左侧检验:
×
抽样分布
Region of Rejection
拒绝H0
置信水平
1 -
Region of Non rejection
临界值
H0
观察到的样本统计量
【例3】一家研究机构估计,某城市中家庭拥有汽车的比例超 过30%。为验证这一估计是否正确,该研究机构随机抽取 了一个样本进行检验。试陈述用于检验的原假设与备择 假设。
36.6
36.9
36.7
37.2
36.3
37.1
36.7
36.8
37.0
37.0
36.1
37.0
根据样本数据,计算的平均值为36.8oC,标准差为0.36oC 根据参数估计方法,健康成年人平均体温的95%的置信区
间为(36.7,36.9) 研究人员发现这个区间内并没有包括37oC! 因此,提出了“不应该再把37oC作为正常人体温的一个有
解:研究者抽检的意图是倾向于证实这种洗涤剂的平均
净含量并不符合说明书中的陈述。
建立的原假设和备择假设为:
H0 : 500 H1 : < 500
<提出假设>
【例3】一家研究机构估计,某城市中家庭拥有汽车的比例超 过30%。为验证这一估计是否正确,该研究机构随机抽取 了一个样本进行检验。试陈述用于检验的原假设与备择 假设。
传统上,做出决策所依据的是样本统 计量,现代检验中人们直接使用由统计量
算出的犯第一类错误的概率,即所谓的P
值。
注:假设检验不能证明原假设正确。
① 假设检验只提供不利于原假设的证据。当拒绝原假设时, 表明样本提供的证据证明它是错误的;当没有拒绝原假设时 ,我们也不说“接受原假设”,因为没法证明原假设是正确 的

统计学原理第5章

统计学原理第5章
重复抽样 AA BA CA DA AB BB CB DB AC BC CC DC AD BD CD DD
Nn = 42
=16 (个样本)
不重复抽样
N(N-1)(N-2)……. 4×3 = 12(个样本)
AB、AC、AD、
BA、BC、BD、
CA、CB、CD、
DA、DB、DC
第二节
抽 样 误 差
一、抽样误差的含义





P=0.8
p =0.4
抽样平均数平均误差的计算方法
采用重复抽样:
x

n
此公式说明,抽样平均误差与总体标准差成正比, 与样本容量成反比。(当总体标准差未知时,可 用样本标准差代替)
通过例题可说明以下几点: ①样本平均数的平均数等于总体平均数。 ②抽样平均数的标准差仅为总体标准差的
x

n 1 n N
x2f 1058400 830060 349920 270400 182250
495
445 540 420
1.1
1 0.9 0.8
544.5
445 486 336
269527.5
198025 262440 141120
合计
5
2531.5
1303113
合计
6
3911
2691030
x甲
xf f
1 n
③可通过调整样本单位数来控制抽样平均误差。
某电子产品使用寿命在3000小时以下为不合格品,从5000个产品 中抽取100件调查,结果如下: 求1:平均寿命的抽样平均误差. 2:求合格品率的抽样平均误差.
使用寿命(小时) 3000以下 3000-4000 4000-5000 5000以上 合计

《统计学原理》第5章:抽样推断

《统计学原理》第5章:抽样推断
lim P( x X ) 1
n
抽样推断的基本原理
统计推断的理论基础—样本的概率分布
按一定方法随机抽取样本时,所有可能样本的 特征值及其所对应的概率分布情况
学生 A B C D E F G 成绩 30 40 50 60 70 80 90
按随机原则考虑顺序重复抽样抽选出4名学生。
抽样推断的一般问题
样本可能数目
按照一定的抽样方法和组织方式,从总体N中抽取n个 单位构成样本,一共可以抽出的不同样本的数量,一般 用M表示.
考虑顺序的不重复抽样 考虑顺序的重复抽样
M N! (N n)!
M Nn
不考虑顺序的不重复抽样 不考虑顺序的重复抽样
M N! n!(N n)!
全及指标与样本指标
•根据全及总体中各单位的标志值或标志属性计算得 来,反映总体某种特征的指标 •根据样本总体中各单位的标志值或标志属性计算得 来的综合指标.
抽样推断的一般问题
抽样方法
•重复抽样和不重复抽样
•考虑顺序的抽样和不考虑顺序的抽样
抽样推断的一般问题
抽样方法—重复抽样
从总体N个单位中随机抽取一个容量为n的样本,每 次抽取一个单位,把结果登记后再放回到总体中,重新 参加下一次的抽取.
抽出个体
登记特征
放回总体
继续抽取
抽样推断的一般问题
抽样方法—不重复抽样
从总体N个单位中随机抽取一个容量为n的样本, 每次抽取一个单位,把结果登记后不再放回到 总体参加下一次的抽取.
抽出 个体
登记 特征
继续 抽取
抽样推断的一般问题
抽样方法—考虑顺序的抽样
从总体N个单位中抽取n个单位构成样本,不但考虑样本 各单位成分的不同,而且还要考虑样本各单位的中选顺 序.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、样本的单位数
3、抽样方法
4、抽样调查的组织形式
三、抽样平均误差
抽样平均误差是抽样
平均数或抽样成数的标准 差,反映了抽样指标与总
体指标的平均误差程度。
假设总体包含1、2、3、4、5,五 个数字。 则:总体平均数为
1+2+3+4+5 =3 x = 5 现在,采用重复抽样从中抽出 两个,组成一个样本。可能组成的 样本数目:25个。 如: 1+3 =2 1+4 =2.5 2+4 =3 2 2 2 3+5 = 4 …….. 2
n
N
计算结果表明:根据部分产品推断全部产品的平均使用寿命 时,采用不重复抽样比重复抽样的平均误差要小。
抽样成数平均误差的计算方法
采用重复抽样:
p

p p 1 n
p 1 p n 1 n N
采用不重复抽样: p
例题三: 某校随机抽选400名学生,发现戴眼镜的学
x x
p
抽样成数极限误差: Δ p =│p - P│
p -Δ p ≤P≤ p+Δ
五、抽样误差的概率度
抽样误差的概率度是测量抽样估计可靠 含 义 程度的一个参数。用符号“ t ”表示。
公式表示: t= Δ μ
(t 是极限误差与抽样平均误差的比值)
上式可变形为: Δ =tμ
(极限误差是 t 倍的抽样平均误差)
三、总体参数区间估计的方法
(一)根据给定的抽样误差范围, 求概率保证程度
分析步骤: 1、抽取样本,计算抽样指标。
2、根据给定的极限误差范围估 计总体参数的上限和下限。 3、计算概率度。 4、查表求出概率F(t),并对 总体参数作出区间估计。
(二)根据给定的概率F(t),推算 抽样极限误差的可能范围
因V乙<V甲 故乙品种具有较大稳定性,宜于推广。
第五章
抽样估计
教学目的与要求
抽样估计是抽样调查的继续,它提供 了一套利用抽样资料来估计总体数量特征 的方法。通过本章的学习,要理解和掌握 抽样估计的概念、特点,抽样误差的含义、 计算方法,抽样估计的置信度,推断总体 参数的方法,能结合实际资料进行抽样估 计。
1.2 1.1 1.0 0.9 0.8
600 495 445 540 420
1.5 1.4 1.2 1.0 0.9
840 770 540 520 450
要求:
⑴分别计算两品种的单位面积产量。
⑵计算两品种亩产量的标准差和标
准差系数。
⑶假定生产条件相同,确定哪一品 种具有较大稳定性,宜于推广。
产量 x f x 面积 f
生有80人。根据样本资料推断全部学生中戴 眼镜的学生所占比重时,抽样误差为多大?
例题四: 一批食品罐头共60000桶,随机抽查300桶
,发现有6桶不合格,求合格品率的抽样平 均误差?
例 题 三 解:
已知:
n 400
n1 80
n1 80 则:样本成数 p 20 % n 400
p

x x
n
2
样本标准差
x
x x
f
2
f
研究品 质标志
样本成数 p = 成数标准差
n n
p
p1 p
(三)样本容量和样本个数
样本容量:一个样本包含的单位数。用 “n”表示。 一般要求 n ≥30 样本个数:从一个全及总体中可能抽取的样本数目。
(四)重复抽样和不重复抽样
本章主要内容
•抽样推断的一般问题
•抽样误差
•抽样估计的方法 •抽样组织设计
第一节
概 念
抽样推断的一般问题
一、抽样推断的概念和特点
抽样推断是按随机原则从全部 研究对象中抽取部分单位进行观察, 并根据样本的实际数据对总体的数 量特征作出具有一定可靠程度的估 计和判断。 它是由部分推断整体的一种认识方法。 抽样推断建立在随机取样的基础上。 抽样推断运用概率估计的方法。
300 1 0.806 (%) 60000
p
p1 p n
p
p 1 p n 1 n N
0.98 0.02 300
计算结果表明:不重复抽样的平均误差小于重复抽样,
但是“N”的数值越大,则两种方法计算 的抽样平均误差就越接近。
多数样本指标与总体指标都
有误差,误差有大、有小,有正、
有负,抽样平均误差就是将所有
的误差综合起来,再求其平均数,
所以抽样平均误差是反映抽样误 差一般水平的指标。
抽样平均误差的计算公式
抽样平均数 的平均误差
x
x X
M
2
抽样成数 平均误差
p
p P 2
M
(以上两个公式实际上就是第四章讲的标准差。 但反映的是样本指标与总体指标的平均离差程度) 实际上,利用上述两个公式是计算不出抽样平均误差的。
第三节
抽样估计的方法
无偏性
一、总体参数的点估计
总体参数点估计的特点: 总体参数优良估计的标准 一致性
有效性
二、总体参数的区间估计
总体参数区间估计的特点: 估计值 区间估计三要素 抽样误差范围
x, p x , p
x , p
抽样估计的置信度
F t
什 么 是 抽 样 估 计 的 置 信 度? 抽样估计的置信度就是表明抽 样指标和总体指标的误差不超过一
则: x

1.5n

1 0.8165 1.5
即:当样本单位数增加0.5倍时,抽样平均误差为原来的0.8165倍。
采用不重复抽样:
x

n 1 n N
2
公式表明:抽样平均误差不仅与总体变异程度、 样本容量有关,而且与总体单位数的多少有关。
例题一:随机抽选某校学生100人,调查他们的体
1 n
③可通过调整样本单位数来控制抽样平均误差。
例题:假定抽样单位数增加 2 倍、0.5 倍时,抽样平均误差怎样变化?
解:抽样单位数增加 2 倍,即为原来的 3 倍 则: x
1 0.577 3n 3
即:当样本单位数增加2倍时,抽样平均误差为原来的0.577倍。 抽样单位数增加 0.5倍,即为原来的 1.5倍
(1)以95.45%的可靠性推断该农 场小麦平均亩产可能在多少斤之间? 若概率保证程度不变,要求抽样允许 误差不超过1斤,问至少应抽多少亩 作为样本?
AD
BD CD DD
Nn = 42
=16 (个样本)
不重复抽样
N(N-1)(N-2)……. 4×3 = 12(个样本)
第二节
抽 样 误 差
一、抽样误差的含义
由于随机抽样的偶然因素使样本
各单位的结构不足以代表总体各单位 的结构,而引起抽样指标和全及指标 之间的绝对离差。
二、影响抽样误差大小的因素
1、总体各单位标志值的差异程度
四、抽 样 极 限 误 差
含义: 抽样极限误差指在进行抽样估计时,根据研究 对象的变异程度和分析任务的要求所确定的样 本指标与总体指标之间可允许的最大误差范围。 计算方法: 它等于样本指标可允许变动的上限 或下限与总体指标之差的绝对值。
x x X
抽样平均数极限误差:
x x ≤ X ≤

n

10 1(公斤) 100
即:当根据样本学生的平均体重估计全部学生的平均 体重时,抽样平均误差为1公斤。
例题二解: 已知: N=2000 n=400 σ=300 则: x=4800
400 2000
x
3002 400 2 n 1 13.42(小时) 1
正态概率分布图
因为扩大或缩小以后 的平均误差,就是极 限误差: Δ=tμ 所以,抽样平均误 差的系数就是概 率度t。
68.27%
数理统计已经证明,抽样 误差的概率就是概率度的 函数,二者对应的函数 关系已编成“正态分布 概率表”。
95.45% x+1μ x+2μ X 由此可知,误差范围愈大,抽样估计的置信度愈高,但抽样估计 的精确度愈低;反之,误差范围愈小,则抽样估计的置信度 愈低,但抽样估计的精确度愈高。 x-2μ x-1μ
(一)总 体 和 样 本
总体: 又称全及总体。指所要认识的 研究对象全体。总体单位总数用“N” 表示。 样本: 又称子样。是从全及总体中随 机抽取出来,作为代表这一总体的 那部分单位组成的集合体。样本单 位总数用“n”表示。
(二)参 数 和 统 计 量
参 数 反映总体数量特征的全及指标。
总体平均数


抽样推断的误差可以事先计算并加以控制。
二、抽样推断的内容
参数估计 参数估计是依据所获 得的样本观察资料,对所研究现 象总体的水平、结构、规模等数 量特征进行估计。 假设检验 假设检验是利用样本 的实际资料来检验事先对总体某 些数量特征所作的假设是否可信 的一种统计分析方法。
三、有关抽样的基本概念
x甲
xf f
2500 500(公斤) 5
x乙
3120 520 (公斤 ) 6

55.3公斤
(x x) f
2
f
15275 5
甲 55.3 V甲 100% 11.06% x甲 500

9900 40.6公斤 6
40.6 V乙 100 % 7.8% 520
p1 p n
0.2 0.8 0.02 400
即:根据样本资料推断全部学生中戴眼镜的学
生所占的比重时,推断的平均误差为2%。
例 题 四 解:
已知: N 60000
相关文档
最新文档