2018年安徽省宿州市高考数学一模试卷(理科)
【全国通用-2018高考推荐】高三数学(理科)考前一模检测试题及答案解析
2018年高考数学一模试卷(理科)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={﹣1,1},B={x|ax+2=0},若B⊆A,则实数a的所有可能取值的集合为()A.{﹣2} B.{2} C.{﹣2,2} D.{﹣2,0,2}2.已知z是纯虚数,是实数,那么z等于()A.2i B.i C.﹣i D.﹣2i3.已知命题p:函数y=2﹣a x+1的图象恒过定点(1,2);命题q:若函数y=f(x﹣1)为偶函数,则函数y=f(x)的图象关于直线x=1对称,则下列命题为真命题的是()A.p∨q B.p∧q C.¬p∧q D.p∨¬q4.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有()A.24种B.48种C.96种D.144种5.执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.6.已知实数x,y满足,则目标函数z=x﹣y的最小值为()A.﹣2 B.5 C.6 D.77.某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6 B.30+6C.56+12D.60+128.已知向量=(x﹣1,2),=(4,y),若⊥,则9x+3y的最小值为()A.2 B. C.6 D.99.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=2,1+=.则∠C=()A.30°B.135° C.45°或135°D.45°10.函数y=的图象大致为()A.B.C.D.11.设抛物线y2=2x的焦点为F,过点M(3,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于点C,|BF|=,则△BCF与△ACF的面积之比=()A.B.C.D.12.对于任意实数a,b,定义min{a,b}=,定义在R上的偶函数f (x)满足f (x+4)=f(x),且当0≤x≤2时,f (x)=min{2x﹣1,2﹣x},若方程f (x)﹣mx=0恰有两个根,则m的取值范围是()A.{﹣1,1}∪(﹣ln2,)∪(,ln2)B.[﹣1,)∪C.{﹣1,1}∪(﹣ln2,)∪(,ln2)D.(,)∪(,)二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.若tan(π﹣α)=2,则sin2α= .14.展开式中不含x4项的系数的和为.15.如图,矩形OABC内的阴影部分由曲线f(x)=sinx及直线x=a(a∈(0,2π)与x轴围成.向矩形OABC内随机掷一点,该点落在阴影部分的概率为,则a= .16.以下四个命题:①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.②两个随机变量相关性越强,则相关系数的绝对值越接近于1.③在回归直线=0.2x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.2单位.④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大.其中正确的命题是.三、解答题:本大题共5小题,满分60分.解答须写出文字说明,证明过程和演算步骤.17.设数列{a n}的前n项积为T n,且T n=2﹣2a n(n∈N*).(Ⅰ)求证数列是等差数列;(Ⅱ)设b n=(1﹣a n)(1﹣a n+1),求数列{b n}的前n项和S n.18.“你低碳了吗?”这是某市为倡导建设资源节约型社会而发布的公益广告里的一句话.活动组织者为了解这则广告的宣传效果,随机抽取了100名年龄段在[10,20),[20,30),…,[50,60)的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄段在[30,40)的人数;(Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取8人,求[50,60)年龄段抽取的人数;(Ⅲ)从按(Ⅱ)中方式得到的8人中再抽取3人作为本次活动的获奖者,记X为年龄在[50,60)年龄段的人数,求X的分布列及数学期望.19.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求二面角A﹣PB﹣E的大小.20.已知椭圆C:=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.A、B是椭圆C的右顶点与上顶点,直线y=kx(k>0)与椭圆相交于E、F两点.(1)求椭圆C的方程;(2)当四边形AEBF面积取最大值时,求k的值.21.已知函数,当时,函数f(x)有极大值.(Ⅰ)求实数b、c的值;(Ⅱ)若存在x0∈[﹣1,2],使得f(x0)≥3a﹣7成立,求实数a的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.[选修4-1:几何证明选讲]22.如图,⊙O是△ABC的外接圆,D是的中点,BD交AC于E.(Ⅰ)求证:DC2=DE•DB;(Ⅱ)若CD=2,O到AC的距离为1,求⊙O的半径r.[选修4-4:坐标系与参数方程]23.平面直角坐标系中,直线l的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0.(1)求直线l的极坐标方程;(2)若直线l与曲线C相交于A、B两点,求|AB|.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣2|﹣|x+1|.(1)求证:﹣3≤f(x)≤3;(2)解不等式f(x)≥x2﹣2x.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={﹣1,1},B={x|ax+2=0},若B⊆A,则实数a的所有可能取值的集合为()A.{﹣2} B.{2} C.{﹣2,2} D.{﹣2,0,2}【考点】集合的包含关系判断及应用.【专题】计算题.【分析】根据B⊆A,利用分类讨论思想求解即可.【解答】解:当a=0时,B=∅,B⊆A;当a≠0时,B={}⊆A,=1或=﹣1⇒a=﹣2或2,综上实数a的所有可能取值的集合为{﹣2,0,2}.故选D.【点评】本题考查集合的包含关系及应用.注意空集的讨论,是易错点.2.已知z是纯虚数,是实数,那么z等于()A.2i B.i C.﹣i D.﹣2i【考点】复数的基本概念;复数代数形式的乘除运算.【专题】计算题.【分析】设出复数z,代入,它的分子、分母同乘分母的共轭复数,化简为a+bi(a,b∈R)的形式.【解答】解:由题意得z=ai.(a∈R且a≠0).∴==,则a+2=0,∴a=﹣2.有z=﹣2i,故选D【点评】本题考查复数的基本概念,复数代数形式的乘除运算,考查计算能力,是基础题.3.已知命题p:函数y=2﹣a x+1的图象恒过定点(1,2);命题q:若函数y=f(x﹣1)为偶函数,则函数y=f(x)的图象关于直线x=1对称,则下列命题为真命题的是()A.p∨q B.p∧q C.¬p∧q D.p∨¬q【考点】复合命题的真假.【专题】计算题;转化思想;综合法;简易逻辑.【分析】由函数的翻折和平移,得到命题p假,则¬p真;由函数的奇偶性,对轴称和平移得到命题q假,则命题¬q真,由此能求出结果.【解答】解:函数y=2﹣a x+1的图象可看作把y=a x的图象先沿轴反折,再左移1各单位,最后向上平移2各单位得到,而y=a x的图象恒过(0,1),所以函数y=2﹣a x+1恒过(﹣1,1)点,所以命题p假,则¬p真.函数f(x﹣1)为偶函数,则其对称轴为x=0,而函数f(x)的图象是把y=f(x﹣1)向左平移了1各单位,所以f(x)的图象关于直线x=﹣1对称,所以命题q假,则命题¬q真.综上可知,命题p∧¬q为真命题.故选:D.【点评】本题考查命题的真假判断,是中档题,解题时要认真审题,注意得复合命题的性质的合理运用.4.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有()A.24种B.48种C.96种D.144种【考点】计数原理的应用.【专题】计算题.【分析】本题是一个分步计数问题,A只能出现在第一步或最后一步,从第一个位置和最后一个位置选一个位置把A排列,程序B和C实施时必须相邻,把B和C看做一个元素,同除A外的3个元素排列,注意B和C之间还有一个排列.【解答】解:本题是一个分步计数问题,∵由题意知程序A只能出现在第一步或最后一步,∴从第一个位置和最后一个位置选一个位置把A排列,有A21=2种结果∵程序B和C实施时必须相邻,∴把B和C看做一个元素,同除A外的3个元素排列,注意B和C之间还有一个排列,共有A44A22=48种结果根据分步计数原理知共有2×48=96种结果,故选C.【点评】本题考查分步计数原理,考查两个元素相邻的问题,是一个基础题,注意排列过程中的相邻问题,利用捆绑法来解,不要忽略被捆绑的元素之间还有一个排列.5.执行如图所示的程序框图,输出s 的值为( )A .﹣B .C .﹣D .【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的k 的值,当k=5时满足条件k >4,计算并输出S 的值为.【解答】解:模拟执行程序框图,可得k=1k=2不满足条件k >4,k=3不满足条件k >4,k=4不满足条件k >4,k=5满足条件k >4,S=sin =,输出S 的值为.故选:D .【点评】本题主要考查了循环结构的程序框图,属于基础题.6.已知实数x,y满足,则目标函数z=x﹣y的最小值为()A.﹣2 B.5 C.6 D.7【考点】简单线性规划.【专题】不等式的解法及应用.【分析】先画出约束条件的可行域,再将可行域中各个角点的值依次代入目标函数z=x ﹣y,不难求出目标函数z=x﹣y的最小值.【解答】解:如图作出阴影部分即为满足约束条件的可行域,由得A(3,5),当直线z=x﹣y平移到点A时,直线z=x﹣y在y轴上的截距最大,即z取最小值,即当x=3,y=5时,z=x﹣y取最小值为﹣2.故选A.【点评】本题主要考查线性规划的基本知识,用图解法解决线性规划问题时,利用线性规划求函数的最值时,关键是将目标函数赋予几何意义.7.某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6 B.30+6C.56+12D.60+12【考点】由三视图求面积、体积.【专题】立体几何.【分析】通过三视图复原的几何体的形状,利用三视图的数据求出几何体的表面积即可.【解答】解:三视图复原的几何体是底面为直角边长为4和5的三角形,一个侧面垂直底面的等腰三角形,高为4,底边长为5,如图,所以S底==10,S后=,S右==10,S左==6.几何体的表面积为:S=S底+S后+S右+S左=30+6.故选:B.【点评】本题考查三视图与几何体的关系,注意表面积的求法,考查空间想象能力计算能力.8.已知向量=(x﹣1,2),=(4,y),若⊥,则9x+3y的最小值为()A.2 B. C.6 D.9【考点】基本不等式;数量积判断两个平面向量的垂直关系.【专题】平面向量及应用.【分析】由于⊥⇔=0,即可得出x,y的关系,再利用基本不等式即可得出9x+3y的最小值.【解答】解:∵⊥,∴(x﹣1,2)•(4,y)=0,化为4(x﹣1)+2y=0,即2x+y=2.∴9x+3y≥===6,当且仅当2x=y=1时取等号.故选C.【点评】本题考查了⊥⇔=0、基本不等式的性质,属于基础题.9.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=2,1+=.则∠C=()A.30°B.135° C.45°或135°D.45°【考点】正弦定理;余弦定理.【专题】解三角形.【分析】利用正弦定理以及两角和差的正弦公式进行化简即可.【解答】解:由1+=.得1+=.即cosAsinB+sinAcosB=2sinCcosA,即sin(A+B)=2sinCcosA,即sinC=2sinCcosA,∴cosA=,即A=,∵a=2,c=2,∴a>c,即A>C,由正弦定理得,即,∴sinC=,即C=45°,故选:D【点评】本题主要考查解三角形的应用,根据正弦定理以及两角和差的正弦公式进行化简是解决本题的关键.10.函数y=的图象大致为()A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】根据函数的定义域,特殊点的函数值符号,以及函数的单调性和极值进行判断即可.【解答】解:由lnx≠0得,x>0且x≠1,当0<x<1时,lnx<0,此时y<0,排除B,C,函数的导数f′(x)=,由f′(x)>0得lnx>1,即x>e此时函数单调递增,由f′(x)<0得lnx<1且x≠1,即0<x<1或1<x<e,此时函数单调递减,故选:D.【点评】本题主要考查函数图象的识别和判断,根据函数的性质,利用定义域,单调性极值等函数特点是解决本题的关键.11.设抛物线y2=2x的焦点为F,过点M(3,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于点C,|BF|=,则△BCF与△ACF的面积之比=()A.B.C.D.【考点】抛物线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】利用三角形面积公式,可把△BCF与△ACF的面积之比转化为BC长与AC长的比,再根据抛物线的焦半径公式转化为A,B到准线的距离之比,借助|BF|=求出B点坐标,得到AB方程,代入抛物线方程,解出A点坐标,就可求出BN与AE的长度之比,得到所需问题的解.【解答】解:∵抛物线方程为y2=2x,∴焦点F的坐标为(,0),准线方程为x=﹣,如图,设A(x1,y1),B(x2,y2),过A,B分别向抛物线的准线作垂线,垂足分别为E,N,则|BF|=x2+=2,∴x2=2,把x2=2代入抛物线y2=2x,得,y2=﹣2,∴直线AB过点M(3,0)与(2,﹣2)方程为2x﹣y﹣6=0,代入抛物线方程,解得,x1=,∴|AE|=+=5,∵在△AEC中,BN∥AE,∴===,故选:A【点评】本题主要考查了抛物线的焦半径公式,侧重了学生的转化能力,以及计算能力.12.对于任意实数a,b,定义min{a,b}=,定义在R上的偶函数f (x)满足f (x+4)=f(x),且当0≤x≤2时,f (x)=min{2x﹣1,2﹣x},若方程f (x)﹣mx=0恰有两个根,则m的取值范围是()A.{﹣1,1}∪(﹣ln2,)∪(,ln2)B.[﹣1,)∪C.{﹣1,1}∪(﹣ln2,)∪(,ln2)D.(,)∪(,)【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】首先由题意求出f(x),然后令g(x)=mx,转化为图象交点的问题解决.【解答】解:由题意得,又因为f(x)是偶函数且周期是4,可得整个函数的图象,令g(x)=mx,本题转化为两个交点的问题,由图象可知有三部分组成,排除B,D易得当过(3,1),(﹣3,1)点时恰有三个交点,此时m=±,故选A.【点评】本题考查的是函数的性质的综合应用,利用数形结合快速得解.二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.若tan(π﹣α)=2,则sin2α= .【考点】二倍角的正弦;同角三角函数间的基本关系;诱导公式的作用.【专题】三角函数的求值.【分析】利用诱导公式化简已知等式的左边求出tanα的值,再利用同角三角函数间的基本关系得到sinα=2cosα,且sinα与cosα异号,两边平方并利用同角三角函数间的基本关系求出cos2α与sin2α的值,进而求出sinαcosα的值,最后利用二倍角的正弦函数公式即可求出sin2α的值.【解答】解:∵tan(π﹣α)=﹣tanα=﹣=2,即=﹣2<0,∴sinα=﹣2cosα,两边平方得:sin2α=4cos2α,∵sin2α+cos2α=1,∴cos2α=,sin2α=,∴sin2αcos2α=,即sinαcosα=﹣,则sin2α=2sinαcosα=﹣.故答案为:﹣【点评】此题考查了二倍角的正切函数公式,同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握公式是解本题的关键.14.展开式中不含x4项的系数的和为0 .【考点】二项式系数的性质.【专题】计算题.【分析】给二项式中的x赋值1,得到展开式的所有项的系数和;利用二项展开式的通项公式求出通项,令x的指数为4求出展开式中x4的系数,利用系数和减去x4的系数求出展开式中不含x4项的系数的和.【解答】解:令x=1求出展开式的所有的项的系数和为1展开式的通项为令得r=8所以展开式中x4的系数为1故展开式中不含x4项的系数的和为1﹣1=0故答案为:0【点评】本题考查解决展开式的系数和问题常用的方法是赋值法、考查利用二项展开式的通项公式解决二项展开式的特定项问题.15.如图,矩形OABC内的阴影部分由曲线f(x)=sinx及直线x=a(a∈(0,2π)与x轴围成.向矩形OABC内随机掷一点,该点落在阴影部分的概率为,则a= π.【考点】几何概型.【专题】概率与统计.【分析】根据几何概型的概率公式,以及利用积分求出阴影部分的面积即可得到结论.【解答】解:根据题意,阴影部分的面积为==1﹣cosa,矩形的面积为,则由几何概型的概率公式可得,即cosa=﹣1,又a∈(0,2π),∴a=π,故答案为:π【点评】本题主要考查几何概型的概率的计算,根据积分的几何意义求出阴影部分的面积是解决本题的关键.16.以下四个命题:①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.②两个随机变量相关性越强,则相关系数的绝对值越接近于1.③在回归直线=0.2x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.2单位.④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大.其中正确的命题是②③.【考点】命题的真假判断与应用.【专题】概率与统计;推理和证明.【分析】根据抽样方法的定义,可判断①;根据相关系数与相关性的关系,可判断②;根据相关系数的几何意义,可判断③;根据独立性检验的方法和步骤,可判断④.【解答】解:从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样,故①错误;两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0,故②正确;在回归直线=0.2x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.2单位,故③正确;对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,故④错误;故正确的命题是:②③,故答案为:②③【点评】本题以命题的真假判断为载体,考查了抽样方法,相关系数,回归分析,独立性检验等知识点,难度不大,属于基础题.三、解答题:本大题共5小题,满分60分.解答须写出文字说明,证明过程和演算步骤.17.设数列{a n}的前n项积为T n,且T n=2﹣2a n(n∈N*).(Ⅰ)求证数列是等差数列;(Ⅱ)设b n=(1﹣a n)(1﹣a n+1),求数列{b n}的前n项和S n.【考点】数列的求和;等差关系的确定.【专题】综合题;等差数列与等比数列.【分析】(Ⅰ)由已知,令n=1可求T1,然后利用已知变形可得:T n•T n﹣1=2T n ﹣1﹣2T n(n≥2),变形即可证明(Ⅱ)由等差数列,可求,进而可求a n,代入即可求解b n,结合数列的特点考虑利用裂项求和【解答】解:(Ⅰ)∵T n=2﹣2a n∴T1=2﹣2T1∴∴由题意可得:T n•T n﹣1=2T n﹣1﹣2T n(n≥2),所以∴数列是以为公差,以为首项的等差数列(Ⅱ)∵数列为等差数列,∴,∴,∴,∴==【点评】本题主要考查了利用数列的递推公式构造等比数列求解数列的通项公式及数列的裂项求和方法的应用.18.“你低碳了吗?”这是某市为倡导建设资源节约型社会而发布的公益广告里的一句话.活动组织者为了解这则广告的宣传效果,随机抽取了100名年龄段在[10,20),[20,30),…,[50,60)的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄段在[30,40)的人数;(Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取8人,求[50,60)年龄段抽取的人数;(Ⅲ)从按(Ⅱ)中方式得到的8人中再抽取3人作为本次活动的获奖者,记X为年龄在[50,60)年龄段的人数,求X的分布列及数学期望.【考点】离散型随机变量的期望与方差;频率分布直方图.【专题】概率与统计.【分析】(Ⅰ)利用频率分布直方图能求出随机抽取的市民中年龄段在[30,40)的人数.(Ⅱ)由频率公布直方图知100×0.15=15,100×0.05=5,由此能求出抽取的8人中[50,60)年龄段抽取的人数.(Ⅲ)X的所有可能取值为0,1,2.分别求出相应的概率,由此能求出X的分布列和X的数学期望.【解答】解:(Ⅰ)1﹣10×(0.020+0.025+0.015+0.005)=0.35,100×0.35=35,即随机抽取的市民中年龄段在[30,40)的人数为35.…(Ⅱ)100×0.15=15,100×0.05=5,所以,即抽取的8人中[50,60)年龄段抽取的人数为2.…(Ⅲ)X的所有可能取值为0,1,2.;;.所以X的分布列为X 0 1 2PX的数学期望为.…【点评】本题考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题,注意排列组合知识的合理运用.19.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求二面角A﹣PB﹣E的大小.【考点】用空间向量求平面间的夹角;直线与平面平行的判定;直线与平面垂直的判定;二面角的平面角及求法.【专题】空间角;空间向量及应用.【分析】(Ⅰ)由三角形中位线定理可得DE∥BC,进而由线面平行的判定定理得到DE∥平面PBC (II)连接PD,由等腰三角形三线合一,可得PD⊥AB,由DE∥BC,BC⊥AB可得DE⊥AB,进而由线面垂直的判定定理得到AB⊥平面PDE,再由线面垂直的性质得到AB⊥PE;(Ⅲ)以D为原点建立空间直角坐标系,分别求出平面PBE的法向量和平面PAB的法向量,代入向量夹角公式,可得二面角A﹣PB﹣E的大小.【解答】解:(Ⅰ)∵D、E分别为AB、AC中点,∴DE∥BC.∵DE⊄平面PBC,BC⊂平面PBC,∴DE∥平面PBC.…(Ⅱ)连接PD,∵PA=PB,D为AB中点,∴PD⊥AB.….∵DE∥BC,BC⊥AB,∴DE⊥AB…又∵PD∩DE=D,PD,DE⊂平面PDE∴AB⊥平面PDE…∵PE⊂平面PDE,∴AB⊥PE…(Ⅲ)∵AB⊥平面PDE,DE⊥AB…如图,以D为原点建立空间直角坐标系,由PA=PB=AB=2,BC=3,则B(1,0,0),P(0,0,),E(0,,0),∴=(1,0,),=(0,,).设平面PBE的法向量,∴令得…∵DE⊥平面PAB,∴平面PAB的法向量为.…设二面角的A﹣PB﹣E大小为θ,由图知,,所以θ=60°,即二面角的A﹣PB﹣E大小为60°…【点评】本题考查的知识点是二面角的平面角及求法,直线与平面平行的判定,直线与平面垂直的判定,熟练掌握空间直线与平面位置关系的判定,性质是解答(I)和(II)的关键,而(III)的关键是建立空间坐标系,将空间角问题转化为向量夹角问题.20.已知椭圆C:=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.A、B是椭圆C的右顶点与上顶点,直线y=kx(k>0)与椭圆相交于E、F两点.(1)求椭圆C的方程;(2)当四边形AEBF面积取最大值时,求k的值.【考点】直线与圆锥曲线的关系.【专题】圆锥曲线的定义、性质与方程.【分析】(1)通过椭圆的离心率,直线与圆相切,求出a,b即可求出椭圆的方程.(2)设E(x1,kx1),F(x2,kx2),其中x1<x2,将y=kx代入椭圆的方程,利用韦达定理,结合点E,F到直线AB的距离分别,表示出四边形AEBF的面积,利用基本不等式求出四边形AEBF面积的最大值时的k值即可.【解答】解:(1)由题意知:=∴=,∴a2=4b2.…又∵圆x2+y2=b2与直线相切,∴b=1,∴a2=4,…故所求椭圆C的方程为…(2)设E(x1,kx1),F(x2,kx2),其中x1<x2,将y=kx代入椭圆的方程整理得:(k2+4)x2=4,故.①…又点E,F到直线AB的距离分别为,.…所以四边形AEBF的面积为==…===,…当k2=4(k>0),即当k=2时,上式取等号.所以当四边形AEBF面积的最大值时,k=2.…【点评】本题考查直线与椭圆的位置关系,圆锥曲线的综合应用,考查分析问题解决问题的能力,转化思想以及计算能力.21.已知函数,当时,函数f(x)有极大值.(Ⅰ)求实数b、c的值;(Ⅱ)若存在x0∈[﹣1,2],使得f(x0)≥3a﹣7成立,求实数a的取值范围.【考点】利用导数求闭区间上函数的最值;函数在某点取得极值的条件.【专题】综合题;导数的综合应用.【分析】(Ⅰ)x<1时,f′(x)=﹣3x2+2x+b,利用当时,函数f(x)有极大值,建立方程,即可求得实数b、c的值;(Ⅱ)存在x0∈[﹣1,2],使得f(x0)≥3a﹣7成立,等价于x∈[﹣1,2],使得f(x)max≥3a﹣7成立,分类讨论,求出函数的最大值,即可求实数a的取值范围.【解答】解:(Ⅰ)x<1时,f′(x)=﹣3x2+2x+b∵当时,函数f(x)有极大值,∴f′()=﹣++b=0,f()=﹣++c=,∴b=0,c=0;(Ⅱ)存在x0∈[﹣1,2],使得f(x0)≥3a﹣7成立,等价于x∈[﹣1,2],使得f(x)max≥3a﹣7成立由(Ⅰ)知,①﹣1≤x<1时,f′(x)=﹣3x(x﹣),函数在(﹣1,0)上单调递减,在(0,)上单调递增,在(,1)上单调递减∵f(﹣1)=2,f()=,∴﹣1≤x<1时,f(x)max=2,;②2≥x≥1时,f′(x)=,1°、a>0,函数在[1,2]上单调递增,f(x)max=f(2)=aln2,∴或,∴<a≤或0<a≤;2°、a≤0,函数在[1,2]上单调递减,f(x)max=f(1)=aln1=0,∴2≥3a﹣7,∴a≤3,∴a≤0综上,实数a的取值范围是a≤.【点评】本题考查导数知识的运用,考查函数的绝对值,考查函数的最值,考查分类讨论的数学思想,属于中档题.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.[选修4-1:几何证明选讲]22.如图,⊙O是△ABC的外接圆,D是的中点,BD交AC于E.(Ⅰ)求证:DC2=DE•DB;(Ⅱ)若CD=2,O到AC的距离为1,求⊙O的半径r.【考点】与圆有关的比例线段;相似三角形的判定;相似三角形的性质.【专题】选作题.【分析】(I)先证明△BCD∽△CED,可得,从而问题得证;(II)OD⊥AC,设垂足为F,求出CF=,利用DC2=CF2+DF2,建立方程,即可求得⊙O 的半径.【解答】(I)证明:连接OD,OC,由已知D是弧AC的中点,可得∠ABD=∠CBD∵∠ABD=∠ECD∴∠CBD=∠ECD∵∠BDC=∠EDC∴△BCD∽△CED∴∴CD2=DE•DB.(II)解:设⊙O的半径为R∵D是弧AC的中点∴OD⊥AC,设垂足为F在直角△CFO中,OF=1,OC=R,CF=在直角△CFD中,DC2=CF2+DF2∴∴R2﹣R﹣6=0∴(R﹣3)(R+2)=0∴R=3【点评】本题是选考题,考查几何证明选讲,考查三角形的相似与圆的性质,属于基础题.[选修4-4:坐标系与参数方程]23.平面直角坐标系中,直线l的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0.(1)求直线l的极坐标方程;(2)若直线l与曲线C相交于A、B两点,求|AB|.【考点】点的极坐标和直角坐标的互化;两点间的距离公式.【专题】计算题.【分析】(1)将直线化成普通方程,可得它是经过原点且倾斜角为的直线,由此不难得到直线l 的极坐标方程;(2)将直线l的极坐标方程代入曲线C极坐标方程,可得关于ρ的一元二次方程,然后可以用根与系数的关系结合配方法,可以得到AB的长度.【解答】解:(1)直线l的参数方程是(t为参数),化为普通方程得:y=x∴在平面直角坐标系中,直线l经过坐标原点,倾斜角是,因此,直线l的极坐标方程是θ=,(ρ∈R);…(2)把θ=代入曲线C的极坐标方程ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0,得ρ2﹣ρ﹣3=0 ∴由一元二次方程根与系数的关系,得ρ1+ρ2=,ρ1ρ2=﹣3,∴|AB|=|ρ1﹣ρ2|==.…【点评】本题以参数方程和极坐标方程为例,考查了两种方程的互化和直线与圆锥曲线的位置关系等知识点,属于基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣2|﹣|x+1|.(1)求证:﹣3≤f(x)≤3;(2)解不等式f(x)≥x2﹣2x.【考点】绝对值不等式的解法.【专题】转化思想;综合法;不等式的解法及应用.【分析】(1)通过讨论x的范围得到相对应的f(x)的表达式,从而证明出结论;(2)利用分段函数解析式,分别解不等式,即可确定不等式的解集.【解答】解:(1)当x≤﹣1时,f(x)=3,成立;当﹣1<x<2时,f(x)=﹣2x+1,﹣4<﹣2x<2,∴﹣3<﹣2x+1<3,成立;当x≥2时,f(x)=﹣3,成立;故﹣3≤f(x)≤3;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)当x≤﹣1时,x2﹣2x≤3,∴﹣1≤x≤2,∴x=1;当﹣1<x<2时,x2﹣2x≤﹣2x+1,∴﹣1≤x≤1,∴﹣1<x≤1;当x≥2时,x2﹣2x≤﹣3,无解;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣综合上述,不等式的解集为:[﹣1,1].﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查绝对值函数,考查分类讨论的数学思想,确定函数的解析式是关键.。
安徽省六校2018届高三数学第一次联考试题 理
3109722198321安徽省六校2018届高三(上)第一次联考数学(理科)试卷(考试时间:120分钟 试卷分值:150分)一、选择题:本题共12小题,每小题5分,共60分. 1.已知复数21iz i+=-,其中i 为虚数单位,则z 的虚部是( ) A .12B .32C .32iD .32i -2.集合{1,0,1,2,3}A =-,2{|log (1)2}B x x =+<,则A B =( )A .{0,1,2}B .{0,1,2,3}C .{1,0,1,2,3}-D .{1,0,1,2}-3.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,31)内的频率为( ) A .0.2 B .0.4 C .0.5D .0.64.已知等比数列{}n a 满足12a =,23564a a a =,则3a 的值为( )A .1B .2C .14D .125.已知变量x ,y 满足约束条件241x y x y y -≥⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =-的最小值为( )A .1B . 1-C .3D .76.下列函数中,既是偶函数,又在(0,)+∞上单调递增的是( ) A .ln(||1)y x =-B .1||y x x=-C .cos ||xy x =D . x xy e e -=+7.28(1)(1)x x x ++-的展开式中,6x 的系数为( )A .154B .42C .42-D .126i =i +1(2)S =S +1n否结束是(1)?S =0, n =1, i =1开始输出SxyMA OC B8.如图,给出的是计算111147100++++的值的一个程序框图,则图中判断框内(1)处和执行框中的(2)处应填的语句是( ) A .100i >,1n n =+ B .34i <,3n n =+ C .34i >,3n n =+ D .34i ≥,3n n =+9.关于函数3cos(2)13y x π=++,下列叙述有误的是( )A .其图象关于对称直线3x π=对称B .其图象可由3cos()13y x π=++图象上所有点的横坐标变为原来的12得到 C .其值域是[2,4]- D .其图象关于点5(,1)12π对称 10.某学校有5位教师参加某师范大学组织的暑期骨干教师培训,现有5个培训项目,每 位教师可任意选择其中一个项目进行培训,则恰有两个培训项目没有被这5位教师中的任 何一位教师选择的情况数为( )A .5400种B .3000种C .150种D .1500种 11.如图,等边ABC ∆的边长为2,顶点B ,C 分别在x 轴的非负半轴,y 轴的非负半轴上滑动,M 为AB 中点,则OA OM ⋅的最大值为( )A .7B .572+ C .72D .3332+12.已知函数,0()|ln |,0x e x f x x x ⎧≤=⎨>⎩,则函数21()[()]()1F x f f x f x e =--(e 为自然对数的底数)的零点个数是( ) A .3B .4C .6D .8xy(1,12)ΓO AD BCC DP二、填空题:本题共4小题,每小题5分,共20分.13.已知命题:p x ∀∈R ,都有2240x x -+<,则p ⌝为 .14.如图所示,在平面直角坐标系内,四边形ABCD 为正方形,且点C 坐标为1(1,)2.抛物线Γ的顶点在原点,关于x 轴对称,且过点C .在正方形ABCD 内随机取一点M ,则点M 在阴影 区域内的概率为 .15.已知三棱锥P ABC -,ABC ∆为等边三角形, PAC ∆为直角三角形,90PAC ∠=︒,30PCA ∠=︒,平面PAC ⊥平面ABC .若3AB =,则三棱锥P ABC -外接球的表面积为 .16.已知1F ,2F 为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线C 的一条渐近线垂直,与双曲线的左右两支分别交于Q ,P 两点,且2||||PQ PF a -=,则双曲线C 的渐近线方程为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,3A π=.(1)若3a =,求ABC ∆面积的最大值;(2)若12c a =,求sin B 的值.18.(12分)已知正项数列{}n a 的前n 项和为n S ,满足212()(*)2n n S a n =+∈N . (1)求数列{}n a 的通项公式; (2)设数列1221n n n n n a a b a a +++=,求数列{}n b 前n 项和n T 的值.19.(12分)如图,在四棱锥P ABCD -中,四边形ABCD 为梯形,AB ∥CD ,12AD CD BC AB ===,PAD ∆为等边三角形,PA BD ⊥. (1)求证:平面PAD ⊥平面ABCD ;O体重(公斤)频率组距7570656055500.0130.037(2)求二面角A PB C --大小的余弦值.20.(12分)为了解今年某校高三毕业班准备报考 飞行员学生的身体素质,学校对他们的体重进行了 测量,将所得的数据整理后,画出了频率分布直方 图(如图),已知图中从左到右的前3个小组的频率 之比为1:2:3,其中第2小组的频数为12. (1)求该校报考飞行员的总人数;(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的学生中(人数很多)任选2人,设X 表示体重超过60公斤的学生人数,求X 的分布列和数学期望.21.(12分)已知点M 是圆心为E 的圆22(3)16x y +=上的动点,点3,0)F ,线段MF 的垂直平分线交EM 于点P . (1)求动点P 的轨迹C 的方程;(2)矩形ABCD 的边所在直线与曲线C 均相切,设矩形ABCD 的面积为S ,求S 的取值范围.22.(12分)已知函数()ln xf x e x =. (1)研究函数()f x 的单调性;(2)若不等式()(1)f x a x >-在(1,)+∞上恒成立,求实数a 的取值范围.百度文库是百度发布的供网友在线分享文档的平台。
2018年安徽省宿州市高考一模数学试卷(文科)【解析版】
2018年安徽省宿州市高考数学一模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合,B={x|0<x<2},则A∩B=()A.(0,1)∪(1,2)B.(1,2)C.(0,1)D.(0,2)2.(5分)已知复数z=sinθ﹣i cosθ,则“θ=2kπ(k∈Z)”是“z为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)圆具有优美的对称性,以圆为主体元素构造的优美图案在工艺美术、陶瓷、剪纸等上有着广泛的应用,如图1,图2,图3,图4,其中图4中的3个阴影三角形的边长均为圆的半径,记图4中的阴影部分区域为M,现随机往图4的圆内投一个点A,则点A落在区域M内的概率是()A.B.C.D.4.(5分)已知变量x,y满足,则z=﹣2x+y的取值范围为()A.[﹣2,2]B.(﹣∞,﹣2)C.(﹣∞,2]D.[2,+∞)5.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是()A.B.C.D.6.(5分)函数(其中e为自然对数的底)的大致图象是()A.B.C.D.7.(5分)若圆C:x2+y2﹣4x﹣2y+1=0关于直线l:ax+by﹣2=0(a>0,b>0)对称,则的最小值为()A.1B.5C.D.48.(5分)在等差数列{a n}中,,若它的前n项和S n有最大值,则当S n>0时,n的最大值为()A.11B.12C.13D.149.(5分)在如图所示的程序框图中,若输入的s=2,输出的s>2018,则判断框内可以填入的条件是()A.i>9B.i≤10C.i≥10D.i≥1110.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<),其图象相邻两条对称轴之间的距离为,且函数f(x+)是偶函数,下列判断正确的是()A.函数f(x)的最小正周期为2πB.函数f(x)的图象关于点(,0)d对称C.函数f(x)的图象关于直线x=﹣对称D.函数f(x)在[,π]上单调递增11.(5分)如图,已知F1,F2是双曲线的左、右焦点,过点F2作以F1为圆心,|OF1|为半径的圆的切线,P为切点,若切线段PF2被一条渐近线平分,则双曲线的离心率为()A.2B.C.D.12.(5分)偶函数f(x)定义域为,其导函数是f'(x).当时,有f'(x)cos x+f(x)sin x<0,则关于x的不等式的解集为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分,将答案填写在答题卡的横线上.13.(5分)已知向量,,若,则实数k的值为.14.(5分)若,则的值为.15.(5分)已知正三棱锥P﹣ABC的体积为,其外接球球心为O,且满足=,则正三棱锥P﹣ABC的外接球半径为.16.(5分)若对于正整数m,g(m)表示m的最大奇数因数,例如g(3)=3,g(10)=5.设S n=g(1)+g(2)+g(3)+g(4)+…+g(2n﹣1),则S n=.三、解答题:本大题共5小题,满分60分.解答应写出文字说明、证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,若,,b=10.(Ⅰ)求sin B的值;(Ⅱ)求△ABC的面积.18.(12分)2016年10月9日,教育部考试中心下发了《关于2017年普通高考考试大纲修订内容的通知》,在各科修订内容中明确提出,增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.宿州市教育部门积极回应,编辑传统文化教材,在全市范围内开设书法课,经典诵读等课程.为了了解市民对开设传统文化课的态度,教育机构随机抽取了200位市民进行了解,发现支持开展的占75%,在抽取的男性市民120人中持支持态度的为80人.(Ⅰ)完成2×2列联表,并判断是否有99.9%的把握认为性别与支持与否有关?(Ⅱ)为了进一步征求对开展传统文化的意见和建议,从抽取的200位市民中对不支持的按照分层抽样的方法抽取5位市民,并从抽取的5人中再随机选取2人进行座谈,求选取的2人恰好为1男1女的概率.附:.19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,点M在线段PC上,且PM=2MC,O为AD的中点.(Ⅰ)若P A=PD,求证:平面POB⊥平面P AD;(Ⅱ)若平面P AD⊥平面ABCD,△P AD为等边三角形,且AB=2,求三棱锥P ﹣OBM的体积.20.(12分)已知椭圆的左、右焦点分别为F1,F2,B为椭圆的上顶点,△BF1F2为等边三角形,且其面积为,A为椭圆的右顶点.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l:y=kx+m与椭圆C相交于M,N两点(M,N不是左、右顶点),且满足MA⊥NA,试问:直线l是否过定点?若过定点,求出该定点的坐标,否则说明理由.21.(12分)已知函数f(x)=ax2+x+lnx(a∈R).(Ⅰ)讨论f(x)的单调性;(Ⅱ)当a=0时,设斜率为k的直线与曲线y=f(x)交于A(x1,y1)、B(x2,y2)(x1<x2)两点,求证:.选择题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,已知曲线C1的参数方程为(t 为参数),以O为极点,x轴的非负半轴为极轴,曲线C2的极坐标方程为:.(Ⅰ)将曲线C1的方程化为普通方程;将曲线C2的方程化为直角坐标方程;(Ⅱ)若点P(1,2),曲线C1与曲线C2的交点为A、B,求|P A|+|PB|的值.[选修4-5:不等式选讲]23.设函数f(x)=|x+a|﹣|x﹣a2﹣a|(a∈R).(Ⅰ)当a=1时,求不等式f(x)≤1的解集;(Ⅱ)若对任意,不等式f(x)≤b的解集为R,求实数b的取值范围.2018年安徽省宿州市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合,B={x|0<x<2},则A∩B=()A.(0,1)∪(1,2)B.(1,2)C.(0,1)D.(0,2)【解答】解:A={x|0<x<1};∴A∩B=(0,1).故选:C.2.(5分)已知复数z=sinθ﹣i cosθ,则“θ=2kπ(k∈Z)”是“z为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:若θ=2kπ(k∈Z),则z=sin2kπ﹣i cos2kπ=±i,故z是纯虚数,是充分条件,反之,若z是纯虚数,则θ不一定是2kπ,比如k=也可,不是必要条件,故选:A.3.(5分)圆具有优美的对称性,以圆为主体元素构造的优美图案在工艺美术、陶瓷、剪纸等上有着广泛的应用,如图1,图2,图3,图4,其中图4中的3个阴影三角形的边长均为圆的半径,记图4中的阴影部分区域为M,现随机往图4的圆内投一个点A,则点A落在区域M内的概率是()A.B.C.D.【解答】解:设圆内每一个小正三角形的边长为r,则一个三角形的面积为,∴阴影部分的面积为.又圆的面积为πr2,∴点A落在区域M内的概率是.故选:B.4.(5分)已知变量x,y满足,则z=﹣2x+y的取值范围为()A.[﹣2,2]B.(﹣∞,﹣2)C.(﹣∞,2]D.[2,+∞)【解答】解:画出变量x,y满足表示的平面区域:将目标函数变形为z=﹣2x+y,作出目标函数对应的直线,直线过A(0,2)时,直线的纵截距最大,z最大,最大值为2;则目标函数z=﹣2x+y的取值范围是(﹣∞,2].故选:C.5.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是()A.B.C.D.【解答】解:由三视图还原原几何体如图:该几何体为四棱锥,底面ABCD是边长为4的正方形,高PO=1,∴该几何体的体积V=.故选:B.6.(5分)函数(其中e为自然对数的底)的大致图象是()A.B.C.D.【解答】解:方法一:排除法:当x=0时,y=0,故排除C,当x<0时,故y<0,故排除A,当x→+∞时,y→0,故排除D,方法二:y′=,由y′>0,可得x<3,函数单调递增,由y′<0,可得x>3,函数单调递减,故只有B符合,故选:B.7.(5分)若圆C:x2+y2﹣4x﹣2y+1=0关于直线l:ax+by﹣2=0(a>0,b>0)对称,则的最小值为()A.1B.5C.D.4【解答】解:圆C:(x﹣2)2+(y﹣1)2=4的圆心为(2,1);圆C关于直线l:ax+by=2对称;∴圆心在l上;∴2a+b=2;∴;又a>0,b>0;∴=;∴的最小值为4.故选:D.8.(5分)在等差数列{a n}中,,若它的前n项和S n有最大值,则当S n>0时,n的最大值为()A.11B.12C.13D.14【解答】解:∵数列{a n}是等差数列,它的前n项和S n有最大值,∴公差d<0,首项a1>0,{a n}为递减数列,∵<0,∴a6•a7<0,a6+a7<0,由等差数列的性质知:2a6=a1+a11>0,a6+a7=a1+a12<0,∵S n=(a1+a n),∴S n>0时,n的最大值为11.故选:A.9.(5分)在如图所示的程序框图中,若输入的s=2,输出的s>2018,则判断框内可以填入的条件是()A.i>9B.i≤10C.i≥10D.i≥11【解答】解:模拟程序的运行,可得s=2,i=1不满足条件,执行循环体,s=4,i=2不满足条件,执行循环体,s=8,i=3不满足条件,执行循环体,s=16,i=4不满足条件,执行循环体,s=32,i=5不满足条件,执行循环体,s=64,i=6不满足条件,执行循环体,s=128,i=7不满足条件,执行循环体,s=256,i=8不满足条件,执行循环体,s=512,i=9不满足条件,执行循环体,s=1024,i=10不满足条件,执行循环体,s=2048,i=11由题意,此时应该满足条件,退出循环,输出s的值为2048.则判断框内可以填入的条件是i≥11?.故选:D.10.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<),其图象相邻两条对称轴之间的距离为,且函数f(x+)是偶函数,下列判断正确的是()A.函数f(x)的最小正周期为2πB.函数f(x)的图象关于点(,0)d对称C.函数f(x)的图象关于直线x=﹣对称D.函数f(x)在[,π]上单调递增【解答】解:函数f(x)=sin(ωx+φ)图象的相邻两条对称轴之间的距离等于,∴函数f(x)的周期T=π,故A错误;∵ω>0∴ω=2,∴函数f(x+)的解析式为:f(x)=sin[2(x+)+φ]=sin(2x++φ),∵函数f(x+)是偶函数,∴+φ=kπ+,k∈Z,又|φ|<,解得:φ=.∴f(x)=sin(2x+).∴由2x+=kπ,k∈Z,解得对称中心为:(﹣,0),k∈Z,故B错误;由2x+=kπ+,k∈Z,解得对称轴是:x=,k∈Z,故C错误;由2kπ≤2x+≤2kπ+,k∈Z,解得单调递增区间为:[kπ,kπ],k∈Z,故D正确.故选:D.11.(5分)如图,已知F1,F2是双曲线的左、右焦点,过点F2作以F1为圆心,|OF1|为半径的圆的切线,P为切点,若切线段PF2被一条渐近线平分,则双曲线的离心率为()A.2B.C.D.【解答】解:∵F1,F2是双曲线的左,右焦点,过F2点作以F1为圆心,|OF1|为半径的圆的切线,P为切点,∴F2(c,0),|F1F2|=2c,|PF1|=c,∴PF1⊥PF2,∴∠PF1F2=60°,过点P做P A⊥x轴,垂足为A,∴P A=c•sin60°=c,AC=c﹣c•cos60°=c,∴P(﹣c,c),∵切线段PF2被一条渐近线平分,其渐近线方程为y=x,∴PF2的中点坐标为(c,c)∴c=•c,∴=,∴=3,∴e===2,故选:A.12.(5分)偶函数f(x)定义域为,其导函数是f'(x).当时,有f'(x)cos x+f(x)sin x<0,则关于x的不等式的解集为()A.B.C.D.【解答】解:根据题意,设g(x)=,其导数为g′(x)=,又由时,有f'(x)cos x+f(x)sin x<0,则有g′(x)<0,则函数g(x)在(0,)上为减函数,又由f(x)为定义域为的偶函数,则g(﹣x)===g(x),则函数g(x)为偶函数,⇒<f()⇒<⇒g(x)<g(),又由g(x)为偶函数且在(0,)上为减函数,且其定义域为,则有|x|>,解可得:﹣<x<﹣或<x<,即不等式的解集为;故选:B.二、填空题:本大题共4小题,每小题5分,共20分,将答案填写在答题卡的横线上.13.(5分)已知向量,,若,则实数k的值为.【解答】解:∵,,∴=(﹣k+2,2k+3),=(﹣7,﹣7),由,得(﹣k+2)×(﹣7)﹣(2k+3)×(﹣7)=0.解得:k=﹣.故答案为:.14.(5分)若,则的值为.【解答】解:∵,∴sin(α﹣)=﹣,∴cos(2α﹣)=1﹣2sin2(α﹣)=1﹣2×(﹣)2=,故答案为:.15.(5分)已知正三棱锥P﹣ABC的体积为,其外接球球心为O,且满足=,则正三棱锥P﹣ABC的外接球半径为.【解答】解:正三棱锥D﹣ABC的外接球的球心O满足,可得三角形ABC在球O的大圆上,并且为正三角形,设球的半径为:R,棱锥的底面正三角形ABC的高为:,底面三角形ABC的边长为:R,正三棱锥的体积为:×R××R=,解得此三棱锥外接球的半径是R=.故答案为:.16.(5分)若对于正整数m,g(m)表示m的最大奇数因数,例如g(3)=3,g(10)=5.设S n=g(1)+g(2)+g(3)+g(4)+…+g(2n﹣1),则S n=.【解答】解:由题意可得:g(1)=1,g(2k﹣1)=2k﹣1,g(2n)=g(n).n≥2时,S n=g(1)+g(2)+g(3)+g(4)+…+g(2n﹣1)=[g(1)+g(3)+……+g(2n﹣1)]+[g(2)+g(4)+……+g(2n﹣2)]=[g(1)+g(3)+……+g(2n﹣1)]+[g(1)+g(2)+……+g(2n﹣1﹣1)]=[1+3+……+2n﹣1]+S n﹣1=+S n﹣1=4n﹣1+S n﹣1.∴S n﹣S n=4n﹣1.﹣1可得:S n=4n﹣1+4n﹣2+……+4+1==.故答案为:.三、解答题:本大题共5小题,满分60分.解答应写出文字说明、证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,若,,b=10.(Ⅰ)求sin B的值;(Ⅱ)求△ABC的面积.【解答】解:(Ⅰ)在△ABC中,由,得,由,得,,∴sin B=(Ⅱ)由正弦定理得,又∴18.(12分)2016年10月9日,教育部考试中心下发了《关于2017年普通高考考试大纲修订内容的通知》,在各科修订内容中明确提出,增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.宿州市教育部门积极回应,编辑传统文化教材,在全市范围内开设书法课,经典诵读等课程.为了了解市民对开设传统文化课的态度,教育机构随机抽取了200位市民进行了解,发现支持开展的占75%,在抽取的男性市民120人中持支持态度的为80人.(Ⅰ)完成2×2列联表,并判断是否有99.9%的把握认为性别与支持与否有关?(Ⅱ)为了进一步征求对开展传统文化的意见和建议,从抽取的200位市民中对不支持的按照分层抽样的方法抽取5位市民,并从抽取的5人中再随机选取2人进行座谈,求选取的2人恰好为1男1女的概率.附:.【解答】解:(Ⅰ)抽取的男性市民为120人,持支持态度的为200×75%=150人,男性公民中持支持态度的为80人,列出2×2列联表如下:所以,所以在犯错误的概率不超过0.1%的前提下,可以认为性别与支持与否有关;(Ⅱ)抽取的5人中抽到的男性的人数为:,女性的人数为:;记被抽取4名男性市民为A,B,C,D,1名女性市民为e,从5人中抽取的2人的所有抽法有:AB,AC,AD,Ae,BC,BD,Be,CD,Ce,De,共有10种,恰有1名女性的抽法有:Ae,Be,Ce,De,共有4种,由于每人被抽到是等可能的,所以由古典概型得.19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,点M在线段PC上,且PM=2MC,O为AD的中点.(Ⅰ)若P A=PD,求证:平面POB⊥平面P AD;(Ⅱ)若平面P AD⊥平面ABCD,△P AD为等边三角形,且AB=2,求三棱锥P ﹣OBM的体积.【解答】(Ⅰ)证明:∵P A=PD,AO=OD,∴PO⊥AD,又∵底面ABCD为菱形,∠BAD=60°,∴BO⊥AD,而PO∩BO=O,∴AD⊥平面POB,又AD⊂平面P AD,∴平面POB⊥平面P AD;(Ⅱ)解:∵平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,PO⊥AD,∴PO⊥平面ABCD,∵OB⊂平面ABCD,∴PO⊥OB∵△P AD为等边三角形,AD=AB=2,∴,∵底面ABCD为菱形,∠BAD=60°,AB=2,∴,∴,由(Ⅰ)AD⊥平面POB,∴BC⊥平面POB.∴.20.(12分)已知椭圆的左、右焦点分别为F1,F2,B为椭圆的上顶点,△BF1F2为等边三角形,且其面积为,A为椭圆的右顶点.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l:y=kx+m与椭圆C相交于M,N两点(M,N不是左、右顶点),且满足MA⊥NA,试问:直线l是否过定点?若过定点,求出该定点的坐标,否则说明理由.【解答】解:(Ⅰ)由已知∴a2=b2+c2=4.∴椭圆的标准方程为.(Ⅱ)设M(x1,y1),N(x2,y2),联立得(3+4k2)x2+8mkx+4(m2﹣3)=0,∴△=64m2k2﹣16(3+4k2)(m2﹣3)>0,即3+4k2﹣m2>0,且又,∵椭圆的右顶点为A(2,0),∴k MA k NA=﹣1,即,∴y1y2+x1x2﹣2(x1+x2)+4=0,∴,∴7m2+16mk+4k2=0.解得:m1=﹣2k,,且均满足3+4k2﹣m2>0,当m1=﹣2k时,l的方程为y=k(x﹣2),直线过定点(2,0),与已知矛盾;当时,l的方程为,直线过定点.∴直线l过定点,定点坐标为.21.(12分)已知函数f(x)=ax2+x+lnx(a∈R).(Ⅰ)讨论f(x)的单调性;(Ⅱ)当a=0时,设斜率为k的直线与曲线y=f(x)交于A(x1,y1)、B(x2,y2)(x1<x2)两点,求证:.【解答】解:(Ⅰ)当a≥0时,f′(x)>0,f(x)在(0,+∞)上是增函数;当a<0时,由f′(x)=0,得(取正根),在区间内,f′(x)>0f(x)是增函数;在区间内,f′(x)<0,f(x)是减函数.综上,当a≥0时,f(x)的增区间为(0,+∞),没有减区间;当a<0时,f(x)的减区间是,增区间是.(Ⅱ)当a=0时,,,设,∵0<x1<x2,∴t>1,∴,设g(t)=(t+1)lnt﹣2t+2(t>1),,设h(t)=g'(t),则,∴当t>1时,h'(t)>0恒成立,即当t>1时,h(t)为增函数,h(t)>h(1)=0∴当t>1时,g'(t)>0恒成立,即当t>1时,g(t)为增函数,∴当t>1时,g(t)>g(1)=0,∴选择题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,已知曲线C1的参数方程为(t 为参数),以O为极点,x轴的非负半轴为极轴,曲线C2的极坐标方程为:.(Ⅰ)将曲线C1的方程化为普通方程;将曲线C2的方程化为直角坐标方程;(Ⅱ)若点P(1,2),曲线C1与曲线C2的交点为A、B,求|P A|+|PB|的值.【解答】解:(Ⅰ)∵在平面直角坐标系xOy中,曲线C1的参数方程为(t为参数),∴曲线C1的直角坐标方程为:x+y=3,即:x+y﹣3=0;∵曲线C2的极坐标方程为:.∴,∴曲线C2的方程化为直角坐标方程为:y2=2x.(Ⅱ)方法一:C1的参数方程为,代入,得,∴,∴.方法二:把代入,得2t2﹣6t+1=0,所以t1+t2=3所以.方法三:把C1:x+y=3代入,得x2﹣8x+9=0所以x1+x2=8,x1x2=9所以=.[选修4-5:不等式选讲]23.设函数f(x)=|x+a|﹣|x﹣a2﹣a|(a∈R).(Ⅰ)当a=1时,求不等式f(x)≤1的解集;(Ⅱ)若对任意,不等式f(x)≤b的解集为R,求实数b的取值范围.【解答】解:(Ⅰ)当a=1时,|x+1|﹣|x﹣2|≤1∴,或,或,解得:x<﹣1或﹣1≤x≤1.∴不等式f(x)≤1解集为{x|x≤1}.(Ⅱ)不等式f(x)≤b的解集为R,∴f(x)max≤b,∵f(x)=|x+a|﹣|x﹣a2﹣a|≤|(x+a)﹣(x﹣a2﹣a)|=|a2+2a|,∴对任意恒成立.∵|a2+2a|=|(a+1)2﹣1|,∴当a=﹣1时,|a2+2a|取得最大值1,∴b≥1.。
2018届安徽省宿州市高三上学期第一次教学质量检测数学(理)试题图片版含答案
宿州市2018届高三第一次质量检测试卷数学(理科)参考答案一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 题号1 2 3 4 5 6 7 8 9 10 11 12 选项 A C B B B D B D D A C A二.选择题:本大题共4小题,每小题5分,共20分.13.4π ; 14. 480-; 15. 1; 16. 353,244⎛⎤+ ⎥ ⎝⎦. 三.解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.解:(I )由已知有121n n n a a n n+=++ 12n n n b b +∴=+,又111b a ==,利用累差迭加即可求出数列{}n b 的通项公式:21n n b =-(*n N ∈)……………………………………………………6分(II )由(I )知2n n a n n =⋅-,∴23(1222322)(123)n n S n n =⋅+⋅+⋅+⋅⋅⋅+⋅-+++⋅⋅⋅+而1123(1)2n n n +++⋅⋅⋅+=+, 令231222322n n T n =⋅+⋅+⋅+⋅⋅⋅+⋅ ①①×2得234121222322n n T n +=⋅+⋅+⋅+⋅⋅⋅+⋅②①-②得 23122222n n n T n +-=+++⋅⋅⋅+-⋅12(12)212n n n +-=-⋅- 12(1)2n n +=-+-⋅12(1)2n n T n +∴=+-⋅∴n S =1(1)2(1)22n n n n +++-⋅-…………………………………………………12分 18.解:(Ⅰ)取AD 的中点O ,连,,OE OC CA ,。
2018年安徽省宿州市高考数学一模试卷(文科)
2018年安徽省宿州市高考数学一模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.>1},B={x|0<x<2},则A∩B=()1. 已知集合A={x|1xA.(0, 1)∪(1, 2)B.(1, 2)C.(0, 1)D.(0, 2)【答案】C【考点】交集及其运算【解析】>1即可得出A,然后进行交集的运算即可.解分式不等式1x【解答】A={x|0<x<1};∴A∩B=(0, 1).2. 已知复数z=sinθ−icosθ,则“θ=2kπ(k∈Z)”是“z为纯虚数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【考点】必要条件、充分条件与充要条件的判断【解析】根据充分必要条件的定义以及三角函数的性质判断即可.【解答】解:若θ=2kπ(k∈Z),则z=sin2kπ−icos2kπ=−i,故z是纯虚数,是充分条件,反之,若z是纯虚数,则θ不一定是2kπ(k∈Z),比如θ=kπ也可,不是必要条件.故选A.3. 圆具有优美的对称性,以圆为主体元素构造的优美图案在工艺美术、陶瓷、剪纸等上有着广泛的应用,如图1,图2,图3,图4,其中图4中的3个阴影三角形的边长均为圆的半径,记图4中的阴影部分区域为M,现随机往图4的圆内投一个点A,则点A落在区域M内的概率是()A.√3 4πB.3√34πC.√2πD.√3π【答案】B【考点】几何概型计算(与长度、角度、面积、体积有关的几何概型)【解析】设圆内每一个小正三角形的边长为r,求出三个正三角形的面积及圆的面积,由测度比是面积比得答案.【解答】设圆内每一个小正三角形的边长为r,则一个三角形的面积为12×r×√32r=√34r2,∴阴影部分的面积为3√34r2.又圆的面积为πr2,∴点A落在区域M内的概率是3√34r2πr2=3√34π.4. 已知变量x,y满足{x−y≥−2x+y≥−2x≥0,则z=−2x+y的取值范围为()A.[−2, 2]B.(−∞, −2)C.(−∞, 2]D.[2, +∞)【答案】C【考点】简单线性规划【解析】作出不等式组表示的平面区域;作出目标函数对应的直线;结合图象知当直线过A时,最大,从而得出目标函数z=−2x+y的取值范围.【解答】画出变量x,y满足{x−y≥−2x+y≥−2x≥0表示的平面区域:将目标函数变形为z=−2x+y,作出目标函数对应的直线,直线过A(0, 2)时,直线的纵截距最大,z最大,最大值为2;则目标函数z=−2x+y的取值范围是(−∞, 2].5. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是()A.323B.163C.8√33D.16√23【答案】B【考点】由三视图求体积【解析】由三视图还原原几何体,可知该几何体为四棱锥,底面ABCD是边长为4的正方形,高PO=1,再由棱锥体积公式求解.【解答】由三视图还原原几何体如图:该几何体为四棱锥,底面ABCD是边长为4的正方形,高PO=1,∴该几何体的体积V=13×4×4×1=163.6. 函数y=x3e x(其中e为自然对数的底数)的大致图象是( ) A.B.C.D.【答案】B【考点】函数的图象与图象的变换【解析】方法一:排除法,根据函数值的特点,排除即可.方法二:根据导数和函数的单调性即可判断【解答】解:根据题意求导可得y′=x2(3−x)e x,由y′>0,可得x<3时函数单调递增,由y′<0,可得x>3时函数单调递减.故选B.7. 若圆C:x2+y2−4x−2y+1=0关于直线l:ax+by−2=0(a>0, b>0)对称,则1a +2b的最小值为()A.1B.5C.4√2D.4【答案】D【考点】基本不等式【解析】可求出圆C的圆心为(2, 1),根据圆C关于直线l对称即知圆心在l上,从而得出2a+b=2,从而得出1a +2b=a+b2a+2a+bb,从而根据均值不等式即可求出1a+2b的最小值.【解答】圆C:(x−2)2+(y−1)2=4的圆心为(2, 1);圆C关于直线l:ax+by=2对称;∴圆心在l上;∴2a+b=2;∴a+b2=1;又a>0,b>0;∴1a +2b=a+b2a+2(a+b2)b=1+b2a+2ab+1≥2√b2a∗2ab+2=4;∴1a +2b的最小值为(4)8. 在等差数列{a n}中,a7a6<−1,若它的前n项和Sn有最大值,则当S n>0时,n的最大值为()A.11B.12C.13D.14【答案】A【考点】等差数列的前n项和【解析】公差d<0,首项a1>0,{a n}为递减数列,由等差数列的性质知:2a6=a1+a11>0,a6+a7=a1+a12<0,由此能求出结果.【解答】∵数列{a n}是等差数列,它的前n项和S n有最大值,∴公差d<0,首项a1>0,{a n}为递减数列,∵a7a6<−1<0,∴a6⋅a7<0,a6+a7<0,由等差数列的性质知:2a6=a1+a11>0,a6+a7=a1+a12<0,∵S n=n2(a1+a n),∴S n>0时,n的最大值为(11)9. 在如图所示的程序框图中,若输入的s=2,输出的s>2018,则判断框内可以填入的条件是()A.i>9B.i≤10C.i≥10D.i≥11【答案】D【考点】程序框图【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量s的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】模拟程序的运行,可得s=2,i=1不满足条件,执行循环体,s=4,i=2不满足条件,执行循环体,s=8,i=3不满足条件,执行循环体,s=16,i=4不满足条件,执行循环体,s=32,i=5不满足条件,执行循环体,s=64,i=6不满足条件,执行循环体,s=128,i=7不满足条件,执行循环体,s=256,i=8不满足条件,执行循环体,s=512,i=9不满足条件,执行循环体,s=1024,i=10不满足条件,执行循环体,s=2048,i=11由题意,此时应该满足条件,退出循环,输出s的值为2048.则判断框内可以填入的条件是i≥11?.10. 已知函数f(x)=sin(ωx+φ)(ω>0, |φ|<π2),其图象相邻两条对称轴之间的距离为π2,且函数f(x+π12)是偶函数,下列判断正确的是( )A.函数f(x)的最小正周期为2πB.函数f(x)的图象关于点(7π12, 0)对称C.函数f(x)的图象关于直线x=−7π12对称D.函数f(x)在[3π4, π]上单调递增【答案】D【考点】由y=Asin(ωx+φ)的部分图象确定其解析式正弦函数的图象【解析】由题意可求f(x)的周期T,利用周期公式可求ω,函数f(x+π12)是偶函数,可得π6+φ=kπ+π2,k∈Z,又|φ|<π2,解得φ,可得解析式f(x)=sin(2x+π3),利用正弦函数的图象和性质即可判断求解.【解答】解:函数f(x)=sin(ωx+φ)图象的相邻两条对称轴之间的距离等于π2,∴函数f(x)的周期T=π,故A错误;∵ω>0∴ω=2,∴函数f(x+π12)的解析式为:f(x)=sin[2(x+π12)+φ]=sin(2x+π6+φ),∵函数f(x+π12)是偶函数,∴π6+φ=kπ+π2,k∈Z,又|φ|<π2,解得:φ=π3.∴f(x)=sin(2x+π3).∴由2x+π3=kπ,k∈Z,解得对称中心为:(kπ2−π6, 0),k∈Z,故B错误;由2x+π3=kπ+π2,k∈Z,解得对称轴是:x=kπ2+π12,k∈Z,故C错误;由2kπ−π2≤2x+π3≤2kπ+π2,k∈Z,解得单调递增区间为:[kπ−5π12, kπ+π12],k∈Z,故选D.11. 如图,已知F1,F2是双曲线x2a −y2b=1(a>0,b>0)的左、右焦点,过点F2作以F1为圆心,|OF1|为半径的圆的切线,P为切点,若切线段PF2被一条渐近线平分,则双曲线的离心率为()A.2B.√2C.√3D.√52【答案】A【考点】双曲线的离心率【解析】根据双曲线的性质和圆的有关系性质和解三角形可得ba=√3,即可求出离心率.【解答】∵F1,F2是双曲线的左,右焦点,过F2点作以F1为圆心,|OF1|为半径的圆的切线,P为切点,∴F2(c, 0),|F1F2|=2c,|PF1|=c,∴PF1⊥PF2,∴∠PF1F2=60∘,过点P做PA⊥x轴,垂足为A,∴PA=c⋅sin60∘=√32c,AC=c−c⋅cos60∘=12c,∴P(−12c, √32c),∵切线段PF2被一条渐近线平分,其渐近线方程为y=bax,∴PF2的中点坐标为(14c, √34c)∴√34c=ba⋅14c,∴ba=√3,∴b2a2=3,∴e=√1+b2a2=√1+3=2,12. 偶函数f(x)定义域为(−π2,π2),其导函数是f′(x).当0<x<π2时,有f′(x)cosx+f(x)sinx<0,则关于x的不等式f(x)<√2f(π4)cosx的解集为()A.(π4,π2 )B.(−π2,−π4)∪(π4,π2)C.(−π4,0)∪(0,π4)D.(−π4,0)∪(π4,π2)【答案】B【考点】利用导数研究函数的单调性【解析】根据题意,设g(x)=f(x)cosx ,结合题意求导分析可得函数g(x)在(0, π2)上为减函数,结合函数的奇偶性分析可得函数g(x)为偶函数,进而将不等式f(x)<√2f(π4)cosx转化为g(x)<g(π4),结合函数的定义域、单调性和奇偶性可得|x|>π4,解可得x的取值范围,即可得答案.【解答】根据题意,设g(x)=f(x)cosx ,其导数为g′(x)=f′(x)cosx+f(x)sinxcos2x,又由0<x<π2时,有f′(x)cosx+f(x)sinx<0,则有g′(x)<0,则函数g(x)在(0, π2)上为减函数,又由f(x)为定义域为(−π2,π2)的偶函数,则g(−x)=f(−x)cos(−x)=f(x)cosx=g(x),则函数g(x)为偶函数,f(x)<√2f(π4)cosx⇒f(x)cosx<√2f(π4)⇒f(x)cosx<f(π4)cosπ4⇒g(x)<g(π4),又由g(x)为偶函数且在(0, π2)上为减函数,且其定义域为(−π2,π2),则有|x|>π4,解可得:−π2<x<−π4或π4<x<π2,即不等式的解集为(−π2,−π4)∪(π4,π2);二、填空题:本大题共4小题,每小题5分,共20分,将答案填写在答题卡的横线上.已知向量a→=(−1,2),b→=(2,3),若(ka→+b→) // (a→−3b→),则实数k的值为________.【答案】−1 3【考点】平面向量共线(平行)的坐标表示【解析】由已知求出ka→+b→与a→−3b→的坐标,再由平面向量共线的坐标运算列式求解.【解答】∵a→=(−1,2),b→=(2,3),∴ka→+b→=(−k+2, 2k+3),a→−3b→=(−7, −7),由(ka→+b→) // (a→−3b→),得(−k+2)×(−7)−(2k+3)×(−7)=(0)解得:k=−13.若sin(π6−α)=14,则cos(2α−π3)的值为________.【答案】78【考点】三角函数的恒等变换及化简求值【解析】由已知可求sin(α−π6)的值,根据条件利用二倍角的余弦公式,计算求得结果.【解答】∵sin(π6−α)=14,∴sin(α−π6)=−14,∴cos(2α−π3)=1−2sin2(α−π6)=1−2×(−14)2=78,已知正三棱锥P−ABC的体积为112,其外接球球心为O,且满足OA→+OB→+OC→=0→,则正三棱锥P−ABC的外接球半径为________.【答案】√33【考点】球的体积和表面积【解析】由题意球的三角形ABC的位置,以及形状,利用球的体积,求出球的半径即可.【解答】正三棱锥D−ABC的外接球的球心O满足OA→+OB→+OC→=0,可得三角形ABC在球O的大圆上,并且为正三角形,0→设球的半径为:R,棱锥的底面正三角形ABC的高为:3R2,底面三角形ABC的边长为:√3R,正三棱锥的体积为:13×√3R×32R×12×R=112,解得此三棱锥外接球的半径是R=√33.若对于正整数m,g(m)表示m的最大奇数因数,例如g(3)=3,g(10)=5.设S n= g(1)+g(2)+g(3)+g(4)+...+g(2n−1),则S n=________.【答案】13(4n−1)【考点】数列的求和【解析】由题意可得:g(1)=1,g(2k−1)=2k−1,g(2n)=g(n).n≥2时,S n=g(1)+ g(2)+g(3)+g(4)+...+g(2n−1)=[g(1)+g(3)+......+g(2n−1)]+[g(2)+g(4)+......+g(2n−2)]=[g(1)+g(3)+......+g(2n−1)]+[g(1)+g(2)+......+g(2n−1−1)]=4n−1+S n−1.可得S n−S n−1=4n−1.利用累加求和方法【解答】由题意可得:g(1)=1,g(2k −1)=2k −1,g(2n)=g(n).n ≥2时,S n =g(1)+g(2)+g(3)+g(4)+...+g(2n −1)=[g(1)+g(3)+......+g(2n −1)]+[g(2)+g(4)+......+g(2n −2)]=[g(1)+g(3)+......+g(2n −1)]+[g(1)+g(2)+......+g(2n−1−1)] =[1+3+......+2n −1]+S n−1 =2n−1(1+2n −1)+S n−1=4n−1+S n−1.∴ S n −S n−1=4n−1.可得:S n =4n−1+4n−2+……+4+1 =4n −14−1 =13(4n −1). 故答案为:13(4n −1).三、解答题:本大题共5小题,满分60分.解答应写出文字说明、证明过程或演算步骤.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cosA =45,tan(A −B)=13,b =10.(Ⅰ)求sinB 的值;(Ⅱ)求△ABC 的面积. 【答案】(Ⅰ)在△ABC 中,由cosA =45, 得sinA =35,tanA =34 由tan(A −B)=13,得tan(A −B)=tanA−tanB1+tanAtanB =13, tanB =13,∴ sinB =√1010(Ⅱ)由正弦定理得a =bsinA sinB=10×35√1010=6√10,又sinC =sin(A +B)=sinAcosB +cosAsinB =13√1050∴ S △ABC =12absinC =12×6√10×10×13√1050=78【考点】三角形求面积(Ⅰ)直接利用三角函数的关系式的变换求出结果.(Ⅱ)利用已知条件和正弦定理及三角形的面积公式求出结果.【解答】(Ⅰ)在△ABC中,由cosA=45,得sinA=35,tanA=34由tan(A−B)=13,得tan(A−B)=tanA−tanB1+tanAtanB =13,tanB=13,∴sinB=√1010(Ⅱ)由正弦定理得a=bsinAsinB =10×35√1010=6√10,又sinC=sin(A+B)=sinAcosB+cosAsinB=13√1050∴S△ABC =12absinC=12×6√10×10×13√1050=782016年10月9日,教育部考试中心下发了《关于2017年普通高考考试大纲修订内容的通知》,在各科修订内容中明确提出,增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.宿州市教育部门积极回应,编辑传统文化教材,在全市范围内开设书法课,经典诵读等课程.为了了解市民对开设传统文化课的态度,教育机构随机抽取了200位市民进行了解,发现支持开展的占75%,在抽取的男性市民120人中持支持态度的为80人.(Ⅱ)为了进一步征求对开展传统文化的意见和建议,从抽取的200位市民中对不支持的按照分层抽样的方法抽取5位市民,并从抽取的5人中再随机选取2人进行座谈,求选取的2人恰好为1男1女的概率.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d).【答案】80,40,120,70,10,80,150,50,200【考点】独立性检验【解析】(Ⅰ)根据分层抽样原理计算并填写列联表,求出观测值,对照临界值得出结论;(Ⅱ)用列举法求出基本事件数,计算所求的概率值.【解答】(1)抽取的男性市民为120人,持支持态度的为200×75%=150人,男性公民中持支持态度的为80人,列出2×2列联表如下:所以κ2=200×(80×10−40×70)2150×50×120×80=1009≈11.11>10.828,所以在犯错误的概率不超过0.1%的前提下,可以认为性别与支持与否有关;(2)抽取的5人中抽到的男性的人数为:5×4050=4,女性的人数为:5×1050=1;记被抽取4名男性市民为A,B,C,D,1名女性市民为e,从5人中抽取的2人的所有抽法有:AB,AC,AD,Ae,BC,BD,Be,CD,Ce,De,共有10种,恰有1名女性的抽法有:Ae,Be,Ce,De,共有4种,由于每人被抽到是等可能的,所以由古典概型得p=mn =410=25.如图,在四棱锥P−ABCD中,底面ABCD为菱形,∠BAD=60∘,点M在线段PC上,且PM=2MC,O为AD的中点.(Ⅰ)若PA=PD,求证:平面POB⊥平面PAD;(Ⅱ)若平面PAD⊥平面ABCD,△PAD为等边三角形,且AB=2,求三棱锥P−OBM的体积.【答案】(Ⅰ)证明:∵PA=PD,AO=OD,∴PO⊥AD,又∵底面ABCD为菱形,∠BAD=60∘,∴BO⊥AD,而PO∩BO=O,∴AD⊥平面POB,又AD⊂平面PAD,∴平面POB⊥平面PAD;(Ⅱ)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊥AD,∴PO⊥平面ABCD,∵OB⊂平面ABCD,∴PO⊥OB∵△PAD为等边三角形,AD=AB=2,∴PO=√3,∵底面ABCD为菱形,∠BAD=60∘,AB=2,∴BO=√3,∴S△POB=12×BO×PO=12×√3×√3=32,由(Ⅰ) AD⊥平面POB,∴BC⊥平面POB.∴V P−OBM=V M−POB=23V C−POB=23×13S△POB×BC=23×13×32×2=23.【考点】柱体、锥体、台体的体积计算【解析】(Ⅰ)由PA=PD,AO=OD,可得PO⊥AD,再由底面ABCD为菱形,∠BAD=60∘,可得BO⊥AD,由线面垂直的判定可得AD⊥平面POB,进一步得到平面POB⊥平面PAD;(Ⅱ)由已知可证得PO⊥平面ABCD,则PO⊥OB,在求解三角形得到PO=√3,BO=√3,即可求得三角形POB的面积,由(Ⅰ)知AD⊥平面POB,则BC⊥平面POB,再由V P−OBM=V M−POB=23V C−POB求解.【解答】(Ⅰ)证明:∵PA=PD,AO=OD,∴PO⊥AD,又∵底面ABCD为菱形,∠BAD=60∘,∴BO⊥AD,而PO∩BO=O,∴AD⊥平面POB,又AD⊂平面PAD,∴平面POB⊥平面PAD;(Ⅱ)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊥AD,∴PO⊥平面ABCD,∵OB⊂平面ABCD,∴PO⊥OB∵△PAD为等边三角形,AD=AB=2,∴PO=√3,∵底面ABCD为菱形,∠BAD=60∘,AB=2,∴BO=√3,∴S△POB=12×BO×PO=12×√3×√3=32,由(Ⅰ) AD⊥平面POB,∴BC⊥平面POB.∴V P−OBM=V M−POB=23V C−POB=23×13S△POB×BC=23×13×32×2=23.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,B 为椭圆的上顶点,△BF 1F 2为等边三角形,且其面积为√3,A 为椭圆的右顶点.(1)求椭圆C 的方程;(2)若直线l:y =kx +m 与椭圆C 相交于M ,N 两点(M ,N 不是左、右顶点),且满足MA ⊥NA ,试问:直线l 是否过定点?若过定点,求出该定点的坐标,否则说明理由. 【答案】解:(1)由已知{b =√3c,S △BF 1F 2=12⋅2c ⋅√3c =√3. 解得b =√3,c =1, ∴ a 2=b 2+c 2=4, ∴ 椭圆的标准方程为x 24+y 23=1.(2)直线l 过定点,定点坐标为(27,0). 设M(x 1, y 1),N(x 2, y 2), 联立{y =kx +m,x 24+y 23=1. 得(3+4k 2)x 2+8mkx +4(m 2−3)=0,∴ Δ=64m 2k 2−16(3+4k 2)(m 2−3)>0, 即3+4k 2−m 2>0, 且{x 1+x 2=−8mk3+4k 2,x 1⋅x 2=4(m 2−3)3+4k2.又y 1y 2=(kx 1+m)(kx 2+m) =k 2x 1x 2+mk(x 1+x 2)+m 2 =3(m 2−4k 2)3+4k 2,∵ 椭圆的右顶点为A(2, 0), ∴ k MA k NA =−1,即y 1x1−2⋅y 2x2−2=−1,∴ y 1y 2+x 1x 2−2(x 1+x 2)+4=0, ∴3(m 2−4k 2)3+4k 2+4(m 2−3)3+4k 2+16mk3+4k 2+4=0,∴ 7m 2+16mk +4k 2=0, 解得:m 1=−2k ,m 2=−2k7,且均满足3+4k 2−m 2>0, 当m 1=−2k 时,l 的方程为y =k(x −2),直线过定点(2, 0),与已知矛盾; 当m 2=−2k7时,l 的方程为y =k(x −27),直线过定点(27,0). ∴ 直线l 过定点,定点坐标为(27,0).【考点】圆锥曲线中的定点与定值问题 椭圆的标准方程 【解析】(Ⅰ)根据三角形的面积公式,以及等边三角形的性质即可求出b ,c ,再根据a 2=b 2+c 2,即可得到.(II)设A(x 1, y 1),B(x 2, y 2),联立方程组根据根与系数的关系,利用MA ⊥NA ,得到k MA k NA =−1,即可得出. 【解答】解:(1)由已知{b =√3c,S △BF 1F 2=12⋅2c ⋅√3c =√3. 解得b =√3,c =1, ∴ a 2=b 2+c 2=4, ∴ 椭圆的标准方程为x 24+y 23=1.(2)直线l 过定点,定点坐标为(27,0). 设M(x 1, y 1),N(x 2, y 2), 联立{y =kx +m,x 24+y 23=1.得(3+4k 2)x 2+8mkx +4(m 2−3)=0, ∴ Δ=64m 2k 2−16(3+4k 2)(m 2−3)>0, 即3+4k 2−m 2>0, 且{x 1+x 2=−8mk3+4k 2,x 1⋅x 2=4(m 2−3)3+4k2.又y 1y 2=(kx 1+m)(kx 2+m) =k 2x 1x 2+mk(x 1+x 2)+m 2 =3(m 2−4k 2)3+4k 2,∵ 椭圆的右顶点为A(2, 0), ∴ k MA k NA =−1,即y 1x1−2⋅y 2x2−2=−1,∴ y 1y 2+x 1x 2−2(x 1+x 2)+4=0, ∴3(m 2−4k 2)3+4k 2+4(m 2−3)3+4k 2+16mk3+4k 2+4=0,∴ 7m 2+16mk +4k 2=0,解得:m1=−2k,m2=−2k7,且均满足3+4k2−m2>0,当m1=−2k时,l的方程为y=k(x−2),直线过定点(2, 0),与已知矛盾;当m2=−2k7时,l的方程为y=k(x−27),直线过定点(27,0).∴直线l过定点,定点坐标为(27,0)已知函数f(x)=ax2+x+lnx(a∈R).(Ⅰ)讨论f(x)的单调性;(Ⅱ)当a=0时,设斜率为k的直线与曲线y=f(x)交于A(x1, y1)、B(x2, y2)(x1<x2)两点,求证:k>f′(x1+x22).【答案】(1)f′(x)=2ax+1+1x =2ax2+x+1x(x>0)当a≥0时,f′(x)>0,f(x)在(0, +∞)上是增函数;当a<0时,由f′(x)=0,得x=−1−√1−8a4a(取正根),在区间(0,−1−√1−8a4a )内,f′(x)>0f(x)是增函数;在区间(−1−√1−8a4a,+∞)内,f′(x)<0,f(x)是减函数.综上,当a≥0时,f(x)的增区间为(0, +∞),没有减区间;当a<0时,f(x)的减区间是(−1−√1−8a4a ,+∞),增区间是(0,−1−√1−8a4a).(2)当a=0时,f(x)=x+lnx(x>0),f′(x)=1+1x,k>f′(x1+x22)⇔f(x2)−f(x1)x2−x1>1+1x1+x22⇔x2+lnx2−lnx1−x1x2−x1>1+2x1+x2⇔1+lnx2−lnx1x2−x1>1+2x1+x2⇔lnx2−lnx1x2−x1>2x1+x2⇔lnx2−lnx1>2(x2−x1)x1+x2⇔ln x2x1>2(x2x1−1)x2x1+1,设x2x1=t,∵0<x1<x2,∴t>1,∴k>f′(x1+x22)⇔lnt>2(t−1)t+1⇔(t+1)lnt>2t−2⇔(t+1)lnt−2t+2>0,设g(t)=(t+1)lnt−2t+2(t>1),g′(t)=lnt+(t+1)×1t −2=lnt+1t−1,设ℎ(t)=g′(t),则ℎ(t)=1t −1t2=t−1t2,∴当t>1时,ℎ′(t)>0恒成立,即当t>1时,ℎ(t)为增函数,ℎ(t)>ℎ(1)=0∴当t>1时,g′(t)>0恒成立,即当t>1时,g(t)为增函数,∴当t>1时,g(t)>g(1)=0,∴k>f′(x1+x22)【考点】利用导数研究函数的单调性利用导数研究函数的最值【解析】(Ⅰ)f′(x)=2ax+1+1x =2ax2+x+1x(x>0)分a≥0时,当a<0时,讨论即可.(Ⅱ)当a=0时,f(x)=x+lnx(x>0),f′(x)=1+1x ,k>f′(x1+x22)⇔f(x2)−f(x1)x2−x1>1+1x1+x22⇔x2+lnx2−lnx1−x1x2−x1>1+2x1+x2⇔1+lnx2−lnx1x2−x1>1+2x1+x2⇔lnx2−lnx1x2−x1>2x1+x2⇔lnx2−lnx1>2(x2−x1)x1+x2⇔ln x2x1>2(x2x1−1)x2x1+1,设x2x1=t,t>1,设g(t)=(t+1)lnt−2t+2(t>1),g′(t)=lnt+(t+1)×1t −2=lnt+1t−1,利用导数求解.【解答】(1)f′(x)=2ax+1+1x =2ax2+x+1x(x>0)当a≥0时,f′(x)>0,f(x)在(0, +∞)上是增函数;当a<0时,由f′(x)=0,得x=−1−√1−8a4a(取正根),在区间(0,−1−√1−8a4a )内,f′(x)>0f(x)是增函数;在区间(−1−√1−8a4a,+∞)内,f′(x)<0,f(x)是减函数.综上,当a≥0时,f(x)的增区间为(0, +∞),没有减区间;当a<0时,f(x)的减区间是(−1−√1−8a4a ,+∞),增区间是(0,−1−√1−8a4a).(2)当a=0时,f(x)=x+lnx(x>0),f′(x)=1+1x,k>f′(x1+x22)⇔f(x2)−f(x1)x2−x1>1+1x1+x22⇔x2+lnx2−lnx1−x1x2−x1>1+2x1+x2⇔1+lnx2−lnx1x2−x1>1+2x1+x2⇔lnx2−lnx1x2−x1>2x1+x2⇔lnx2−lnx1>2(x2−x1)x1+x2⇔ln x2x1>2(x2x1−1)x2x1+1,设x2x1=t,∵0<x1<x2,∴t>1,∴k>f′(x1+x22)⇔lnt>2(t−1)t+1⇔(t+1)lnt>2t−2⇔(t+1)lnt−2t+2>0,设g(t)=(t+1)lnt−2t+2(t>1),g′(t)=lnt+(t+1)×1t −2=lnt+1t−1,设ℎ(t)=g′(t),则ℎ(t)=1t −1t2=t−1t2,∴当t>1时,ℎ′(t)>0恒成立,即当t>1时,ℎ(t)为增函数,ℎ(t)>ℎ(1)=0∴当t>1时,g′(t)>0恒成立,即当t>1时,g(t)为增函数,∴当t>1时,g(t)>g(1)=0,∴k>f′(x1+x22)选择题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知曲线C 1的参数方程为{x =1+2ty =2−2t (t 为参数),以O 为极点,x 轴的非负半轴为极轴,曲线C 2的极坐标方程为:ρ=2cosθsin 2θ.(Ⅰ)将曲线C 1的方程化为普通方程;将曲线C 2的方程化为直角坐标方程; (Ⅱ)若点P(1, 2),曲线C 1与曲线C 2的交点为A 、B ,求|PA|+|PB|的值. 【答案】(Ⅰ)∵ 在平面直角坐标系xOy 中,曲线C 1的参数方程为{x =1+2ty =2−2t (t 为参数),∴ 曲线C 1的直角坐标方程为:x +y =3,即:x +y −3=0; ∵ 曲线C 2的极坐标方程为:ρ=2cosθsin 2θ.∴ C 2:ρ2sin 2θ=2ρcosθ,∴ 曲线C 2的方程化为直角坐标方程为:y 2=2x . (Ⅱ)方法一:C 1的参数方程为{x =1−√22ty =2+√22t,代入C 2:y 2=2x ,得t 2+6√2t +4=0, ∴ t 1+t 2=−6√2,∴ |PA|+|PB|=|t 1+t 2|=6√2. 方法二:把C 1:{x =1+2ty =2−2t代入C 2:y 2=2x ,得2t 2−6t +1=0, 所以t 1+t 2=3所以|PA|+|PB|=√22+(−2)2|t 1+t 2|=6√2. 方法三:把C 1:x +y =3代入C 2:y 2=2x ,得x 2−8x +9=0 所以x 1+x 2=8,x 1x 2=9所以|PA|+|PB|=√1+12|x 1−1|+√1+12|x 2−1|=√2×(|x 1−1|+|x 2−1|) =√2×(|x 1−1+x 2−1|)=√2×(|8−2|)=6√2. 【考点】圆的极坐标方程 【解析】(Ⅰ)曲线C 1的参数方程消去参数,能求出曲线C 1的直角坐标方程;曲线C 2的极坐标方程转化为C 2:ρ2sin 2θ=2ρcosθ,由此能求出曲线C 2的方程化为直角坐标方程. (Ⅱ)法一:C 1的参数方程代入C 2:y 2=2x ,得t 2+6√2t +4=0,由此能求出|PA|+|PB|的值.法二:把C 1:{x =1+2ty =2−2t 代入C 2:y 2=2x ,得2t 2−6t +1=0,由此能求出|PA|+|PB|的值.法三:把C 1:x +y =3代入C 2:y 2=2x ,得x 2−8x +9=0,由此能求出|PA|+|PB|的值. 【解答】(Ⅰ)∵ 在平面直角坐标系xOy 中,曲线C 1的参数方程为{x =1+2ty =2−2t(t 为参数),∴ 曲线C 1的直角坐标方程为:x +y =3,即:x +y −3=0; ∵ 曲线C 2的极坐标方程为:ρ=2cosθsin θ.∴ C 2:ρ2sin 2θ=2ρcosθ,∴ 曲线C 2的方程化为直角坐标方程为:y 2=2x . (Ⅱ)方法一:C 1的参数方程为{x =1−√22ty =2+√22t ,代入C 2:y 2=2x ,得t 2+6√2t +4=0, ∴ t 1+t 2=−6√2,∴ |PA|+|PB|=|t 1+t 2|=6√2. 方法二:把C 1:{x =1+2ty =2−2t代入C 2:y 2=2x ,得2t 2−6t +1=0, 所以t 1+t 2=3所以|PA|+|PB|=√22+(−2)2|t 1+t 2|=6√2. 方法三:把C 1:x +y =3代入C 2:y 2=2x ,得x 2−8x +9=0 所以x 1+x 2=8,x 1x 2=9所以|PA|+|PB|=√1+12|x 1−1|+√1+12|x 2−1|=√2×(|x 1−1|+|x 2−1|) =√2×(|x 1−1+x 2−1|)=√2×(|8−2|)=6√2. [选修4-5:不等式选讲]设函数f(x)=|x +a|−|x −a 2−a|(a ∈R). (Ⅰ)当a =1时,求不等式f(x)≤1的解集;(Ⅱ)若对任意a ∈[−1,13],不等式f(x)≤b 的解集为R ,求实数b 的取值范围. 【答案】(1)当a =1时,|x +1|−|x −2|≤1∴ {x <−1−x −1+x −2≤1 ,或{−1≤x ≤2x +1+x −2≤1 ,或{x >2x +1−x +2≤1 ,解得:x <−1或−1≤x ≤(1)∴ 不等式f(x)≤1解集为{x|x ≤1}.(2)不等式f(x)≤b 的解集为R ,∴ f(x)max ≤b ,∵ f(x)=|x +a|−|x −a 2−a|≤|(x +a)−(x −a 2−a)|=|a 2+2a|, ∴ f(x)max =|a 2+2a|≤b 对任意a ∈[−1,13]恒成立.∵ |a 2+2a|=|(a +1)2−1|,∴ 当a =−1时,|a 2+2a|取得最大值1, ∴ b ≥(1) 【考点】绝对值不等式的解法与证明 绝对值三角不等式 【解析】(I )讨论x 的符号,分情况去绝对值符号得出解集;(II)利用绝对值三角不等式得出f(x)的最大值关于a 的函数,求出此函数的最大值即可得出b 的范围. 【解答】(1)当a=1时,|x+1|−|x−2|≤1∴{x<−1−x−1+x−2≤1,或{−1≤x≤2x+1+x−2≤1,或{x>2x+1−x+2≤1,解得:x<−1或−1≤x≤(1)∴不等式f(x)≤1解集为{x|x≤1}.(2)不等式f(x)≤b的解集为R,∴f(x)max≤b,∵f(x)=|x+a|−|x−a2−a|≤|(x+a)−(x−a2−a)|=|a2+2a|,∴f(x)max=|a2+2a|≤b对任意a∈[−1,13]恒成立.∵|a2+2a|=|(a+1)2−1|,∴当a=−1时,|a2+2a|取得最大值1,∴b≥(1)试卷第21页,总21页。
安徽省宿州市褚兰中学2018届高三数学第一次摸底考试卷理201808020146
褚兰中学2018届高三第一次摸底考试理科数学试题第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).1.设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=()A.(-1,1) B.(0,1) C.(-1,+∞)D.(0,+∞)22.若复数z满足z(i+1)=,则复数z的虚部为()i-1A.-1 B.0 C.i D.13.sin 210°cos120°的值为()1 3 3A. B.-C.- D.4 4 2 3 44.已知数列{a n}的前n项和S n=n2-2n,则a2+a18=()A.36 B.35 C.34 D.335.已知f(x)=Error!且f(0)=2,f(-1)=3,则f(f(-3))=()A.-2 B.2 C.3 D.-36. 在x4,6,y2,4内随机取出两个数,则这两个数满足x y30的概率为()1111A.B.C.D.4810167. 若圆x2y212x160与直线y kx交于不同的两点,则实数k的取值范围为()A.(3,3)B.(5,5)C.(5,5)D.(3,3)2222π8.在△ABC中,内角A,B,C所对的边分别是a,b,c.若c2=(a-b)2+6,C=,则△ABC3的面积是()9 3 3 3A.3 B. C. D.32 239.《九章算数》中,将底面是直角三角形的直三棱柱称为“堑堵”,已知某“堑堵”的三视图- 1 -如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B .4+2 2C .4+4 2D .6+4 210. 运行如下程序框图,如果输入的t 0, 5,则输出S 属于( )开始输入 tt ≥2?是S t 24t输出 S否结束S 5tA .4,10B .5, 2C .4, 3D .2, 511.设向量 a ,b 满足|a |=1,|a -b |= 3,a ·(a -b )=0,则|2a +b |=( ) A .2B .2 3C .4D .4 3f xax x 2 ln x5 ln 2 a12.已知函数存在极值,若这些极值的和大于,则实数 的取值范围为( )A .,4B .4,C .,2D .2,第Ⅱ卷本试卷包括必考题和选考题两部分.第 13题~第 21题为必考题,每个试题考生都必须作答.第 22题~第 23题为选考题,考生根据要求作答. 二、填空题(本大题共 4小题,每小题 5分,共 20分)n213.若二项式展开式中的第 5项是常数,则自然数 n 的值为________.xx- 2 -y 2≤0,x +y - 6x 3≥0,14.已知 x ,y 满足则的取值范围是________.x -4x y 1≤0.15.下列说法中正确的是________.①命题“若 x 2-3x +2=0,则 x =1”的逆否命题为“若 x ≠1,则 x 2-3x +2≠0” ②“x =2”是“x 2-3x +2=0”的充分不必要条件③若命题 p :∃x 0∈R ,使得 x 20-x 0+1≤0,则¬p :对∀x ∈R ,都有 x 2-x +1>0 ④若 p ∨q 为真命题,则 p ,q 均为真命题16.已知 F 是抛物线 y 2=4x 的焦点,A ,B 是抛物线上两点,若△AFB 是正三角形,则△AFB 的 边长为________.三、解答题(本大题共 6小题,共 70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分 12分)某河流上的一座水力发电站,每年六月份的发电量 Y (单位:万千瓦 时)与该河上游在六月份的降雨量 X (单位:毫米)有关.据统计,当 X =70时,Y =460;X 每增 加 10,Y 增加 5.已知近 20年 X 的值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,16 0.(1)完成如下的频率分布表: 近 20年六月份降雨量频率分布表降雨量70 110140 160200220频率1 204 202 20(2)假定今年六月份的降雨量与近 20年六月份降雨量的分布规律相同,并将频率视为概率,求 今年六月份该水力发电站的发电量低于 490(万千瓦时)或超过 530(万千瓦时)的概率.18.(本小题满分 10分)已知曲线 C 1的参数方程为Error!曲线 C 2的极坐标方程为 ρ=2 2(cos θ π- ),以极点为坐标原点,极轴为 x 轴正半轴建立平面直角坐标系. 4 (1)求曲线 C 2的直角坐标方程;(2)求曲线 C 2上的动点 M 到曲线 C 1的距离的最大值.19.(本小题满分 12分)已知数列a为公差不为 0的等差数列,满足a ,且n15a a a2 , 9 , 30成等比数列.(1)求a的通项公式;n- 3 -zE8G 6CB4 D111(2)若数列b ,求数列b满足a n N,且b的前n项和T.n n1n nb b3n1nA220. (本小题满分12分)已知在四棱锥C ABDE中,DB 平面ABC,AE//DB,△ABC2AE 1M AB是边长为的等边三角形,,为的中点.10551015D2E4MA B6C8(1)求证:CM EM;(2)若直线DM与平面ABC所成角的正切值为2,求二面角B CD E的大小.x2 y221.(本小题满分12分)如图,椭圆C:+=1(a>b>0)的右焦点为F,右顶点,上顶点分a2 b25别为A,B,且|AB|=|BF|.2(1)求椭圆C的离心率;(2)若斜率为2的直线l过点(0,2),且l交椭圆C于P,Q两点,OP⊥OQ,求直线l的方程及椭圆C的方程.3x2+ax22.(本小题满分12分)设函数f(x)=(a∈R).e x(1)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1))处的切线方程;(2)若f(x)在[3,+∞)上为减函数,求a的取值范围.- 4 -褚兰中学2018届高三第一次摸底考试理科数学参考答案1.C2.B3.A4.C5.B6.B7.C8.C9.C10.A 11.B 12.B1313.1214. 15.①②③16.8+4 或8-41, 3 3717.解:(1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个.故近20年六月份降雨量频率分布表为降雨量70 110 140 160 200 220频率120320420720320220X(2)由已知可得Y=+425,故P(“发电量低于490万千瓦时或超过530万千瓦时”)2=P(Y<490或Y>530)=P(X<130或X>210)=P(X=70)+P(X=110)+P(X=220)1 32 3=++=.20 20 20 103故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为.10π18.解:(1)ρ=2 2cos( 4)=2(cos θ+sin θ),即ρ2=2(ρcos θ+ρsin θ),θ-可得x2+y2-2x-2y=0,故C2的直角坐标方程为(x-1)2+(y-1)2=2.(2)C1的普通方程为x+3y+2=0,由(1)知曲线C2是以(1,1)为圆心,以2为半径的圆,且圆|1+3+2| 3+3 心到直线C1的距离d==,12+(3)223+3+2 2所以动点M到曲线C1的距离的最大值为.219.(1)设等差数列a的公差为d(d 0),由a a a成等比数列可知2,9,30na d a da d2a d 2a 2n 315,又,解得,∴.………………4分n1129181111(2)由N,得,a n a n2,n Nn n1b b b bn1n n n1- 5 -当 n 2 时,1 1111111b b bbbb b bnnn 1 n 1n 22 111 1 a aan 1 2n 63 n n 2 , …………………8分n 1n21b211 1b上式也成立,∴,∴bN对n n 2 n1n3bn1 1 1 1,n n 2 2 n n 2 ∴Tn11 1 1 1 1 1 3 1 112 3 2 4n n 2 2 2 n 1 n 23n 5n 2 412nn……………………… 12分20.(1)因为△ABC 是等边三角形, M 为 AB 的中点,所以CM AB .又因为 DB 平面 ABC ,DB CM ,可得CM 平面 ABDE ,因为 EM平面 ABDE ,所以CM EM ;(4分)(2)如图,以点 M 为坐标原点, MC ,MB 所在直线分别为 x , y 轴,过 M 且与直线 BD 平行 的直线为 z 轴,建立空间直角坐标系.因为 DB平面 ABC ,所以 DMB 为直线 DM 与平面ABC所成的角.(6分)BDBD 2B0,1,0C 3,0,由题意得tan DMB2,即,故,,MBD0,1,2,E 0,1,1,于是BC 3,1,0,BD 0,0,2,CE 3,1,1,CD3,1,2,设平面BCD与平面CDE的法向量分别为,m x1,y1,z1n m BC03x y0x y z x y2,2,21113,则由得,令,得,所以11BD 02z 0m1m 3231,3,0.同理求得n,(10分)1,,33所以cos m,n m n 0,则二面角的大小为90.(12分)B CD Em n- 6 -4DA210551015 z D 2E4BMAy 6xC81012y 5 5 21.解:(1)由已知|A3B x|-=2y+4|=B0F|,即a2+b2=a,x+y-4=02 214c 3x+2y=0(3,1)4a2+4b2=5a2,4a2+4(a2-c2)=5a2,∴e==.x a 2x2 y2(2)由(1)知a2=4b2,∴椭圆C:+=1.4b2 b2设P(x1,y1),Q(x2,y2),直线l的方程为y-2=2(x-0),即2x-y+2=0.由Error!消去y,得x2+4(2x+2)2-4b2=0,217 即17x2+32x+16-4b2=0.Δ=322+16×17(b2-4)>0,解得b> .173216-4b2 x1+x2=-,x1x2=.17 17∵OP⊥OQ,∴·=0,即x1x2+y1y2=0,x1x2+(2x1+2)(2x2+2)=0,5(16-4b2) 1285x1x2+4(x1+x2)+4=0.从而-+4=0,17 172 17 x2解得b=1,满足b> .∴椭圆C的方程为+y2=1.17 4(6x+a)e x-(3x2+ax)e x-3x2+(6-a)x+a22.解:(1)对f(x)求导得f′(x)==,(e x)2 e x因为f(x)在x=0处取得极值,所以f′(0)=0,即a=0.3x2 -3x2+6x 3 3当a=0时,f(x)=,f′(x)=,故f(1)=,f′(1)=,从而f(x)在点(1,f(1))e x e x e e3 3处的切线方程为y-=(x-1),化简得3x-e y=0.e e-3x2+(6-a)x+a(2)由(1)知f′(x)=.e x6-a-a2+36 6-a+a2+36 令g(x)=-3x2+(6-a)x+a,由g(x)=0解得x1=,x2=.6 6当x<x1时,g(x)<0,即f′(x)<0,故f(x)为减函数;当x1<x<x2时,g(x)>0,即f′(x)>0,故f(x)为增函数;- 7 -当x>x2时,g(x)<0,即f′(x)<0,故f(x)为减函数.6-a+a2+36 9 由f(x)在[3,+∞)上为减函数,知x2=≤3,解得a≥-,629,故a的取值范围为.2褚兰中学2018届高三第一次摸底考试理科数学答题卡姓名:______________________________班级:条码粘贴处准考证号缺考标记考生禁止填涂缺考标记-!只能由监考老师负责用黑色字迹的签字笔填涂。
2018年高考理科数学模拟试卷(共三套)(含答案)
2018年高考理科数学模拟试卷(一)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知集合S={1,2},设S的真子集有m个,则m=()A.4 B.3 C.2 D.12.已知i为虚数单位,则的共轭复数为()A.﹣+i B. +i C.﹣﹣i D.﹣i3.已知、是平面向量,如果||=3,||=4,|+|=2,那么|﹣|=()A. B.7 C.5 D.4.在(x﹣)10的二项展开式中,x4的系数等于()A.﹣120 B.﹣60 C.60 D.1205.已知a,b,c,d都是常数,a>b,c>d,若f(x)=2017﹣(x﹣a)(x﹣b)的零点为c,d,则下列不等式正确的是()A.a>c>b>d B.a>b>c>d C.c>d>a>b D.c>a>b>d6.公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率π,他从圆内接正六边形算起,令边数一倍一倍地增加,即12,24,48,…,192,…,逐个算出正六边形,正十二边形,正二十四边形,…,正一百九十二边形,…的面积,这些数值逐步地逼近圆面积,刘徽算到了正一百九十二边形,这时候π的近似值是3.141024,刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽这种想法的可贵之处在于用已知的、可求的来逼近未知的、要求的,用有限来逼近无穷,这种思想及其重要,对后世产生了巨大影响,如图是利用刘徽的“割圆术”思想设计的一个程序框图,若运行改程序(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305),则输出n的值为()A.48 B.36 C.30 D.247.在平面区域内随机取一点(a,b),则函数f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数的概率为()A. B.C.D.8.已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.12 B.18 C.24 D.3010.已知常数ω>0,f(x)=﹣1+2sinωxcosωx+2cos2ωx图象的对称中心得到对称轴的距离的最小值为,若f(x0)=,≤x0≤,则cos2x0=()A.B.C.D.11.已知三棱锥P﹣ABC的所有顶点都在表面积为16π的球O的球面上,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,设二面角P﹣AB﹣C的大小为θ,则sinθ=()A. B.C.D.12.抛物线M的顶点是坐标原点O,抛物线M的焦点F在x轴正半轴上,抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,设A是抛物线M上的一点,若•=﹣4,则点A的坐标是()A.(﹣1,2)或(﹣1,﹣2)B.(1,2)或(1,﹣2)C.(1,2) D.(1,﹣2)二、填空题(共4小题,每小题5分,满分20分)13.某校1000名高三学生参加了一次数学考试,这次考试考生的分数服从正态分布N(90,σ2),若分数在(70,110]内的概率为0.7,估计这次考试分数不超过70分的人数为人.14.过双曲线﹣=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥|CD|,则双曲线离心率的取值范围为.15.计算=(用数字作答)16.已知f(x)=,若f (x﹣1)<f(2x+1),则x的取值范围为.三、解答题(共5小题,满分60分)17.设数列{a n}的前n项和为S n,a1=1,当n≥2时,a n=2a n S n﹣2S n2.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k对一切正整数n都成立?若存在,求k的取值范围,若不存在,请说明理由.18.云南省20XX年高中数学学业水平考试的原始成绩采用百分制,发布成绩使用等级制,各登记划分标准为:85分及以上,记为A等,分数在[70,85)内,记为B等,分数在[60,70)内,记为C等,60分以下,记为D等,同时认定等级分别为A,B,C都为合格,等级为D为不合格.已知甲、乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分别作出甲校如图1所示样本频率分布直方图,乙校如图2所示样本中等级为C、D的所有数据茎叶图.(1)求图中x的值,并根据样本数据比较甲乙两校的合格率;(2)在选取的样本中,从甲、乙两校C等级的学生中随机抽取3名学生进行调研,用X表示所抽取的3名学生中甲校的学生人数,求随机变量X的分布列和数学期望.19.如图,在四棱锥S﹣ABCD中,底面ABCD是矩形,平面ABCD⊥平面SBC,SB=SC,M是BC的中点,AB=1,BC=2.(1)求证:AM⊥SD;(2)若二面角B﹣SA﹣M的正弦值为,求四棱锥S﹣ABCD的体积.20.已知椭圆E的中心在原点,焦点F1、F2在y轴上,离心率等于,P 是椭圆E上的点,以线段PF1为直径的圆经过F2,且9•=1.(1)求椭圆E的方程;(2)做直线l与椭圆E交于两个不同的点M、N,如果线段MN被直线2x+1=0平分,求l的倾斜角的取值范围.21.已知e是自然对数的底数,实数a是常数,函数f(x)=e x﹣ax﹣1的定义域为(0,+∞).(1)设a=e,求函数f(x)在切点(1,f(1))处的切线方程;(2)判断函数f(x)的单调性;(3)设g(x)=ln(e x+x3﹣1)﹣lnx,若∀x>0,f(g(x))<f(x),求a 的取值范围.[选修4-4:坐标系与参数方程选讲]22.已知直线L的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=.(Ⅰ)直接写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)过曲线C上任意一点P作与L夹角为的直线l,设直线l与直线L的交点为A,求|PA|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵集合S={1,2},∴S的真子集的个数为:22﹣1=3.故选:B.2.解:∵=,∴的共轭复数为.故选:C.3.解:根据条件:==4;∴;∴=9﹣(﹣21)+16=46;∴.故选:A.==(﹣1)r x10﹣2r,4.解:通项公式T r+1令10﹣2r=4,解得r=3.∴x4的系数等于﹣=﹣120.故选:A5.解:由题意设g(x)=(x﹣a)(x﹣b),则f(x)=2017﹣g(x),所以g(x)=0的两个根是a、b,由题意知:f(x)=0 的两根c,d,也就是g(x)=2017 的两根,画出g(x)(开口向上)以及直线y=2017的大致图象,则与f(x)交点横坐标就是c,d,f(x)与x轴交点就是a,b,又a>b,c>d,则c,d在a,b外,由图得,c>a>b>d,故选D.6.解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:D.7.解:作出不等式组对应的平面区域如图:对应的图形为△OAB,其中对应面积为S=×4×4=8,若f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数,则满足a>0且对称轴x=﹣≤1,即,对应的平面区域为△OBC,由,解得,∴对应的面积为S1=××4=,∴根据几何概型的概率公式可知所求的概率为=,故选:B.8.解:由正弦定理得到:sinA=sinCsinB+sinBcosC,∵在△ABC中,sinA=sin[π﹣(B+C)]=sin(B+C),∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,∴cosBsinC=sinCsinB,∵C∈(0,π),sinC≠0,∴cosB=sinB,即tanB=1,∵B∈(0,π),∴B=,=acsinB=ac=1+,∵S△ABC∴ac=4+2,由余弦定理得到:b2=a2+c2﹣2accosB,即b2=a2+c2﹣ac≥2ac﹣ac=4,当且仅当a=c时取“=”,∴b的最小值为2.故选:A.9.解:由已知中的三视图可得该几何体是一个以俯视图为底面的三棱锥,切去一个三棱锥所得的组合体,其底面面积S=×3×4=6,棱柱的高为:5,棱锥的高为3,故组合体的体积V=6×5﹣×6×3=24,故选:C10.解:由f(x)=﹣1+2sinωxcosωx+2cos2ωx,化简可得:f(x)=sin2ωx+cos2ωx=2sin(2ωx+)∵对称中心得到对称轴的距离的最小值为,∴T=π.由,可得:ω=1.f(x0)=,即2sin(2x0+)=∵≤x0≤,∴≤2x0+≤∴sin(2x0+)=>0∴cos(2x0+)=.那么:cos2x0=cos(2x0+﹣)=cos(2x0+)cos+sin(2x0+)sin=故选D11.解:如图所示:由已知得球的半径为2,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,△ABC为等腰直角三角形,P在面ABC上的射影为圆心O,过圆心O作OD⊥AB于D,连结PD,则∠PDO为二面角P﹣AB﹣C的平面角,在△ABC△中,PO=2,OD=BC=,∴,sinθ=.故选:C12.解:x2+y2﹣6x+4y﹣3=0,可化为(x﹣3)2+(y+2)2=16,圆心坐标为(3,﹣2),半径为4,∵抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,∴3+=4,∴p=2.∴F(1,0),设A(,y0)则=(,y0),=(1﹣,﹣y0),由•=﹣4,∴y0=±2,∴A(1,±2)故选B.二、填空题(共4小题,每小题5分,满分20分)13.解:由X服从正态分布N(90,σ2)(σ>0),且P(70≤X≤110)=0.35,得P(X≤70)=(1﹣0.35)=.∴估计这次考试分数不超过70分的人数为1000×=325.故答案为:325.14.解:设双曲线﹣=1(a>0,b>0)的右焦点为(c,0),当x=c时代入双曲线﹣=1得y=±,则A(c,),B(c,﹣),则AB=,将x=c代入y=±x得y=±,则C(c,),D(c,﹣),则|CD|=,∵|AB|≥|CD|,∴≥•,即b≥c,则b2=c2﹣a2≥c2,即c2≥a2,则e2=≥,则e≥.故答案为:[,+∞).15.解:由===.故答案为:.16.解:∵已知f(x)=,∴满足f(﹣x)=f(x),且f(0)=0,故f(x)为偶函数,f(x)在[0,+∞)上单调递增.若f(x﹣1)<f(2x+1),则|x﹣1|<|2x+1|,∴(x﹣1)2<(2x+1)2,即x2+2x>0,∴x>0,或x<﹣2,故答案为:{x|x>0,或x<﹣2}.三、解答题(共5小题,满分60分)17.解:(1)∵当n≥2时,a n=2a n S n﹣2S n2,∴a n=,n≥2,∴(S n﹣S n﹣1)(2S n﹣1)=2S n2,∴S n﹣S n﹣1=2S n S n﹣1,∴﹣2,n≥2,∴数列{}是以=1为首项,以2为公差的等差数列,∴=1+2(n﹣1)=2n﹣1,∴S n=,∴n≥2时,a n=S n﹣S n﹣1=﹣=﹣,∵a1=S1=1,∴a n=,(2)设f(n)=,则==>1,∴f(n)在n∈N*上递增,要使f(n)≥k恒成立,只需要f(n)min≥k,∵f(n)min=f(1)=,∴0<k≤18.解:(1)由频率分布直方图可得:(x+0.012+0.056+0.018+0.010)×10=1,解得x=0.004.甲校的合格率P1=(1﹣0.004)×10=0.96=96%,乙校的合格率P2==96%.可得:甲乙两校的合格率相同,都为96%.(2)甲乙两校的C等级的学生数分别为:0.012×10×50=6,4人.X=0,1,2,3.则P(X=k)=,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.∴X的分布列为:X0123PE(X)=0+1×+2×+3×=.19.证明:(1)∵SB=SC,M是BC的中点,∴SM⊥BC,∵平面ABCD⊥平面SBC,平面ABCD∩平面SBC=BC,∴SM⊥平面ABCD,∵AM⊂平面ABCD,∴SM⊥AM,∵底面ABCD是矩形,M是BC的中点,AB=1,BC=2,∴AM2=BM2==,AD=2,∴AM2+BM2=AD2,∴AM⊥DM,∵SM∩DM=M,∴AM⊥平面DMS,∵SD⊂平面DMS,∴AM⊥SD.解:(2)∵SM⊥平面ABCD,∴以M为原点,MC为x轴,MS为y轴,过M作平面BCS的垂线为z轴,建立空间直角坐标系,设SM=t,则M(0,0,0),B(﹣1,0,0),S(0,t,0),A(﹣1,0,1),=(0,0,1),=(1,t,0),=(﹣1,0,1),=(0,t,0),设平面ABS的法向量=(x,y,z),则,取x=1,得=(1,﹣,0),设平面MAS的法向量=(a,b,c),则,取a=1,得=(1,0,1),设二面角B﹣SA﹣M的平面角为θ,∵二面角B﹣SA﹣M的正弦值为,∴sinθ=,cosθ==,∴cosθ===,解得t=,∵SM⊥平面ABCD,SM=,∴四棱锥S﹣ABCD的体积:V S﹣=== ABCD.20.解:(1)由题意可知:设题意的方程:(a>b>0),e==,则c=a,设丨PF1丨=m,丨PF2丨=n,则m+n=2a,线段PF1为直径的圆经过F2,则PF2⊥F1F2,则n2+(2c)2=m2,9m•n×cos∠F1PF2=1,由9n2=1,n=,解得:a=3,c=,则b==1,∴椭圆标准方程:;(2)假设存在直线l,依题意l交椭圆所得弦MN被x=﹣平分,∴直线l的斜率存在.设直线l:y=kx+m,则由消去y,整理得(k2+9)x2+2kmx+m2﹣9=0∵l与椭圆交于不同的两点M,N,∴△=4k2m2﹣4(k2+9)(m2﹣9)>0,即m2﹣k2﹣9<0①设M(x1,y1),N(x2,y2),则x1+x2=﹣∴=﹣=﹣,∴m=②把②代入①式中得()2﹣(k2+9)<0∴k>或k<﹣,∴直线l倾斜角α∈(,)∪(,).21.解:(1)a=e时,f(x)=e x﹣ex﹣1,f(1)=﹣1,f′(x)=e x﹣e,可得f′(1)=0,故a=e时,函数f(x)在切点(1,f(1))处的切线方程是y=﹣1;(2)f(x)=e x﹣ax﹣1,f′(x)=e x﹣a,当a≤0时,f′(x)>0,则f(x)在R上单调递增;当a>0时,令f′(x)=e x﹣a=0,得x=lna,则f(x)在(﹣∞,lna]上单调递减,在(lna,+∞)上单调递增.(3)设F(x)=e x﹣x﹣1,则F′(x)=e x﹣1,∵x=0时,F′(x)=0,x>0时,F′(x)>0,∴F(x)在[0,+∞)递增,∴x>0时,F(x)>F(0),化简得:e x﹣1>x,∴x>0时,e x+x3﹣1>x,设h(x)=xe x﹣e x﹣x3+1,则h′(x)=x(e x﹣ex),设H(x)=e x﹣ex,H′(x)=e x﹣e,由H′(x)=0,得x=1时,H′(x)>0,x<1时,H′(x)<0,∴x>0时,H(x)的最小值是H(1),x>0时,H(x)≥H(1),即H(x)≥0,∴h′(x)≥0,可知函数h(x)在(0,+∞)递增,∴h(x)>h(0)=0,化简得e x+x3﹣1<xe x,∴x>0时,x<e x+x3﹣1<xe x,∴x>0时,lnx<ln(e x+x3﹣1)<lnx+x,即0<ln(e x+x3﹣1)﹣lnx<x,即x>0时,0<g(x)<x,当a≤1时,由(2)得f(x)在(0,+∞)递增,得f(g(x))<f(x)满足条件,当a>1时,由(2)得f(x)在(0,lna)递减,∴0<x≤lna时,f(g(x))>f(x),与已知∀x>0,f(g(x))<f(x)矛盾,综上,a的范围是(﹣∞,1].[选修4-4:坐标系与参数方程选讲]22.解:(Ⅰ)直线L的参数方程为(t为参数),普通方程为2x+y﹣6=0,极坐标方程为2ρcosθ+ρsinθ﹣6=0,曲线C的极坐标方程为ρ=,即ρ2+3ρ2cos2θ=4,曲线C 的普通方程为=1;(Ⅱ)曲线C上任意一点P(cosθ,2sinθ)到l的距离为d=|2cosθ+2sinθ﹣6|.则|PA|==|2sin(θ+45°)﹣6|,当sin(θ+45°)=﹣1时,|PA|取得最大值,最大值为.[选修4-5:不等式选讲]23.解:(Ⅰ)当a=5时,关于x的不等式f(x)>9,即|x+5|+|x﹣2|>9,故有①;或②;或③.解①求得x<﹣6;解②求得x∈∅,解③求得x>3.综上可得,原不等式的解集为{x|x<﹣6,或x>3}.(Ⅱ)设关于x的不等式f(x)=|x+a|+|x﹣2|≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3}={x|﹣1≤x≤2 },如果A∪B=A,则B⊆A,∴,即,求得﹣1≤a≤0,故实数a的范围为[﹣1,0].2018年高考理科数学模拟试卷(二)(考试时间120分钟满分150分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.复数z满足方程=﹣i(i为虚数单位),则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|x2+x﹣2<0},集合B={x|(x+2)(3﹣x)>0},则(∁R A)∩B 等于()A.{x|1≤x<3}B.{x|2≤x<3}C.{x|﹣2<x<1}D.{x|﹣2<x≤﹣1或2≤x<3}3.下列函数中,在其定义域内,既是奇函数又是减函数的是()A.f(x)=B.f(x)=C.f(x)=2﹣x﹣2x D.f(x)=﹣tanx 4.已知“x>2”是“x2>a(a∈R)”的充分不必要条件,则a的取值范围是()A.(﹣∞,4)B.(4,+∞)C.(0,4]D.(﹣∞,4]5.已知角α是第二象限角,直线2x+(t anα)y+1=0的斜率为,则cosα等于()A. B.﹣C.D.﹣6.执行如图所示的程序框图,若输入n的值为8,则输出s的值为()A.16 B.8 C.4 D.27.(﹣)8的展开式中,x的系数为()A.﹣112 B.112 C.56 D.﹣568.在△ABC中,∠A=60°,AC=3,面积为,那么BC的长度为()A.B.3 C.2D.9.记曲线y=与x轴所围成的区域为D,若曲线y=ax(x ﹣2)(a<0)把D的面积均分为两等份,则a的值为()A.﹣B.﹣C.﹣D.﹣10.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m e,众数为m0,平均值为,则()A.m e=m0=B.m e=m0<C.m e<m0<D.m0<m e<11.已知矩形ABCD的顶点都在半径为5的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的侧面积为()A.20+8B.44 C.20 D.4612.函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后关于y轴对称,则以下判断不正确的是()A.是奇函数 B.为f(x)的一个对称中心C.f(x)在上单调递增D.f(x)在(0,)上单调递减二、填空题:本大题共4小题,每小题5分,共20分.13.若变量x,y满足约束条件,则z=2x﹣y的最大值为.14.如图所示是一个几何体的三视图,则这个几何体的体积为.15.已知抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,点P是抛物线y2=8x上的一动点,P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,则该双曲线的方程为.16.已知向量,的夹角为θ,|+|=2,|﹣|=2则θ的取值范围为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知S n为等差数列{a n}的前n项和,S6=51,a5=13.(1)求数列{a n}的通项公式;(2)数列{b n}的通项公式是b n=,求数列{b n}的前n项和S n.18.袋中有大小相同的四个球,编号分别为1、2、3、4,从袋中每次任取一个球,记下其编号.若所取球的编号为偶数,则把该球编号改为3后放同袋中继续取球;若所取球的编号为奇数,则停止取球.(1)求“第二次取球后才停止取球”的概率;(2)若第一次取到偶数,记第二次和第一次取球的编号之和为X,求X的分布列和数学期望.19.在三棱椎A﹣BCD中,AB=BC=4,AD=BD=CD=2,在底面BCD内作CE ⊥CD,且CE=.(1)求证:CE∥平面ABD;(2)如果二面角A﹣BD﹣C的大小为90°,求二面角B﹣AC﹣E的余弦值.20.在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1).(1)求椭圆C的方徎;(2)若动点P在直线l:x=﹣2上,过P作直线交椭圆C于M,N两点,使得PM=PN,再过P作直线l′⊥MN,直线l′是否恒过定点,若是,请求出该定点的坐标;若否,请说明理由.21.已知函数f(x)=m(x﹣1)2﹣2x+3+lnx(m≥1).(1)求证:函数f(x)在定义域内存在单调递减区间[a,b];(2)是否存在实数m,使得曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值;若不存在,请说明理由.[选修4-1:几何证明选讲]22.选修4﹣1:几何证明选讲如图,已知PA是⊙O的切线,A是切点,直线PO交⊙O于B、C两点,D是OC 的中点,连接AD并延长交⊙O于点E,若PA=2,∠APB=30°.(Ⅰ)求∠AEC的大小;(Ⅱ)求AE的长.[选修4-4:极坐标与参数方程]23.选修4﹣4:坐标系与参数方程在平面直角坐标系x0y中,动点A的坐标为(2﹣3sinα,3cosα﹣2),其中α∈R.在极坐标系(以原点O为极点,以x轴非负半轴为极轴)中,直线C的方程为ρcos (θ﹣)=a.(Ⅰ)判断动点A的轨迹的形状;(Ⅱ)若直线C与动点A的轨迹有且仅有一个公共点,求实数a的值.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣a|.(1)若a=2,解不等式f(x)≥2;(2)若a>1,∀x∈R,f(x)+|x﹣1|≥1,求实数a的取值范围.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.解:由=﹣i,得,即z=1+i.则复数z在复平面内对应的点的坐标为(1,1).位于第一象限.故选:A.2.解:∵集合A={x|x2+x﹣2<0}={x|﹣2<x<1},集合B={x|(x+2)(3﹣x)>0}={x|﹣2<x<3},∴(C R A)∩B={x|x≤﹣2或x≥1}∩{x|﹣2<x<3}={x|1≤x<3}.故选:A.3.解:A中,f(x)=是奇函数,但在定义域内不单调;B中,f(x)=是减函数,但不具备奇偶性;C中,f(x)2﹣x﹣2x既是奇函数又是减函数;D中,f(x)=﹣tanx是奇函数,但在定义域内不单调;故选C.4.解:由题意知:由x>2能得到x2>a;而由x2>a得不出x>2;∵x>2,∴x2>4;∴a≤4;∴a的取值范围是(﹣∞,4].故选:D.5.解:由题意得:k=﹣=,故tanα=﹣,故cosα=﹣,故选:D.6.解:开始条件i=2,k=1,s=1,i<8,开始循环,s=1×(1×2)=2,i=2+2=4,k=1+1=2,i<8,继续循环,s=×(2×4)=4,i=6,k=3,i<8,继续循环;s=×(4×6)=8,i=8,k=4,8≥8,循环停止,输出s=8;故选B:=(﹣2)r C8r x4﹣r,7.解:(﹣)8的展开式的通项为T r+1令4﹣r=1,解得r=2,∴展开式中x的系数为(﹣2)2C82=112,故选:B.8.解:在图形中,过B作BD⊥ACS△ABC=丨AB丨•丨AC丨sinA,即×丨AB丨×3×sin60°=,解得:丨AB丨=2,∴cosA=,丨AD丨=丨AB丨cosA=2×=1,sinA=,则丨BD丨=丨AB丨sinA=2×=,丨CD丨=丨AC丨﹣丨AD丨=3﹣1=2,在△BDC中利用勾股定理得:丨BC丨2=丨BD丨2+丨CD丨2=7,则丨BC丨=,故选A.9.解:由y=得(x﹣1)2+y2=1,(y≥0),则区域D表示(1,0)为圆心,1为半径的上半圆,而曲线y=ax(x﹣2)(a<0)把D的面积均分为两等份,∴=,∴(﹣ax2)=,∴a=﹣,故选:B.10.解:根据题意,由题目所给的统计图可知:30个得分中,按大小排序,中间的两个得分为5、6,故中位数m e=5.5,得分为5的最多,故众数m0=5,其平均数=≈5.97;则有m0<m e<,故选:D.11.解:由题意可知四棱锥O﹣ABCD的侧棱长为:5.所以侧面中底面边长为6和2,它们的斜高为:4和2,所以棱锥O﹣ABCD的侧面积为:S=4×6+2=44.故选B.12.解:把函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后,得到y=2sin(2x++φ+π)=﹣2sin(2x++φ)的图象,再根据所得关于y轴对称,可得+φ=kπ+,k∈Z,∴φ=,∴f(x)=2sin(2x++φ)=2cos2x.由于f(x+)=2cos(2x+)=﹣sin2x是奇函数,故A正确;当x=时,f(x)=0,故(,0)是f(x)的图象的一个对称中心,故B正确;在上,2x∈(﹣,﹣),f(x)没有单调性,故C不正确;在(0,)上,2x∈(0,π),f(x)单调递减,故D正确,故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.解:由约束条件作出可行域如图,联立,解得A(4,2),化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过点A时,直线在y 轴上的截距最小,z有最大值为6.故答案为:6.14.解:由三视图得到几何体如图:其体积为;故答案为:15.解:抛物线y2=8x的焦点F(2,0),双曲线C:﹣=1(a>0,b >0)一条渐近线的方程为ax﹣by=0,∵抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,∴,∴2b=a,∵P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,∴FF1=3,∴c2+4=9,∴c=,∵c2=a2+b2,a=2b,∴a=2,b=1,∴双曲线的方程为﹣x2=1.故答案为:﹣x2=1.16.解:由|+|=2,|﹣|=2,可得:+2=12,﹣2=4,∴=8≥2,=2,∴cosθ=≥.∴θ∈.故答案为:.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.解:(1)设等差数列{a n}的公差为d,则∵S6=51,∴×(a1+a6)=51,∴a1+a6=17,∴a2+a5=17,∵a5=13,∴a2=4,∴d=3,∴a n=a2+3(n﹣2)=3n﹣2;(2)b n==﹣2•8n﹣1,∴数列{b n}的前n项和S n==(8n﹣1).18.解:(1)记“第二次取球后才停止取球”为事件A.∴第一次取到偶数球的概率为=,第二次取球时袋中有三个奇数,∴第二次取到奇数球的概率为,而这两次取球相互独立,∴P(A)=×=.(2)若第一次取到2时,第二次取球时袋中有编号为1,3,3,4的四个球;若第一次取到4时,第二次取球时袋中有编号为1,2,3,3的四个球.∴X的可能取值为3,5,6,7,∴P(X=3)=×=,P(X=5)=×+×=,P(X=6)=×+×=,P(X=7)=×=,∴X的分布列为:X3567P数学期望EX=3×+5×+6×+7×=.19.(1)证明:∵BD=CD=2,BC=4,∴BD2+CD2=BC2,∴BD⊥CD,∵CE⊥CD,∴CE∥BD,又CE⊄平面ABD,BD⊂平面ABD,∴CE∥平面ABD;(2)解:如果二面角A﹣BD﹣C的大小为90°,由AD⊥BD得AD⊥平面BDC,∴AD⊥CE,又CE⊥CD,∴CE⊥平面ACD,从而CE⊥AC,由题意AD=DC=2,∴Rt△ADC中,AC=4,设AC的中点为F,∵AB=BC=4,∴BF⊥AC,且BF=2,设AE中点为G,则FG∥CE,由CE⊥AC得FG⊥AC,∴∠BFG为二面角B﹣AC﹣E的平面角,连接BG,在△BCE中,∵BC=4,CE=,∠BCE=135°,∴BE=,在Rt△DCE中,DE==,于是在Rt△ADE中,AE==3,在△ABE中,BG2=AB2+BE2﹣AE2=,∴在△BFG中,cos∠BFG==﹣,∴二面角B﹣AC﹣E的余弦值为﹣.20.解:(1)∵椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1),∴,解得a2=12,b2=4,∴椭圆C的方程为.(2)∵直线l的方程为x=﹣2,设P(﹣2,y0),,当y0≠0时,设M(x1,y1),N(x2,y2),由题意知x1≠x2,联立,∴,∴,又∵PM=PN,∴P为线段MN的中点,∴直线MN的斜率为,又l′⊥MN,∴l′的方程为,即,∴l′恒过定点.当y0=0时,直线MN为,此时l′为x轴,也过点,综上,l′恒过定点.21.(1)证明:令f′(x)=0,得mx2﹣(m+2)x+1=0.(*)因为△=(m+2)2﹣4m=m2+4>0,所以方程(*)存在两个不等实根,记为a,b (a<b).因为m≥1,所以a+b=>0,ab=>0,所以a>0,b>0,即方程(*)有两个不等的正根,因此f′(x)≤0的解为[a,b].故函数f(x)存在单调递减区间;(2)解:因为f′(1)=﹣1,所以曲线C:y=f(x)在点P(1,1)处的切线l为y=﹣x+2.若切线l与曲线C只有一个公共点,则方程m(x﹣1)2﹣2x+3+lnx=﹣x+2有且只有一个实根.显然x=1是该方程的一个根.令g(x)=m(x﹣1)2﹣x+1+lnx,则g′(x)=.当m=1时,有g′(x)≥0恒成立,所以g(x)在(0,+∞)上单调递增,所以x=1是方程的唯一解,m=1符合题意.当m>1时,令g′(x)=0,得x1=1,x2=,则x2∈(0,1),易得g(x)在x1处取到极小值,在x2处取到极大值.所以g(x2)>g(x1)=0,又当x→0时,g(x)→﹣∞,所以函数g(x)在(0,)内也有一个解,即当m>1时,不合题意.综上,存在实数m,当m=1时,曲线C:y=f(x)在点P(1,1)处的切线l与C 有且只有一个公共点.[选修4-1:几何证明选讲]22.解:(Ⅰ)连接AB,因为:∠APO=30°,且PA是⊙O的切线,所以:∠AOB=60°;∵OA=OB∴∠AB0=60°;∵∠ABC=∠AEC∴∠AEC=60°.(Ⅱ)由条件知AO=2,过A作AH⊥BC于H,则AH=,在RT△AHD中,HD=2,∴AD==.∵BD•DC=AD•DE,∴DE=.∴AE=DE+AD=.[选修4-4:极坐标与参数方程]23.解:(Ⅰ)设动点A的直角坐标为(x,y),则,利用同角三角函数的基本关系消去参数α可得,(x﹣2)2+(y+2)2=9,点A的轨迹为半径等于3的圆.(Ⅱ)把直线C方程为ρcos(θ﹣)=a化为直角坐标方程为+=2a,由题意可得直线C与圆相切,故有=3,解得a=3 或a=﹣3.[选修4-5:不等式选讲]24.解:(1)当a=2时,,由于f(x)≥2,则①当x<1时,﹣2x+3≥2,∴x≤;②当1≤x≤1时,1≥2,无解;③当x>2时,2x﹣3≥2,∴x≥.综上所述,不等式f(x)≥2的解集为:(﹣∞,]∪[,+∞);(2)令F(x)=f(x)+|x﹣1|,则,所以当x=1时,F(x)有最小值F(1)=a﹣1,只需a﹣1≥1,解得a≥2,所以实数a的取值范围为[2,+∞).2018年高考理科数学模拟试卷(三)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知复数z满足z(1﹣i)2=1+i(i为虚数单位),则z=()A. +i B.﹣i C.﹣+i D.﹣﹣i2.已知集合A={x|(x﹣1)2≤3x﹣3,x∈R},B={y|y=3x+2,x∈R},则A∩B=()A.(2,+∞)B.(4,+∞)C.[2,4]D.(2,4]3.甲、乙两类水果的质量(单位:kg)分别服从正态分布N(μ1,σ12)及N(μ2,σ22),其正态分布的密度曲线如图所示,则下列说法错误的是()A.乙类水果的质量服从的正态分布的参数σ2=1.99B.甲类水果的质量比乙类水果的质量更集中C.甲类水果的平均质量μ1=0.4kgD.甲类水果的平均质量比乙类水果的平均质量小4.已知数列{a n}的前n项和S n满足S n+S m=S n(n,m∈N*)且a1=5,则a8=()+mA.40 B.35 C.12 D.55.设a=(),b=(),c=ln,则a,b,c的大小关系是()A.a>b>c B.b>a>c C.b>c>a D.a>c>b6.执行如图所示的程序框图,则输出b的值为()A.2 B.4 C.8 D.167.若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,则k的值为()A.﹣1 B.﹣C.﹣D.﹣38.某同学在运动场所发现一实心椅子,其三视图如图所示(俯视图是圆的一部分及该圆的两条互相垂直的半径,有关尺寸如图,单位:m),经了解,建造该类椅子的平均成本为240元/m3,那么该椅子的建造成本约为(π≈3.14)()A.94.20元 B.240.00元C.282.60元D.376.80元9.当函数f(x)=sinx+cosx﹣t(t∈R)在闭区间[0,2π]上,恰好有三个零点时,这三个零点之和为()A.B. C. D.2π10.有5位同学排成前后两排拍照,若前排站2人,则甲不站后排两端且甲、乙左右相邻的概率为()A.B.C.D.11.某工厂拟生产甲、乙两种实销产品.已知每件甲产品的利润为0.4万元,每件乙产品的利润为0.3万元,两种产品都需要在A,B两种设备上加工,且加工一件甲、乙产品在A,B设备上所需工时(单位:h)分别如表所示.甲产品所需工时乙产品所需工时A设备23B设备41若A设备每月的工时限额为400h,B设备每月的工时限额为300h,则该厂每月生产甲、乙两种产品可获得的最大利润为()A.40万元B.45万元C.50万元D.55万元12.若函数g(x)满足g(g(x))=n(n∈N)有n+3个解,则称函数g(x)为“复合n+3解”函数.已知函数f(x)=(其中e是自然对数的底数,e=2.71828…,k∈R),且函数f(x)为“复合5解”函数,则k的取值范围是()A.(﹣∞,0)B.(﹣e,e)C.(﹣1,1)D.(0,+∞)二、填空题(共4小题,每小题5分,满分20分)13.在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,则•=.14.有下列四个命题:①垂直于同一条直线的两条直线平行;②垂直于同一条直线的两个平面平行;③垂直于同一平面的两个平面平行;④垂直于同一平面的两条直线平行.其中正确的命题有(填写所有正确命题的编号).15.若等比数列{a n}的公比为2,且a3﹣a1=2,则++…+=.16.设抛物线C:y2=2px(p>0)的焦点为F,点A在C上,若|AF|=,以线段AF为直径的圆经过点B(0,1),则p=.三、解答题(共5小题,满分60分)17.在△ABC中,设内角A,B,C所对边分别为a,b,c,且sin(A﹣)﹣cos(A+)=.(1)求角A的大小;(2)若a=,sin2B+cos2C=1,求△ABC的面积.18.某大学有甲、乙两个图书馆,对其借书、还书的等待时间进行调查,得到下表:甲图书馆12345借(还)书等待时间T1(分钟)频数1500 1000 500 500 1500乙图书馆12345借(还)书等待时间T2(分钟)频数100050020001250250以表中等待时间的学生人数的频率为概率.(1)分别求在甲、乙两图书馆借书的平均等待时间;(2)学校规定借书、还书必须在同一图书馆,某学生需要借一本数学参考书,并希望借、还书的等待时间之和不超过4分钟,在哪个图书馆借、还书更能满足他的要求?19.如图所示,在Rt△ABC中,AC⊥BC,过点C的直线VC垂直于平面ABC,D、E分别为线段VA、VC上异于端点的点.(1)当DE⊥平面VBC时,判断直线DE与平面ABC的位置关系,并说明理由;(2)当D、E、F分别为线段VA、VC、AB上的中点,且VC=2BC时,求二面角B ﹣DE﹣F的余弦值.20.已知椭圆+=1(a>b>0)过点P(2,1),且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设O为坐标原点,在椭圆短轴上有两点M,N满足=,直线PM、PN分别交椭圆于A,B.(i)求证:直线AB过定点,并求出定点的坐标;(ii)求△OAB面积的最大值.21.已知函数f(x)=lnx﹣2ax(其中a∈R).(Ⅰ)当a=1时,求函数f(x)的图象在x=1处的切线方程;(Ⅱ)若f(x)≤1恒成立,求a的取值范围;(Ⅲ)设g(x)=f(x)+x2,且函数g(x)有极大值点x0,求证:x0f(x0)+1+ax02>0.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,双曲线E的参数方程为(θ为参数),设E的右焦点为F,经过第一象限的渐进线为l.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求直线l的极坐标方程;(2)设过F与l垂直的直线与y轴相交于点A,P是l上异于原点O的点,当A,O,F,P四点在同一圆上时,求这个圆的极坐标方程及点P的极坐标.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|﹣2a,其中a∈R.(1)当a=﹣2时,求不等式f(x)≤2x+1的解集;(2)若x∈R,不等式f(x)≤|x+1|恒成立,求a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵z(1﹣i)2=1+i,∴,故选:C.2.解:集合A={x|(x﹣1)2≤3x﹣3,x∈R}={x|(x﹣1)(x﹣4)≤0}={x|1≤x ≤4}=[1,4];B={y|y=3x+2,x∈R}={y|y>2}=(2,+∞),则A∩B=(2,4].故选:D.3.解:由图象可知,甲类水果的平均质量μ1=0.4kg,乙类水果的平均质量μ2=0.8kg,故B,C,D正确;乙类水果的质量服从的正态分布的参数σ2=,故A 不正确.故选:A.4.解:数列{a n}的前n项和S n满足S n+S m=S n+m(n,m∈N*)且a1=5,令m=1,则S n+1=S n+S1=S n+5.可得a n+1=5.则a8=5.故选:D.5.解:b=()=>()=a>1,c=ln<1,∴b>a>c.故选:B.6.解:第一次循环,a=1≤3,b=2,a=2,第二次循环,a=2≤3,b=4,a=3,第三次循环,a=3≤3,b=16,a=4,第四次循环,a=4>3,输出b=16,故选:D.7.解:圆C:x2+y2﹣2x+4y=0的圆心(1,﹣2),若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,可知直线经过圆的圆心,可得﹣2=k﹣1,解得k=﹣1.故选:A.8.解:由三视图可知:该几何体为圆柱的.∴体积V=.∴该椅子的建造成本约为=×240≈282.60元.故选:C.9.解:f(x)=2sin(x+)﹣t,令f(x)=0得sin(x+)=,做出y=sin(x+)在[0,2π]上的函数图象如图所示:∵f(x)在[0,2π]上恰好有3个零点,∴=sin=,解方程sin(x+)=得x=0或x=2π或x=.∴三个零点之和为0+2π+=.故选:B.10.解:由题意得:p===,故选:B.11.C解:设甲、乙两种产品月的产量分别为x,y件,约束条件是目标函数是z=0.4x+0.3y由约束条件画出可行域,如图所示的阴影部分由z=0.4x+0.3y,结合图象可知,z=0.4x+0.3y在A处取得最大值,由可得A(50,100),此时z=0.4×50+0.3×100=50万元,故选:C.12.解:函数f(x)为“复合5解“,∴f(f(x))=2,有5个解,设t=f(x),∴f(t)=2,∵当x>0时,f(x)=,∴f(x)=,当0<x<1时,f′(x)<0,函数f(x)单调递减,当x>1时,f′(x)>0,函数f(x)单调递增,∴f(x)min=f(1)=1,∴t≥1,∴f(t)=2在[1,+∞)有2个解,当x≤0时,f(x)=kx+3,函数f(x)恒过点(0,3),当k≤0时,f(x)≥f(0)=3,∴t≥3∵f(3)=>2,∴f(t)=2在[3,+∞)上无解,当k>0时,f(x)≤f(0)=3,∴f(t)=2,在(0,3]上有2个解,在(∞,0]上有1个解,综上所述f(f(x))=2在k>0时,有5个解,故选:D二、填空题(共4小题,每小题5分,满分20分)13.解:在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,可得AD=BD=5,即AB=10,由勾股定理可得AC==8,则•=﹣•=﹣||•||•cosA=﹣5×8×=﹣32.14.解:如图在正方体ABCD﹣A′B′C′D′中,对于①,AB⊥BB′,BC⊥BB′,AB、BC不平行,故错;对于②,两底面垂直于同一条侧棱,两个底面平面平行,故正确;对于③,相邻两个侧面同垂直底面,这两个平面不平行,故错;对于④,平行的侧棱垂直底面,侧棱平行,故正确.故答案为:②④15.解:∵等比数列{a n}的公比为2,且a3﹣a1=2,∴=2,解得a1=.∴a n==.∴=.则++…+=3×==1﹣.故答案为:1﹣.16.解:由题意,可得A(,),AB⊥BF,∴(,﹣1)•(,﹣1)=0,∴﹣+1=0,∴p(5﹣p)=4,∴p=1或4.三、解答题(共5小题,满分60分)17.解:(1)sin(A﹣)﹣cos(A+)=sin(A﹣)﹣cos(2π﹣A)=sin(A﹣)﹣cos(A+)=sinA﹣cosA﹣cosA﹣sinA=即cosA=,∵0<A<π,∴A=.(2)由sin2B+cos2C=1,可得sin2B=2sin2C,由正弦定理,得b2=2c2,即.a=,cosA==,解得:c=1,b=∴△ABC的面积S=bcsinA=.18.解:(1)根据已知可得T1的分布列:T1(分钟)12345P0.30.20.10.10.3T1的数学期望为:E(T1)=1×0.3+2×0.2+3×0.1+4×0.1+5×0.3=2.9.T2(分钟)12345P0.20.10.4 0.250.05T2的数学期望为:E(T1)=1×0.2+2×0.1+3×0.4+4×0.25+5×0.05=2.85.因此:该同学甲、乙两图书馆借书的平均等待时间分别为:2.9分钟,2.85分钟.(2)设T11,T12分别表示在甲图书馆借、还书所需等待时间,设事件A为“在甲图书馆借、还书的等待时间之和不超过4分钟”.T11+T12≤4的取值分别为:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).。
2018年安徽省宿州市高考数学一模试卷(理科)
2018年安徽省宿州市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若集合A={x|1≤3x≤81},B={x|log2(x2﹣x)>1},则A∩B=()A.(2,4]B.[2,4]C.(﹣∞,0)∪[0,4]D.(﹣∞,﹣1)∪[0,4] 2.(5分)已知复数z=1﹣i(i为虚数单位),复数为z的共轭复数,则=()A.﹣2i B.2i C.4﹣2i D.4+2i3.(5分)已知函数,执行如图所示的程序框图,输出的结果是()A.B.C.D.4.(5分)在平面直角坐标系xOy中,设F1,F2分别为双曲线的左、右焦点,P是双曲线左支上一点,M是PF1的中点,且OM⊥PF1,2|PF1|=|PF2|,则双曲线的离心率为()A.B.C.2 D.5.(5分)设,,,则a,b,c三个数从大到小的排列顺序为()A.a>b>c B.b>a>c C.b>c>a D.c>a>b6.(5分)若函数f(x)=sin(2x+θ)+cos(2x+θ)为奇函数,且在上为减函数,则θ的一个值为()A.﹣B.﹣C. D.7.(5分)将3名教师和3名学生共6人平均分成3个小组,分别安排到三个社区参加社会实践活动,则每个小组恰好有1名教师和1名学生的概率为()A.B.C.D.8.(5分)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,其中有很多对几何体外接球的研究,如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的外接球的表面积是()A.81πB.33πC.56πD.41π9.(5分)已知函数f(x)=Asin(ωx+φ)的部分图象如图所示,若将函数f(x)的图象上点的纵坐标不变,横坐标缩短到原来的,再向右平移个单位,所得到的函数g(x)的解析式为()A.B.g(x)=2sin2xC.D.10.(5分)已知函数,g(x)=﹣f(﹣x),则方程f(x)=g(x)的解的个数为()A.4 B.3 C.2 D.111.(5分)已知抛物线C:y2=8x,圆F:(x﹣2)2+y2=4,直线l:y=k(x﹣2)(k ≠0)自上而下顺次与上述两曲线交于M1,M2,M3,M4四点,则下列各式结果为定值的是()A.|M1M3|•|M2M4|B.|FM1|•|FM4|C.|M1M2|•|M3M4| D.|FM1|•|M1M2|12.(5分)已知l1,l2分别是函数f(x)=|lnx|图象上不同的两点P1,P2处的切线,l1,l2分别与y轴交于点A,B,且l1与l2垂直相交于点P,则△ABP的面积的取值范围是()A.(0,1) B.(0,2) C.(0,+∞)D.(1,+∞)二、填空题:本大题共4小题,每小题5分,满分20分.13.(5分)已知向量满足,,且,则向量与向量的夹角为.14.(5分)(x﹣2y+y2)6的展开式中,x2y5的系数为.15.(5分)在平面直角坐标系中,若不等式组(a为常数)所表示的平面区域内的面积等于1,则a的值为.16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知b=c,sinB+sin (A﹣C)=sin2A,若O为△ABC所在平面内一点,且O,C在直线AB的异侧,OA=2OB=2,则四边形OACB面积的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个考题考生都必须作答.第22、23题为选考题,考生根据要求作答. 17.(12分)在数列{a n}中,a1=1,.(Ⅰ)设,求数列{b n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.18.(12分)如图所示,四棱锥P﹣ABCD中,底面ABCD为菱形,∠ABC=60°,∠PDC=90°,E为棱AP的中点,且AD⊥CE.(Ⅰ)求证:平面PAD⊥平面ABCD;(Ⅱ)当直线PB与底面ABCD成30°角时,求二面角B﹣CE﹣P的余弦值.19.(12分)为了适当疏导电价矛盾,保障电力供应,支持可再生能源发展,促进节能减排,安徽省于2012年推出了省内居民阶梯电价的计算标准:以一个年度为计费周期、月度滚动使用,第一阶梯电量:年用电量2160度以下(含2160度),执行第一档电价0.5653元/度;第二阶梯电量:年用电量2161至4200度(含4200度),执行第二档电价0.6153元/度;第三阶梯电量:年用电量4200度以上,执行第三档电价0.8653元/度.某市的电力部门从本市的用电户中随机抽取10户,统计其同一年度的用电情况,列表如表:12345678910用户编号1000126014001824218024232815332544114600年用电量(度)(Ⅰ)试计算表中编号为10的用电户本年度应交电费多少元?(Ⅱ)现要在这10户家庭中任意选取4户,对其用电情况作进一步分析,求取到第二阶梯电量的户数的分布列与期望;(Ⅲ)以表中抽到的10户作为样本估计全市的居民用电情况,现从全市居民用电户中随机地抽取10户,若抽到k户用电量为第一阶梯的可能性最大,求k的值.20.(12分)已知椭圆的右顶点为A,上顶点为B,离心率,O为坐标原点,圆与直线AB相切.(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知四边形ABCD内接于椭圆E,AB∥DC.记直线AC,BD的斜率分别为k1,k2,试问k1•k2是否为定值?证明你的结论.21.(12分)已知函数,函数g(x)=﹣2x+3.(Ⅰ)判断函数的单调性;(Ⅱ)若﹣2≤a≤﹣1时,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤t|g(x1)﹣g(x2)|恒成立,求实数t的最小值.选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,直线l的参数方程是(t为参数),以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为3ρ2cos2θ+4ρ2sin2θ=12,且直线l与曲线C交于P,Q两点.(Ⅰ)求直线l的普通方程及曲线C的直角坐标方程;(Ⅱ)把直线l与x轴的交点记为A,求|AP|•|AQ|的值.[选修4-5:不等式选讲]23.已知函数.(Ⅰ)当m=0时,求函数f(x)的最小值;(Ⅱ)若函数f(x)≤5在x∈[1,4]上恒成立,求实数m的取值范围.2018年安徽省宿州市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若集合A={x|1≤3x≤81},B={x|log2(x2﹣x)>1},则A∩B=()A.(2,4]B.[2,4]C.(﹣∞,0)∪[0,4]D.(﹣∞,﹣1)∪[0,4]【解答】解:A={x|1≤3x≤81}{x|0≤x≤4},B={x|log2(x2﹣x)>1}={x|x2﹣x>2}={x|x>2或x<﹣1},则A∩B={x|2<x≤4},故选:A.2.(5分)已知复数z=1﹣i(i为虚数单位),复数为z的共轭复数,则=()A.﹣2i B.2i C.4﹣2i D.4+2i【解答】解:由z=1﹣i,得,则==.故选:C.3.(5分)已知函数,执行如图所示的程序框图,输出的结果是()A.B.C.D.【解答】解:模拟程序的运行,可得程序的功能是利用循环结构计算并输出变量S=++…+的值,可得:S=++…+=(1﹣)+()+…+(﹣)=1﹣=.故选:B.4.(5分)在平面直角坐标系xOy中,设F1,F2分别为双曲线的左、右焦点,P是双曲线左支上一点,M是PF1的中点,且OM⊥PF1,2|PF1|=|PF2|,则双曲线的离心率为()A.B.C.2 D.【解答】解:P为双曲线左支上的一点,则由双曲线的定义可得,|PF2|﹣|PF1|=2a,由|PF2|=2|PF1|,则|PF2|=4a,|PF1|=2a,∵M是PF1的中点,且OM⊥PF1∴由△PF1F2为直角三角形,则|PF2|2+|=|PF2|2,=|F1F2|2.∴5a2=c2即有e=.故选:B.5.(5分)设,,,则a,b,c三个数从大到小的排列顺序为()A.a>b>c B.b>a>c C.b>c>a D.c>a>b【解答】解:b===>ln=ln=a,a=>=c.∴b>a>c.故选:B.6.(5分)若函数f(x)=sin(2x+θ)+cos(2x+θ)为奇函数,且在上为减函数,则θ的一个值为()A.﹣B.﹣C. D.【解答】解:∵f(x)=sin(2x+θ)+cos(2x+θ)=2sin(2x+θ+)为奇函数,故有θ+=kπ,即:θ=kπ﹣(k∈Z),可淘汰A、C选项,然后分别将B和C选项代入检验,易知当θ=时,f(x)=﹣2sin2x其在区间[﹣,0]上递减,故选:C.7.(5分)将3名教师和3名学生共6人平均分成3个小组,分别安排到三个社区参加社会实践活动,则每个小组恰好有1名教师和1名学生的概率为()A.B.C.D.【解答】解:将3名教师和3名学生共6人平均分成3个小组,分别安排到三个社区参加社会实践活动,基本事件总数n==90,每个小组恰好有1名教师和1名学生包含的基本事件个数m==36,∴每个小组恰好有1名教师和1名学生的概率为p===.故选:B.8.(5分)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,其中有很多对几何体外接球的研究,如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的外接球的表面积是()A.81πB.33πC.56πD.41π【解答】解:由三视图还原原几何体如图:该几何体为四棱锥,下底面ABCD是边长为4的正方形,侧面PAD为等腰三角形,且平面PAD⊥平面ABCD.棱锥的高为1,设三角形PAD的外心为G,则=2PG,∴PG=.再设该四棱锥外接球的半径为R,则则该几何体的外接球的表面积为.故选:D.9.(5分)已知函数f(x)=Asin(ωx+φ)的部分图象如图所示,若将函数f(x)的图象上点的纵坐标不变,横坐标缩短到原来的,再向右平移个单位,所得到的函数g(x)的解析式为()A.B.g(x)=2sin2xC.D.【解答】解:由题设图象知,A=2,周期T=4(x0+π﹣x0)=4π,∴ω==.∵点(0,1)在函数图象上,∴2sin(φ)=1,即sin(φ)=.又∵0<φ<,∴φ=.故函数f(x)的解析式为f(x)=2sin(x+),将图象横坐标缩短到原来的,可得2sin(2x+),再向右平移个单位,可得2sin[2(x﹣)+]=2sin(2x),即g(x)=2sin(2x),故选:D.10.(5分)已知函数,g(x)=﹣f(﹣x),则方程f(x)=g(x)的解的个数为()A.4 B.3 C.2 D.1【解答】解:函数的图象如图所示,由g(x)=﹣f(﹣x),可得g(x)和f(x)的图象关于原点对称,作出y=g(x)的图象,可得y=f(x)和y=g(x)的图象有4个交点,则方程f(x)=g(x)的解的个数为4.故选:A.11.(5分)已知抛物线C:y2=8x,圆F:(x﹣2)2+y2=4,直线l:y=k(x﹣2)(k ≠0)自上而下顺次与上述两曲线交于M1,M2,M3,M4四点,则下列各式结果为定值的是()A.|M1M3|•|M2M4|B.|FM1|•|FM4|C.|M1M2|•|M3M4| D.|FM1|•|M1M2|【解答】解:分别设M1,M2,M3,M4四点横坐标为x1,x2,x3,x4,由y2=8x可得焦点F(2,0),准线l0:x=﹣2.由定义得:|M1F|=x1+2,又∵|M1F|=|M1M2|+2,∴|M1M2|=x1,同理:|M3M4|=x4,将y=k(x﹣2)时,代入抛物线方程,得:k2x2﹣(4k2+8)x+4k2=0,∴x1x2=4,∴|M1M2|•|M3M4|=4故选:C.12.(5分)已知l1,l2分别是函数f(x)=|lnx|图象上不同的两点P1,P2处的切线,l1,l2分别与y轴交于点A,B,且l1与l2垂直相交于点P,则△ABP的面积的取值范围是()A.(0,1) B.(0,2) C.(0,+∞)D.(1,+∞)【解答】解:设P1(x1,y1),P2(x2,y2)(0<x1<1<x2),当0<x<1时,f′(x)=﹣,当x>1时,f′(x)=,∴l1的斜率k1=﹣,l2的斜率k2=,∵l1与l2垂直,且x2>x1>0,∴k1•k2=﹣•=﹣1,即x1x2=1.直线l1:y=﹣(x﹣x1)﹣lnx1,l2:y=(x﹣x2)+lnx2.取x=0分别得到A(0,1﹣lnx1),B(0,﹣1+lnx2),|AB|=|1﹣lnx1﹣(﹣1+lnx2)|=|2﹣(lnx1+lnx2)|=|2﹣lnx1x2|=2.联立两直线方程可得交点P的横坐标为x=,=|AB|•|x P|=×2×=,∴S△PAB∵函数y=x+在(0,1)上为减函数,且0<x1<1,∴x1+>1+1=2,则0<<,∴0<<1.∴△PAB的面积的取值范围是(0,1).故选:A.二、填空题:本大题共4小题,每小题5分,满分20分.13.(5分)已知向量满足,,且,则向量与向量的夹角为.【解答】解:∵,∴,=2又∵∴即设向量与的夹角为θ则cosθ==∵θ∈[0,π]∴θ=故答案为:14.(5分)(x﹣2y+y2)6的展开式中,x2y5的系数为﹣480.【解答】解:通项公式T r=,+1令6﹣r=2,解得r=4.∴T5=.又(y2﹣2y)4=(y2)4﹣•2y+﹣+,∴x2y5的系数为×(﹣•23)=﹣480.故答案为:﹣480.15.(5分)在平面直角坐标系中,若不等式组(a为常数)所表示的平面区域内的面积等于1,则a的值为1.【解答】解:当a<0时,不等式组所表示的平面区域,如图中的M,一个无限的角形区域,面积不可能为2,故只能a≥0,此时不等式组所表示的平面区域如图中的N,区域为三角形区域,若这个三角形的面积为1,则AB=2,即点B的坐标为(1,2),代入y=ax+1得a=1.故答案为:1;16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知b=c,sinB+sin (A﹣C)=sin2A,若O为△ABC所在平面内一点,且O,C在直线AB的异侧,OA=2OB=2,则四边形OACB面积的取值范围是.【解答】解:根据sinB+sin(A﹣C)=sin2A,可得sin(A+C)+sin(A﹣C)=sin2A,可得2sinAcosC=2sinAcosA,即cosC=cosA,那么b=c=a,三角形△ABC时等边三角.由OA=2OB=2,四边形OACB面积S=AO•OB•sin∠AOB+bcsinA,则四边形OACB面积S=+sin∠AOB=(5﹣4cos∠AOB)+sin∠AOB=sin∠AOB﹣cos∠AOB=2sin(∠AOB﹣)∵0<∠AOB<π∴<∠AOB﹣那么:<2sin(∠AOB﹣)≤2∴OACB面积的取值范围是故答案为:三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个考题考生都必须作答.第22、23题为选考题,考生根据要求作答. 17.(12分)在数列{a n}中,a1=1,.(Ⅰ)设,求数列{b n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.【解答】解:(I)由已知有∴,又b1=a1=1,利用累差叠加即可求出数列{b n}的通项公式:∴(n∈N*);(II)由(I)知,∴而,令①①×2得②①﹣②得==﹣2+(1﹣n)•2n+1∴.18.(12分)如图所示,四棱锥P﹣ABCD中,底面ABCD为菱形,∠ABC=60°,∠PDC=90°,E为棱AP的中点,且AD⊥CE.(Ⅰ)求证:平面PAD⊥平面ABCD;(Ⅱ)当直线PB与底面ABCD成30°角时,求二面角B﹣CE﹣P的余弦值.【解答】(Ⅰ)证明:取AD的中点O,连OE,OC,CA,∵∠ABC=60°,∴△ACD为等边三角形,得AD⊥OC,又AD⊥CE,∴AD⊥平面COE,得AD⊥OE,又OE∥PD,∴AD⊥PD,又∠PDC=90°,∴PD⊥平面ABCD,又PD⊂平面PAD,∴平面PAD⊥平面ABCD;(Ⅱ)解:由(Ⅰ)知OE⊥平面ABCD,AD⊥OC,以OC,OD,OE分别为x,y,z轴建立空间直角坐标系,如图所示,设菱形ABCD的边长为2,则,,∵直线PB与底面ABCD成30°角,即∠PBD=30°,∴,∴,∴,设为平面BCE的一个法向量,则,令x 1=1,则,∴;设为平面PCE的一个法向量,则,令x 2=1,则,∴.∴,由题可知二面角B﹣CE﹣P的平面角为钝角,二面角B﹣CE﹣P的余弦值为.19.(12分)为了适当疏导电价矛盾,保障电力供应,支持可再生能源发展,促进节能减排,安徽省于2012年推出了省内居民阶梯电价的计算标准:以一个年度为计费周期、月度滚动使用,第一阶梯电量:年用电量2160度以下(含2160度),执行第一档电价0.5653元/度;第二阶梯电量:年用电量2161至4200度(含4200度),执行第二档电价0.6153元/度;第三阶梯电量:年用电量4200度以上,执行第三档电价0.8653元/度.某市的电力部门从本市的用电户中随机抽取10户,统计其同一年度的用电情况,列表如表:12345678910用户编号1000126014001824218024232815332544114600年用电量(度)(Ⅰ)试计算表中编号为10的用电户本年度应交电费多少元?(Ⅱ)现要在这10户家庭中任意选取4户,对其用电情况作进一步分析,求取到第二阶梯电量的户数的分布列与期望;(Ⅲ)以表中抽到的10户作为样本估计全市的居民用电情况,现从全市居民用电户中随机地抽取10户,若抽到k户用电量为第一阶梯的可能性最大,求k的值.【解答】解:(I)因为第二档电价比第一档电价多0.05元/度,第三档电价比第一档电价多0.3元/度,编号为10的用电户一年的用电量是4600度,则该户本年度应交电费为:4600×0.5653+(4200﹣2160)×0.05+(4600﹣4200)×0.3=2822.38元.(II)设取到第二阶梯电量的用户数为X,可知第二阶梯电量的用户有4户,则X可取0,1,2,3,4.,,,,,故X的分布列是:X01234P所以.(III)由题意可知从全市中抽取10户的用电量为第一阶梯,满足X~B(10,),可知(k=0,1.2.3.…10),∵抽到k户用电量为第一阶梯的可能性最大,∴,解得,∵k∈N*所以当k=4时,概率最大,所以k=4.20.(12分)已知椭圆的右顶点为A,上顶点为B,离心率,O为坐标原点,圆与直线AB相切.(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知四边形ABCD内接于椭圆E,AB∥DC.记直线AC,BD的斜率分别为k1,k2,试问k1•k2是否为定值?证明你的结论.【解答】解:(I)直线AB的方程为+=1,即bx+ay﹣ab=0,由圆O与直线AB相切,得=,即=,①设椭圆的半焦距为c,则e==,∴=1﹣e2=,②由①②得a2=4,b2=1.故椭圆的标准方程为;(II)k1•k2=为定值,证明过程如下:由(I)得直线AB的方程为y=﹣x+1,故可设直线DC的方程为y=﹣x+m,显然m≠±1.设C(x1,y1),D(x2,y2).联立消去y得x2﹣2mx+2m2﹣2=0,则△=8﹣4m2>0,解得﹣<m<,且m≠±1,∴x1+x2=2m,x1x2=2m2﹣2.由,,则=,=,=,==.21.(12分)已知函数,函数g(x)=﹣2x+3.(Ⅰ)判断函数的单调性;(Ⅱ)若﹣2≤a≤﹣1时,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤t|g(x1)﹣g(x2)|恒成立,求实数t的最小值.【解答】解:(I),其定义域为为(0,+∞),=.(1)当a≤0时,F'(x)≥0,函数y=F(x)在(0,+∞)上单调递增;(2)当a>0时,令F'(x)>0,解得;令F'(x)<0,解得.故函数y=F(x)在上单调递增,在上单调递减.(II)由题意知t≥0.,当﹣2≤a≤﹣1时,函数y=f(x)单调递增,不妨设1≤x1≤x2≤2,又函数y=g(x)单调递减,所以原问题等价于:当﹣2≤a≤﹣1时,对任意1≤x1≤x2≤2,不等式f(x2)﹣f(x1)≤t[g(x1)﹣g(x2)]恒成立,即f(x2)+tg(x2)≤f(x1)+tg(x1)对任意﹣2≤a≤﹣1,1≤x1≤x2≤2恒成立.记h(x)=f(x)+tg(x)=lnx﹣+(1﹣2t)x+3t,则h(x)在[1,2]上单调递减.得对任意a∈[﹣2,﹣1],x∈[1,2]恒成立.令,a∈[﹣2,﹣1],则2t≤0在x ∈(0,+∞)上恒成立.则2t﹣1≥(2x+)max,而y=2x+在[1,2]上单调递增,所以函数y=2x+在[1,2]上的最大值为.由2t﹣1,解得t.故实数t的最小值为.选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,直线l的参数方程是(t为参数),以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为3ρ2cos2θ+4ρ2sin2θ=12,且直线l与曲线C交于P,Q两点.(Ⅰ)求直线l的普通方程及曲线C的直角坐标方程;(Ⅱ)把直线l与x轴的交点记为A,求|AP|•|AQ|的值.【解答】解:(Ⅰ)∵直线l的参数方程是(t为参数),∴直线l消去参数t,得直线l的普通方程为x﹣y﹣1=0,∵曲线C的极坐标方程为3ρ2cos2θ+4ρ2sin2θ=12,∴曲线C的直角坐标方程为3x2+4y2=12.(II)解法一:在x﹣y﹣1=0中,令y=0,得x=1,则A(1,0),联立,消去y,得7x2﹣8x﹣8=0.设P(x1,y1),Q(x2,y2),其中x1<x2,则有x1+x2=,x1x2=﹣.|AP|=|x1﹣1|=﹣(x1﹣1),|AQ|=|x2﹣1|=(x2﹣1),故|AP|•|AQ|=﹣2(x1﹣1)(x2﹣1)=﹣2[x1x2﹣(x1+x2)+1]=.解法二:把,代入3x2+4y2=12,得14t2+6﹣9=0,则t1t2=﹣,则|AP|•|AQ|=(﹣2t1)•(2t2)=﹣4t1t2=.[选修4-5:不等式选讲]23.已知函数.(Ⅰ)当m=0时,求函数f(x)的最小值;(Ⅱ)若函数f(x)≤5在x∈[1,4]上恒成立,求实数m的取值范围.【解答】解:(Ⅰ)当m=0时,,当且仅当,即x=±2时等式成立,所以,当x=±2时,f(x)min=4.(Ⅱ)当x∈[1,4]时,函数f(x)的最大值为5⇔在x∈[1,4]上恒成立,⇔在x∈[1,4]上恒成立,⇔在x∈[1,4]上恒成立,⇔,且在x∈[1,4]上恒成立,函数在[1,2]上单调递减,在[2,4]上单调递增.∵,当且仅当x=2时等式成立,而在x∈[1,4]上是恒成立的.∴2m﹣5≤4∴,即实数m的取值范围是.。
安徽省宿州市高考数学一模试卷
2018年安徽省宿州市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若集合A={x|1≤3x≤81},B={x|log2(x2﹣x)>1},则A∩B=()A.(2,4] B.[2,4] C.(﹣∞,0)∪[0,4] D.(﹣∞,﹣1)∪[0,4] 2.(5分)已知复数z=1﹣i(i为虚数单位),复数为z的共轭复数,则=()A.﹣2i B.2i C.4﹣2i D.4+2i3.(5分)已知函数,执行如图所示的程序框图,输出的结果是()A.B.C.D.4.(5分)在平面直角坐标系xOy中,设F1,F2分别为双曲线的左、右焦点,P是双曲线左支上一点,M是PF1的中点,且OM⊥PF1,2|PF1|=|PF2|,则双曲线的离心率为()A.B.C.2 D.5.(5分)设,,,则a,b,c三个数从大到小的排列顺序为()A.a>b>c B.b>a>c C.b>c>a D.c>a>b6.(5分)若函数f(x)=sin(2x+θ)+cos(2x+θ)为奇函数,且在上为减函数,则θ的一个值为()A.﹣B.﹣C.D.7.(5分)将3名教师和3名学生共6人平均分成3个小组,分别安排到三个社区参加社会实践活动,则每个小组恰好有1名教师和1名学生的概率为()A.B.C.D.8.(5分)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,其中有很多对几何体外接球的研究,如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的外接球的表面积是()A.81πB.33πC.56πD.41π9.(5分)已知函数f(x)=Asin(ωx+φ)的部分图象如图所示,若将函数f(x)的图象上点的纵坐标不变,横坐标缩短到原来的,再向右平移个单位,所得到的函数g(x)的解析式为()A.B.g(x)=2sin2xC.D.10.(5分)已知函数,g(x)=﹣f(﹣x),则方程f(x)=g(x)的解的个数为()A.4 B.3 C.2 D.111.(5分)已知抛物线C:y2=8x,圆F:(x﹣2)2+y2=4,直线l:y=k(x﹣2)(k≠0)自上而下顺次与上述两曲线交于M1,M2,M3,M4四点,则下列各式结果为定值的是()A.|M1M3|•|M2M4| B.|FM1|•|FM4| C.|M1M2|•|M3M4| D.|FM1|•|M1M2|12.(5分)已知l1,l2分别是函数f(x)=|lnx|图象上不同的两点P1,P2处的切线,l1,l2分别与y轴交于点A,B,且l1与l2垂直相交于点P,则△ABP的面积的取值范围是()A.(0,1)B.(0,2)C.(0,+∞)D.(1,+∞)二、填空题:本大题共4小题,每小题5分,满分20分.13.(5分)已知向量满足,,且,则向量与向量的夹角为.14.(5分)(x﹣2y+y2)6的展开式中,x2y5的系数为.15.(5分)在平面直角坐标系中,若不等式组(a为常数)所表示的平面区域内的面积等于1,则a的值为.16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知b=c,sinB+sin (A﹣C)=sin2A,若O为△ABC所在平面内一点,且O,C在直线AB的异侧,OA=2OB=2,则四边形OACB面积的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个考题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)在数列{an }中,a1=1,.(Ⅰ)设,求数列{bn}的通项公式;(Ⅱ)求数列{an }的前n项和Sn.18.(12分)如图所示,四棱锥P﹣ABCD中,底面ABCD为菱形,∠ABC=60°,∠PDC=90°,E为棱AP的中点,且AD⊥CE.(Ⅰ)求证:平面PAD⊥平面ABCD;(Ⅱ)当直线PB与底面ABCD成30°角时,求二面角B﹣CE﹣P的余弦值.19.(12分)为了适当疏导电价矛盾,保障电力供应,支持可再生能源发展,促进节能减排,安徽省于2012年推出了省内居民阶梯电价的计算标准:以一个年度为计费周期、月度滚动使用,第一阶梯电量:年用电量2160度以下(含2160度),执行第一档电价元/度;第二阶梯电量:年用电量2161至4200度(含4200度),执行第二档电价元/度;第三阶梯电量:年用电量4200度以上,执行第三档电价元/度.某市的电力部门从本市的用电户中随机抽取10户,统计其同一年度的用电情况,列表如表:用户编号12345678910年用电量(度)1000126014001824218024232815332544114600(Ⅰ)试计算表中编号为10的用电户本年度应交电费多少元(Ⅱ)现要在这10户家庭中任意选取4户,对其用电情况作进一步分析,求取到第二阶梯电量的户数的分布列与期望;(Ⅲ)以表中抽到的10户作为样本估计全市的居民用电情况,现从全市居民用电户中随机地抽取10户,若抽到k户用电量为第一阶梯的可能性最大,求k的值.20.(12分)已知椭圆的右顶点为A,上顶点为B,离心率,O为坐标原点,圆与直线AB相切.(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知四边形ABCD内接于椭圆E,AB∥DC.记直线AC,BD的斜率分别为k1,k 2,试问k1•k2是否为定值证明你的结论.21.(12分)已知函数,函数g(x)=﹣2x+3.(Ⅰ)判断函数的单调性;(Ⅱ)若﹣2≤a≤﹣1时,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤t|g(x1)﹣g(x2)|恒成立,求实数t的最小值.选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,直线l的参数方程是(t为参数),以O 为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为3ρ2cos2θ+4ρ2sin2θ=12,且直线l与曲线C交于P,Q两点.(Ⅰ)求直线l的普通方程及曲线C的直角坐标方程;(Ⅱ)把直线l与x轴的交点记为A,求|AP|•|AQ|的值.[选修4-5:不等式选讲]23.已知函数.(Ⅰ)当m=0时,求函数f(x)的最小值;(Ⅱ)若函数f(x)≤5在x∈[1,4]上恒成立,求实数m的取值范围.2018年安徽省宿州市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若集合A={x|1≤3x≤81},B={x|log2(x2﹣x)>1},则A∩B=()A.(2,4] B.[2,4] C.(﹣∞,0)∪[0,4] D.(﹣∞,﹣1)∪[0,4]【解答】解:A={x|1≤3x≤81}{x|0≤x≤4},B={x|log2(x2﹣x)>1}={x|x2﹣x>2}={x|x>2或x<﹣1},则A∩B={x|2<x≤4},故选:A.2.(5分)已知复数z=1﹣i(i为虚数单位),复数为z的共轭复数,则=()A.﹣2i B.2i C.4﹣2i D.4+2i【解答】解:由z=1﹣i,得,则==.故选:C.3.(5分)已知函数,执行如图所示的程序框图,输出的结果是()A.B.C.D.【解答】解:模拟程序的运行,可得程序的功能是利用循环结构计算并输出变量S=++…+的值,可得:S=++…+=(1﹣)+()+…+(﹣)=1﹣=.故选:B.4.(5分)在平面直角坐标系xOy中,设F1,F2分别为双曲线的左、右焦点,P是双曲线左支上一点,M是PF1的中点,且OM⊥PF1,2|PF1|=|PF2|,则双曲线的离心率为()A.B.C.2 D.【解答】解:P为双曲线左支上的一点,则由双曲线的定义可得,|PF2|﹣|PF1|=2a,由|PF2|=2|PF1|,则|PF2|=4a,|PF1|=2a,∵M是PF1的中点,且OM⊥PF1∴由△PF1F2为直角三角形,则|PF2|2+|=|PF2|2,=|F1F2|2.∴5a2=c2即有e=.故选:B.5.(5分)设,,,则a,b,c三个数从大到小的排列顺序为()A.a>b>c B.b>a>c C.b>c>a D.c>a>b【解答】解:b===>ln=ln=a,a=>=c.∴b>a>c.故选:B.6.(5分)若函数f(x)=sin(2x+θ)+cos(2x+θ)为奇函数,且在上为减函数,则θ的一个值为()A.﹣B.﹣C.D.【解答】解:∵f(x)=sin(2x+θ)+cos(2x+θ)=2sin(2x+θ+)为奇函数,故有θ+=kπ,即:θ=kπ﹣(k∈Z),可淘汰A、C选项,然后分别将B和C选项代入检验,易知当θ=时,f(x)=﹣2sin2x其在区间[﹣,0]上递减,故选:C.7.(5分)将3名教师和3名学生共6人平均分成3个小组,分别安排到三个社区参加社会实践活动,则每个小组恰好有1名教师和1名学生的概率为()A.B.C.D.【解答】解:将3名教师和3名学生共6人平均分成3个小组,分别安排到三个社区参加社会实践活动,基本事件总数n==90,每个小组恰好有1名教师和1名学生包含的基本事件个数m==36,∴每个小组恰好有1名教师和1名学生的概率为p===.故选:B.8.(5分)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,其中有很多对几何体外接球的研究,如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的外接球的表面积是()A.81πB.33πC.56πD.41π【解答】解:由三视图还原原几何体如图:该几何体为四棱锥,下底面ABCD是边长为4的正方形,侧面PAD为等腰三角形,且平面PAD⊥平面ABCD.棱锥的高为1,设三角形PAD的外心为G,则=2PG,∴PG=.再设该四棱锥外接球的半径为R,则则该几何体的外接球的表面积为.故选:D.9.(5分)已知函数f(x)=Asin(ωx+φ)的部分图象如图所示,若将函数f (x)的图象上点的纵坐标不变,横坐标缩短到原来的,再向右平移个单位,所得到的函数g(x)的解析式为()A.B.g(x)=2sin2x C.D.【解答】解:由题设图象知,A=2,周期T=4(x0+π﹣x)=4π,∴ω==.∵点(0,1)在函数图象上,∴2sin(φ)=1,即sin(φ)=.又∵0<φ<,∴φ=.故函数f(x)的解析式为f(x)=2sin(x+),将图象横坐标缩短到原来的,可得2sin(2x+),再向右平移个单位,可得2sin[2(x﹣)+]=2sin(2x),即 g(x)=2sin(2x),故选:D.10.(5分)已知函数,g(x)=﹣f(﹣x),则方程f(x)=g(x)的解的个数为()A.4 B.3 C.2 D.1【解答】解:函数的图象如图所示,由g(x)=﹣f(﹣x),可得g(x)和f(x)的图象关于原点对称,作出y=g(x)的图象,可得y=f(x)和y=g(x)的图象有4个交点,则方程f(x)=g(x)的解的个数为4.故选:A.11.(5分)已知抛物线C:y2=8x,圆F:(x﹣2)2+y2=4,直线l:y=k(x﹣2)(k≠0)自上而下顺次与上述两曲线交于M1,M2,M3,M4四点,则下列各式结果为定值的是()A.|M1M3|•|M2M4| B.|FM1|•|FM4| C.|M1M2|•|M3M4| D.|FM1|•|M1M2|【解答】解:分别设M1,M2,M3,M4四点横坐标为x1,x2,x3,x4,由y2=8x可得焦点F(2,0),准线 l:x=﹣2.由定义得:|M1F|=x1+2,又∵|M1F|=|M1M2|+2,∴|M1M2|=x1,同理:|M3M4|=x4,将y=k(x﹣2)时,代入抛物线方程,得:k2x2﹣(4k2+8)x+4k2=0,∴x1x2=4,∴|M1M2|•|M3M4|=4故选:C.12.(5分)已知l1,l2分别是函数f(x)=|lnx|图象上不同的两点P1,P2处的切线,l1,l2分别与y轴交于点A,B,且l1与l2垂直相交于点P,则△ABP的面积的取值范围是()A.(0,1)B.(0,2)C.(0,+∞)D.(1,+∞)【解答】解:设P1(x1,y1),P2(x2,y2)(0<x1<1<x2),当0<x<1时,f′(x)=﹣,当x>1时,f′(x)=,∴l1的斜率k1=﹣,l2的斜率k2=,∵l1与l2垂直,且x2>x1>0,∴k1•k2=﹣•=﹣1,即x1x2=1.直线l1:y=﹣(x﹣x1)﹣lnx1,l2:y=(x﹣x2)+lnx2.取x=0分别得到A(0,1﹣lnx1),B(0,﹣1+lnx2),|AB|=|1﹣lnx1﹣(﹣1+lnx2)|=|2﹣(lnx1+lnx2)|=|2﹣lnx1x2|=2.联立两直线方程可得交点P的横坐标为x=,∴S△PAB =|AB|•|xP|=×2×=,∵函数y=x+在(0,1)上为减函数,且0<x1<1,∴x1+>1+1=2,则0<<,∴0<<1.∴△PAB的面积的取值范围是(0,1).故选:A.二、填空题:本大题共4小题,每小题5分,满分20分.13.(5分)已知向量满足,,且,则向量与向量的夹角为.【解答】解:∵,∴,=2又∵∴即设向量与的夹角为θ则cosθ==∵θ∈[0,π]∴θ=故答案为:14.(5分)(x﹣2y+y2)6的展开式中,x2y5的系数为﹣480 .【解答】解:通项公式T=,r+1令6﹣r=2,解得r=4.∴T=.5又(y2﹣2y)4=(y2)4﹣•2y+﹣+,∴x2y5的系数为×(﹣•23)=﹣480.故答案为:﹣480.15.(5分)在平面直角坐标系中,若不等式组(a为常数)所表示的平面区域内的面积等于1,则a的值为 1 .【解答】解:当a<0时,不等式组所表示的平面区域,如图中的M,一个无限的角形区域,面积不可能为2,故只能a≥0,此时不等式组所表示的平面区域如图中的N,区域为三角形区域,若这个三角形的面积为1,则AB=2,即点B的坐标为(1,2),代入y=ax+1得a=1.故答案为:1;16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知b=c,sinB+sin (A﹣C)=sin2A,若O为△ABC所在平面内一点,且O,C在直线AB的异侧,OA=2OB=2,则四边形OACB面积的取值范围是.【解答】解:根据sinB+sin(A﹣C)=sin2A,可得sin(A+C)+sin(A﹣C)=sin2A,可得2sinAcosC=2sinAcosA,即cosC=cosA,那么b=c=a,三角形△ABC时等边三角.由OA=2OB=2,四边形OACB面积S=AO•OB•sin∠AOB+bcsinA,则四边形OACB面积S=+sin∠AOB=(5﹣4cos∠AOB)+sin∠AOB=sin∠AOB﹣cos ∠AOB=2sin(∠AOB﹣)∵0<∠AOB<π∴<∠AOB﹣那么:<2sin(∠AOB﹣)≤2∴OACB面积的取值范围是故答案为:三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个考题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)在数列{an }中,a1=1,.(Ⅰ)设,求数列{bn}的通项公式;(Ⅱ)求数列{an }的前n项和Sn.【解答】解:(I)由已知有∴,又b1=a1=1,利用累差叠加即可求出数列{bn}的通项公式:∴(n∈N*);(II)由(I)知,∴而,令①①×2得②①﹣②得==﹣2+(1﹣n)•2n+1∴.18.(12分)如图所示,四棱锥P﹣ABCD中,底面ABCD为菱形,∠ABC=60°,∠PD C=90°,E为棱AP的中点,且AD⊥CE.(Ⅰ)求证:平面PAD⊥平面ABCD;(Ⅱ)当直线PB与底面ABCD成30°角时,求二面角B﹣CE﹣P的余弦值.【解答】(Ⅰ)证明:取AD的中点O,连OE,OC,CA,∵∠ABC=60°,∴△ACD为等边三角形,得AD⊥OC,又AD⊥CE,∴AD⊥平面COE,得AD⊥OE,又OE∥PD,∴AD⊥PD,又∠PDC=90°,∴PD⊥平面ABCD,又PD⊂平面PAD,∴平面PAD⊥平面ABCD;(Ⅱ)解:由(Ⅰ)知OE⊥平面ABCD,AD⊥OC,以OC,OD,OE分别为x,y,z轴建立空间直角坐标系,如图所示,设菱形ABCD的边长为2,则,,∵直线PB与底面ABCD成30°角,即∠PBD=30°,∴,∴,∴,设为平面BCE的一个法向量,=1,则,则,令x1∴;设为平面PCE的一个法向量,则,令x=1,则,2∴.∴,由题可知二面角B﹣CE﹣P的平面角为钝角,二面角B﹣CE﹣P的余弦值为.19.(12分)为了适当疏导电价矛盾,保障电力供应,支持可再生能源发展,促进节能减排,安徽省于2012年推出了省内居民阶梯电价的计算标准:以一个年度为计费周期、月度滚动使用,第一阶梯电量:年用电量2160度以下(含2160度),执行第一档电价元/度;第二阶梯电量:年用电量2161至4200度(含4200度),执行第二档电价元/度;第三阶梯电量:年用电量4200度以上,执行第三档电价元/度.某市的电力部门从本市的用电户中随机抽取10户,统计其同一年度的用电情况,列表如表:12345678910用户编号年用电1000126014001824218024232815332544114600量(度)(Ⅰ)试计算表中编号为10的用电户本年度应交电费多少元(Ⅱ)现要在这10户家庭中任意选取4户,对其用电情况作进一步分析,求取到第二阶梯电量的户数的分布列与期望;(Ⅲ)以表中抽到的10户作为样本估计全市的居民用电情况,现从全市居民用电户中随机地抽取10户,若抽到k户用电量为第一阶梯的可能性最大,求k的值.【解答】解:(I)因为第二档电价比第一档电价多元/度,第三档电价比第一档电价多元/度,编号为10的用电户一年的用电量是4600度,则该户本年度应交电费为:4600×+(4200﹣2160)×+(4600﹣4200)×=元.(II)设取到第二阶梯电量的用户数为X,可知第二阶梯电量的用户有4户,则X可取0,1,2,3,4.,,,,,故X的分布列是:X01234P所以.(III)由题意可知从全市中抽取10户的用电量为第一阶梯,满足X~B(10,),可知(k=0,…10),∵抽到k户用电量为第一阶梯的可能性最大,∴,解得,∵k∈N*所以当k=4时,概率最大,所以k=4.20.(12分)已知椭圆的右顶点为A,上顶点为B,离心率,O为坐标原点,圆与直线AB相切.(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知四边形ABCD内接于椭圆E,AB∥DC.记直线AC,BD的斜率分别为k1,k 2,试问k1•k2是否为定值证明你的结论.【解答】解:(I)直线AB的方程为+=1,即bx+ay﹣ab=0,由圆O与直线AB相切,得=,即=,①设椭圆的半焦距为c,则e==,∴=1﹣e2=,②由①②得a2=4,b2=1.故椭圆的标准方程为;( II)k1•k2=为定值,证明过程如下:由(I)得直线AB的方程为y=﹣x+1,故可设直线DC的方程为y=﹣x+m,显然m≠±1.设C(x1,y1),D(x2,y2).联立消去y得x2﹣2mx+2m2﹣2=0,则△=8﹣4m2>0,解得﹣<m<,且m≠±1,∴x1+x2=2m,x1x2=2m2﹣2.由,,则=,=,=,==.21.(12分)已知函数,函数g(x)=﹣2x+3.(Ⅰ)判断函数的单调性;(Ⅱ)若﹣2≤a≤﹣1时,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤t|g(x1)﹣g(x2)|恒成立,求实数t的最小值.【解答】解:(I),其定义域为为(0,+∞),=.(1)当a≤0时,F'(x)≥0,函数y=F(x)在(0,+∞)上单调递增;(2)当a>0时,令F'(x)>0,解得;令F'(x)<0,解得.故函数y=F(x)在上单调递增,在上单调递减.(II)由题意知t≥0.,当﹣2≤a≤﹣1时,函数y=f(x)单调递增,不妨设1≤x1≤x2≤2,又函数y=g(x)单调递减,所以原问题等价于:当﹣2≤a≤﹣1时,对任意1≤x1≤x2≤2,不等式f(x2)﹣f(x1)≤t[g(x1)﹣g(x2)]恒成立,即f(x2)+tg(x2)≤f(x1)+tg(x1)对任意﹣2≤a≤﹣1,1≤x1≤x2≤2恒成立.记h(x)=f(x)+tg(x)=lnx﹣+(1﹣2t)x+3t,则h(x)在[1,2]上单调递减.得对任意a∈[﹣2,﹣1],x∈[1,2]恒成立.令,a∈[﹣2,﹣1],则2t≤0在x∈(0,+∞)上恒成立.则2t﹣1≥(2x+)max,而y=2x+在[1,2]上单调递增,所以函数y=2x+在[1,2]上的最大值为.由2t﹣1,解得t.故实数t的最小值为.选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,直线l的参数方程是(t为参数),以O 为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为3ρ2cos2θ+4ρ2sin2θ=12,且直线l与曲线C交于P,Q两点.(Ⅰ)求直线l的普通方程及曲线C的直角坐标方程;(Ⅱ)把直线l与x轴的交点记为A,求|AP|•|AQ|的值.【解答】解:(Ⅰ)∵直线l的参数方程是(t为参数),∴直线l消去参数t,得直线l的普通方程为x﹣y﹣1=0,∵曲线C的极坐标方程为3ρ2cos2θ+4ρ2sin2θ=12,∴曲线C的直角坐标方程为3x2+4y2=12.(II)解法一:在x﹣y﹣1=0中,令y=0,得x=1,则A(1,0),联立,消去y,得7x2﹣8x﹣8=0.设P(x1,y1),Q(x2,y2),其中x1<x2,则有x1+x2=,x1x2=﹣.|AP|=|x1﹣1|=﹣(x1﹣1),|AQ|=|x2﹣1|=(x2﹣1),故|AP|•|AQ|=﹣2(x1﹣1)(x2﹣1)=﹣2[x1x2﹣(x1+x2)+1]=.解法二:把,代入3x2+4y2=12,得14t2+6﹣9=0,则t1t2=﹣,则|AP|•|AQ|=(﹣2t1)•(2t2)=﹣4t1t2=.[选修4-5:不等式选讲]23.已知函数.(Ⅰ)当m=0时,求函数f(x)的最小值;(Ⅱ)若函数f(x)≤5在x∈[1,4]上恒成立,求实数m的取值范围.【解答】解:(Ⅰ)当m=0时,,当且仅当,即x=±2时等式成立,所以,当x=±2时,f(x)min=4.(Ⅱ)当x∈[1,4]时,函数f(x)的最大值为5⇔在x∈[1,4]上恒成立,⇔在x∈[1,4]上恒成立,⇔在x∈[1,4]上恒成立,⇔,且在x∈[1,4]上恒成立,函数在[1,2]上单调递减,在[2,4]上单调递增.∵,当且仅当x=2时等式成立,而在x∈[1,4]上是恒成立的.∴2m﹣5≤4∴,即实数m的取值范围是.。
2018年安徽高考理科数学试题及答案
2018年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。
) 1、设z=,则∣z ∣=( )A.0B.C.1D. 2、已知集合A={x|x 2-x-2>0},则 A =( ) A 、{x|-1<x<2} B 、{x|-1≤x ≤2}C 、{x|x<-1}∪{x|x>2}D 、{x|x ≤-1}∪{x|x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记S n 为等差数列{a n }的前n 项和,若3S 3 = S 2+ S 4,a 1 =2,则a 5 =( ) A 、-12 B 、-10 C 、10 D 、125、设函数f (x )=x ³+(a-1)x ²+ax .若f (x )为奇函数,则曲线y= f (x )在点(0,0)处的切线方程为( )A.y= -2xB.y= -xC.y=2xD.y=x6、在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=( ) A.- B. - C. + D. +7、某圆柱的高为2,底面周长为16,其三视图如右图。
圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A. 2B. 2C. 3D. 28.设抛物线C :y ²=4x 的焦点为F ,过点(-2,0)且斜率为的直线与C 交于M ,N 两点,则 ·=( ) A.5 B.6 C.7 D.8 9.已知函数f (x )= g (x )=f (x )+x+a ,若g (x )存在2个零点,则a 的取值范围是( )A. [-1,0)B. [0,+∞)C. [-1,+∞)D. [1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形。
安徽省宿州市高考数学一模试卷(理科)
安徽省宿州市高考数学一模试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)若集合A={x||x|≤1,x∈R},B={y|y=x2 ,x∈R},则A∩B=()A . {x|﹣1≤x≤1}B . {x|x≥0}C . {x|0≤x≤1}D . ∅2. (2分) (2016高一上·澄海期中) 设集合A={x|1≤x≤2},B={y|1≤y≤4},则下述对应法则f中,不能构成A到B的映射的是()A . f:x→y=x2B . f:x→y=3x﹣2C . f:x→y=﹣x+4D . f:x→y=4﹣x23. (2分) (2018高一上·台州期末) 设,,,则()A .B .C .D .4. (2分)已知、为单位向量,其夹角为,则向量与向量的关系是()A . 相等B . 垂直C . 平行D . 共线5. (2分) (2018高二上·黑龙江期末) 已知抛物线的焦点为,准线为,是上一点,是直线与的一个交点,若,则()A . 3B . 2C .D .6. (2分) (2017高一下·宿州期中) 若实数x,y满足约束条件,则z=2x+y的最大值为()A . 9B . 4C . 6D . 37. (2分)(2017·松江模拟) 已知a,b∈R,则“ab>0“是“ >2”的()A . 充分非必要条件B . 必要非充分条件C . 充要条件D . 既非充分也非必要条件8. (2分) (2016高一上·西城期末) 函数(其中ω>0,0<φ<π)的图象的一部分如图所示,则()A .B .C .D .9. (2分) (2016高三上·怀化期中) 如图所示的程序运行后输出的结果是()A . ﹣5B . ﹣3C . 0D . 110. (2分)有5名优秀毕业生到母校的3个班去作学习经验交流,则每个班至少去一名的不同分派方法种数为()A . 150B . 180C . 200D . 28011. (2分)下图是一个几何体的正(主)视图和侧(左)视图,其俯视图是面积为的矩形.则该几何体的表面积是()A .B .C . 8D . 1612. (2分) (2019高一上·大庆月考) 函数在上单调递减,且为奇函数.若,则满足的的取值范围是()A .B .C .D .二、填空题: (共4题;共4分)13. (1分)(2017·福州模拟) 点P在曲线 =1上,点Q在曲线x2+(y﹣3)2=4上,线段PQ的中点为M,O是坐标原点,则线段OM长的最小值是________.14. (1分) (2015高三上·太原期末) ()6的展开式中,常数项为________(用数字作答)15. (1分)半径为的圆形铁片剪去一个扇形,用剩下的部分卷一个圆锥.圆锥的体积最大值为________16. (1分)若是函数f(x)=sin2x+acos2x(a∈R且为常数)的零点,则f(x)的最大值是_________三、解答题: (共7题;共55分)17. (10分) (2016高三上·西安期中) 在等差数列{an}中,a2=6,a3+a6=27.(1)求数列{an}的通项公式;(2)若数列{bn}的通项公式为,求数列{an•bn}的前n项的和Tn .18. (5分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.(Ⅰ)求至少有一种新产品研发成功的概率;(Ⅱ)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元,求该企业可获利润的分布列和数学期望.19. (10分)如图,在多面体ABCDEF中,四边形ABCD为矩形,△ADE,△BCF均为等边三角形,EF∥AB,EF=AD=AB,N为线段PC的中点.(1)求证:AF∥平面BDN;(2)求直线BN与平面ABF所成角的正弦值.20. (5分)已知椭圆C: + =1(a>b>0),离心率e= ,已知点P(0,)到椭圆C的右焦点F的距离是.设经过点P且斜率存在的直线与椭圆C相交于A、B两点,线段AB的中垂线与x轴相交于一点Q.(Ⅰ)求椭圆C的标准方程;(Ⅱ)求点Q的横坐标x0的取值范围.21. (5分) (2015高二下·射阳期中) 已知函数f(x)=x2+alnx.(Ⅰ)当a=﹣2时,求函数f(x)的单调区间和极值;(Ⅱ)若g(x)=f(x)+ 在[1,+∞)上是单调增函数,求实数a的取值范围.22. (10分) (2016高二下·黄骅期中) 在平面直角坐标系xOy中,圆C的参数方程为(θ为参数),直线l经过点P(1,1),倾斜角,(1)写出直线l的参数方程;(2)设l与圆C相交于两点A,B,求点P到A,B两点的距离之积.23. (10分)已知关于x的不等式|2x+1|-|x-1|≤log2a(其中a>0).(1)当a=4时,求不等式的解集;(2)若不等式有解,求实数a的取值范围.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题: (共7题;共55分)17-1、17-2、18-1、19-1、19-2、20-1、21-1、22-1、22-2、23-1、23-2、。
安徽省宿州市褚兰中学2018届高三数学第一次摸底考试卷理201808020146
褚兰中学2018届高三第一次摸底考试理科数学试题第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).1.设集合A ={y |y =2x ,x ∈R},B ={x |x 2-1<0},则A ∪B =( ) A .(-1,1) B .(0,1) C .(-1,+∞) D .(0,+∞) 2.若复数z 满足z (i +1)=,则复数z 的虚部为( ) 2i -1A .-1B .0C .iD .1 3.sin 210°cos 120°的值为( )A. B .- C .- D. 143432344.已知数列{a n }的前n 项和S n =n 2-2n ,则a 2+a 18=( ) A .36 B .35 C .34 D .335.已知f (x )=Error!且f (0)=2,f (-1)=3,则f (f (-3))=( ) A .-2 B .2 C .3 D .-36. 在内随机取出两个数,则这两个数满足的概率为[][]4,6,2,4x y ∈∈30x y -->( ) A .B .C .D . 14181101167. 若圆与直线交于不同的两点,则实数的取值范围为( )2212160x y x +-+=y kx =kA .B .C .D . ((((8.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =,则△ABC π3的面积是( )A .3 B. C.D .393233239.《九章算数》中,将底面是直角三角形的直三棱柱称为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B .4+2C .4+4D .6+422210. 运行如下程序框图,如果输入的,则输出属于( ) []0,5t ∈SA .B .C .D .[)4,10-[]5,2-[]4,3-[]2,5-11.设向量a ,b 满足|a |=1,|a -b |=,a ·(a -b )=0,则|2a +b |=( ) 3A .2 B .2 C .4 D .43312.已知函数存在极值,若这些极值的和大于,则实数的取值()2ln f x ax x x =--5ln 2+a 范围为( )A .B .C .D .(),4-∞()4,+∞(),2-∞()2,+∞ 第Ⅱ卷本试卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答. 二、填空题(本大题共4小题,每小题5分,共20分)13.若二项式展开式中的第5项是常数,则自然数n 的值为________.2nx ⎫-⎪⎭14.已知x ,y 满足则的取值范围是________.20,30,10.y x x y -⎧⎪+⎨⎪--⎩≤≥≤x +y -6x -415.下列说法中正确的是________.①命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x ≠1,则x 2-3x +2≠0” ②“x =2”是“x 2-3x +2=0”的充分不必要条件③若命题p :∃x 0∈R,使得x -x 0+1≤0,则¬p :对∀x ∈R,都有x 2-x +1>020④若p ∨q 为真命题,则p ,q 均为真命题16.已知F 是抛物线y 2=4x 的焦点,A ,B 是抛物线上两点,若△AFB 是正三角形,则△AFB 的边长为________.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份的降雨量X (单位:毫米)有关.据统计,当X =70时,Y =460;X 每增加10,Y 增加5.已知近20年X 的值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表: 近20年六月份降雨量频率分布表降雨量 70 110 140 160 200 220 频率120420220(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.18.(本小题满分10分)已知曲线C 1的参数方程为Error!曲线C 2的极坐标方程为ρ=2(cos θ2-),以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系. π4(1)求曲线C 2的直角坐标方程;(2)求曲线C 2上的动点M 到曲线C 1的距离的最大值.19.(本小题满分12分)已知数列{}n a 为公差不为0的等差数列,满足,且15a =2930,,a a a 成等比数列.(1)求{}n a 的通项公式;(2)若直线与平面所成角的正切值为,求二面角的大小. DM ABC 2B CD E --21.(本小题满分12分)如图,椭圆C :+=1(a >b >0)的右焦点为F ,右顶点,上顶点分x 2a 2y 2b2别为A ,B ,且|AB |=|BF |.52(1)求椭圆C 的离心率;(2)若斜率为2的直线l 过点(0,2),且l 交椭圆C 于P ,Q 两点,OP ⊥OQ ,求直线l 的方程及椭圆C 的方程.22.(本小题满分12分)设函数f (x )=(a ∈R ).3x 2+axe x(1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求a 的取值范围.褚兰中学2018届高三第一次摸底考试理科数学参考答案1.C2.B3.A4.C5.B6.B7.C8.C9.C 10.A 11.B 12.B 13.12 14. 15.①②③ 16.8+4或8-4131,7⎡⎤⎢⎣⎦3317.解:(1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个.故近20年六月份降雨量频率分布表为降雨量 70 110 140 160 200 220 频率120320420720320220(2)由已知可得Y =+425,故P (“发电量低于490万千瓦时或超过530万千瓦时”)X2=P (Y <490或Y >530)=P (X <130或X >210)=P (X =70)+P (X =110)+P (X =220) =++=. 120320220310故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为. 31018.解:(1)ρ=2cos =2(cos θ+sin θ),即ρ2=2(ρcos θ+ρsin θ), 2(θ-π4)可得x 2+y 2-2x -2y =0,故C 2的直角坐标方程为(x -1)2+(y -1)2=2.(2)C 1的普通方程为x +y +2=0,由(1)知曲线C 2是以(1,1)为圆心,以为半径的圆,且圆32心到直线C 1的距离d ==, |1+3+2|12+(3)23+32所以动点M 到曲线C 1的距离的最大值为.3+3+22219.(1)设等差数列{}n a 的公差为d (),由成等比数列可知0d ≠2930,,a a a ,又,解得,∴.………………4分()()()2111298a a d a d d +=++15a =2d =23n a n =+(2)由,得, ()111n n n a n b b *+-=∈N ()11112,n n n a n n b b *---=≥∈N当2n ≥时,11221111111111n n n n n b b b b b b b b ---⎛⎫⎛⎫⎛⎫=-+-++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()()()121111126322n n a a a n n n n b --=++++=-++=+ , …………………8分 对113b =上式也成立,∴ ,∴()1111222n b n n n n ⎛⎫==- ⎪++⎝⎭,()()12nn n n b *=+∈N ∴()()21111111311351232422212412n n n T n n n n n n ⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=--= ⎪ ⎪ ⎪ ⎪⎢⎥+++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()()231135212412n nn n n n +⎫--=⎪++++⎭ ……………………… 12分20.(1)因为是等边三角形,为的中点,所以. ABC △M AB CM AB ⊥又因为平面,,可得平面, DB ⊥ABC DB CM ∴⊥CM ⊥ABDE 因为平面,所以;(4分)EM ⊂ABDE CM EM ⊥(2)如图,以点为坐标原点,所在直线分别为轴,过且与直线平行M ,MC MB ,x y M BD 的直线为轴,建立空间直角坐标系.因为平面,所以为直线与平z DB ⊥ABC DMB ∠DM 面所成的角.(6分) ABC 由题意得,即,故,,tan 2BDDMB MB∠==2BD =()0,1,0B )C ,于是)1,0BC =-, ()0,0,2BD = , ()1,1CE =-,()()0,1,2,0,1,1D E -()2CD =,设平面与平面的法向量分别为,BCD CDE ()111,,x y z =m,则由得令,得所以()222,,x y z =n 0BC BD ⎧⋅=⎨⋅=⎩ mm 11x =1y = (10分) 的大小为90︒.(12分) B CD E --xyCx+2y=0y=5a 2,4a 2+4(即17x 2+32x +16-4b 2=0.Δ=322+16×17(b 2-4)>0,解得b >. 21717x 1+x 2=-,x 1x 2=.321716-4b 217∵OP ⊥OQ ,∴·=0,即x 1x 2+y 1y 2=0,x 1x 2+(2x 1+2)(2x 2+2)=0, 5x 1x 2+4(x 1+x 2)+4=0.从而-+4=0,5(16-4b 2)1712817解得b =1,满足b >.∴椭圆C 的方程为+y 2=1.21717x 2422.解:(1)对f (x )求导得f ′(x )==,(6x +a )e x -(3x 2+ax )e x (e x )2-3x 2+(6-a )x +ae x 因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0.当a =0时,f (x )=,f ′(x )=,故f (1)=,f ′(1)=,从而f (x )在点(1,f (1))3x 2e x -3x 2+6x e x 3e 3e 处的切线方程为y -=(x -1),化简得3x -e y =0.3e 3e (2)由(1)知f ′(x )=.-3x 2+(6-a )x +ae x 令g (x )=-3x 2+(6-a )x +a ,由g (x )=0解得x 1=,x 2=.6-a -a 2+3666-a +a 2+366当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数; 当x 1<x <x 2时,g (x )>0,即f ′(x )>0,故f (x )为增函数;当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数.由f (x )在[3,+∞)上为减函数,知x 2=≤3,解得a ≥-,6-a +a 2+36692故a 的取值范围为. 9,2⎡⎫-+∞⎪⎢⎣⎭褚兰中学2018届高三第一次摸底考试理科数学 答题卡姓名:______________________________ 班级: 准考证号请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效。
【高三数学试题精选】2018年高考数学理科一模试卷(宿州市含答案和解释)
2018年高考数学理科一模试卷(宿州市含答案和解释)
5 c 安徽省宿州市5不等式选讲]
23.设函数f(x)=|x﹣2|+|x﹣a|,x∈R.
(Ⅰ)求证当a=﹣1时,不等式lnf(x)>1成立;
(Ⅱ)关于x的不等式f(x)≥a在R上恒成立,求实数a的最大值.
5不等式选讲]
23.(2018 宿州一模)设函数f(x)=|x﹣2|+|x﹣a|,x∈R.(Ⅰ)求证当a=﹣1时,不等式lnf(x)>1成立;
(Ⅱ)关于x的不等式f(x)≥a在R上恒成立,求实数a的最大值.
【考点】绝对值不等式的解法;绝对值三角不等式.
【分析】(Ⅰ)通过讨论x的范围,得到f(x)的分段函数的形式,求出f(x)的最小值,从而证出结论即可;
(Ⅱ)求出f(x)的最小值,得到关于a的不等式,解出即可.【解答】解(Ⅰ)证明当a=﹣1时,
,
故f(x)的最小值为3,
则lnf(x)的最小值为ln3>lne=1,
所以lnf(x)>1成立.
(Ⅱ)由绝对值不等式可得
f(x)=|x﹣2|+|x﹣a|≥|(x﹣2)﹣(x﹣a)|=|a﹣2|,
再由不等式f(x)≥a在R上恒成立,
可得|a﹣2|≥a,解得a≤1,
故a的最大值为1.
【点评】本题考查了求分段函数的最值问题,考查绝对值的性质,。
安徽省宿州市数学高三理数第一次综合测试试卷
安徽省宿州市数学高三理数第一次综合测试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共11题;共11分)1. (1分)(2018·广东模拟) 已知,集合,集合,若,则()A .B .C .D .2. (1分)若复数是实数,则的值为()A . -3B . 3C .D .3. (1分)已知a=0.65.1 , b=5.10.6 , c=log0.65.1,则()A . a<b<cB . c<a<bC . c<b<aD . a<c<b4. (1分) (2019高二上·大观月考) 若在不等式组表示的区域内任取一点P,则点P落在圆内概率为()A .B .C .D .5. (1分) (2018高三上·西安模拟) 在中,“ ”是“ 是钝角三角形”的().A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件6. (1分)设为定义在R上的奇函数,当时,(m为常数),则()A . 3B . 1C .D .7. (1分) (2020高二下·北京期中) 如果把二次函数与其导函数的图象画在同一个坐标系中,则下面四组图中一定错误的是()A .B .C .D .8. (1分)函数f(x)=Acos(ωx+φ)(A>0,ω>0)在x=3处取最大值,则()A . f(x﹣3)一定是奇函数B . f(x﹣3)一定是偶函数C . f(x+3)一定是奇函数D . f(x+3)一定是偶函数9. (1分)一个空间几何体的三视图如右图所示,则该几何体的外接球的表面积为()A .B .C .D .10. (1分) (2016高一上·佛山期中) 定义域与值域都是[﹣2,2]的两个函数f(x)、g(x)的图象如图所示(实线部分),则下列四个命题中,①方程f[g(x)]=0有6个不同的实数根;②方程g[f(x)]=0有4个不同的实数根;③方程f[f(x)]=0有5个不同的实数根;④方程g[g(x)]=0有3个不同的实数根;正确的命题是()A . ②③④B . ①④C . ②③D . ①②③④11. (1分)(2017·临沂模拟) 已知双曲线与双曲线的离心率相同,双曲线C1的左、右焦点分别为F1 , F2 , M是双曲线C1的一条渐近线上的点,且OM⊥MF2 ,若△OMF2的面积为,则双曲线C1的实轴长是()A . 32B . 16C . 8D . 4二、填空题 (共4题;共4分)12. (1分)已知点A(1,2),B(2,5), =2 ,则点C的坐标为________.13. (1分)(2017·湖北模拟) (x2+2x﹣1)5的展开式中,x3的系数为________(用数字作答)14. (1分) (2020高一下·永年期中) 在中,角A,B,C所对的边分别为a,b,c,且,则的最大角的大小是________.15. (1分)正三棱柱ABC﹣A1B1C1的各棱长都为2,E,F分别为AB,A1C1的中点,则EF的长是________.三、解答题 (共7题;共14分)16. (2分)设是等差数列,是均为正的等比数列,且,,(Ⅰ)求,的通项公式;(Ⅱ)求数列的前项和.17. (2分) (2019高二下·珠海期末) 袋子中装有大小形状完全相同的5个小球,其中红球3个白球2个,现每次从中不放回的取出一球,直到取到白球停止.(1)求取球次数的分布列;(2)求取球次数的期望和方差.18. (2分) (2017高一上·武邑月考) 如图,在三棱锥中,平面平面,为等边三角形,且,分别为的中点.(1)求证:平面 .(2)求证:平面平面 .(3)求三棱锥的体积.19. (2分)(2020·梧州模拟) 已知抛物线C:x2=2py(p>0)的焦点为(0,1)(1)求抛物线C的方程;(2)设直线l2:y=kx+m与抛物线C有唯一公共点P ,且与直线l1:y=﹣1相交于点Q ,试问,在坐标平面内是否存在点N ,使得以PQ为直径的圆恒过点N?若存在,求出点N的坐标,若不存在,说明理由.20. (2分)(2014·天津理) 设f(x)=x﹣aex(a∈R),x∈R,已知函数y=f(x)有两个零点x1 , x2 ,且x1<x2 .(1)求a的取值范围;(2)证明:随着a的减小而增大;(3)证明x1+x2随着a的减小而增大.21. (2分) (2019·齐齐哈尔模拟) 选修4-4:坐标系与参数方程已知曲线的参数方程为(为参数),是曲线上的任一点,过作轴的垂线,垂足为,线段的中点的轨迹为 .(1)求曲线的直角坐标方程;(2)以原点为极点,轴正半轴为极轴建立极坐标系.若直线:交曲线于,两点,求 .22. (2分) (2019高三上·长春月考) 已知函数.(1)求不等式的解集;(2)若关于的不等式在上有解,求实数的取值范围.参考答案一、单选题 (共11题;共11分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、二、填空题 (共4题;共4分)12-1、13-1、14-1、15-1、三、解答题 (共7题;共14分)16-1、17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年安徽省宿州市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合A={x|1≤3x≤81},B={x|log2(x2−x)>1},则A∩B=()A.(2, 4]B.[2, 4]C.(−∞, 0)∪[0, 4]D.(−∞, −1)∪[0, 4]【答案】A【考点】交集及其运算【解析】求出集合,利用集合的基本运算进行求解.【解答】A={x|1≤3x≤81}{x|0≤x≤4},B={x|log2(x2−x)>1}={x|x2−x>2}={x|x>2或x<−1},则A∩B={x|2<x≤4},2. 已知复数z=1−i(i为虚数单位),复数z为z的共轭复数,则z2−2zz−1=()A.−2iB.2iC.4−2iD.4+2i【答案】C【考点】复数代数形式的乘除运算【解析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:由z=1−i,得z=1+i,则z2−2zz−1=(1−i)2−2(1+i)1−i−1=2+4i i=−i(2+4i)−i2=4−2i.故选C.3. 已知函数f(x)=1x(x+1),执行如图所示的程序框图,输出的结果是()A.20172018 B.20182019C.20182017D.20192018【答案】 B【考点】 程序框图 【解析】由已知中的程序语句可知程序的功能是利用循环结构计算并输出变量S =11×2+12×3+...+12018×2019的值,由裂项法即可计算得解. 【解答】模拟程序的运行,可得程序的功能是利用循环结构计算并输出变量 S =11×2+12×3+...+12018×2019的值, 可得:S =11×2+12×3+...+12018×2019 =(1−12)+(12−13)+...+(12018−12019)=1−12019=20182019.4. 在平面直角坐标系xOy 中,设F 1,F 2分别为双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P 是双曲线左支上一点,M 是PF 1的中点,且OM ⊥PF 1,2|PF 1|=|PF 2|,则双曲线的离心率为( )A.√6B.√5C.2D.√3【答案】 B【考点】双曲线的离心率 【解析】运用双曲线的定义和△PF 1F 2为直角三角形,则|PF 2|2+|=|PF 2|2,=|F 1F 2|2.,由离心率公式,计算即可得到离心率的范围. 【解答】P 为双曲线左支上的一点,则由双曲线的定义可得,|PF 2|−|PF 1|=2a , 由|PF 2|=2|PF 1|,则|PF 2|=4a ,|PF 1|=2a , ∵ M 是PF 1的中点,且OM ⊥PF 1∴ 由△PF 1F 2为直角三角形,则|PF 2|2+|=|PF 2|2,=|F 1F 2|2. ∴ 5a 2=c 2 即有e =√5. 5. 设a =ln22,b =ln33,c =ln55,则a ,b ,c 三个数从大到小的排列顺序为( )A.a >b >cB.b >a >cC.b >c >aD.c >a >b【答案】 B【考点】对数值大小的比较 【解析】 b =ln33=ln √33=ln √96>ln √86=ln √2=a ,同理可得a 与c 的大小关系.【解答】 b =ln33=ln √33=ln √96>ln √86=ln √2=a ,a =ln √2510>ln √5210=c . ∴ b >a >c .6. 若函数f(x)=√3sin(2x +θ)+cos(2x +θ)为奇函数,且在[−π4,0]上为减函数,则θ的一个值为( )A.−π3B.−π6C.5π6D.2π3【答案】 C【考点】两角和与差的正弦公式 两角和与差的余弦公式 正弦函数的单调性 【解析】首先根据已知将函数f(x)化简为f(x)=2sin(2x +θ+π6),然后根据函数的奇偶性确定θ的取值,将选项分别代入验证再根据单调性即可排除选项. 【解答】解:∵ f(x)=√3sin(2x +θ)+cos(2x +θ)=2sin(2x +θ+π6)为奇函数, 故有θ+π6=kπ,即:θ=kπ−π6(k ∈Z),可淘汰A 、D 选项, 然后分别将B 和C 选项代入检验, 易知当θ=5π6时,f(x)=−2sin2x 其在区间[−π4, 0]上单调递减. 故选C .7. 将3名教师和3名学生共6人平均分成3个小组,分别安排到三个社区参加社会实践活动,则每个小组恰好有1名教师和1名学生的概率为()A.1 3B.25C.12D.35【答案】B【考点】古典概型及其概率计算公式【解析】基本事件总数n=C62C42C22=90,每个小组恰好有1名教师和1名学生包含的基本事件个数m=C31C31C21C21C11C11=36,由此能求出每个小组恰好有1名教师和1名学生的概率.【解答】将3名教师和3名学生共6人平均分成3个小组,分别安排到三个社区参加社会实践活动,基本事件总数n=C62C42C22=90,每个小组恰好有1名教师和1名学生包含的基本事件个数m=C31C31C21C21C11C11=36,∴每个小组恰好有1名教师和1名学生的概率为p=mn =3690=25.8. 《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,其中有很多对几何体外接球的研究,如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的外接球的表面积是()A.81πB.33πC.56πD.41π【答案】D【考点】由三视图求体积【解析】由三视图还原原几何体,该几何体为四棱锥,下底面ABCD是边长为4的正方形,侧面PAD为等腰三角形,且平面PAD⊥平面ABCD,再求出其外接球的半径,则其外接球的表面积可求.【解答】由三视图还原原几何体如图:该几何体为四棱锥,下底面ABCD 是边长为4的正方形,侧面PAD 为等腰三角形,且平面PAD ⊥平面ABCD .棱锥的高为1,设三角形PAD 的外心为G ,则PDsin∠DAP =2PG ,∴ PG =52.再设该四棱锥外接球的半径为R ,则R =√(52)2+22=√412则该几何体的外接球的表面积为4π×(√412)2=41π.9. 已知函数f(x)=Asin(ωx +φ)(A >0,ω>0,0<φ<π2)的部分图象如图所示,若将函数f(x)的图象上点的纵坐标不变,横坐标缩短到原来的14,再向右平移π6个单位,所得到的函数g(x)的解析式为( )A.g(x)=2sin 14x B.g(x)=2sin2x C.g(x)=2sin(14x −π6) D.g(x)=2sin(2x −π6)【答案】 D【考点】由y=Asin (ωx+φ)的部分图象确定其解析式 【解析】根据图象求出A ,ω 和φ,即可求函数f(x)的解析式;通过平移变换规律即可求解g(x). 【解答】由题设图象知,A =2,周期T =4(x 0+π−x 0)=4π, ∴ ω=2πT=12. ∵ 点(0, 1)在函数图象上, ∴ 2sin(φ)=1,即sin(φ)=12. 又∵ 0<φ<π2, ∴ φ=π6.故函数f(x)的解析式为f(x)=2sin(12x +π6),将图象横坐标缩短到原来的14,可得2sin(2x +π6),再向右平移π6个单位,可得2sin[2(x −π6)+π6]=2sin(2x −π6), 即 g(x)=2sin(2x −π6),10. 已知函数f(x)={2x 2+4x +1,x <02e x ,x ≥0 ,g(x)=−f(−x),则方程f(x)=g(x)的解的个数为( )A.4B.3C.2D.1【答案】 A【考点】函数的零点与方程根的关系 【解析】作出y =f(x)的图象,由题意可得g(x)和f(x)的图象关于原点对称,作出y =g(x)的图象,由两图象的交点个数,可得方程解的个数. 【解答】函数f(x)={2x 2+4x +1,x <02e x ,x ≥0 的图象如图所示, 由g(x)=−f(−x),可得g(x)和f(x)的图象关于原点对称,作出y =g(x)的图象,可得y =f(x)和y =g(x)的图象有4个交点, 则方程f(x)=g(x)的解的个数为(4)11. 已知抛物线C:y 2=8x ,圆F :(x −2)2+y 2=4,直线l:y =k(x −2)(k ≠0)自上而下顺次与上述两曲线交于M 1,M 2,M 3,M 4四点,则下列各式结果为定值的是( ) A.|M 1M 3|⋅|M 2M 4| B.|FM 1|⋅|FM 4| C.|M 1M 2|⋅|M 3M 4| D.|FM 1|⋅|M 1M 2| 【答案】 C【考点】 抛物线的求解 【解析】利用抛物线的定义和:|M 1F|=x 1+2就可得出|M 1M 2|=x 1,同理可得|M 3M 4|=x 4,将直线的方程代入抛物线方程,利用根与系数关系可求得. 【解答】分别设M 1,M 2,M 3,M 4四点横坐标为x 1,x 2,x 3,x 4, 由y 2=8x 可得焦点F(2, 0),准线 l 0:x =−(2) 由定义得:|M 1F|=x 1+2, 又∵ |M 1F|=|M 1M 2|+2, ∴ |M 1M 2|=x 1, 同理:|M 3M 4|=x 4,将y =k(x −2)时,代入抛物线方程,得:k 2x 2−(4k 2+8)x +4k 2=0, ∴ x 1x 4=4,∴ |M 1M 2|⋅|M 3M 4|=412. 已知l1,l2分别是函数f(x)=|lnx|图象上不同的两点P1,P2处的切线,l1,l2分别与y轴交于点A,B,且l1与l2垂直相交于点P,则△ABP的面积的取值范围是()A.(0, 1)B.(0, 2)C.(0, +∞)D.(1, +∞)【答案】A【考点】对数函数的图象与性质【解析】设出点P1,P2的坐标,求出原分段函数的导函数,得到直线l1与l2的斜率,由两直线垂直求得P1,P2的横坐标的乘积为1,再分别写出两直线的点斜式方程,求得A,B两点的纵坐标,得到|AB|,联立两直线方程求得P的横坐标,然后代入三角形面积公式,利用基本不等式求得△PAB的面积的取值范围.【解答】设P1(x1, y1),P2(x2, y2)(0<x1<1<x2),当0<x<1时,f′(x)=−1x ,当x>1时,f′(x)=1x,∴l1的斜率k1=−1x1,l2的斜率k2=1x2,∵l1与l2垂直,且x2>x1>0,∴k1⋅k2=−1x1⋅1x2=−1,即x1x2=(1)直线l1:y=−1x1(x−x1)−lnx1,l2:y=1x2(x−x2)+lnx2.取x=0分别得到A(0, 1−lnx1),B(0, −1+lnx2),|AB|=|1−lnx1−(−1+lnx2)|=|2−(lnx1+lnx2)|=|2−lnx1x2|=(2)联立两直线方程可得交点P的横坐标为x=2x1x2x1+x2,∴S△PAB=12|AB|⋅|x P|=12×2×2x1x2x1+x2=2x1+1x1,∵函数y=x+1x在(0, 1)上为减函数,且0<x1<1,∴x1+1x1>1+1=2,则0<1x1+1x1<12,∴0<2x1+1x1<(1)∴△PAB的面积的取值范围是(0, 1).故选:A.二、填空题:本大题共4小题,每小题5分,满分20分.已知向量a→,b→满足|a→|=1,|b→|=√2,且a→⊥(a→−b→),则向量a→与向量b→的夹角为________.【答案】π4【考点】数量积表示两个向量的夹角数量积判断两个平面向量的垂直关系【解析】由已知中a →⊥(a →−b →),可得a →∗(a →−b →)=0,即a →∗b →=a →2=1,代入向量夹角公式,可得答案. 【解答】∵ |a →|=1,|b →|=√2,∴ a →2=1,b →2=2又∵ a →⊥(a →−b →) ∴ a →∗(a →−b →)=0 即a →∗b →=a →2=1设向量a →与b →的夹角为θ 则cosθ=a →∗b→|a →|∗|b →|=√22∵ θ∈[0, π] ∴ θ=π4(x −2y +y 2)6的展开式中,x 2y 5的系数为________. 【答案】 −480 【考点】二项式定理的应用 【解析】通项公式T r+1=∁6r x 6−r (y 2−2y)r ,令6−r =2,解得r =(4)T 5=∁64x 2(y 2−2y)4.又(y 2−2y)4,展开即可得出.x 2y 5的系数为∁64×(−∁43⋅23)=−4(80)【解答】通项公式T r+1=∁6r x6−r(y 2−2y)r , 令6−r =2,解得r =(4)∴ T 5=∁64x 2(y 2−2y)4.又(y 2−2y)4=(y 2)4−∁41(y 2)3⋅2y +∁42(y 2)2∗(2y)2−∁43y 2∗(2y)3+∁44(2y)4,∴ x 2y 5的系数为∁64×(−∁43⋅23)=−4(80)在平面直角坐标系中,若不等式组{x +y −1≥0x −1≤0ax −y +1≥0 (a 为常数)所表示的平面区域内的面积等于1,则a 的值为________. 【答案】 1【考点】 简单线性规划 【解析】先根据约束条件画出可行域,求出可行域顶点的坐标,再利用几何意义求关于面积的等式求出a值即可.【解答】当a<0时,不等式组所表示的平面区域,如图中的M,一个无限的角形区域,面积不可能为2,故只能a≥0,此时不等式组所表示的平面区域如图中的N,区域为三角形区域,若这个三角形的面积为1,则AB=2,即点B的坐标为(1, 2),代入y=ax+1得a=(1)故答案为:1;△ABC的内角A,B,C的对边分别为a,b,c,已知b=c,sinB+sin(A−C)=sin2A,若O为△ABC所在平面内一点,且O,C在直线AB的异侧,OA=20B=2,则四边形OACB面积的取值范围是________.【答案】(√34,5√34+2]【考点】解三角形三角形的面积公式【解析】根据sinB+sin(A−C)=sin2A,可得sin(A+C)+sin(A−C)=sin2A,可得A的大小.由b=c,可知B和C的大小;四边形OACB面积=12AO⋅OB⋅sin∠AOB+12bcsinA,利用余弦定理转化为三角函数的有界限求解范围.【解答】根据sinB+sin(A−C)=sin2A,可得sin(A+C)+sin(A−C)=sin2A,可得2sinAcosC=2sinAcosA,即cosC=cosA,那么b=c=a,三角形△ABC时等边三角.由OA=20B=2,四边形OACB面积S=12AO⋅OB⋅sin∠AOB+12bcsinA,则四边形OACB面积S=√34c2+sin∠AOB=√34(5−4cos∠AOB)+sin∠AOB=sin∠AOB−√3cos∠AOB+5√34=2sin(∠AOB−π3)+5√34∵0<∠AOB<π∴−π3<∠AOB−π3<2π3那么:−√3<2sin(∠AOB−π3)≤2∴OACB面积的取值范围是(√34,5√34+2]三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个考题考生都必须作答.第22、23题为选考题,考生根据要求作答.在数列{a n}中,a1=1,a n+1=(1+1n)a n+(n+1)∗2n.(Ⅰ)设b n=a nn,求数列{b n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.【答案】(I)由已知有a n+1n+1=a nn+2n∴b n+1=b n+2n,又b1=a1=1,利用累差叠加即可求出数列{b n}的通项公式:∴b n=2n−1(n∈N∗);(II)由(I)知a n=n∗2n−n,∴S n=(1∗2+2∗22+3∗23+⋯+n∗2n)−(1+2+3+⋯+n)而1+2+3+⋯+n=12n(n+1),令T n=1∗2+2∗22+3∗23+⋯+n∗2n①①×2得2T n=1∗22+2∗23+3∗24+⋯+n∗2n+1②①-②得−T n=2+22+23+⋯+2n−n∗2n+1=2(1−2n)1−2−n∗2n+1 =−2+(1−n)⋅2n+1T n=2+(n−1)∗2n+1∴S n=2+(n−1)∗2n+1−n(n+1)2.【考点】数列的求和数列递推式【解析】(I)由已知有a n+1n+1=a nn+2n,从而b n+1=b n+2n,由此利用累差叠加即可求出数列{b n}的通项公式.(II)由a n=n∗2n−n,得S n=(1∗2+2∗22+3∗23+⋯+n∗2n)−(1+2+3+⋯+n),由此利用分组求和法和错位相减法能求出数列{a n}的前n项和S n.【解答】(I)由已知有a n+1n+1=a nn+2n∴b n+1=b n+2n,又b1=a1=1,利用累差叠加即可求出数列{b n}的通项公式:∴b n=2n−1(n∈N∗);(II)由(I)知a n=n∗2n−n,∴S n=(1∗2+2∗22+3∗23+⋯+n∗2n)−(1+2+3+⋯+n)而1+2+3+⋯+n=12n(n+1),令T n =1∗2+2∗22+3∗23+⋯+n ∗2n ①①×2得2T n =1∗22+2∗23+3∗24+⋯+n ∗2n+1② ①-②得−T n =2+22+23+⋯+2n −n ∗2n+1=2(1−2n )1−2−n ∗2n+1=−2+(1−n)⋅2n+1T n =2+(n −1)∗2n+1 ∴ S n =2+(n −1)∗2n+1−n(n+1)2.如图所示,四棱锥P −ABCD 中,底面ABCD 为菱形,∠ABC =60∘,∠PDC =90∘,E 为棱AP 的中点,且AD ⊥CE .(Ⅰ)求证:平面PAD ⊥平面ABCD ;(Ⅱ)当直线PB 与底面ABCD 成30∘角时,求二面角B −CE −P 的余弦值.【答案】(1)证明:取AD 的中点O ,连OE ,OC ,CA ,∵ ∠ABC =60∘,∴ △ACD 为等边三角形,得AD ⊥OC , 又AD ⊥CE ,∴ AD ⊥平面COE ,得AD ⊥OE , 又OE // PD ,∴ AD ⊥PD ,又∠PDC =90∘,∴ PD ⊥平面ABCD ,又PD ⊂平面PAD ,∴ 平面PAD ⊥平面ABCD ; (2)由(Ⅰ) 知OE ⊥平面ABCD ,AD ⊥OC ,以OC ,OD ,OE 分别为x ,y ,z 轴建立空间直角坐标系,如图所示, 设菱形ABCD 的边长为2,则OC =√3,BD =2√3, ∵ 直线PB 与底面ABCD 成30∘角,即∠PBD =30∘, ∴ PD =BD ⋅tan∠PBD =2√3⋅√33=2,∴ B(√3,−2,0),C(√3,0,0),E(0,0,1),P(0.1,2), ∴ CE →=(−√3,0,1),CB →=(0,−2,0),EP →=(0,1,1), 设n 1→=(x 1,y 1,z 1)为平面BCE 的一个法向量,则{n 1→⋅CE →=0n 1→⋅CB →=0⇒{−√3x 1+z 1=0−2y 1=0 ,令x 1=1,则z 1=√3,∴ n 1→=(1,0,√3); 设n 2→=(x 2,y 2,z 2)为平面PCE 的一个法向量,则{n 2→⋅CE →=0n 2→⋅EP →=0 ⇒{−√3x 2+z 2=0y 2+z 2=0 ,令x 2=1,则y 2=−√3,z 2=√3, ∴ n 2→=(1,−√3,√3).由题可知二面角B −CE −P 的平面角为钝角, 二面角B −CE −P 的余弦值为−2√77.【考点】二面角的平面角及求法 平面与平面垂直的判定 【解析】(Ⅰ)取AD 的中点O ,连OE ,OC ,CA ,由∠ABC =60∘,可得△ACD 为等边三角形,得AD ⊥OC ,结合AD ⊥CE ,得AD ⊥OE ,进一步得到AD ⊥PD ,再由∠PDC =90∘,得PD ⊥平面ABCD ,由面面垂直的判定可得平面PAD ⊥平面ABCD ;(Ⅱ)由(Ⅰ) 知OE ⊥平面ABCD ,AD ⊥OC ,以OC ,OD ,OE 分别为x ,y ,z 轴建立空间直角坐标系,设菱形ABCD 的边长为2,则OC =√3,BD =2√3,再由直线PB 与底面ABCD 成30∘角,求得PD =2,然后求出所用点的坐标,求出平面BCE 与平面PCE 的一个法向量,由两法向量所成角的余弦值可得二面角B −CE −P 的余弦值. 【解答】(1)证明:取AD 的中点O ,连OE ,OC ,CA ,∵ ∠ABC =60∘,∴ △ACD 为等边三角形,得AD ⊥OC , 又AD ⊥CE ,∴ AD ⊥平面COE ,得AD ⊥OE , 又OE // PD ,∴ AD ⊥PD ,又∠PDC =90∘,∴ PD ⊥平面ABCD ,又PD ⊂平面PAD ,∴ 平面PAD ⊥平面ABCD ; (2)由(Ⅰ) 知OE ⊥平面ABCD ,AD ⊥OC ,以OC ,OD ,OE 分别为x ,y ,z 轴建立空间直角坐标系,如图所示, 设菱形ABCD 的边长为2,则OC =√3,BD =2√3, ∵ 直线PB 与底面ABCD 成30∘角,即∠PBD =30∘, ∴ PD =BD ⋅tan∠PBD =2√3⋅√33=2,∴ B(√3,−2,0),C(√3,0,0),E(0,0,1),P(0.1,2), ∴ CE →=(−√3,0,1),CB →=(0,−2,0),EP →=(0,1,1), 设n 1→=(x 1,y 1,z 1)为平面BCE 的一个法向量,则{n 1→⋅CE →=0n 1→⋅CB →=0⇒{−√3x 1+z 1=0−2y 1=0 ,令x 1=1,则z 1=√3,∴ n 1→=(1,0,√3); 设n 2→=(x 2,y 2,z 2)为平面PCE 的一个法向量,→→∴ n 2→=(1,−√3,√3). ∴ cos <n 1→,n 2→>=n 1→⋅n 2→|n 1→|⋅|n 2→|=2⋅√7=2√77, 由题可知二面角B −CE −P 的平面角为钝角, 二面角B −CE −P 的余弦值为−2√77.为了适当疏导电价矛盾,保障电力供应,支持可再生能源发展,促进节能减排,安徽省于2012年推出了省内居民阶梯电价的计算标准:以一个年度为计费周期、月度滚动使用,第一阶梯电量:年用电量2160度以下(含2160度),执行第一档电价0.5653元/度;第二阶梯电量:年用电量2161至4200度(含4200度),执行第二档电价0.6153元/度;第三阶梯电量:年用电量4200度以上,执行第三档电价0.8653元/度.某市的电力部门从本市的用电户中随机抽取10户,统计其同一年度的用电情况,列表如表:(Ⅱ)现要在这10户家庭中任意选取4户,对其用电情况作进一步分析,求取到第二阶梯电量的户数的分布列与期望;(Ⅲ)以表中抽到的10户作为样本估计全市的居民用电情况,现从全市居民用电户中随机地抽取10户,若抽到k 户用电量为第一阶梯的可能性最大,求k 的值. 【答案】(I )因为第二档电价比第一档电价多0.05元/度, 第三档电价比第一档电价多0.3元/度,编号为10的用电户一年的用电量是4600度, 则该户本年度应交电费为:4600×0.5653+(4200−2160)×0.05+(4600−4200)×0.3=2822.38元. (II)设取到第二阶梯电量的用户数为X ,可知第二阶梯电量的用户有4户,则X 可取0,1,2,3,(4) p(X =0)=C 40C64C 104=114, p(X =1)=C 41C63C 104=821, p(X =2)=C 42C62C 104=37,p(X =4)=C 44C60C 104=1210,故X 的分布列是:所以E(X)=0×114+1×821+2×37+3×435+4×1210=85. (III)由题意可知从全市中抽取10户的用电量为第一阶梯,满足X ∼B(10, 25),可知p(X =k)=C 10k(25)k (35)10−k (k =0, 1.2.(3)…10), ∵ 抽到k 户用电量为第一阶梯的可能性最大,∴ {C 10k (25)k (35)10−k ≥C 10k+1(25)k+1(35)9−k C 10k (25)k (35)10−k ≥C 10k−1(25)k−1(35)11−k,解得175≤k ≤225,∵ k ∈N ∗ 所以当k =4时,概率最大,所以k =(4) 【考点】离散型随机变量及其分布列 【解析】(I )由第二档电价比第一档电价多0.05元/度,第三档电价比第一档电价多0.3元/度,编号为10的用电户一年的用电量是4600度,由此能求出该户本年度应交电费.( II)设取到第二阶梯电量的用户数为X ,可知第二阶梯电量的用户有4户,则X 可取0,1,2,3,(4)分别求出相应的概率,由此能求出X 的分布列和数学期望. (III)由题意可知从全市中抽取10户的用电量为第一阶梯,满足X ∼B(10, 25),可知p(X =k)=C 10k (25)k (35)10−k (k =0, 1.2.(3)…10),由此能求出结果.【解答】(I )因为第二档电价比第一档电价多0.05元/度, 第三档电价比第一档电价多0.3元/度,编号为10的用电户一年的用电量是4600度, 则该户本年度应交电费为:4600×0.5653+(4200−2160)×0.05+(4600−4200)×0.3=2822.38元. (II)设取到第二阶梯电量的用户数为X ,可知第二阶梯电量的用户有4户,则X 可取0,1,2,3,(4) p(X =0)=C 40C64C 104=114, p(X =1)=C 41C63C 104=821, p(X =2)=C 42C62C 104=37, p(X =3)=C 43C61C 104=435, p(X =4)=C 44C60C 4=1210,所以E(X)=0×114+1×821+2×37+3×435+4×1210=85. (III)由题意可知从全市中抽取10户的用电量为第一阶梯,满足X ∼B(10, 25),可知p(X =k)=C 10k(25)k (35)10−k (k =0, 1.2.(3)…10), ∵ 抽到k 户用电量为第一阶梯的可能性最大,∴ {C 10k (25)k (35)10−k ≥C 10k+1(25)k+1(35)9−k C 10k (25)k (35)10−k ≥C 10k−1(25)k−1(35)11−k,解得175≤k ≤225,∵ k ∈N ∗ 所以当k =4时,概率最大,所以k =(4)已知椭圆E:x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,上顶点为B ,离心率e =√32,O 为坐标原点,圆O:x 2+y 2=45与直线AB 相切.(1)求椭圆C 的标准方程.(2)已知四边形ABCD 内接于椭圆E ,AB//DC .记直线AC ,BD 的斜率分别为k 1,k 2,试问k 1⋅k 2是否为定值?证明你的结论. 【答案】(1)解:由题知直线AB 的方程为xa +yb =1, 即bx +ay −ab =0, 由圆O 与直线AB 相切, 得√a 2+b 2=√45,即a 2b 2a 2+b2=45①. 又e =ca=√32, 所以b 2a 2=1−e 2=14②.由①②得a 2=4,b 2=1. 故椭圆的标准方程为x 24+y 2=1.(2)证明:k 1⋅k 2=14为定值,证明过程如下: 由(1)得直线AB 的方程为y =−12x +1, 故可设直线DC 的方程为y =−12x +m ,由{x 24+y 2=1,y =−12x +m消去y 整理得x 2−2mx +2m 2−2=0, 因为直线与椭圆交于两点, 所以Δ=8−4m 2>0. 设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=2m ,x 1x 2=2m 2−2.又k 1=y1x 1−2,k 2=y 2−1x 2, 所以k 1⋅k 2=y 1x1−2⋅y 2−1x 2=(−12x 1+m)x 1−2⋅(−12x 2+m)−1x 2 =14x 1x 2−m 2(x 1+x 2)+m 2+12x 1−mx 1x 2−2x 2=14⋅(2m 2−2)−m 2⋅(2m)+m 2+2m −x 22−m(2m 2−2)−2x 2 =m 22−12−x 222m 2−2−2x 2=14.故k 1⋅k 2是定值. 【考点】 椭圆的定义 【解析】 此题暂无解析 【解答】(1)解:由题知直线AB 的方程为xa +yb =1, 即bx +ay −ab =0, 由圆O 与直线AB 相切, 得√a 2+b 2=√45,即a 2b 2a 2+b2=45①. 又e =ca=√32, 所以b 2a 2=1−e 2=14②.由①②得a 2=4,b 2=1. 故椭圆的标准方程为x 24+y 2=1.(2)证明:k 1⋅k 2=14为定值,证明过程如下:故可设直线DC 的方程为y =−12x +m , 显然m ≠±1.由{x 24+y 2=1,y =−12x +m消去y 整理得x 2−2mx +2m 2−2=0, 因为直线与椭圆交于两点, 所以Δ=8−4m 2>0. 设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=2m ,x 1x 2=2m 2−2. 又k 1=y 1x1−2,k 2=y 2−1x 2, 所以k 1⋅k 2=y 1x 1−2⋅y 2−1x 2=(−12x 1+m)x 1−2⋅(−12x 2+m)−1x 2 =14x 1x 2−m 2(x 1+x 2)+m 2+12x 1−mx 1x 2−2x 2=14⋅(2m 2−2)−m 2⋅(2m)+m 2+2m −x 22−m (2m 2−2)−2x 2 =m 22−12−x 222m 2−2−2x 2=14. 故k 1⋅k 2是定值.已知函数f(x)=lnx −12ax 2+x(a ∈R),函数g(x)=−2x +3. (Ⅰ)判断函数F(x)=f(x)+12ag(x)的单调性;(Ⅱ)若−2≤a ≤−1时,对任意x 1,x 2∈[1, 2],不等式|f(x 1)−f(x 2)|≤t|g(x 1)−g(x 2)|恒成立,求实数t 的最小值. 【答案】(I)F(x)=f(x)+12ag(x)=lnx −12ax 2+(1−a)x +32a ,其定义域为为(0, +∞),F ′(x)=1x −ax +1−a =−ax 2+(1−a)x+1x=(−ax+1)(x+1)x.(1)当a ≤0时,F ′(x)≥0,函数y =F(x)在(0, +∞)上单调递增; (2)当a >0时,令F ′(x)>0,解得0<x <1a ;令F ′(x)<0,解得x >1a . 故函数y =F(x)在(0,1a )上单调递增,在(1a ,+∞)上单调递减. (II)由题意知t ≥0.f ′(x)=1x−ax +1=−ax 2+x+1x,即f(x 2)+tg(x 2)≤f(x 1)+tg(x 1)对任意−2≤a ≤−1,1≤x 1≤x 2≤2恒成立. 记ℎ(x)=f(x)+tg(x)=lnx −12ax 2+(1−2t)x +3t ,则ℎ(x)在[1, 2]上单调递减.得ℎ(x)=1x −ax +(1−2t)≤0对任意a ∈[−2, −1],x ∈[1, 2]恒成立.令H(a)=−xa +1x +(1−2t),a ∈[−2, −1],则H(a)max =H(−2)=2x +1x +1−2t ≤0在x ∈(0, +∞)上恒成立.则2t −1≥(2x +1x )max ,而y =2x +1x 在[1, 2]上单调递增, 所以函数y =2x +1x 在[1, 2]上的最大值为92. 由2t −1≥92,解得t ≥114.故实数t 的最小值为114. 【考点】利用导数研究函数的单调性 利用导数研究函数的最值 【解析】(I)F(x)=f(x)+12ag(x)=lnx −12ax 2+(1−a)x +32a ,其定义域为为(0, +∞),F′(x)=(−ax+1)(x+1)x,由此利用导数性质能判断函数F(x)=f(x)+12ag(x)的单调性.( II)由题意知t ≥0.f ′(x)=1x−ax +1=−ax 2+x+1x,当−2≤a ≤−1时,函数y =f(x)单调递增,设1≤x 1≤x 2≤2,又函数y =g(x)单调递减,所以原问题等价于:当−2≤a ≤−1时,f(x 2)+tg(x 2)≤f(x 1)+tg(x 1)对任意−2≤a ≤−1,1≤x 1≤x 2≤2恒成立.记ℎ(x)=f(x)+tg(x)=lnx −12ax 2+(1−2t)x +3t ,利用导数性质能求出实数t 的最小值. 【解答】(I)F(x)=f(x)+12ag(x)=lnx −12ax 2+(1−a)x +32a ,其定义域为为(0, +∞),F ′(x)=1x −ax +1−a =−ax 2+(1−a)x+1x=(−ax+1)(x+1)x.(1)当a ≤0时,F ′(x)≥0,函数y =F(x)在(0, +∞)上单调递增; (2)当a >0时,令F ′(x)>0,解得0<x <1a ;令F ′(x)<0,解得x >1a . 故函数y =F(x)在(0,1a )上单调递增,在(1a ,+∞)上单调递减. (II)由题意知t ≥0.f ′(x)=1x−ax +1=−ax 2+x+1x,即f(x 2)+tg(x 2)≤f(x 1)+tg(x 1)对任意−2≤a ≤−1,1≤x 1≤x 2≤2恒成立. 记ℎ(x)=f(x)+tg(x)=lnx −12ax 2+(1−2t)x +3t ,则ℎ(x)在[1, 2]上单调递减.得ℎ(x)=1x −ax +(1−2t)≤0对任意a ∈[−2, −1],x ∈[1, 2]恒成立.令H(a)=−xa +1x +(1−2t),a ∈[−2, −1],则H(a)max =H(−2)=2x +1x +1−2t ≤0在x ∈(0, +∞)上恒成立.则2t −1≥(2x +1x )max ,而y =2x +1x 在[1, 2]上单调递增, 所以函数y =2x +1x 在[1, 2]上的最大值为92. 由2t −1≥92,解得t ≥114.故实数t 的最小值为114.选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线l 的参数方程是{x =1+√2ty =√2t(t 为参数),以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为3ρ2cos 2θ+4ρ2sin 2θ=12,且直线l 与曲线C 交于P ,Q 两点.(Ⅰ)求直线l 的普通方程及曲线C 的直角坐标方程; (Ⅱ)把直线l 与x 轴的交点记为A ,求|AP|⋅|AQ|的值. 【答案】(Ⅰ)∵ 直线l 的参数方程是{x =1+√2ty =√2t(t 为参数),∴ 直线l 消去参数t ,得直线l 的普通方程为x −y −1=0, ∵ 曲线C 的极坐标方程为3ρ2cos 2θ+4ρ2sin 2θ=12, ∴ 曲线C 的直角坐标方程为3x 2+4y 2=(12)(II)解法一:在x −y −1=0中,令y =0,得x =1,则A(1, 0), 联立{3x 2+4y 2=12x −y −1=0,消去y ,得7x 2−8x −8=(0) 设P(x 1, y 1),Q(x 2, y 2),其中x 1<x 2,则有x 1+x 2=87,x 1x 2=−87. |AP|=√1+12|x 1−1|=−√2(x 1−1), |AQ|=√1+12|x 2−1|=√2(x 2−1),故|AP|⋅|AQ|=−2(x 1−1)(x 2−1)=−2[x 1x 2−(x 1+x 2)+1]=187.解法二:把{x =1+√2t =1+√22∗(2t)y =√2t =√22(2t),则t 1t 2=−914,则|AP|⋅|AQ|=(−2t 1)⋅(2t 2)=−4t 1t 2=187.【考点】参数方程与普通方程的互化 【解析】(Ⅰ)直线l 消去参数t ,得直线l 的普通方程;由曲线C 的极坐标方程能求出曲线C 的直角坐标方程.(II)法一:在x −y −1=0中,令y =0,得x =1,则A(1, 0),联立{3x 2+4y 2=12x −y −1=0 ,得7x 2−8x −8=(0)由此利用韦达定理能求出|AP|⋅|AQ|. 法二:把{x =1+√2t =1+√22∗(2t)y =√2t =√22(2t) ,代入3x 2+4y 2=12,得14t 2+6√2t −9=0,由此能求出|AP|⋅|AQ|. 【解答】(Ⅰ)∵ 直线l 的参数方程是{x =1+√2ty =√2t(t 为参数),∴ 直线l 消去参数t ,得直线l 的普通方程为x −y −1=0, ∵ 曲线C 的极坐标方程为3ρ2cos 2θ+4ρ2sin 2θ=12, ∴ 曲线C 的直角坐标方程为3x 2+4y 2=(12)(II)解法一:在x −y −1=0中,令y =0,得x =1,则A(1, 0), 联立{3x 2+4y 2=12x −y −1=0,消去y ,得7x 2−8x −8=(0) 设P(x 1, y 1),Q(x 2, y 2),其中x 1<x 2,则有x 1+x 2=87,x 1x 2=−87. |AP|=√1+12|x 1−1|=−√2(x 1−1), |AQ|=√1+12|x 2−1|=√2(x 2−1),故|AP|⋅|AQ|=−2(x 1−1)(x 2−1)=−2[x 1x 2−(x 1+x 2)+1]=187.解法二:把{x =1+√2t =1+√22∗(2t)y =√2t =√22(2t),代入3x 2+4y 2=12,得14t 2+6√2t −9=0, 则t 1t 2=−914,则|AP|⋅|AQ|=(−2t 1)⋅(2t 2)=−4t 1t 2=187.[选修4-5:不等式选讲]已知函数f(x)=|x +4x −m|+m .(Ⅰ)当m =0时,求函数f(x)的最小值;(Ⅱ)若函数f(x)≤5在x ∈[1, 4]上恒成立,求实数m 的取值范围. 【答案】(Ⅰ)当m =0时,f(x)=|x +4x|=|x|+|4x|≥2√x ∗4x=4,当且仅当|x|=|4x |,即x =±2时等式成立,试卷第21页,总21页 (Ⅱ)当x ∈[1, 4]时,函数f(x)的最大值为5⇔|x +4x −m|+m ≤5在x ∈[1, 4]上恒成立,⇔|x +4x −m|≤5−m 在x ∈[1, 4]上恒成立, ⇔m −5≤x +4x−m ≤5−m 在x ∈[1, 4]上恒成立, ⇔2m −5≤x +4x ,且x +4x ≤5在x ∈[1, 4]上恒成立, 函数y =x +4x 在[1, 2]上单调递减,在[2, 4]上单调递增. ∵ x +4x ≥4,当且仅当x =2时等式成立,而x +4x ≤5在x ∈[1, 4]上是恒成立的. ∴ 2m −5≤4∴ m ≤92,即实数m 的取值范围是(−∞,92brack .【考点】绝对值三角不等式绝对值不等式的解法与证明【解析】(Ⅰ)根据绝对值不等式的性质求出函数的最小值即可;(Ⅱ)问题转化为2m −5≤x +4x ,根据函数y =x +4x 的单调性求出m 的范围即可.【解答】(Ⅰ)当m =0时,f(x)=|x +4x |=|x|+|4x |≥2√x ∗4x =4, 当且仅当|x|=|4x |,即x =±2时等式成立, 所以,当x =±2时,f(x)min =(4)(Ⅱ)当x ∈[1, 4]时,函数f(x)的最大值为5⇔|x +4x −m|+m ≤5在x ∈[1, 4]上恒成立,⇔|x +4x −m|≤5−m 在x ∈[1, 4]上恒成立, ⇔m −5≤x +4x −m ≤5−m 在x ∈[1, 4]上恒成立, ⇔2m −5≤x +4x ,且x +4x≤5在x ∈[1, 4]上恒成立, 函数y =x +4x 在[1, 2]上单调递减,在[2, 4]上单调递增. ∵ x +4x ≥4,当且仅当x =2时等式成立,而x +4x ≤5在x ∈[1, 4]上是恒成立的. ∴ 2m −5≤4∴ m ≤92,即实数m 的取值范围是(−∞,92brack .。