公开课《抽屉原理》教学设计
抽屉原理教案14篇
![抽屉原理教案14篇](https://img.taocdn.com/s3/m/e0b941d285868762caaedd3383c4bb4cf6ecb74a.png)
抽屉原理教案14篇抽屉原理优质课教案篇一××老师的《抽屉原理》一课结构完整,过程清晰,充分体现了学生的主体地位,为学生提供了足够的自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,并学会了用“抽屉原理”解决简单的实际问题。
1、本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4枝笔放入3个文具盒中,不管怎么放,总有一个杯子里至少放进2枝筷子”,然后交流展示,为后面开展教与学的活动做了铺垫。
此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有学生的积极性。
在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理:当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。
这样的教学过程,有助于发展学生的类推能力,形成比较抽象的数学思维。
在评价学生各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。
在学生自主探索的基础上,进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。
2、在教学过程中充分发挥了学生的主体性,在抽屉原理(2)的推导过程中,至少是“商+余数”,还是“商+1”个物体放进同一个抽屉。
让学生互相争辩,再由学生自己想办法来进行验证,使学生更好的理解了抽屉原理。
另外,本节课中,学生争先恐后的学习行为,积极参与自学、交流、合作、展示、补充、互评、提问、质疑、反思等的学习过程,“自主、合作、探究”的学习方式,给人留下了深刻的印象,学生主体地位得到了充分的落实。
3、注意渗透数学和生活的联系。
并在游戏中深化知识。
学了“抽屉原理”有什么用?能解决生活中的什么问题?教学中教师注重了联系学生的生活实际。
课前老师设计一个游戏:“学生在一副去掉了大小王的扑克牌中,任意抽取五张,老师猜:总有一种花色的牌至少有两张。
”这是为什么?学生很惊讶。
《抽屉原理》教学设计精选7篇
![《抽屉原理》教学设计精选7篇](https://img.taocdn.com/s3/m/4ef4c540178884868762caaedd3383c4ba4cb476.png)
《抽屉原理》教学设计精选7篇抽屉原理教学反思篇一抽屉原理教学反思《抽屉原理》是人教版六年级下册数学广角中的内容,这部分内容属于奥数知识范畴,首次被编入新课改教材,它的教学就是通过实际案例培养学生有根据、有条理地进行思考和推理的能力,从而解决实际问题,初步感受数学的魅力。
当我第一次接触到《抽屉原理》时,我很困惑:什么是抽屉原理?这么难的内容学生能理解吗?我的印象里《抽屉原理》是非常坚深难懂的(好像在上师范的时候学过,当时我都没学懂)。
时隔两年,再次教学《抽屉原理》心里还是觉得没底,不知能否讲清楚、讲明白。
为了上好这一内容,我搜集学习了很多资料,查阅了多篇教案,在“前辈”们的经验上,与本组成员相互探讨、研究,终于使我对“抽屉原理”有了新的认识,也终于理出了头绪。
抽屉原理是教给我们一种思考方法,也就是从“最不利”的情况来思考问题,所以要让学生充分体会什么是“最不利”。
通过本部分内容的教学,我有以下几点体会:一、重视集体研讨,集体的智慧是无穷的。
以前上这节课时,总是按照自己的理解来给学生讲,有时会拿一些名师的优秀教案生搬硬套,结果却总是讲着讲着不知道该怎么讲了,有时连自己也都被搅迷糊了,教学效果可想而知。
而今年上课之前,我们几位老师提前就开始讨论这节课,红晓老师还拿出了以前做的课件,讲了讲自己对这节课的理解,以及难点的突破方法,通过我们集体的研讨,原本觉得很难理解的内容也变得简单了,上课之前能够做到胸有成竹,就不愁讲不好这节课了。
二、要根据学生的实际进行教学设计。
以前上这节课时,我总以“学生的生日”为话题引入新课,学生们兴趣也比较高,这次上课,我依旧以此为话题引入新课,却没有出现以前那种效果。
课后反思一下,以前的班级最多42人,当老师猜测“我们班42人中,至少有4个人的生日在同一个月”之后,学生们都不相信,于是就很有兴趣地要进行验证。
由于人数少,比较好验证,而且基本上会出现1月生日的只有一、两个人,2月同样如此,这样学生就会面露得意之色,说老师猜的不对,直到3、4月或5、6月才发现真的有4个或4个以上的人在同一个月生日,这时还会有些学生不甘心,说有5个人在某一月生日,你说的是4人。
抽屉原理教案幼儿园
![抽屉原理教案幼儿园](https://img.taocdn.com/s3/m/4b01a34a6d85ec3a87c24028915f804d2b168726.png)
抽屉原理教案幼儿园
一、教学目标
1.了解抽屉原理的概念;
2.学习抽屉原理的具体应用;
3.培养幼儿的逻辑思维能力。
二、教学内容
1.抽屉原理的概念;
2.抽屉原理的应用案例;
3.数学实验中的抽屉原理。
三、教学重难点
1.抽屉原理的概念和应用;
2.数学实验中如何运用抽屉原理。
四、教学过程
1.教师进行简单的抽屉实验,让幼儿合作实验;
2.引导幼儿讨论实验结果和抽屉原理的概念;
3.播放动画视频,介绍抽屉原理的具体应用;
4.教师指导幼儿进行简单的数学实验,应用抽屉原理。
五、教学后记
在幼儿的成长过程中,培养他们的逻辑思维能力对于孩子的发展至关重要。
通过本次的抽屉原理教学,让幼儿感受到抽屉原理在实际应用中的重要作用,并让孩子们在实验过程中体会到科学的魅力,同时也培养了幼儿的实验精神和团队协作意识。
希望通过本次教学,幼儿们能够对抽屉原理有一个更加深入的认识,同时也能够在今后的学习生活中更加喜欢和关注数学这门学科。
抽屉原理教案大班
![抽屉原理教案大班](https://img.taocdn.com/s3/m/0c96241c3a3567ec102de2bd960590c69fc3d84c.png)
抽屉原理教案大班教案标题:抽屉原理教案(大班)教学目标:1. 了解和理解抽屉原理的概念。
2. 能够应用抽屉原理解决简单的问题。
3. 培养学生的逻辑思维和解决问题的能力。
教学准备:1. 教师准备:抽屉原理的示意图、抽屉原理的实例、大班教学所需的教学工具(如黑板、白板、彩色粉笔、卡片等)。
2. 学生准备:纸和铅笔。
教学步骤:引入(5分钟):1. 通过一个简单的问题引入抽屉原理的概念,例如:班级里有10个学生,但只有5个座位,那么至少会有几个学生是共用一个座位的?2. 引导学生思考这个问题,并鼓励他们分享自己的答案和思路。
讲解(10分钟):1. 讲解抽屉原理的定义:如果有n+1个物体放入n个容器中,那么至少会有一个容器里放入了两个或以上的物体。
2. 通过示意图和实例向学生解释抽屉原理的原理和应用。
探究(20分钟):1. 将学生分成小组,每组给出一个抽屉原理的问题,并让他们思考和讨论解决方案。
2. 鼓励学生在小组内分享自己的思路和解决方案,并指导他们运用抽屉原理解决问题。
3. 每个小组选择一位代表,向全班展示他们的问题和解决方案。
巩固(10分钟):1. 教师引导学生总结抽屉原理的概念和应用。
2. 教师提供更多的抽屉原理问题,让学生在纸上进行解答,并检查他们的答案。
拓展(10分钟):1. 教师提供更复杂的抽屉原理问题,让学生进行思考和解答。
2. 鼓励学生提出自己的抽屉原理问题,并与同学一起解决。
总结(5分钟):1. 教师总结本节课的内容和重点。
2. 鼓励学生提出对抽屉原理的疑问和思考,并进行解答。
评估:1. 通过学生在小组讨论和展示中的表现,评估他们对抽屉原理的理解和应用能力。
2. 检查学生在纸上解答问题的准确性和思维逻辑。
教学延伸:1. 鼓励学生在日常生活中运用抽屉原理解决问题,如整理书包或柜子中的物品。
2. 提供更多的抽屉原理问题,让学生继续思考和解答。
教学反思:教案中的教学步骤和时间安排可根据实际情况进行调整。
抽屉原理教学设计模板
![抽屉原理教学设计模板](https://img.taocdn.com/s3/m/4661e83cf56527d3240c844769eae009581ba286.png)
抽屉原理教学设计模板一、教学目标通过本课的学习,学生应能够:1. 理解抽屉原理的基本概念和应用;2. 运用抽屉原理解决实际问题;3. 培养学生的逻辑思维和问题解决能力。
二、教学准备1. 教学课件及多媒体设备;2. 笔、纸等教学辅助工具;3. 相关练习题和活动材料。
三、教学过程1. 导入(5分钟)教师可以通过提问或显示相关图片引发学生对抽屉原理的思考,并引导他们思考抽屉原理的应用场景。
2. 理论讲解(15分钟)2.1 抽屉原理的概念教师简要介绍抽屉原理的定义和基本概念,即"如果有 n+1 个物件放到 n 个抽屉里,那么至少有一个抽屉里会放有两个或更多物件"。
2.2 抽屉原理的应用教师通过实例和案例,展示抽屉原理在数学、计算机科学、概率等领域的应用,并解释其原理和意义。
3. 实例解析与讨论(20分钟)教师给出一个具体的实际问题,引导学生运用抽屉原理进行分析和解答,同时鼓励学生互相讨论和分享解题思路。
4. 练习与活动(30分钟)4.1 个人练习教师分发抽屉原理相关题目,让学生独立完成练习,巩固对抽屉原理的理解和应用。
4.2 合作活动学生分组,根据教师提供的具体情景,设计抽屉原理相关活动,例如编写小故事、制作游戏等,以提高学生的动手操作能力和创造力。
5. 总结与拓展(15分钟)教师对本堂课的内容进行总结,并提醒学生抽屉原理在日常生活中的应用。
鼓励学生进一步拓展和应用抽屉原理,以解决更加复杂的问题。
四、教学评估教师可以通过以下方式对学生进行评估:1. 教师观察学生在课堂上的参与程度和对理论讲解的理解;2. 集体活动和小组讨论中学生的表现;3. 学生完成的练习题和活动成果;4. 学生的课后作业。
五、教学延伸教师可以推荐相关书籍、网站或视频资源,以帮助学生进一步了解和应用抽屉原理。
同时,鼓励学生在日常生活中积极运用抽屉原理解决问题,培养他们的逻辑思维和创新能力。
六、教学反思教师应及时总结本堂课的教学效果,发现问题并加以改进。
2024最新-抽屉原理教学设计8篇
![2024最新-抽屉原理教学设计8篇](https://img.taocdn.com/s3/m/0694779f77a20029bd64783e0912a21614797f33.png)
抽屉原理教学设计8篇作为一位杰出的老师,通常需要准备好一份教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。
那么应当如何写教学设计呢?如下是勤劳的编辑帮大家收集整理的抽屉原理教学设计8篇,仅供借鉴,希望可以帮助到有需要的朋友。
六年级数学《抽屉原理》公开课教学设计篇一教学目标:1.使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。
2.体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。
教学重点:抽取问题。
教学难点:理解抽取问题的基本原理。
教学过程:一、创设情境,复习旧知1、出示复习题:师:老师这儿有一个问题,不知道哪位同学能帮助解答一下?2、课件出示:把3个苹果放进2个抽屉里,总有一个抽屉至少放2个苹果,为什么?3、学生自由回答。
二、教学例21、出示:盒子里有同样大小的红球和蓝球各4个。
要想摸出的球一定有2个同色的,最少要摸出几个球?(1)组织学生读题,理解题意。
教师:你们能猜出结果吗?组织学生猜一猜,并相互交流。
指名学生汇报。
学生汇报时可能会答出:只摸4个球就可以了,至少要摸出5个球……教师:能验证吗?教师拿出准备好的红球及蓝球,组织学生到讲台前来动手摸一摸,验证汇报结果的正确性。
(2)教师:刚才我们通过验证的方法得出了结论,联系前面所学的知识,这是一个什么问题?2、组织学生议一议,并相互交流。
再指名学生汇报。
教师:上面的问题是一个抽屉问题,请同学们找一找:“抽屉”是什么?“抽屉”有几个?组织学生议一议,并相互交流。
指名学生汇报,使学生明确:抽屉就是颜色数。
(板书)教师:能用例1的知识来解答吗?组织学生议一议,并相互交流。
指名学生汇报。
使学生明确:只要分的物体比抽屉多,就能保证总有一个抽屉至少放荡2个球,因此要保证摸出两个同色的球,摸出球的数量至少要比颜色的种数多一。
(3)组织学生对例题的解答过程议一议,相互交流,理解解决问题的方法。
学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。
抽屉原理教学设计公开课教案教学反思
![抽屉原理教学设计公开课教案教学反思](https://img.taocdn.com/s3/m/87459f36cbaedd3383c4bb4cf7ec4afe05a1b146.png)
抽屉原理教学设计公开课教案教学反思一、教学目标:1. 让学生了解并掌握抽屉原理的基本概念和运用方法。
2. 通过实例讲解,让学生能够运用抽屉原理解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容:1. 抽屉原理的基本概念和定义。
2. 抽屉原理的证明和推导过程。
3. 抽屉原理在实际问题中的应用实例。
三、教学重点与难点:1. 抽屉原理的理解和证明。
2. 抽屉原理在实际问题中的应用。
四、教学方法:1. 采用案例教学法,通过具体实例让学生理解抽屉原理。
2. 采用问题驱动法,引导学生主动思考和探索问题。
3. 采用小组讨论法,培养学生的团队合作和沟通能力。
五、教学准备:1. 准备相关的案例和实例,用于讲解抽屉原理。
2. 准备问题讨论的材料和问题,引导学生进行思考和探索。
3. 准备教学PPT和教学素材,用于辅助教学。
六、教学过程:1. 导入新课:通过引入日常生活中的实例,如分配物品到抽屉中,引发学生对抽屉原理的好奇心。
2. 讲解抽屉原理:详细讲解抽屉原理的基本概念、证明过程和推导方法。
3. 案例分析:分析具体的案例,让学生理解抽屉原理在实际问题中的应用。
4. 练习与讨论:学生进行练习题,巩固所学知识,并进行小组讨论,分享解题思路。
七、教学评价:1. 课堂参与度:观察学生在课堂中的积极参与程度,包括提问、回答问题和小组讨论等。
2. 练习题完成情况:检查学生完成练习题的正确率和解题思路。
3. 小组讨论表现:评估学生在小组讨论中的表现,包括观点表达、合作和沟通能力。
八、教学拓展:1. 进一步讲解抽屉原理的其他应用,如组合数学中的问题解决。
2. 引导学生探索抽屉原理与其他数学概念的联系,如鸽巢原理。
3. 推荐相关的阅读材料和练习题,供学生深入学习。
九、教学反思:1. 对教学过程中的教学方法和教学内容的有效性进行反思。
2. 思考如何更好地引导学生理解和应用抽屉原理。
3. 评估教学评价方法的有效性,并思考如何改进评价方式。
抽屉原理教学设计 《抽屉原理》教学设计5篇
![抽屉原理教学设计 《抽屉原理》教学设计5篇](https://img.taocdn.com/s3/m/f092728aba4cf7ec4afe04a1b0717fd5360cb2a1.png)
抽屉原理教学设计《抽屉原理》教学设计5篇《抽屉原理》教学设计篇一1.出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。
板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),问题:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。
4支笔放进3个盒子里呢?引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。
问题:(1)“总有”是什么意思?(一定有)(2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
这是我们通过实际操作现了这个结论。
那么,你们能不能找到一种更为直接的方法得到这个结论呢?学生思考并进行组内交流,教师选代表进行总结:如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。
首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。
问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……你发现什么?(笔的'枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。
)总结:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。
2.完成课下“做一做”,学习解决问题。
问题:6只鸽子飞回5个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?(1)学生活动—独立思考自主探究(2)交流、说理活动。
引导学生分析:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。
不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。
所以,“至少有2只鸽子飞进同一个笼里”的结论是正确的。
总结:用平均分的方法,就能说明存在“总有一个鸽笼至少有2只鸽子飞进一个个笼里”。
2023最新-《抽屉原理》教学设计优秀9篇
![2023最新-《抽屉原理》教学设计优秀9篇](https://img.taocdn.com/s3/m/1aaa41577f21af45b307e87101f69e314232fa7c.png)
《抽屉原理》教学设计优秀9篇《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。
下面是的小编为您带来的《抽屉原理》教学设计优秀9篇,希望能够给予您一些参考与帮助。
抽屉原理教学反思篇一“抽屉原理”是开发智力,开阔视野的数学思维训练内容,对于一部分想象能力较弱的学生来说学起来存在一定的困难。
通过本次课堂实践,有几点体会:1、创设情境,调动学生的学习积极性。
课前让几个学生表演“抢椅子”的游戏:如3个人抢坐2把椅子、4个人抢坐3把椅子。
让学生在活动中初步感知抽象的“抽屉原理”,理解“至少”的意思。
2、合作交流,建立模型。
根据课前的表演及老师的分苹果演示,交流、讨论理解:“待分物体数”、“抽屉数”、“至少数”分别指什么?“至少数”为什么是商加1,而不是商加余数?通过老师的提示、引领,学生对“抽屉原理”基本上能理解,但是要让学生用简练的语言表达出来还有一定的困难。
3、培养学生的“模型”思想,提高解题能力。
“抽屉原理”的问题变式很多,应用更具灵活性。
能否将一个具体问题和“抽屉原理”联系起来,能否找出题中什么是“待分物体数”,什么是“抽屉”,是解题的关键。
有时候找到实际问题与“抽屉原理”之间的联系并不容易,即使找到了也很难确定用什么作“抽屉”。
教学时,我不过于强调说理的严密性,只要学生能把大致意思说出来就行,有些题目能借助实物或用枚举法举例猜测、验证也可以。
回顾整节课我觉得主要存在两个问题:1、在学生体验数学知识的产生过程中,老师担心学生不理解、走错路,不敢大胆放手,总是牵着学生的思路走。
2、这部分内容属于思维训练的内容,有少部分学生学起来困难大,效果差。
在课堂上如何更好地发挥学生的主体性,如何关注学困生的同步发展,我们将继续寻找方法。
六年级数学《抽屉原理》公开课教学设计篇二教学内容:六年级数学下册70页、71页例1、例2。
教学目标:1、理解“抽屉原理”的一般形式。
2、经历“抽屉原理”的探究过程,体会比较、推理的学习方法,会用“抽屉原理”解决简单的的实际问题。
公开课《抽屉原理》教学设计
![公开课《抽屉原理》教学设计](https://img.taocdn.com/s3/m/7e45ef9c7cd184254b3535e1.png)
《抽屉原理》教学设计新县福和希望小学匡俊【教学内容】人教版六年级数学下册第68页。
【教学目标】1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
【教学重点】经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
【教学难点】理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教具、学具准备】每组都有相应数量的盒子、铅笔、书。
【教学过程】一、课前游戏引入。
师:同学们在我们上课之前,先做个小游戏:老师这里准备了3把椅子,请4个同学上来,谁愿来(学生上来后)师:听清要求,老师说开始以后,请你们4个都坐在椅子上,每个人必须都坐下,好吗(好)。
这时教师面向全体,背对那4个人。
师:开始。
师:都坐下了吗生:坐下了。
师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗生:对!师:老师为什么能做出准确的判断呢这其中蕴含着一个有趣的数学原理,(板书:抽屉原理)这节课我们就一起来研究这个原理,好吗二、通过操作,探究新知(一)教学例11.出示题目:有3本书,2个抽屉,把3本书放进2个抽屉里,怎么放有几种不同的放法(不区分抽屉的先后顺序)师:请同学们(拿出准备好的盒子代替抽屉,在组长的带领下)实际放放看,并记下摆放的结果。
谁来展示一下你摆放的情况(指名摆)根据学生摆的情况,师板书各种情况(3,0)(2,1)师:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。
3本书放进2个抽屉里呢(总有一个抽屉里至少有几本)生:不管怎么放,总有一个抽屉(盒子)里至少有2本书师:是这样吗谁还有这样的发现,再说一说。
大家一起说一说:3本书放进2个抽屉里,总有1个抽屉里至少放进2本书。
师:“总有”是什么意思(一定有)“至少”是什么意思(最少,还可以更多,不能更少。
《抽屉原理》教学设计5篇
![《抽屉原理》教学设计5篇](https://img.taocdn.com/s3/m/4e992520da38376bae1faee3.png)
《抽屉原理》教学设计5篇《抽屉原理》教学设计1抽屉原理教学设计导学内容:P70——71例1.例2,完成做一做及练习十二1.2题导学目标1.经历〝抽屉原理〞的探究过程,初步了解〝抽屉原理〞,会用〝抽屉原理〞解决简单的实际问题.2.通过〝抽屉原理〞的灵活应用感受数学的魅力.导学重点:经历〝抽屉原理〞的探究过程,初步了解〝抽屉原理〞.导学难点:理解〝抽屉原理〞,并对一些简单实际问题加以〝模型化〞.预习学案同学们玩过扑克牌吗?扑克牌有几种花色?取出两张王牌,在剩下的52张扑克牌中任意取出5张,我不看牌,我敢肯定的说:这5张牌至少有两张是同花色,大家相信吗?导学案通过今天的学习,你想知道些什么?自主操作探究新知(一)活动1课件出示:把3本书进2个抽屉中,有几种方法?请同学们放一放,再把你的想法在小组内交流.1.学生动手操作,师巡视,了解情况.2.汇报交流说理活动你们有什么发现?谁能说说看?根据学生的回答用数字在黑板上记录.板书:(3,0)(2,1)(1,2,)(0,3)还可以用什么方法记录?我把用图记录的用课件展示出来.①再认真观察记录,还有什么发现?(总有一个抽屉里至少有2本书.)②怎样放可以一次得出结论?(启发学生用平均分的放法,引出用除法计算.)板书:3÷2=1(本)……1(本)③这种方法是不是很快就能确定总有一个抽屉里至少有几本书呢?(学生交流)④把4本书放进3个抽屉里呢?还用摆吗?板书:4÷3=1(本)……1(本)⑤课件出示:把6本书放进5个抽屉呢?把7本书放进6个抽屉呢?把10本书放进9个抽屉呢?把100本书放进99个抽屉呢?板书:7÷6=1(本)……1(本)10÷9=1(本)……1(本)100÷99=1(本)……1(本)⑥观察这些算式你发现了什么规律?预设学生说出:至少数=商+余数师:是不是这个规律呢?我们来试一试吧!3.深化探究得出结论课件出示:7只鸽子飞回5个鸽笼,至少有两只鸽子要飞进同一个鸽笼里,为什么?①学生活动②交流说理活动③到底是〝商加余数〞还是〝商加1〞?谁的结论对呢?在小组里进行研究.讨论.④谁能说清楚?板书:5÷3=1(只)……2(只)至少数=商+1(二)活动二课件出示:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?分组操作后汇报板书:5÷2=2(本)……1(本)7÷2=3(本)……1(本)9÷2=4(本)……1(本)那么探究到现在,大家认为怎样才能确定总有一个抽屉至少有几本书?(至少数=商+1)我同意大家的讨论.我们这个发现就是有趣的〝抽屉原理〞,〝抽屉原理〞又称〝鸽笼原理〞,最先是由_世纪德国数学家狄里克雷提出的,所以又称〝狄里克雷原理〞.这一原理在实际问题中有着广泛的应用.用它可以解决许多有趣的问题,让我们来试试好吗?灵活应用解决问题1.解释课前提出的游戏问题.2.8只鸽子飞回3个鸽舍,不管怎样分,总有一个鸽舍至少有几只鸽子?3.任意_人中,至少有两人的出生月份相同.为什么?4.任意367名学生中,一定存在两名学生,他们在同一天过生日.为什么?畅谈感受:同学们,今天这节课有什么感受?课堂检测一.填空1.7只鸽子飞进5个鸽舍,至少有( )只鸽子要飞进同伴的鸽舍里.2.有9本书,要放进2个抽屉里,必须有一个抽屉至少要放( )本书.3.四年级两个班共有73名学生,这两个班的学生至少有( )人是同一月出生的.4.任意给出3个不同的自然数,其中一定有2个数的和是( )数.二.选择1.5个人逛商店共花了3_元钱,每人花的钱数都是整数,其中至少有一人花的钱数不低于( )元.A.60B.61C.62D.592.3种商品的总价是_元,每种商品的价格都是整数,至少有一种商品的价格不低于( )元.A.3B.4C.5D.无法确定三.解决问题1.现有5把锁的各1把钥匙混在一起跟锁对不上号了,请问最少试几次就可能全部对上号?2.六.一班四组有男女同学各5名,把他们的名字分别用10个数字代替,至少要点几个数字,才能保证叫到两名男生或两名女生?课后拓展1.六.二班有学生35人,李老师至少要准备多少本练习本,才能保证有一个人的练习本在两本或两本以上?2.从1.2.3……100,这100个连续自然数中,任意取出51个不相同的数,其中必有两个数互质,这是为什么呢?板书设计抽屉原理5÷2=2……1 至少有3只7÷2=3……1 至少有4只9÷2=4……1 至少有5只_÷2=5……1 至少有6只至少数=商数+1《抽屉原理》教学设计2【教学内容】《义务教育课程标准实验教科书·数学》六年级下册第68页.【教学目标】1.经历〝抽屉原理〞的探究过程,初步了解〝抽屉原理〞,会用〝抽屉原理〞解决简单的实际问题.2. 通过操作发展学生的类推能力,形成比较抽象的数学思维.3. 通过〝抽屉原理〞的灵活应用感受数学的魅力.【教学重点】经历〝抽屉原理〞的探究过程,初步了解〝抽屉原理〞.【教学难点】理解〝抽屉原理〞,并对一些简单实际问题加以〝模型化〞.【教具.学具准备】每组都有相应数量的盒子.铅笔.书.【教学过程】一.课前游戏引入.师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)师:听清要求 ,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好).这时教师面向全体,背对那5个人.师:开始.师:都坐下了吗?生:坐下了.师:我没有看到他们坐的情况,但是我敢肯定地说:〝不管怎么坐,总有一把椅子上至少坐两个同学〞我说得对吗?生:对!师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理.下面我们开始上课,可以吗?【点评】教师从学生熟悉的〝抢椅子〞游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫.二.通过操作,探究新知(一)教学例11.出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法?师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况 (3,0) (2,1)【点评】此处设计教师注意了从最简单的数据开始摆放,有利于学生观察.理解,有利于调动所有的学生积极参与进来.师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学.3支笔放进2个盒子里呢?生:不管怎么放,总有一个盒子里至少有2枝笔?是:是这样吗?谁还有这样的发现,再说一说.师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看.(师巡视,了解情况,个别指导)师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况.(4,0,0)(3,1,0)(2,2,0)(2,1,1),师:还有不同的放法吗?生:没有了.师:你能发现什么?生:不管怎么放,总有一个盒子里至少有2枝铅笔.师:〝总有〞是什么意思?生:一定有师:〝至少〞有2枝什么意思?生:不少于两只,可能是2枝,也可能是多于2枝?师:就是不能少于2枝.(通过操作让学生充分体验感受)师:把3枝笔放进2个盒子里,和把4枝笔饭放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔.这是我们通过实际操作现了这个结论.那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?学生思考——组内交流——汇报师:哪一组同学能把你们的想法汇报一下?组1生:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔.师:你能结合操作给大家演示一遍吗?(学生操作演示)师:同学们自己说说看,同位之间边演示边说一说好吗?师:这种分法,实际就是先怎么分的?生众:平均分师:为什么要先平均分?(组织学生讨论)生1:要想发现存在着〝总有一个盒子里一定至少有2枝〞,先平均分,余下1枝,不管放在那个盒子里,一定会出现〝总有一个盒子里一定至少有2枝〞.生2:这样分,只分一次就能确定总有一个盒子至少有几枝笔了?师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说)师:哪位同学能把你的想法汇报一下,生:(一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔.师:把6枝笔放进5个盒子里呢?还用摆吗?生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔.师:把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……:你发现什么?生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔.师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍.【点评】教师关注了〝抽屉原理〞的最基本原理,物体个数必须要多于抽屉个数,化繁为简,此处确实有必要提领出来进行教学.在学生自主探索的基础上,教师注意引导学生得出一般性的结论:只要放的铅笔数盒数多1,总有一个盒里至少放进2支.通过教师组织开展的扎实有效的教学活动,学生学的有兴趣,发展了学生的类推能力,形成比较抽象的数学思维.《抽屉原理》教学设计31.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?(留给学生思考的空间,师巡视了解各种情况)2.学生汇报.生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书.板书:5本 2个 2本…… 余1本 (总有一个抽屉里至有3本书)7本 2个 3本…… 余1本(总有一个抽屉里至有4本书)9本 2个 4本…… 余1本(总有一个抽屉里至有5本书)师:2本.3本.4本是怎么得到的?生答完成除法算式.5÷2=2本……1本(商加1)7÷2=3本……1本(商加1)9÷2=4本……1本(商加1)师:观察板书你能发现什么?生1:〝总有一个抽屉里的至少有2本〞只要用〝商+ 1〞就可以得到.师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?生:〝总有一个抽屉里的至少有3本〞只要用5÷3=1本……2本,用〝商+ 2〞就可以了.生:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书.师:到底是〝商+1〞还是〝商+余数〞呢?谁的结论对呢?在小组里进行研究.讨论.交流.说理活动:生1:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书.生2:把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是〝总有一个抽屉里至少有2本书〞.生3∶我们组的结论是5本书平均分放到3个抽屉里,〝总有一个抽屉里至少有2本书〞用〝商加1〞就可以了,不是〝商加2〞.师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?生4:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现〝总有一个抽屉里至少有商加1本书〞了.师:同学们同意吧?师:同学们的这一发现,称为〝抽屉原理〞,〝抽屉原理〞又称〝鸽笼原理〞,最先是由_世纪的德国数学家狄利克雷提出来的,所以又称〝狄里克雷原理〞,也称为〝鸽巢原理〞.这一原理在解决实际问题中有着广泛的应用.〝抽屉原理〞的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果.下面我们应用这一原理解决问题.3.解决问题.71页第3题.(独立完成,交流反馈)小结:经过刚才的探索研究,我们经历了一个很不简单的思维过程,我们获得了解决这类问题的好办法,下面让我们轻松一下做个小游戏.【点评】在这一环节的教学中教师抓住了假设法最核心的思路就是用〝有余数除法〞形式表示出来,使学生学生借助直观,很好的理解了如果把书尽量多地〝平均分〞给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本.特别是对〝某个抽屉至少有书的本数〞是除法算式中的商加〝1〞,而不是商加〝余数〞,教师适时挑出针对性问题进行交流.讨论,使学生从本质上理解了〝抽屉原理〞.《抽屉原理》教学设计4一.教学内容这一册教材包括下面一些内容:负数.圆柱与圆锥.比例.统计.数学广角.整理和复习等.教学重点:百分数的应用.圆柱的侧面积和表面积的计算方法.圆柱和圆锥的体积计算方法.比例的意义和基本性质.正比例和反比例.扇形统计图.转化的解题策略以及总复习的四个板块的系列内容.教学难点:圆柱和圆锥体积计算方法的推导.成正比例和反比例量的判断.用方向和距离确定位置.众数和中位数平均数.解题策略的灵活运用.二.教学目标这一册教材的教学目标是让学生:1.了解负数的意义,会用负数表示一些日常生活中的问题.2.理解比例的意义和基本性质,会解比例,理解正比例和反比例的意义,能够判断两种量是否成正比例或反比例,会用比例知识解决比较简单的实际问题;能根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并能根据其中一个量的值估计另一个量的值.3.会看比例尺,能利用方格纸等形式按一定的比例将简单图形放大或缩小.4.认识圆柱.圆锥的特征,会计算圆柱的表面积和圆柱.圆锥的体积.5.能从统计图表准确提取统计信息,正确解释统计结果,并能作出正确的判断或简单的预测;初步体会数据可能产生误导.6.经历从实际生活中发现问题.提出问题.解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力.7.经历对〝抽屉原理〞的探究过程,初步了解〝抽屉原理〞,会用〝抽屉原理〞解决简单的实际问题,发展分析.推理的能力.8.通过系统的整理和复习,加深对小学阶段所学的数学知识的理解和掌握,形成比较合理的.灵活的计算能力,发展思维能力和空间观念,提高综合运用所学数学知识解决问题的能力.9.体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心.10.养成认真作业.书写整洁的良好习惯.三.教材分析在数与代数方面,这一册教材安排了负数和比例两个单元.结合生活实例使学生初步认识负数,了解负数在实际生活中的应用.比例的教学,使学生理解比例.正比例和反比例的概念,会解比例和用比例知识解决问题.在空间与图形方面,这一册教材安排了圆柱与圆锥的教学,在已有知识和经验的基础上,使学生通过对圆柱.圆锥特征和有关知识的探索与学习,掌握有关圆柱表面积,圆柱.圆锥体积计算的基本方法,促进空间观念的进一步发展.在统计方面,本册教材安排了有关数据可能产生误导的内容.通过简单事例,使学生认识到利用统计图表虽便于作出判断或预测,但如不认真分析也有可能获得不准确的信息导致错误判断或预测,明确对统计数据进行认真.客观.全面的分析的重要性.在用数学解决问题方面,教材一方面结合圆柱与圆锥.比例.统计等知识的学习,教学用所学的知识解决生活中的简单问题;另一方面安排了〝数学广角〞的教学内容,引导学生通过观察.猜测.实验.推理等活动,经历探究〝抽屉原理〞的过程,体会如何对一些简单的实际问题〝模型化〞,从而学习用〝抽屉原理〞加以解决,感受数学的魅力,发展学生解决问题的能力.本册教材根据学生所学习的数学知识和生活经验,安排了多个数学综合应用的实践活动,让学生通过小组合作的探究活动或有现实背景的活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养学生的数学应用意识和实践能力.整理和复习单元是在完成小学数学的全部教学内容之后,引导学生对所学内容进行一次系统的.全面的回顾与整理,这是小学数学教学的一个重要环节.通过整理和复习,使原来分散学习的知识得以梳理,由数学的知识点串成知识线,由知识线构成知识网,从而帮助学生完善头脑中的数学认知结构,为初中的数学学习打下良好的基础;同时进一步提高学生综合运用所学知识分析问题和解决问题的能力.四.学情分析本班共有学生29人,大部分学生对数学有上进心;有些学生的学习态度还需不断端正;有部分学生自觉性不够,上课注意力不集中;不能及时完成作业等;还有个别学生(胡志强.裴玉琴.陈建宏)基础知识掌握不够扎实,学习数学有很大困难.所以在新的学期里,在端正学生学习态度的同时,应加强培养他们的各种学习数学的能力,利用小组讨论的学习方式,使学生在讨论中人人参与,各抒己见,互相启发,自己找出解决问题的方法,体验学习数学的快乐.五.教学方法:教学方法:1.创设愉悦的教学情境,激发学生学习的兴趣.提倡学法的多样性,关注学生的个人体验.2.在集体备课基础上,还应同年级老师交换听课,及时反思,真正领会教学设计意图,提高驾御课堂的能力.教师应转变观念,采用〝激励性.自主性.创造性〞教学策略,以问题为线索,恰当运用教材.媒体.现实材料突破重点.难点,变多讲多练,为精讲精练,真正实现师生互动.生生互动,从而调动学生积极主动学习,提高教与学的效益.3.不增减课程和课时,不提高要求,不购买其他复习资料,不留机械.重复.惩罚性作业和作业总量不超过规定时间,课堂训练形式的多样化,重视一题多解,从不同角度解决问题.4.加强基础知识的教学,使学生切实掌握好这些基础知识.本学期要以新的教学理念,为学生的持续发展提供丰富的教学资源和空间.要充分发挥教材的优势,在教学过程中,密切数学与生活的联系,确立学生在学习中的主体地位,创设愉悦.开放式的教学情境,使学生在愉悦.开放式的教学情境中满足个性化学习需求,从而达到掌握基础知识基本技能,培养学生创新意识和实践能力的目的.5.在教学中注意采用开放式教学,培养学生根据具体情境选择适当方法解决实际问题的意识.如通过一题多解.一题多变.一题多问.一题多编等途径,拓宽学生的知识面,沟通知识之间的内在联系,培养学生的应变能力.6.练习的安排,要由浅入深,体现层次性.对优生.学困生都要体现有所指导.增强数学实践活动,让学生认识数学知识与实际生活的关系,使学生感到生活中时时处处有数学,用数学的实际意义来诱发和培养学生热爱数学的情感.《抽屉原理》教学设计5教学内容:教科书第68.69页例1.2.教学目标:1.使学生经历将一些实际问题抽象为代数问题的过程,并能运用所学知识解决有关实际问题.2.能与他人交流思维过程和结果,并学会有条理地.清晰地阐述自己的观点.教学重点:分配方法.教学难点:分配方法.教学方法:列举法.分析法学习方法:尝试法.自主探究法教学用具:课件教学过程:一.定向导学(3分)(一)游戏引入师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了3把椅子,请4个同学上来,谁愿来?1.游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下.2.讨论:〝不管怎么坐,总有一把椅子上至少坐两个同学〞这句话说得对吗?游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象.引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理.(二)揭示目标理解并掌握解决鸽巢问题的解答方法.二.自主学习(8分)1.看书68页,阅读例1:把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?(1)理解〝总有〞和〝至少〞的意思.(2)理解4种放法.2.全班同学交流思维的过程和结果.3.跟踪练习.68页做一做:5只鸽子飞回3个鸽舍,至少有2只鸽子要飞进同一个鸽舍里.为什么?(1)说出想法.如果每个鸽舍只飞进1只鸽子,最多飞回3只鸽子,剩下2只鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍.所以至少有2只鸽子飞进同一个鸽舍.(2)尝试分析有几种情况.(3)说一说你有什么体会.三.合作交流(8)1.出示例2把7本书放进3个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?(1)合作交流有几种放法.不难得出,总有一个抽屉至少放进3本.(2)指名说一说思维过程.如果每个抽屉放2本,放了6本书.剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书.2.如果一共有8本书会怎样呢10本呢?3.你能用算式表示以上过程吗?你有什么发现?7÷3=2……1(至少放3本)8÷3=2……2(至少放4本)10÷3=3……1(至少放5本)4.做一做_只鸽子飞回4个鸽舍,至少有3只鸽子要飞进同一个鸽舍里.为什么?四.质疑探究(5分)1.鸽巢问题怎样求?小结:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数.2.做一做.69页做一做2题.五.小结检测(10)(一)小结鸽巢问题的解答方法是什么?物体的数量大于抽屉的数量,总有一个抽屉里至少放进(商+1)个物体.(二)检测1.填空(1)7只鸽子飞进5个鸽舍,至少有( )只鸽子要飞进同伴的鸽舍里.(2)有9本书,要放进2个抽屉里,必须有一个抽屉至少要放( )本书.(3)四年级两个班共有73名学生,这两个班的学生至少有( )人是同一月出生的.(4)任意给出3个不同的自然数,其中一定有2个数的和是( )数.2.选择(1)5个人逛商店共花了3_元钱,每人花的钱数都是整数,其中至少有一人花的钱数不低于( )元.a.60b.61c.62d.59(2)3种商品的总价是_元,每种商品的价格都是整数,至少有一种商品的价格不低于( )元.a.3b.4c.5d.无法确定3.幼儿园老师准备把_本图画书分给_个小朋友,结果是什么?六.作业(6分)完成课本练习十二第2.4题.板书抽屉原理物体的数量大于抽屉的数量,总有一个抽屉至少放进(商+1)物体.。
数学广角《抽屉原理》教案
![数学广角《抽屉原理》教案](https://img.taocdn.com/s3/m/3b62aab26394dd88d0d233d4b14e852459fb395b.png)
数学广角《抽屉原理》教案第一章:引言1.1 教学目标让学生初步了解抽屉原理的概念。
培养学生对数学问题的探究兴趣。
1.2 教学内容抽屉原理的定义及基本思想。
抽屉原理在日常生活中的应用。
1.3 教学过程导入:通过生活中的实例,引发学生对抽屉原理的思考。
讲解:详细解释抽屉原理的定义和证明过程。
练习:让学生尝试解决一些简单的抽屉原理问题。
第二章:抽屉原理的应用2.1 教学目标让学生掌握抽屉原理的应用方法。
培养学生解决实际问题的能力。
2.2 教学内容抽屉原理在不同情境下的应用实例。
解决实际问题时,如何运用抽屉原理。
2.3 教学过程讲解:通过实例讲解抽屉原理在不同情境下的应用。
练习:让学生尝试解决一些实际问题,运用抽屉原理。
讨论:引导学生探讨抽屉原理在解决实际问题中的优点和局限性。
第三章:抽屉原理的推广3.1 教学目标让学生了解抽屉原理的推广形式。
培养学生对数学问题的拓展思维。
3.2 教学内容抽屉原理的推广形式:如多维抽屉原理、带权抽屉原理等。
抽屉原理推广形式在日常生活中的应用。
3.3 教学过程讲解:介绍抽屉原理的推广形式及其证明过程。
练习:让学生尝试解决一些涉及抽屉原理推广形式的问题。
探讨:引导学生思考抽屉原理推广形式在解决问题中的优势。
第四章:抽屉原理与组合数学4.1 教学目标让学生了解抽屉原理与组合数学的关系。
培养学生对数学分支的兴趣。
4.2 教学内容抽屉原理在组合数学中的应用实例。
组合数学中的相关概念和定理。
4.3 教学过程讲解:阐述抽屉原理在组合数学中的应用。
练习:让学生解决一些涉及组合数学的问题,运用抽屉原理。
拓展:引导学生探索组合数学的其他领域。
第五章:抽屉原理的综合应用5.1 教学目标让学生学会将抽屉原理灵活运用于各种数学问题。
培养学生解决复杂问题的能力。
5.2 教学内容抽屉原理在各类数学问题中的综合应用实例。
解决复杂问题时,如何巧妙地运用抽屉原理。
5.3 教学过程讲解:分析抽屉原理在各类数学问题中的综合应用。
抽屉原理教学设计公开课教案教学反思
![抽屉原理教学设计公开课教案教学反思](https://img.taocdn.com/s3/m/bc1656da70fe910ef12d2af90242a8956becaa86.png)
抽屉原理教学设计公开课教案教学反思一、教学目标:1. 让学生理解并掌握抽屉原理的基本概念和运用方法。
2. 培养学生运用抽屉原理解决实际问题的能力。
3. 提高学生逻辑思维和数学推理能力。
二、教学内容:1. 抽屉原理的基本概念和性质。
2. 抽屉原理在不同情境下的应用。
3. 抽屉原理与数论、概率论等相关领域的联系。
三、教学重点与难点:1. 抽屉原理的基本概念和性质。
2. 运用抽屉原理解决实际问题。
3. 抽屉原理在不同领域的应用。
四、教学方法与手段:1. 采用案例分析法,通过具体案例让学生理解和掌握抽屉原理。
2. 运用讨论法,引导学生探讨抽屉原理的适用范围和局限性。
3. 利用多媒体辅助教学,展示抽屉原理在不同领域的应用。
五、教学安排:1. 第一课时:介绍抽屉原理的基本概念和性质。
2. 第二课时:运用抽屉原理解决实际问题。
3. 第三课时:探讨抽屉原理在不同领域的应用。
4. 第四课时:进行课堂练习和总结。
5. 第五课时:教学反思和总结。
六、教学过程:1. 导入:通过引入日常生活中的实例,如分配物品到抽屉中,引发学生对抽屉原理的兴趣。
2. 新课导入:介绍抽屉原理的基本概念和性质,解释抽屉原理的含义和应用。
3. 案例分析:通过具体的案例,让学生运用抽屉原理解决问题,如分配房间号码、安排座位等。
4. 小组讨论:学生分组讨论抽屉原理的适用范围和局限性,分享各自的解题经验和策略。
5. 应用拓展:利用多媒体展示抽屉原理在不同领域的应用,如数论、概率论等。
6. 课堂练习:给学生提供一些实际问题,让学生运用抽屉原理解决,并进行解答和讨论。
7. 总结:对本节课的内容进行总结,强调抽屉原理的重要性和应用价值。
七、教学评价:1. 课堂参与度:观察学生在课堂上的积极参与程度,提问和回答问题的积极性。
2. 解题能力:评估学生在解决问题时运用抽屉原理的正确性和灵活性。
3. 小组讨论:评价学生在小组讨论中的合作能力和交流表达能力。
4. 课后作业:通过学生完成的课后作业,评估学生对抽屉原理的理解和掌握程度。
抽屉原理教学设计 《抽屉原理》教学设计(5篇)
![抽屉原理教学设计 《抽屉原理》教学设计(5篇)](https://img.taocdn.com/s3/m/c0eb502ccbaedd3383c4bb4cf7ec4afe04a1b1ed.png)
抽屉原理教学设计《抽屉原理》教学设计(5篇)作为一名为他人授业解惑的教育工作者,常常需要准备教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
那么大家知道规范的教学设计是怎么写的吗?下面是勤劳的小编燕子给大伙儿整编的《抽屉原理》教学设计【较新5篇】,仅供参考。
六年级数学《抽屉原理》公开课教学设计篇一教学目标:1、初步了解“抽屉原理”。
2、引导学生用操作枚举或假设的方法探究“抽屉原理”的一般规律。
3、会用抽屉原理解决简单的实际问题。
4、经历从具体的抽象的探究过程,初步了解抽屉原理,提高学生又根据有条理的进行思考和推理的能力,体会比较的'学习方法。
教学重点:抽屉原理的理解和简单应用。
教学难点:找出实际问题与抽屉原理的内在联系。
教学过程:一、开展小游戏,引入新课。
师:在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人须都坐下,好吗?(好)。
这时教师面向全体,背对那5个人。
师:开始。
师:都坐下了吗?生:坐下了。
师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两位同学”我说得对吗?生:对!师:想知道老师为什么会做出如此准确的判断吗?其实这里面蕴含着一个有趣的数学原理——抽屉原理。
二、实验探索一步:研究4枝铅笔放进3个文具盒,有哪些不同的放法?你们又能从这些方法中发现什么有趣的现象?1、(出示)师:把4枝笔放进3个文具盒,有哪些不同的放法?(请一生榜样)你们又能从这些放法中发现什么有趣的现象?2、师:接下来,就请同学们以小组为单位进行实验操作,并把放法和发现填在记录卡上。
3、小组汇报交流。
(4,0,0)、(3,1,0)、(2,1,1)、(2,2,0)生:不管怎么放,总有1个文具盒里至少有2枝铅笔。
师:“总有”是什么意思?生:一定有。
《抽屉原理》教学设计方案
![《抽屉原理》教学设计方案](https://img.taocdn.com/s3/m/f22c6bf2c67da26925c52cc58bd63186bdeb9269.png)
《抽屉原理》教学设计方案一、教学目标1.知识与技能:学生能够理解抽屉原理的概念,掌握抽屉原理的应用方法,能够运用抽屉原理解决实际问题。
2.过程与方法:通过课堂讲解、案例分析和练习等多种方式,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度:激发学生对数学逻辑的兴趣,培养学生的严密思维和耐心细致的工作态度。
二、教学重难点1.教学重点:抽屉原理的概念及应用方法。
2.教学难点:抽屉原理在实际问题中的运用,如何运用抽屉原理解决问题。
三、教学内容1.抽屉原理的定义和基本概念。
2.抽屉原理的应用方法与例题解析。
3.抽屉原理在实际问题中的运用。
四、教学过程1.导入:通过一个实际生活中的例子引入抽屉原理的概念,让学生了解抽屉原理是什么以及它的应用。
2.阐述抽屉原理的定义和基本概念,让学生掌握抽屉原理的概念和基本原理。
3.分组讨论:让学生分组讨论并解决一些抽屉原理相关的问题,激发学生思维,培养学生团队协作能力。
4.教师总结并解析案例:结合具体例题,让学生了解如何应用抽屉原理解决问题,并要求学生进行反思和总结。
5.练习与巩固:板书一些练习题目,让学生在课堂上进行实践操作,巩固所学知识。
6.提高拓展:引导学生思考更多有关抽屉原理的最新研究进展和实际应用。
七、教学工具1.教科书资料2.PPT课件3.白板和彩色笔4.抽屉原理相关的案例题目5.讲解问题八、教学效果的评价1.学生表现:课程结束后进行小测验,测试学生对抽屉原理的理解和应用能力。
2.教学效果:观察学生学习态度和课后作业完成情况,评估教学效果。
3.教学反馈:及时总结课程教学过程中的问题和不足之处,为下一次教学改进提供参考。
通过以上的教学设计和实施,相信学生能够理解抽屉原理的概念和应用方法,掌握抽屉原理的技巧,提高解决实际问题的能力和兴趣。
抽屉原理教学设计
![抽屉原理教学设计](https://img.taocdn.com/s3/m/f84a6ed680c758f5f61fb7360b4c2e3f5727258a.png)
抽屉原理教学设计抽屉原理教学设计(共2篇)由大文斗范文网会员“bsbc0168”投稿精心推荐,小编希望对你的学习工作能带来参考借鉴作用。
第1篇:抽屉原理教学设计桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。
这一现象就是我们所说的“抽屉原理”。
教学理念:激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“抢椅子”,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。
通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。
特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。
教学目标:1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
教学重难点:重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教学过程:一、课前游戏引入。
师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。
这时教师面向全体,背对那5个人。
师:开始。
师:都坐下了吗?生:坐下了。
师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗?生:对!师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
(抽屉原理)二、通过操作,探究新知(一)探究例11、研究3枝铅笔放进2个文具盒。
(1)要把3枝铅笔放进2个文具盒,有几种放法?请同学们想一想,摆一摆,写一写,再把你的想法在小组内交流。
抽屉原理教案范文
![抽屉原理教案范文](https://img.taocdn.com/s3/m/8d32b15554270722192e453610661ed9ad515528.png)
抽屉原理教案范文教案主题:抽屉原理教学目标:1.了解抽屉原理的概念和应用;2.掌握使用排除法解决问题的方法;3.培养学生的逻辑思维和问题解决能力。
教学重点:1.抽屉原理的概念和应用;2.使用排除法解决问题。
教学难点:1.理解和应用抽屉原理;2.运用排除法解决问题。
教学准备:1.抽屉模型;2.计算机或投影仪。
教学过程:Step 1:导入新课教师通过引入一个问题引起学生的思考:“如果有10双鞋子和9个抽屉,那么至少有一个抽屉里会有两只鞋子吗?”请学生思考并回答。
Step 2:引入抽屉原理教师解答上述问题:“根据抽屉原理,如果将10双鞋子放入9个抽屉中,那么至少会有一个抽屉里有两只鞋子。
”教师进一步解释抽屉原理的概念:“抽屉原理是一个用来解决排列组合问题的方法,它指的是:如果有n+1个物体放入n个容器中,那么至少有一个容器里会有两个或以上的物体。
”Step 3:抽屉原理的应用教师通过例子来说明抽屉原理的应用:例子1:班级有25名学生,他们的生日都在1月到12月之间。
那么至少有两个学生的生日在同一个月。
例子2:一箱彩球,共有10个红球、8个蓝球和6个绿球。
如果从箱子中无视颜色地随机取球,那么至少需要取出几个球,才能确保至少有两个球的颜色相同?Step 4:排除法解决问题教师引入“排除法”来解决问题:“抽屉原理可以通过排除法来解决问题。
当我们遇到一个可能性很大的问题时,我们可以通过排除其他可能性来得到结果。
”Step 5:练习教师提供几个练习题,供学生进行思考和解答。
例如:1.一个班级有30名学生,他们的年龄都在10岁到15岁之间。
那么至少有两个学生的年龄相同。
2.一副扑克牌有52张,如果从中随机抽取多少张牌,才能确保至少有两张牌的花色相同?Step 6:总结与展望教师对抽屉原理和排除法进行总结,并鼓励学生在日常生活和学习中灵活运用抽屉原理和排除法解决问题。
Step 7:作业布置作业,要求学生选择一个实际生活中的问题,运用抽屉原理和排除法解决,并写出解决过程和结果。
六年级数学《抽屉原理》教学设计2篇
![六年级数学《抽屉原理》教学设计2篇](https://img.taocdn.com/s3/m/caf0cbd403d276a20029bd64783e0912a3167c49.png)
【精选】六年级数学《抽屉原理》教学设计2篇作为一名辛苦耕耘的教育工作者,常常要写一份优秀的教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
那么优秀的教学设计是什么样的呢?下面是小编为大家收集的六年级数学《抽屉原理》教学设计,仅供参考,欢迎大家阅读。
六年级数学《抽屉原理》教学设计1【教学内容】《义务教育课程标准实验教科书数学》六年级下册第68页。
【教学目标】1.经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解决简单的实际问题。
2. 通过操作发展学生的类推能力,形成比较抽象的数学思维。
3. 通过抽屉原理的灵活应用感受数学的魅力。
【教学重点】经历抽屉原理的探究过程,初步了解抽屉原理。
【教学难点】理解抽屉原理,并对一些简单实际问题加以模型化。
【教具、学具准备】每组都有相应数量的盒子、铅笔、书。
【教学过程】一、课前游戏引入。
师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。
这时教师面向全体,背对那5个人。
师:开始。
师:都坐下了吗?生:坐下了。
师:我没有看到他们坐的情况,但是我敢肯定地说:不管怎么坐,总有一把椅子上至少坐两个同学我说得对吗?生:对!师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
下面我们开始上课,可以吗?【点评】教师从学生熟悉的抢椅子游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。
二、通过操作,探究新知(一)教学例11.出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法?师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况 (3,0) (2,1)【点评】此处设计教师注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《抽屉原理》教学设计新县福和希望小学匡俊【教学内容】人教版六年级数学下册第68页。
【教学目标】1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
【教学重点】经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
【教学难点】理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教具、学具准备】每组都有相应数量的盒子、铅笔、书。
【教学过程】一、课前游戏引入。
师:同学们在我们上课之前,先做个小游戏:老师这里准备了3把椅子,请4个同学上来,谁愿来?(学生上来后)师:听清要求,老师说开始以后,请你们4个都坐在椅子上,每个人必须都坐下,好吗?(好)。
这时教师面向全体,背对那4个人。
师:开始。
师:都坐下了吗?生:坐下了。
师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗?生:对!师:老师为什么能做出准确的判断呢?这其中蕴含着一个有趣的数学原理,(板书:抽屉原理)这节课我们就一起来研究这个原理,好吗?二、通过操作,探究新知(一)教学例11.出示题目:有3本书,2个抽屉,把3本书放进2个抽屉里,怎么放?有几种不同的放法?(不区分抽屉的先后顺序)师:请同学们(拿出准备好的盒子代替抽屉,在组长的带领下)实际放放看,并记下摆放的结果。
谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0)(2,1)师:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。
3本书放进2个抽屉里呢?(总有一个抽屉里至少有几本?)生:不管怎么放,总有一个抽屉(盒子)里至少有2本书?师:是这样吗?谁还有这样的发现,再说一说。
大家一起说一说:3本书放进2个抽屉里,总有1个抽屉里至少放进2本书。
师:“总有”是什么意思?(一定有)“至少”是什么意思?(最少,还可以更多,不能更少。
,)师:我们在摆放的方法中怎样才能找到“至少2本”呢?(先找到每种摆法中本数最多的抽屉,然后再找到这些本数最多的抽屉中最少的本数,实际就是多中找少。
)师:那么,把4枝笔放进3个笔筒里,有几种不同的放法?请同学们实际放放看并记下摆放的方法。
(师巡视,了解情况,个别指导)师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师演示各种情况。
(4,0,0)(3,1,0)(2,2,0)(2,1,1),师:还有不同的放法吗?生:没有了。
师:你能发现什么?(4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学;那么4枝笔放进3个笔筒里呢?)生:不管怎么放,总有一个笔筒里至少有2枝笔。
师:在意思不变的情况下还可以换个说法,怎么说?(“总有”是什么意思?“至少”有2枝什么意思?)生:一定有一个笔筒不少于两只,可能是2枝,也可能是多于2枝师:对,就是不能少于2枝。
(通过操作让学生充分体验感受)师:我们刚刚把所有摆放的方法都一一罗列出来了,这种方法叫枚举法(板书:枚举法),但是随着数据的扩大,摆放的方法一定会更多,甚至不能一一罗列;那么我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?请同学们在小组内讨论讨论,怎么摆?学生思考——组内交流——汇报师:哪一组同学能把你们的想法汇报一下?组1生:我们发现如果每个笔筒里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个笔筒里,总有一个笔筒里至少有2枝铅笔。
师:你能结合操作给大家演示一遍吗?(学生操作演示)师:请每个组的同学们都一边说一边摆,好吗?师:这种分法,实际就是先怎么分的?生众:平均分(对,就是平均分;板书:平均分)师:为什么要先平均分?(组织学生讨论)生1:要想发现存在着“总有一个盒子里至少有2枝”,先平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。
生2:这样分,只分一次就能确定总有一个盒子至少有几枝笔了?师:那么把5枝笔放进4个笔筒里呢?如果只摆一种方法也能得出结果吗?(可以结合操作,说一说)师:哪位同学能把你的想法汇报一下,生:(一边演示一边说)5枝铅笔放在4个笔筒里,不管怎么放,总有一个盒子里至少有2枝铅笔。
把6枝笔放进5个笔筒里呢?把7枝笔放进6个笔筒里呢?……师:把100枝笔放进99个笔筒里呢?(还用摆吗?)生:把100枝笔放进99个笔筒里,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:比较笔筒数目和笔的支数,你发现了什么?生:笔的支数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:你们的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。
(投影出示:笔的支数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。
)2.解决问题。
(1)课件出示:7只鸽子飞回5个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?请同学们仔细思考,可以在小组内讨论。
(板书: 至少2只)(学生活动—独立思考自主探究)(2)交流、说理活动。
师:谁能说说为什么?生:如果每个鸽笼里飞进一只鸽子,最多飞进5只鸽子,还剩2只,不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。
师:我们刚才把每个鸽笼里分同样多的1只,叫怎么分?(平均分)我们能不能用一种熟悉的数学运算来表达刚才分的过程呢?生:可以用7÷5 = 1 (2)师:同意吗?(生:同意)老师把这位同学说的算式写下来,(板书:7÷5 = 1……2)师:同学们非常了不起,善于运用观察、分析、思考的方法研究问题,你们的思维也在不知不觉中提升了许多,那么让我们再来看这样一组问题。
(二)教学例21.出示题目:(只摆1种说明问题)把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把14本书放进5个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?(留给学生思考的空间,师巡视了解各种情况)2.学生汇报。
生:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。
板书:5本÷ 2个 = 2 本…… 余1本至少3本7本÷ 2个= 3 本…… 余1本至少4本5本÷ 3个 = 1 本…… 余2本至少2本14本÷ 5个= 2 本…… 余4本至少3本师:也可以同样用数学运算来表达吗,怎样表达?(学生回答后老师添上÷和= 完成除法算式。
)师:观察板书你能发现至少数2本、3本、4本是怎么得到的?生1:“至少数”只要用“商+1”就可以得到。
生2:“至少数”只要用“商+余数”就可以得到。
师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?在小组里进行研究、讨论。
交流----摆放----说理活动生1:先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。
生2:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。
生3∶我们组的结论是5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商加1”就可以了,不是“商加2”。
师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?生:用书的本数除以抽屉数,再用所得的商+1,就得到至少数了。
师:同学们同意吧?(板书:计算绝招:至少数=商数+1)师:投影出世抽屉原理简介:实际上抽屉原理就是有余数的除法,至少数等于商加上1;“抽屉原理”最先是由19世纪的德国数学家狄里克雷(Dirichlet)运用于解决数学问题的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。
“抽屉原理”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
“抽屉原理”在数论、集合论、组合论中都得到了广泛的应用。
下面我们应用这一原理解决问题。
3.解决问题。
71页做一做:8只鸽子飞回3个鸽笼,至少有()只鸽子要飞进同一个鸽笼。
为什么?。
(独立完成,交流反馈,教师演示。
)小结:经过刚才的探索研究,我们经历了一个很不简单的思维过程,我们获得了解决这类问题的好办法,可能让我们很紧张,下面让我们轻松一下做个小游戏。
三、应用原理解决问题一副扑克牌(除去大小王)52张中有四种花色,从中随意抽5张牌,至少有几张是同一花色的,为什么?如果抽得3张是同花色的符合猜测吗?生:2张;因为5÷4=1 (1)师:先验证一下你们的猜测:举牌验证。
师:如有3张同花色的,符合你们的猜测吗?四、全课小结:我们学习了抽屉原理,可以用有余数的除法来解决问题,用商+1来得到至少数,真是太容易了,最关键的就是要找到谁是抽屉谁是书。
五、课外思考:一副扑克牌(除去大小王)52张中有四种花色,每种花色13张。
如果要抽得1张红心,至少要抽几张牌呢?为什么?(可能与今天学习的知识有一点区别,要注意实验、思考)板书设计:抽屉原理枚举法平均分(3,0)(2,1) 7 ÷ 5 = 1 …… 2 至少2只5本÷ 2个 = 2 本…… 余1本至少3本7本÷ 2个= 3 本…… 余1本至少4本5本÷ 3个 = 1 本…… 余2本至少2本14本÷ 5个= 2 本…… 余4本至少3本计算绝招:至少数= 商+1。