高考数学模拟复习试卷试题模拟卷第八章 直线与圆0062.22
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0061 92
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.在实际情境中,会根据不同的需要选择图象法、列表法、解析法表示函数.2.会运用函数图象理解和研究函数的性质. 【热点题型】 题型一 识图例1 (1)函数f(x)=ln⎝⎛⎭⎫x -1x 的图象是( )(2)函数y =x33x -1的图象大致是( )解析 (1)自变量x 满足x -1x =x2-1x >0,当x>0时可得x>1,当x<0时可得-1<x<0,即函数f(x)的定义域是(-1,0)∪(1,+∞),据此排除选项A 、D 中的图象.当x>1时,函数x -1x 单调递增,故函数f(x)=ln ⎝⎛⎭⎫x -1x 也单调递增,故选B.(2)由函数的定义域为{x|x≠0},可排除选项A ;当x<0时,y>0,可排除选项B ;当x =3时,y =2726,当x =4时,y =6480=45<2726,可排除选项D ,故选C. 答案 (1)B(2)C 【提分秘籍】(1)识别函数图象应注意以下三点: ①函数的定义域、值域.②函数的性质(单调性、奇偶性、周期性等).③函数图象上的特殊点(与坐标轴的交点、经过的定点等).(2)对于给定函数的图象,要能从象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域(最值)、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系,常用的方法有:①定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题.②定量计算法:通过定量的计算来分析解决问题.③函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题. 【举一反三】函数y =1-1x -1的图象是( )解析:将y =-1x 的图象向右平移1个单位,再向上平移一个单位,即可得到函数y =1-1x -1的图象.答案:B 题型二作图例2、作出下列函数的图象.(1)y =2x +2;(2)y =|log2x -1|;(3)y =x +2x +3.解析 (1)将y =2x 的图象向左平移2个单位.图象如图.(2)先作出y =log2x 的图象,再将其图象向下平移一个单位,保留x 轴上方的部分,将x 轴下方的图象翻折到x 轴上方,即得y =|log2x -1|的图象,如图.(3)因为y =x +2x +3=1-1x +3,所以原函数可由y =-1x 向左平移3个单位,再向上平移1个单位而得,如图.【提分秘籍】画函数图象的一般方法有:(1)直接法:当函数表达式是基本函数或函数图象是解析几何中熟悉的曲线(如圆、椭圆、双曲线、抛物线的一部分)时,就可根据这些函数或曲线的特征直接作出.(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称变换得到,可利用图象变换作出.【举一反三】作出下列函数的图象.(1)y =|x -2|(x +1);(2)y =|x2-2|x|-3|. 解析:(1)函数化为y =⎩⎪⎨⎪⎧⎝⎛⎭⎫x -122-94x≥2,-⎝⎛⎭⎫x -122+94x<2,图象如图.(2)y =x2-2x -3→y =x2-2|x|-3→y =|x2-2|x|-3|.图象变换如图.题型三函数图象及其应用例3.函数y =11-x 的图象与函数y =2sin πx(-2≤x≤4)的图象所有交点的横坐标之和等于( )A .2B .4C .6D .8解析:由题意知y =11-x =-1x -1的图象是双曲线,且关于点(1,0)成中心对称,又y =2sin πx 的周期为T=2ππ=2,且也关于点(1,0)成中心对称,因此两图象的交点也一定关于点(1,0)成中心对称,再结合图象(如图所示)可知两图象在[-2,4]上有8个交点,因此8个交点的横坐标之和x1+x2+…+x8=4×2=8.故选D.答案:D 【提分秘籍】1.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来图象的应用命题角度有:(1)确定方程根的个数. (2)求参数的取值范围. (3)求不等式的解集.2.(1)研究函数性质时一般要借助于函数图象,体现了数形结合思想. (2)有些不等式问题常转化为两函数图象的上、下关系来解决. (3)方程解的问题常转化为两熟悉的函数图象的交点个数问题来解决. 【变式探究】已知函数f(x)=|x -2|+1,g(x)=kx ,若方程f(x)=g(x)有两个不相等的实根,则实数k 的取值范围是()A.⎝⎛⎭⎫0,12B.⎝⎛⎭⎫12,1 C .(1,2) D .(2,+∞)解析:由已知,函数f(x)=|x -2|+1,g(x)=kx 的图象有两个公共点,画图可知当直线介于l1:y =12x ,l2:y =x 之间时,符合题意,故选B.答案:B【举一反三】函数f(x)是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f xcos x<0的解集为________.【高考风向标】1.【高考四川,文5】下列函数中,最小正周期为π的奇函数是( )(A)y =sin(2x +2π) (B)y =cos(2x +2π) (C)y =sin2x +cos2x (D)y =sinx +cosx 【答案】B2.【高考天津,文7】已知定义在R 上的函数||()21()xm f x m 为实数为偶函数,记0.5(log 3),af 2b(log 5),c(2)f f m ,则,,a b c ,的大小关系为()(A) b c a(B) b c a (C) b a c (D) b c a【答案】B【解析】由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-= ,所以b c a ,故选B.3.【高考陕西,文9】 设()sin f x x x =-,则()f x =( ) A .既是奇函数又是减函数B .既是奇函数又是增函数 C .是有零点的减函数 D .是没有零点的奇函数 【答案】B【解析】()sin ()()sin()sin (sin )()f x x x f x x x x x x x f x =-⇒-=---=-+=--=-,又()f x 的定义域为R 是关于原点对称,所以()f x 是奇函数;()1cos 0()f x x f x '=-≥⇒是增函数. 故答案选B4.【高考山东,文8】若函数21()2x x f x a+=-是奇函数,则使3f x >()成立的x 的取值范围为( )(A )( ) (B)() (C )0,1()(D )1,+∞()【答案】C【解析】由题意()()f x f x =--,即2121,22x x xx a a--++=---所以,(1)(21)0,1x a a -+==,21(),21x x f x +=-由21()321x x f x +=>-得,122,01,x x <<<<故选C .5.【高考广东,文3】下列函数中,既不是奇函数,也不是偶函数的是( )A .2sin y x x =+B .2cos y x x =-C .122x x y =+D .sin 2y x x =+ 【答案】A 【解析】函数()2sin f x x x=+的定义域为R ,关于原点对称,因为()11sin1f =+,()11sin1f -=-,所以函数()2sin f x x x=+既不是奇函数,也不是偶函数;函数()2cos f x x x=-的定义域为R ,关于原点对称,因为()()()()22cos cos f x x x x x f x -=---=-=,所以函数()2cos f x x x=-是偶函数;函数()122x x f x =+的定义域为R ,关于原点对称,因为()()112222x x x x f x f x ---=+=+=,所以函数()122xx f x =+是偶函数;函数()sin 2f x x x =+的定义域为R ,关于原点对称,因为()()()sin 2sin 2f x x x x x f x -=-+-=--=-,所以函数()sin 2f x x x=+是奇函数.故选A .6.【高考北京,文3】下列函数中为偶函数的是( ) A .2sin y x x =B .2cos y x x =C .ln y x =D .2xy -= 【答案】B【解析】根据偶函数的定义()()f x f x -=,A 选项为奇函数,B 选项为偶函数,C 选项定义域为(0,)+∞不具有奇偶性,D 选项既不是奇函数,也不是偶函数,故选B.7.【高考福建,文3】下列函数为奇函数的是( )A .y =.x y e =C .cos y x =D .x x y e e -=-【答案】D【解析】函数y =x y e =是非奇非偶函数;cos y x =是偶函数;x x y e e -=-是奇函数,故选D .8.【高考安徽,文4】下列函数中,既是偶函数又存在零点的是( ) (A )y=lnx (B )21y x =+ (C )y=sinx (D )y=cosx【答案】D【解析】选项A :x y ln =的定义域为(0,+∞),故x y ln =不具备奇偶性,故A 错误;选项B :12+=x y 是偶函数,但012=+=x y 无解,即不存在零点,故B 错误;选项C :x y sin =是奇函数,故C 错; 选项D :x y cos =是偶函数, 且0cos ==x y ππk x +=⇒2,z k ∈,故D 项正确.9.【高考上海,文20】(本题满分14分)本题共2小题,第1小题6分,第2小题8分. 已知函数xax x f 1)(2+=,其中a 为实数. (1)根据a 的不同取值,判断函数)(x f 的奇偶性,并说明理由; (2)若)3,1(∈a ,判断函数)(x f 在]2,1[上的单调性,并说明理由. 【答案】(1))(x f 是非奇非偶函数;(2)函数)(x f 在]2,1[上单调递增. 【解析】(1)当0=a 时,xx f 1)(=,显然是奇函数; 当0≠a 时,1)1(+=a f ,1)1(-=-a f ,)1()1(-≠f f 且0)1()1(≠-+f f , 所以此时)(x f 是非奇非偶函数.10.(·重庆卷) 下列函数为偶函数的是( ) A .f(x)=x -1 B .f(x)=x2+xC .f(x)=2x -2-xD .f(x)=2x +2-x 【答案】D【解析】A 中,f(-x)=-x -1,f(x)为非奇非偶函数;B 中,f(-x)=(-x)2-x =x2-x ,f(x)为非奇非偶函数;C 中,f(-x)=2-x -2x =-(2x -2-x)=-f(x),f(x)为奇函数;D 中,f(-x)=2-x +2x =f(x),f(x)为偶函数.故选D.11.(·安徽卷) 若函数f(x)(x ∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=⎩⎪⎨⎪⎧x (1-x ),0≤x≤1,sin πx ,1<x≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=______.【答案】516【解析】由题易知f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫-34+f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫34-f ⎝⎛⎭⎫76=-316+sin π6=516.12.(·广东卷) 下列函数为奇函数的是( ) A .2x -12x B .x3sin x C .2cos x +1 D .x2+2x 【答案】A【解析】对于A 选项,令f(x)=2x -12x =2x -2-x ,其定义域是R ,f(-x)=2-x -2x =-f(x),所以A 正确;对于B 选项,根据奇函数乘奇函数是偶函数,所以x3sin x 是偶函数;C 显然也是偶函数;对于D 选项,根据奇偶性的定义,该函数显然是非奇非偶函数.13.(·湖北卷) 已知f(x)是定义在R 上的奇函数,当x≥0时,f(x)=x2-3x ,则函数g(x)=f(x)-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3} 【答案】D14.(·湖南卷) 下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( ) A .f(x)=1x2 B .f(x)=x2+1C .f(x)=x3D .f(x)=2-x 【答案】A【解析】由偶函数的定义,可以排除C ,D ,又根据单调性,可得B 不对. 15.(·湖南卷) 若f(x)=ln(e3x +1)+ax 是偶函数,则a =________. 【答案】-32【解析】由偶函数的定义可得f(-x)=f(x),即ln(e -3x +1)-ax =ln(e3x +1)+ax , ∴2ax =-ln e3x =-3x ,∴a =-32.16.(·江苏卷) 已知函数f(x)=ex +e -x ,其中e 是自然对数的底数. (1)证明:f(x)是R 上的偶函数.(2)若关于x 的不等式mf(x)≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x0∈[1,+∞),使得f(x0)<a(-x30+3x0)成立.试比较ea -1与ae -1的大小,并证明你的结论.【解析】解: (1)证明:因为对任意 x ∈R ,都有f(-x)=e -x +e -(-x)=e -x +ex =f(x), 所以f(x)是R 上的偶函数.(2)由条件知 m(ex +e -x -1)≤e -x -1在(0,+∞)上恒成立. 令 t =ex(x>0),则 t>1,所以 m≤-t -1t2-t +1=-1t -1+1t -1+ 1对任意 t>1成立. 因为t -1+1t -1+ 1≥2(t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13, 当且仅当 t =2, 即x = ln 2时等号成立. 因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13.(3)令函数 g(x)=ex +1ex - a(-x3+3x),则g′(x) =ex -1ex +3a(x2-1).当 x≥1时,ex -1ex >0,x2-1≥0.又a>0,故 g′(x)>0,所以g(x)是[1,+∞)上的单调递增函数, 因此g(x)在[1,+∞)上的最小值是 g(1)= e +e -1-2a.由于存在x0∈[1,+∞),使ex0+e -x0-a(-x30+ 3x0)<0 成立, 当且仅当最小值g(1)<0, 故 e +e -1-2a<0, 即 a>e +e -12.令函数h(x) = x -(e -1)ln x -1,则 h′(x)=1-e -1x . 令 h′(x)=0, 得x =e -1. 当x ∈(0,e -1)时,h′(x)<0,故h(x)是(0,e -1)上的单调递减函数; 当x ∈(e -1,+∞)时,h′(x)>0,故h(x)是(e -1,+∞)上的单调递增函数. 所以h(x)在(0,+∞)上的最小值是h(e -1).注意到h(1)=h(e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h(e -1)≤h(x)<h(1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h(x)<h(e)=0.所以h(x)<0对任意的x ∈(1,e)成立. 故①当a ∈⎝⎛⎭⎫e +e -12,e ⊆(1,e)时, h(a)<0,即a -1<(e -1)ln a ,从而ea -1<ae -1; ②当a =e 时,ea -1=ae -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h(a)>h(e)=0,即a -1>(e -1)ln a ,故ea -1>ae -1. 综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,ea -1<ae -1;当a =e 时,ea -1=ae -1;当a ∈(e ,+∞)时,ea-1>ae -1.17.(·全国卷) 奇函数f(x)的定义域为R.若f(x +2)为偶函数,且f(1)=1,则f(8)+f(9)=( ) A .-2 B .-1 C .0 D .1 【答案】D【解析】因为f(x +2)为偶函数,所以其对称轴为直线x =0,所以函数f(x)的图像的对称轴为直线x =2.又因为函数f(x)是奇函数,其定义域为R ,所以f(0)=0,所以f(8)=f(-4)=-f(4)=-f(0)=0,故f(8)+f(9)=0+f(-5)=-f(5)=-f(-1)=f(1)=1.18.(·新课标全国卷Ⅱ] 偶函数y =f(x)的图像关于直线x =2对称,f(3)=3,则f(-1)=________. 【答案】3【解析】因为函数图像关于直线x =2对称,所以f(3)=f(1),又函数为偶函数,所以f(-1)=f(1),故f(-1)=3.19.(·全国新课标卷Ⅰ] 设函数f(x),g(x)的定义域都为R ,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )A .f(x)g(x)是偶函数B .|f(x)|g(x)是奇函数C .f(x)|g(x)|是奇函数D .|f(x)g(x)|是奇函数 【答案】C20.(·四川卷) 设f(x)是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f(x)=⎩⎪⎨⎪⎧-4x2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________.【答案】1 【解析】由题意可知,f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫2-12f ⎝⎛⎭⎫-12=-4⎝⎛⎭⎫-122+2=1.【高考押题】1.函数y =|x|与y =x2+1在同一坐标系上的图像为()解析因为|x|≤x2+1,所以函数y =|x|的图像在函数y =x2+1图像的下方,排除C 、D ,当x→+∞时,x2+1→|x|,排除B ,故选A.答案A2.函数y =11-x的图象与函数y =2sin πx(-2≤x≤4)的图象所有交点的横坐标之和等于().A .2B .4C .6D .8解析 此题考查函数的图象、两个函数图象的交点及函数的对称性问题.两个函数都是中心对称图形.如上图,两个函数图象都关于点(1,0)成中心对称,两个图象在[-2,4]上共8个公共点,每两个对应交点横坐标之和为2,故所有交点的横坐标之和为8.答案 D3.已知函数f(x)=⎝⎛⎭⎫1e x -tan x ⎝⎛⎭⎫-π2<x<π2,若实数x0是函数y =f(x)的零点,且0<t<x0,则f(t)的值(). A .大于1B .大于0C .小于0D .不大于0解析 分别作出函数y =⎝⎛⎭⎫1e x 与y =tan x 在区间⎝⎛⎭⎫-π2,π2上的图象,得到0<x0<π2,且在区间(0,x0)内,函数y =⎝⎛⎭⎫1e x 的图象位于函数y =tan x 的图象上方,即0<x<x0时,f(x)>0,则f(t)>0,故选B.答案 B4.如图,正方形ABCD 的顶点A ⎝ ⎛⎭⎪⎫0,22,B ⎝ ⎛⎭⎪⎫22,0,顶点C 、D 位于第一象限,直线l :x =t(0≤t≤2)将正方形ABCD 分成两部分,记位于直线l 左侧阴影部分的面积为f(t),则函数S =f(t)的图象大致是().解析当直线l从原点平移到点B时,面积增加得越来越快;当直线l从点B平移到点C时,面积增加得越来越慢.故选C.答案C5.给出四个函数,分别满足①f(x+y)=f(x)+f(y),②g(x+y)=g(x)·g(y),③h(x·y)=h(x)+h(y),④m(x·y)=m(x)·m(y).又给出四个函数的图象,那么正确的匹配方案可以是()A.①甲,②乙,③丙,④丁B.①乙,②丙,③甲,④丁C.①丙,②甲,③乙,④丁D.①丁,②甲,③乙,④丙解析图象甲是一个指数函数的图象,它应满足②;图象乙是一个对数函数的图象,它应满足③;图象丁是y=x的图象,满足①.答案D6.如右图,已知正四棱锥S-ABCD所有棱长都为1,点E是侧棱SC上一动点,过点E垂直于SC的截面将正四棱锥分成上、下两部分.记SE=x(0<x<1),截面下面部分的体积为V(x),则函数y=V(x)的图象大致为().解析 (1)当0<x<12时,过E 点的截面为五边形EFGHI(如图1所示),连接FI ,由SC 与该截面垂直知,SC ⊥EF ,SC ⊥EI ,∴EF =EI =SEtan 60°=3x ,SI =2SE =2x ,IH =FG =BI =1-2x ,FI =GH =2AH =2 2x ,∴五边形EFGHI 的面积S =FG×GH +12FI×EF2-⎝⎛⎭⎫12FI 2=22x -32x2, ∴V(x)=VC -EFGHI +2VI -BHC =13(22x -32x2)×CE +2×13×12×1×(1-2x)×22(1-2x)=2x3-2x2+26,其图象不可能是一条线段,故排除C ,D.答案 A7.函数y =11-x 的图象与函数y =2sin πx(-2≤x≤4)的图象所有交点的横坐标之和等于________.解析 函数y =11-x =-1x -1和y =2sin πx 的图象有公共的对称中心(1,0),画出二者图象如图所示,易知y =11-x与y =2sin πx(-2≤x≤4)的图象共有8个交点,不妨设其横坐标为x1,x2,x3,x4,x5,x6,x7,x8,且x1<x2<x3<x4<x5<x6<x7<x8,由对称性得x1+x8=x2+x7=x3+x6=x4+x5=2,∴x1+x2+x3+x4+x5+x6+x7+x8=8.答案 88.使log2(-x)<x +1成立的x 的取值范围是________.解析 作出函数y =log2(-x)及y =x +1的图象.其中y =log2(-x)与y =log2x 的图象关于y 轴对称,观察图象(如图所示)知-1<x<0,即x ∈(-1,0).也可把原不等式化为⎩⎪⎨⎪⎧-x>0,-x<2x +1后作图.答案 (-1,0)9.设f(x)表示-x +6和-2x2+4x +6中较小者,则函数f(x)的最大值是________.解析 在同一坐标系中,作出y =-x +6和y =-2x2+4x +6的图象如图所示,可观察出当x =0时函数f(x)取得最大值6.答案 610.已知函数f(x)=(12)x 的图象与函数y=g(x)的图象关于直线y=x 对称,令h(x)=g(1|x|),则关于h(x)有下列命题:①h(x)的图象关于原点对称;②h(x)为偶函数;③h(x)的最小值为0;④h(x)在(0,1)上为减函数.其中正确命题的序号为_________.(将你认为正确的命题的序号都填上)解析g(x)=12logx,∴h(x)=12log(1|x|),∴h(x)=()()1212log1x1x0, log1x0x1+-<≤⎧⎪⎨-<<⎪⎩,,得函数h(x)的大致图象如图,故正确命题序号为②③.答案②③11.讨论方程|1-x|=kx的实数根的个数.解设y=|1-x|,y=kx,则方程的实根的个数就是函数y=|1-x|的图象与y=kx的图象交点的个数.由右边图象可知:当-1≤k<0时,方程没有实数根;当k=0或k<-1或k≥1时,方程只有一个实数根;当0<k<1时,方程有两个不相等的实数根.12.设函数f(x)=x +1x 的图象为C1,C1关于点A(2,1)对称的图象为C2,C2对应的函数为g(x). (1)求g(x)的解析式;(2)若直线y =m 与C2只有一个交点,求m 的值和交点坐标.13.当x ∈(1,2)时,不等式(x -1)2<logax 恒成立,求a 的取值范围. 解设f1(x)=(x -1)2,f2(x)=logax ,要使当x ∈(1,2)时,不等式 (x -1)2<logax 恒成立,只需f1(x)=(x -1)2在(1,2)上的图象在f2(x)=logax 的下方即可.当0<a<1时,综合函数图象知显然不成立.当a>1时,如图,要使在(1,2)上,f1(x)=(x -1)2的图象在f2(x)=logax 的下方, 只需f1(2)≤f2(2),即(2-1)2≤loga2,loga2≥1,∴1<a≤2.∴a 的取值范围是(1,2]14.已知函数f(x)=x|m -x|(x ∈R),且f(4)=0. (1)求实数m 的值;(2)作出函数f(x)的图象并判断其零点个数; (3)根据图象指出f(x)的单调递减区间; (4)根据图象写出不等式f(x)>0的解集;(5)求集合M ={m|使方程f(x)=m 有三个不相等的实根}. 解 (1)∵f(4)=0,∴4|m -4|=0,即m =4.(2)∵f(x)=x|m -x|=x|4-x|=⎩⎪⎨⎪⎧x x -4,x≥4,-x x -4,x<4.∴函数f(x)的图象如图:由图象知f(x)有两个零点.(3)从图象上观察可知:f(x)的单调递减区间为[2,4]. (4)从图象上观察可知:不等式f(x)>0的解集为:{x|0<x<4或x>4}.(5)由图象可知若y =f(x)与y =m 的图象有三个不同的交点,则0<m<4,∴集合M ={m|0<m<4}.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第03节 二项式定理一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【“五个一名校联盟” 高三教学质量监测(一)5】在154)212(+x 的展开式中,系数是有理数的项共有 ( )A.4项B.5项C.6项D.7项 【答案】A2.【宝鸡市高三数学质量检测(一)】若)21(3xx n-的展开式中第四项为常数项,则=n ( )A . 4 B. 5 C. 6 D. 7 【答案】B【解析】依题意,()()3333133243122n n n n T C x C x x ---⎛⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,∵其展开式中第四项为常数项,∴3102n --=,∴5n =,故选B . 3.【改编题】6(1)(1)x x +-展开式中3x 项系数为( )A.14 B .15 C .16 D .17 【答案】C 【解析】6(1)x 展开式的通项为616(kk k T C x -+=-3626(1)k kkC x--=-,令2k =,得2223615T C x x ==,令0k =,得03316T C x x ==,故3x 项为32311516x x x x ⋅+⋅=,所以3x 项系数为16.4.【金丽衢十二校高三第二次联考】二项式2111()x x-的展开式中,系数最大的项为( )A.第五项B.第六项C.第七项D.第六和第七项 【答案】C【解析】依题意得展开式的通项的系数为111(1)r r r T C +=-.二项系数最大的是511C 与611C .所以系数最大的是6711T C =.5.【江西赣州市六校高三上学期期末联考】已知8a x x ⎛⎫- ⎪⎝⎭展开式中常数项为5670,其中a 是常数,则展开式中各项系数的和是( )A .28B .48C .28或48D .1或28 【答案】C6.【高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C7.【高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.8.【高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为()A.122 B .112 C .102D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n , 所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯. 9.【咸阳市高考模拟考试试题(三)】若n xx )2(3+展开式中存在常数项,则n 的值可以是( )A .8B .9C .10D .12【答案】C10.【潍坊市高三3月模拟考试】设0(sin cos )k x x dx π=-⎰,若8280128(1)...kx a a x a x a x -=++++,则1238...a a a a ++++=( ) (A) 1 (B)0 (C)l (D)256 【答案】B11.【浙江高考第5题】在46)1()1(y x ++的展开式中,记nmy x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 210 【答案】C 【解析】由题意可得()()()()3211236646443,02,11,20,32060364120f f f f C C C C C C ++=+++=+++=,故选C12.【原创题】210(1)xx -+展开式中3x 项的系数为( ).A.210 B .120 C .90 D .210 【答案】D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.) 13.【大纲高考第13题】8y x ⎛⎫- ⎪ ⎪⎝⎭的展开式中22x y 的系数为. 【答案】70.14.【改编题】对任意实数x ,有423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,则3a 的值为. 【答案】8【解析】 44)23()1(+-=-x x ,又423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,∴32216214343=⨯=⋅⋅=C C a . 15.【高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是(用数字作答). 【答案】40-. 【解析】55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.16.【高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.【答案】3三、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知在332nx x ⎛-⎪⎭的展开式中,第6项为常数项. (1)求n ;(2)求含x2的项的系数; (3)求展开式中所有的有理项. 【解析】(1)通项公式为2333111()()22n k k n kkk k kk nn T C xx C x ---+=-=-,因为第6项为常数项, 所以k =5时,n -2×53=0,即n =10.(2)令10-2k 3=2,得k =2,故含x2的项的系数是2210145()24C -=.(3)根据通项公式,由题意⎩⎪⎨⎪⎧10-2k3∈Z0≤k ≤10k ∈N,令10-2k 3=r (r ∈Z),则10-2k =3r ,k =5-32r ,∵k ∈N ,∴r 应为偶数.∴r 可取2,0,-2,即k 可取2,5,8, ∴第3项,第6项与第9项为有理项,它们分别为222101()2C x -,55101()2C -,882101()2C x -.18.已知223)n x x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992.求在212nx x ⎛⎫- ⎪⎝⎭的展开式中,(1)二项式系数最大的项; (2)系数的绝对值最大的项.19.设(1-2x)2 013=a0+a1x +a2x2+…+a2 013x2 013 (x ∈R). (1)求a0+a1+a2+…+a2 013的值; (2)求a1+a3+a5+…+a2 013的值; (3)求|a0|+|a1|+|a2|+…+|a2 013|的值. 解 (1)令x =1,得a0+a1+a2+…+a2 013=(-1)2 013=-1.① (2)令x =-1,得a0-a1+a2-a3+…-a2 013=32 013.② 与①式联立,①-②得2(a1+a3+…+a2 013)=-1-32 013, ∴a1+a3+…+a2 013=-1+32 0132. (3)Tr +1=Cr 2 013(-2x)r =(-1)r ·Cr 2 013(2x)r , ∴a2k -1<0,a2k>0 (k ∈N*). ∴|a0|+|a1|+|a2|+…+|a2 013| =a0-a1+a2-…-a2 013 =32 013(令x =-1).20.【第二次大联考数学江苏版】对于给定的函数()f x ,定义()n f x 如下:()()C (1)nk k n k n nk k f x f x x n -==-∑,其中2n n ∈*N ≥,. (1)当()1f x =时,求证:()1n f x =;(2)当()f x x =时,比较2014(2013)f 与2013(2014)f 的大小; (3)当2()f x x =时,求()n f x 的不为0的零点.。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆006 206
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷第04节 数学归纳法一、选择题1. 数学归纳法适用于证明的命题类型是A 、已知⇒结论B 、结论⇒已知C 、直接证明比较困难D 、与正整数有关 2. 用数学归纳法证明等式(3)(4)123(3)()2n n n n *+++++++=∈N 时,第一步验证1n =时,左边应取的项是 A .1B .12+C .123++D .1234+++3. 利用数学归纳法证明不等式1+12+13+ 121n -<f(n) (n≥2,n N *∈)的过程中,由n =k 变到n =k +1时,左边增加了( ) A .1项 B .k 项 C .12k -项 D .2k项4. 若f n n()=++++-121314121……,则f k f k ()()+-1等于() A 、1211k +- B 、121211211k k k +++-+ C. 121211k k +-+ D. 121211211k k k ++++-+…… 5. 设()x f 是定义在正整数集上的函数,且()x f 满足:“当()1+≥k k f 成立时,总可推出()21+≥+k k f 成立”,那么,下列命题总成立的是 ( ) A .若()21<f 成立,则()1110<f 成立B .若()43≥f 成立,则当1≥k 时,均有()1+≥k k f 成立C .若()32<f 成立,则()21≥f 成立D .若()54≥f 成立,则当4≥k 时,均有()1+≥k k f 成立 6. 在应用数学归纳法证明凸n 变形的对角线为)3(21-n n 条时,第一步检验n 等于( ) A.1 B.2 C .3 D .0 7. 下面四个判断中,正确的是()A .式子1+k +k2+…+kn(n ∈N*)中,当n =1时式子值为1B .式子1+k +k2+…+kn -1(n ∈N*)中,当n =1时式子值为1+kC .式子1+1123++…+121n + (n ∈N*)中,当n =1时式子值为1+1123+ D .设f(x)=111+1231n n n ++++ (n ∈N*),则f(k +1)=f(k)+111323334k k k +++++ 8.在数列{an}中,an =1-12+13-14+…+121n --12n,则ak +1等于() A .ak +121k + B .ak +122k +-124k +C .ak +122k +D .ak +121k +-122k +9. 用数学归纳法证明12+32+52+…+(2n ﹣1)2=n (4n2﹣1)过程中,由n=k 递推到n=k+1时,不等式左边增加的项为( )A .(2k )2B .(2k+3)2C .(2k+2)2D .(2k+1)2 10. 用数学归纳法证明(1)(2)()213(21)n n n n n n +++=-····,从k 到1k +,左边需要增乘的代数式为()A.21k +B.2(21)k +C.211k k ++D.231k k ++ 二、填空题11. 利用数学归纳法证明“221111n n a a a aa++-++++=-, (1,a n N ≠∈)”时,在验证1n =成立时,左边应该是 .12. 用数学归纳法证明:(31)(1)(2)()2n n n n n n +++++++=*()n N ∈的第二步中,当1n k =+时等式左边与n k =时的等式左边的差等于.13.用数学归纳法证明2n n a b +≥2a b +⎛⎫⎪⎝⎭n(a ,b 是非负实数,n ∈N +)时,假设n=k 命题成立之后,证明n =k +1命题也成立的关键是________________. 三、解答题14. 数列}{n a 满足)(2*N n a n S n n ∈-=.(1)计算1a ,2a ,3a ,4a ,并由此猜想通项公式n a ;(2)用数学归纳法证明(1)中的猜想.15. 已知数列}{n a 的前n 项和为n S ,且44431--=+n n n a S )(*∈N n ,令n nn a b 4=. (1)求证:数列}{n b 是等差数列,并求数列}{n a 的通项公式;(2)若2)(-=n a n f )(*∈N n ,用数学归纳法证明)(n f 是18的倍数.16. 若不等式11n ++12n ++…+131n +>24a 对一切正整数n 都成立,猜想正整数a 的最大值,并证明结论.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【考情解读】1.会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).2.会利用导数解决某些实际问题.【重点知识梳理】1.利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x);(2)求函数的导数f′(x),解方程f′(x)=0;(3)比较函数在区间端点和f′(x)=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.2.不等式问题(1)证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.(2)求解不等式恒成立问题时,可以考虑将参数分离出来,将参数范围问题转化为研究新函数的值域问题.3.方程解的个数问题构造函数,利用导数研究函数的单调性,极值和特殊点的函数值,根据函数性质结合草图推断方程解的个数.【高频考点突破】考点一函数的最值与导数例1、已知a∈R,函数f(x)=ax+ln x-1.(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)求f(x)在区间(0,e]上的最小值.【拓展提升】1.极值只能在定义域内部取得,而最值却可以在区间的端点取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.2.求给定区间上的函数的最值关键是判断函数在此区间上的单调性,但要注意极值点不一定是最值点,还要与端点值比较,对于含参数的函数最值,要注意分类讨论.【变式探究】已知函数f(x)=ax -2x -3ln x ,其中a 为常数.(1)当函数f(x)的图象在点⎝⎛⎭⎫23,f ⎝⎛⎭⎫23处的切线的斜率为1时,求函数f(x)在⎣⎡⎦⎤32,3上的最小值;(2)若函数f(x)在区间(0,+∞)上既有极大值又有极小值,求a 的取值范围;考点二 利用导数证明不等式例2、 已知定义在正实数集上的函数f(x)=12x2+2ax ,g(x)=3a2lnx +b ,其中a>0.设两曲线y =f(x),y =g(x)有公共点,且在该点处的切线相同.(1)用a 表示b ,并求b 的最大值; (2)求证:f(x)≥g(x)(x>0).【方法技巧】利用导数证明不等式的步骤(1)构造新函数,并求其单调区间;(2)判断区间端点函数值与0的关系;(3)判断定义域内函数值与0的大小关系,证不等式.【变式探究】证明:当x∈[0,1]时,22x≤sinx≤x.考点三、利用导数研究函数零点问题例3、已知函数f(x)=x2+xsinx+cosx.(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.【方法技巧】函数零点或函数图象交点问题的求解,一般利用导数研究函数的单调性、极值等性质,并借助函数图象,根据零点或图象的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一.【变式探究】已知函数f(x)=x3-3ax-1,a≠0.(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.考点四生活中的优化问题例4、某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=ax-3+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.【方法技巧】在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.用导数求实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义可知该极值点就是最值点.【变式探究】请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E,F在AB上,是被切去的一个等腰直角三角形斜边的两个端点,设AE =FB=x(cm).(1)某广告商要求包装盒的侧面积S(cm2)最大,试问x取何值?(2)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.【真题感悟】【高考北京,文8】某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程“指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为()A.6升 B.8升 C.10升 D.12升【答案】B【高考福建,文22】已知函数2(1)()ln2xf x x-=-.(Ⅰ)求函数()f x的单调递增区间;(Ⅱ)证明:当1x>时,()1f x x<-;(Ⅲ)确定实数k的所有可能取值,使得存在01x>,当(1,)x x∈时,恒有()()1f x k x>-.【答案】(Ⅰ)150,2⎛⎫+⎪⎪⎝⎭;(Ⅱ)详见解析;(Ⅲ)(),1-∞.【高考广东,文21】(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---. (1)若()01f ≤,求a 的取值范围; (2)讨论()f x 的单调性; (3)当2a ≥时,讨论()4f x x+在区间()0,+∞内的零点个数. 【答案】(1)1,2⎛⎤-∞ ⎥⎝⎦;(2))(x f 在),(+∞a 上单调递增,在),(a -∞上单调递减;(3)当2=a 时,()4f x x +有一个零点2x =;当2>a 时,()4f x x+有两个零点.【高考四川,文21】已知函数f(x)=-2lnx+x2-2ax+a2,其中a>0.(Ⅰ)设g(x)为f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a ∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.【高考天津,文20】(本小题满分14分)已知函数4()4,,f x x x x R(I )求()f x 的单调区间; (II )设曲线()y f x 与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x ,求证:对于任意的正实数x ,都有()()f x g x ;(III )若方程()=()f x a a 为实数有两个正实数根12x x ,,且12x x ,求证:1321-43a x x .【答案】(I )()f x 的单调递增区间是(),1-∞ ,单调递减区间是()1,+∞;(II )见试题解析;(III )见试题解析.16.【高考浙江,文20】(本题满分15分)设函数2(),(,)f x x ax b a b R =++∈.(1)当214a b时,求函数()f x 在[1,1]上的最小值()g a 的表达式; (2)已知函数()f x 在[1,1]上存在零点,021b a ≤-≤,求b 的取值范围.【答案】(1)222,2,4()1,22,2,24a a a g a a a a a ⎧++≤-⎪⎪⎪=-<≤⎨⎪⎪-+>⎪⎩;(2)[3,945]--1.(·四川卷)已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e-2<a<1.2.(·安徽卷)若直线l与曲线C满足下列两个条件:(i)直线l在点P(x0,y0)处与曲线C相切;(ii)曲线C在点P附近位于直线l的两侧.则称直线l在点P处“切过”曲线C.下列命题正确的是________(写出所有正确命题的编号).①直线l:y=0在点P(0,0)处“切过”曲线C:y=x3;②直线l:x=-1在点P(-1,0)处“切过”曲线C:y=(x+1)2;③直线l:y=x在点P(0,0)处“切过”曲线C:y=sin x;④直线l:y=x在点P(0,0)处“切过”曲线C:y=tan x;⑤直线l:y=x-1在点P(1,0)处“切过”曲线C:y=ln x.【答案】①③④3.(·安徽卷)设函数f(x)=1+(1+a)x-x2-x3,其中a>0.(1)讨论f(x)在其定义域上的单调性;(2)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.4.(·北京卷)已知函数f(x)=2x3-3x.(1)求f(x)在区间[-2,1]上的最大值;(2)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;(3)问过点A(-1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切?(只需写出结论)5.(·福建卷)已知函数f(x)=ex-ax(a为常数)的图像与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<ex;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x<cex.6.(·湖北卷)π为圆周率,e =2.718 28…为自然对数的底数. (1)求函数f(x)=ln xx 的单调区间;(2)求e3,3e ,eπ,πe ,3π,π3这6个数中的最大数与最小数.7.(·湖南卷)若0<x1<x2<1,则()A.2x e-1e x>ln x2-ln x1B.2x e-1e x<ln x2-ln x1C.x21e x>x12x eD.x21e x<x12x e【答案】C8.(·湖南卷)已知函数f(x)=xcos x-sin x+1(x>0).(1)求f(x)的单调区间;(2)记xi为f(x)的从小到大的第i(i∈N*)个零点,证明:对一切n∈N*,有1x21+1x22+…+1x2n<23.9.(·江西卷)若曲线y=xln x上点P处的切线平行于直线2x-y+1=0,则点P的坐标是________.【答案】(e,e)10.(·江西卷)将连续正整数1,2,…,n(n∈N*)从小到大排列构成一个数123…n,F(n)为这个数的位数(如n=12时,此数为123456789101112,共有15个数字,F(12)=15),现从这个数中随机取一个数字,p(n)为恰好取到0的概率.(1)求p(100);(2)当n≤时,求F(n)的表达式;(3)令g(n)为这个数中数字0的个数,f(n)为这个数中数字9的个数,h(n)=f(n)-g(n),S={n|h(n)=1,n≤100,n∈N*},求当n∈S时p(n)的最大值.11.(·辽宁卷)当x ∈[-2,1]时,不等式ax3-x2+4x +3≥0恒成立,则实数a 的取值范围是() A .[-5,-3] B.⎣⎡⎦⎤-6,-98C .[-6,-2]D .[-4,-3] 【答案】C12.(·新课标全国卷Ⅱ] 若函数f(x)=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是() A .(-∞,-2] B .(-∞,-1]C.[2,+∞) D.[1,+∞)【答案】D13.(·新课标全国卷Ⅱ] 已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.(1)求a;(2)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.14.(·全国新课标卷Ⅰ)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a 的取值范围是()A.(2,+∞) B.(1,+∞)C.(-∞,-2) D.(-∞,-1)【答案】C15.(·全国新课标卷Ⅰ)设函数f(x)=aln x +1-a2x2-bx(a≠1),曲线y =f(x)在点(1, f(1))处的切线斜率为0. (1)求b ;(2)若存在x0≥1,使得f(x0)<aa -1,求a 的取值范围.16.(·山东卷)设函数f(x)=aln x +x -1x +1,其中a 为常数.(1)若a =0,求曲线y =f(x)在点(1,f(1))处的切线方程; (2)讨论函数f(x)的单调性.17.(·陕西卷)设函数f(x)=ln x +mx ,m ∈R. (1)当m =e(e 为自然对数的底数)时,求f(x)的极小值; (2)讨论函数g(x)=f′(x)-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a<1恒成立,求m 的取值范围.18.(·天津卷)已知函数f(x)=x2-23ax3(a >0),x ∈R. (1)求f(x)的单调区间和极值;(2)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1,求a 的取值范围.19.(·浙江卷)已知函数f(x)=x3+3|x-a|(a>0).若f(x)在[-1,1]上的最小值记为g(a).(1)求g(a);(2)证明:当x∈[-1,1]时,恒有f(x)≤g(a)+4.19.(·重庆卷)已知函数f(x)=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f(x)在点(1,f(1))处的切线垂直于直线y =12x.(1)求a 的值;(2)求函数f(x)的单调区间与极值.【押题专练】1.已知函数f(x)=ax2+c ,且f′(1)=2,则a 的值为() A. 2 B .1 C .-1 D .0 【答案】B2.曲线y =x3-2x +1在点(1,0)处的切线方程为() A .y =x -1 B .y =-x +1 C .y =2x -2 D .y =-2x +2 【答案】A3.若函数f(x)的定义域为[a ,b],且b>-a>0,则函数g(x)=f(x)+f(-x)的定义域为() A .[a ,b] B .[-b ,-a] C .[-b ,b] D .[a ,-a] 【答案】D4.过点(0,1)且与曲线y =x +1x -1在点(3,2)处的切线垂直的直线的方程为( ) A .2x -y +1=0 B .2x +y -1=0 C .x +2y -2=0 D .x -2y +2=0 【答案】A5.设函数f(x)=⎩⎪⎨⎪⎧1,x>0,0,x =0,-1,x<0,g(x)=x2f(x -1),则函数g(x)的递减区间是( )A .(0,1)B .(1,+∞)C .(-∞,0)D .(0,+∞) 【答案】A6.定义域为R 的函数f(x)满足f(1)=1,且f(x)的导函数f′(x)>12,则满足2f(x)<x +1的x 的集合为( )A .{x|-1<x<1}B .{x|x<1}C .{x|x<-1或x>1}D .{x|x>1}【答案】B7.设f(x)=x(ax2+bx +c)(a≠0)在x =1和x =-1处有极值,则下列点中一定在x 轴上的是( )A .(a ,b)B .(a ,c)C .(b ,c)D .(a +b ,c)【答案】A8.设曲线y =xn +1(n ∈N*)在点(1,1)处的切线与x 轴的交点横坐标为xn ,则log2 012x1+log2 012x2+…+log2 012x 的值为( )A .-log2 0122 011B .-1C .-1+log2 0122 011D .1【答案】B9.函数f(x)=x3+ax(x ∈R)在x =1处有极值,则曲线y =f(x)在原点处的切线方程是________.【答案】3x +y =010.曲线y=x(3lnx+1)在点(1,1)处的切线方程为________.【答案】y=4x-311.设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0且g(-3)=0,则不等式f(x)g(x)<0的解集为________.【答案】(-∞,-3)∪(0,3)12.某商品进货价每件50元,据市场调查,当销售价格(每件x元)为50<x≤80时,每天售出的件数为P=105(x-40)2,若要使每天获得的利润最多,销售价格每件应定为多少元?13.已知函数f(x)=ex(ax2+x+1).(1)设a>0,讨论f(x)的单调性;(2)设a=-1,证明:对任意x1,x2∈[0,1],都有|f(x1)-f(x2)|<2.14.已知函数f(x)=ex +1x -a .(1)当a =12时,求函数f(x)在x =0处的切线方程;(2)当a>1时,判断方程f(x)=0实根的个数. 高考模拟复习试卷试题模拟卷。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆006 222
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫ ⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<aC .13<<-a 或23>a D .3-<a 或231<<a 2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B. 221 C. 22 D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷第04节 数学归纳法一、选择题1. 数学归纳法适用于证明的命题类型是A 、已知⇒结论B 、结论⇒已知C 、直接证明比较困难D 、与正整数有关2. 用数学归纳法证明等式(3)(4)123(3)()2n n n n *+++++++=∈N 时,第一步验证1n =时,左边应取的项是A .1B .12+C .123++D .1234+++ 3. 利用数学归纳法证明不等式1+12+13+ 121n -<f(n) (n≥2,n N *∈)的过程中,由n =k 变到n =k +1时,左边增加了( )A .1项B .k 项C .12k -项 D .2k 项 4. 若f n n ()=++++-121314121……,则f k f k ()()+-1等于() A 、1211k +- B 、121211211k k k +++-+ C. 121211k k +-+ D. 121211211k k k ++++-+…… 5. 设()x f 是定义在正整数集上的函数,且()x f 满足:“当()1+≥k k f 成立时,总可推出()21+≥+k k f 成立”,那么,下列命题总成立的是 ( )A .若()21<f 成立,则()1110<f 成立B .若()43≥f 成立,则当1≥k 时,均有()1+≥k k f 成立C .若()32<f 成立,则()21≥f 成立D .若()54≥f 成立,则当4≥k 时,均有()1+≥k k f 成立6. 在应用数学归纳法证明凸n 变形的对角线为)3(21-n n 条时,第一步检验n 等于( ) A.1 B.2 C .3 D .07. 下面四个判断中,正确的是()A .式子1+k +k2+…+kn(n ∈N*)中,当n =1时式子值为1B .式子1+k +k2+…+kn -1(n ∈N*)中,当n =1时式子值为1+kC .式子1+1123++…+121n + (n ∈N*)中,当n =1时式子值为1+1123+D .设f(x)=111+1231n n n ++++ (n ∈N*),则f(k +1)=f(k)+111323334k k k +++++ 8.在数列{an}中,an =1-12+13-14+…+121n --12n,则ak +1等于() A .ak +121k + B .ak +122k +-124k + C .ak +122k + D .ak +121k +-122k + 9. 用数学归纳法证明12+32+52+…+(2n ﹣1)2=n (4n2﹣1)过程中,由n=k 递推到n=k+1时,不等式左边增加的项为( )A .(2k )2B .(2k+3)2C .(2k+2)2D .(2k+1)210. 用数学归纳法证明(1)(2)()213(21)n n n n n n +++=-····,从k 到1k +,左边需要增乘的代数式为()A.21k +B.2(21)k +C.211k k ++D.231k k ++ 二、填空题11. 利用数学归纳法证明“221111n n a a a a a ++-++++=-, (1,a n N ≠∈)”时,在验证1n =成立时,左边应该是 .12. 用数学归纳法证明:(31)(1)(2)()2n n n n n n +++++++=*()n N ∈的第二步中,当1n k =+时等式左边与n k =时的等式左边的差等于. 13.用数学归纳法证明2n n a b +≥2a b +⎛⎫ ⎪⎝⎭n(a ,b 是非负实数,n ∈N +)时,假设n =k 命题成立之后,证明n =k +1命题也成立的关键是________________.三、解答题14. 数列}{n a 满足)(2*N n a n S n n ∈-=.(1)计算1a ,2a ,3a ,4a ,并由此猜想通项公式n a ;(2)用数学归纳法证明(1)中的猜想.15. 已知数列}{n a 的前n 项和为n S ,且44431--=+n n n a S )(*∈N n ,令n n n a b 4=. (1)求证:数列}{n b 是等差数列,并求数列}{n a 的通项公式;(2)若2)(-=n a n f )(*∈N n ,用数学归纳法证明)(n f 是18的倍数.16. 若不等式11n ++12n ++…+131n +>24a 对一切正整数n 都成立,猜想正整数a 的最大值,并证明结论.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【考情解读】1.理解空间直线、平面位置关系的定义,并了解有关的可以作为推理依据的公理和定理;2.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.【重点知识梳理】1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(4)公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面. 推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.空间中两直线的位置关系(1)位置关系的分类⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a′∥a ,b′∥b ,把a′与b′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎤0,π2.(3)平行公理和等角定理①平行公理:平行于同一条直线的两条直线互相平行.②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.(2)平面与平面的位置关系有平行、相交两种情况.【高频考点突破】考点一 平面基本性质的应用【例1】 (1)以下四个命题中,正确命题的个数是()①不共面的四点中,其中任意三点不共线;②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.A.0 B.1C.2 D.3(2)在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么正方体的过P,Q,R 的截面图形是()A.三角形 B.四边形C.五边形 D.六边形【变式探究】如图所示是正方体和正四面体,P,Q,R,S分别是所在棱的中点,则四个点共面的图形的序号是________.解析可证①中的四边形PQRS为梯形;②中,如图所示,取A1A和BC的中点分别为M,N,可证明PMQNRS为平面图形,且PMQNRS为正六边形;③中,可证四边形PQRS为平行四边形;④中,可证Q点所在棱与面PRS平行,因此,P,Q,R,S四点不共面.答案①②③考点二空间两条直线的位置关系【例2】如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④D E与MN垂直.以上四个命题中,正确命题的序号是________.【变式探究】 (1)如图,在正方体ABC D-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行(2)在图中,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).考点三求异面直线所成的角【例3】如图,在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为60°.(1)求四棱锥的体积;(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.解(1)在四棱锥P-ABCD中,【变式探究】已知在三棱锥A -BCD 中,AB =CD ,且点M ,N 分别是BC ,AD 的中点.(1)若直线AB 与CD 所成的角为60°,则直线AB 和MN 所成的角为________.(2)若直线AB ⊥CD ,则直线AB 与MN 所成的角为________.解析 (1)法一 如图,取AC 的中点P ,连接PM ,PN ,则PM ∥AB ,且PM =12AB ,PN ∥CD ,且PN =12CD ,答案 (1)60°或30°(2)45° 【真题感悟】1.【高考广东,文18】(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.(1)证明:C//B 平面D P A ; (2)证明:C D B ⊥P ;(3)求点C 到平面D P A 的距离.所以D CD 1133S h S∆P A ∆A ⋅=⋅PE ,即CD D 136737212342S h S ∆A ∆P A ⨯⨯⨯⋅PE ===⨯⨯,所以点C 到平面D P A 的距离是3722.【高考山东,文18】 如图,三棱台DEF ABC -中,2AB DE G H =,,分别为AC BC ,的中点.(I )求证://BD 平面FGH ;(II )若CF BC AB BC ⊥⊥,,求证:平面BCD ⊥平面EGH .1.(·辽宁卷)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α2.(·福建卷)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图1-5所示.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.图1-5A =90°,M ,N 分别是A1B1,A1C1的中点,BC =CA =CC1,则BM 与AN 所成角的余弦值为()A.110B.25C.3010D.224.(·四川卷)三棱锥A - BCD 及其侧视图、俯视图如图1-4所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP .(1)证明:P是线段BC的中点;(2)求二面角A - NP - M的余弦值.图1-4方法二:由俯视图及(1)可知,AO⊥平面BCD.因为OC,OB⊂平面BCD,所以AO⊥OC,AO⊥OB.又OC⊥OB,所以直线OA,OB,OC两两垂直.如图所示,以O为坐标原点,以OB,OC,OA的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系O -xyz.则A(0,0,3),B(1,0,0),C(0,3,0),D(-1,0,0).因为M,N分别为线段AD,AB的中点,又由(1)知,P为线段BC的中点,【押题专练】1.若空间三条直线a,b,c满足a⊥b,b⊥c,则直线a与c() A.一定平行B.一定相交C.一定是异面直线D.平行、相交、是异面直线都有可能2.已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b 和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面解析依题意,直线b和c的位置关系可能是相交、平行或异面,选D.答案D3.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1⊥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面4.在空间四边形ABCD中,AB=CD,AD=BC,AB≠AD,M,N分别是对角线AC与BD的中点,则MN与()A.AC,BD之一垂直B.AC,BD都垂直C.AC,BD都不垂直D.AC,BD不一定垂直5.两条异面直线在同一个平面上的正投影不可能是()A.两条相交直线B.两条平行直线C.两个点D.一条直线和直线外一点解析如图,在正方体ABCD-EFGH中,M,N分别为BF,DH的中点,连接MN,DE,CF,EG.当异面直线为EG,MN所在直线时,它们在底面ABCD内的射影为两条相交直线;当异面直线为DE,GF所在直线时,它们在底面ABCD内的射影分别为AD,BC,是两条平行直线;当异面直线为DE,BF所在直线时,它们在底面ABCD内的射影分别为AD和点B,是一条直线和一个点,故选C.答案C6.一个正方体的展开图如图所示,A,B,C,D为原正方体的顶点,则在原来的正方体中()A.AB∥CDB.AB与CD相交C.AB⊥CDD.AB与CD所成的角为60°7.如图所示,在空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD上的点,且CFCB=CGCD=23,则()A.EF与GH平行B.EF与GH异面C.EF与GH的交点M可能在直线AC上,也可能不在直线AC上D.EF与GH的交点M一定在直线AC上8.平面α,β相交,在α,β内各取两点,这四点都不在交线上,这四点能确定________个平面.解析若过四点中任意两点的连线与另外两点的连线相交或平行,则确定一个平面;否则确定四个平面.答案1或49.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.10.如图,在正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM 与CC1是相交直线;②直线AM 与BN 是平行直线;③直线BN 与MB1是异面直线;④直线AM 与DD1是异面直线.其中正确的结论为________.11.四棱锥P -ABCD 的所有侧棱长都为5,底面ABCD 是边长为2的正方形,则CD 与PA 所成角的余弦值为________.12.如图,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠FAB =90°,BC 綉12AD ,BE 綉12FA ,G ,H 分别为FA ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?13.如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.(1)求四棱锥O-ABCD的体积;(2)求异面直线OC与MD所成角的正切值的大小.故异面直线OC与MD所成角的正切值为6 3.14.如图所示,正方体ABCD-A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.高考模拟复习试卷试题模拟卷。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0063 101
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系.2.掌握数量积的坐标表达式,会进行平面向量数量积的运算.3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.4.会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题.【热点题型】题型一 平面向量数量积的运算例1、(1)已知点A(-1,1)、B(1,2)、C(-2,-1)、D(3,4),则向量AB →在CD →方向上的投影为( ) A.322 B.3152 C.-322D .-3152(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.【提分秘籍】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.【举一反三】(1)已知平面向量a =(x1,y1),b =(x2,y2),若|a|=2,|b|=3,a·b =-6.则x1+y1x2+y2的值为( )A.23B .-23C.56D .-56(2)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是( ) A.2B .2C.6D .6 题型二 求向量的模与夹角例2、(1)若平面向量a 与平面向量b 的夹角等于π3,|a|=2,|b|=3,则2a -b 与a +2b 的夹角的余弦值等于( )A.126B .-126 C.112D .-112(2)已知向量a ,b 的夹角为45°,且|a|=1,|2a -b|=10,则|b|=________.(3)已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若A P →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.【提分秘籍】(1)在数量积的基本运算中,经常用到数量积的定义、模、夹角等公式,尤其对|a|=a·a 要引起足够重视,它是求距离常用的公式.(2)要注意向量运算律与实数运算律的区别和联系.在向量的运算中,灵活运用运算律,就会达到简化运算的目的.【举一反三】(1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长为________.(2)已知单位向量e1与e2的夹角为α,且cosα=13,向量a =3e1-2e2与b =3e1-e2的夹角为β,则cosβ=________.题型三 数量积的综合应用例3、已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△AB C 的面积.【提分秘籍】解决以向量为载体考查三角形问题时,正弦定理、余弦定理、面积公式的应用、边与角之间的互化是判断三角形形状的常用方法.【举一反三】已知向量m =(2sin(ωx +π3),1),n =(2cosωx ,-3)(ω>0),函数f(x)=m·n 的两条相邻对称轴间的距离为π2.(1)求函数f(x)的单调递增区间; (2)当x ∈[-5π6,π12]时,求f(x)的值域. 题型四向量在平面几何中的应用例4、如图所示,四边形ABCD 是正方形,P 是对角线DB 上的一点(不包括端点),E ,F 分别在边BC ,DC 上,且四边形PFCE 是矩形,试用向量法证明:PA =EF.【提分秘籍】用向量方法解决平面几何问题可分三步:(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; (3)把运算结果“翻译”成几何关系. 【举一反三】(1)在边长为1的菱形ABCD 中,∠BAD =60°,E 是BC 的中点,则AC →·AE →等于( ) A.3+33 B.92 C.3D.94(2)在△ABC 所在平面上有一点P ,满足PA →+PB →+PC →=AB →,则△PAB 与△ABC 的面积的比值是( ) A.13B.12C.23D.34题型五向量在三角函数中的应用例5、已知在锐角△ABC 中,两向量p =(2-2sinA ,cosA +sinA),q =(sinA -cosA,1+sinA),且p 与q 是共线向量.(1)求A 的大小; (2)求函数y =2sin2B +cos ⎝⎛⎭⎫C -3B 2取最大值时,B 的大小. 【提分秘籍】解决平面向量与三角函数的交汇问题的关键:准确利用向量的坐标运算化简已知条件,将其转化为三角函数中的有关问题解决.【举一反三】(1)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cosA ,sinA).若m ⊥n ,且acosB +bcosA =csinC ,则角A ,B 的大小分别为( )A.π6,π3B.2π3,π6C.π3,π6D.π3,π3(2)△ABC 的三个内角A ,B ,C 所对的边长分别是a ,b ,c ,设向量m =(a +b ,sinC),n =(3a +c ,sinB -sinA),若m ∥n ,则角B 的大小为________.题型六平面向量在解析几何中的应用例6、(1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k),且A 、B 、C 三点共线,当k<0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.(2)设O 为坐标原点,C 为圆(x -2)2+y2=3的圆心,且圆上有一点M(x ,y)满足OM →·CM →=0,则y x =________.【提分秘籍】向量的共线和数量积在解析几何中可以解决一些平行、共线、垂直、夹角及最值问题,在解题中要充分重视数量积及其几何意义的作用.【举一反三】已知a ,b 是单位向量,a·b =0.若向量c 满足|c -a -b|=1,则|c|的最大值为________. 【高考风向标】1.【高考广东,文9】在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A =( )A .2B .3C .4D .52.【高考重庆,文7】已知非零向量,a b 满足||=4||(+)b a a a b ⊥,且2则a b 与的夹角为() (A)3π (B) 2π (C) 32π (D) 65π3.【高考福建,文7】设(1,2)a =,(1,1)b =,c a kb =+.若b c ⊥,则实数k 的值等于( ) A .32-B .53-C .53D .324.【高考天津,文13】在等腰梯形ABCD 中,已知AB DC ,2,1,60,AB BC ABC ==∠=点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC ==则AE AF ⋅的值为. 5.【高考浙江,文13】已知1e ,2e 是平面单位向量,且1212e e ⋅=.若平面向量b 满足121b e b e ⋅=⋅=,则b =.1.(·北京卷)已知向量a ,b 满足|a|=1,b =(2,1),且λa +b =0(λ∈R),则|λ|=________. 2.(·湖北卷)设向量a =(3,3),b =(1,-1).若(a +λb)⊥(a -λb),则实数λ=________.3.(·江西卷)已知单位向量e1与e2的夹角为α,且cos α=13,向量a =3e1-2e2与b =3e1-e2的夹角为β,则cos β=________..4.(·全国卷)若向量a ,b 满足:=1,(a +b)⊥a ,(+b)⊥b ,则|=() A .2 B.2 C .1 D.225.(·新课标全国卷Ⅱ] 设向量a ,b 满足|a +b|=10,|a -b|=6,则=() A .1 B .2 C .3 D .56.(·山东卷)在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为______.7.(·天津卷)已知菱形AB CD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC.若AE →·AF →=1,CE →·CF →=-23,则λ+μ=()A.12B.23C.56D.7128.(高考湖北卷)已知点A(-1,1)、B(1,2)、C(-2,-1)、D(3,4),则向量AB →在CD →方向上的投影为() A.322B.3152C .-322D .-31529.(高考湖南卷)已知a ,b 是单位向量,a·b =0.若向量c 满足|c -a -b|=1,则|c|的取值范围是() A .[2-1,2+1] B.[]2-1,2+2C .[1,2+1]D .[1,2+2]10.(高考辽宁卷)设向量a =(3sin x ,sin x),b =(cos x ,sin x),x ∈⎣⎡⎦⎤0,π2.(1)若|a|=|b|,求x 的值;(2)设函数f(x)=a·b ,求f(x)的最大值.11.(高考陕西卷)已知向量a =⎝⎛⎭⎫cos x ,-12,b =(3sin x ,cos 2x),x ∈R ,设函数f(x)=a·b.(1)求f(x)的最小正周期;(2)求f(x)在⎣⎡⎦⎤0,π2上的最大值和最小值.【高考押题】1.若向量a ,b 满足|a|=|b|=|a +b|=1,则a·b 的值为( ) A .-12B.12C .-1D .12.已知向量a =(1,3),b =(-1,0),则|a +2b|等于( ) A .1B.2C .2D .43.已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a)∥b ,c ⊥(a +b),则c 等于( ) A.⎝⎛⎭⎫79,73B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 4.向量AB →与向量a =(-3,4)的夹角为π,|AB →|=10,若点A 的坐标是(1,2),则点B 的坐标为( ) A .(-7,8) B .(9,-4) C .(-5,10) D .(7,-6)5.在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为( ) A.5B .25C .5D .106.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于( )A.OM →B .2OM → C .3OM →D .4OM →7.平面四边形ABCD 中,AB →+CD →=0,(AB →-AD →)·AC →=0,则四边形ABCD 是( ) A .矩形B .梯形 C .正方形D .菱形8.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形B .等腰三角形 C .直角三角形D .等腰直角三角形9.已知点A(-2,0)、B(3,0),动点P(x ,y)满足PA →·PB →=x2-6,则点P 的轨迹是( ) A .圆B .椭圆 C .双曲线D .抛物线10.若函数y =Asin(ωx +φ)(A>0,ω>0,|φ|<π2)在一个周期内的图象如图所示,M ,N 分别是这段图象的最高点和最低点,且OM →·ON →=0(O 为坐标原点),则A 等于( )A.π6B.712πC.76πD.73π11.已知在△ABC 中,AB →=a ,AC →=b ,a·b<0,S △ABC =154,|a|=3,|b|=5,则∠BA C =________. 12.已知|a|=2|b|,|b|≠0且关于x 的方程x2+|a|x -a·b =0有两相等实根,则向量a 与b 的夹角是________.13.已知在平面直角坐标系中,O(0,0),M(1,1),N(0,1),Q(2,3),动点P(x ,y)满足不等式0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP →的最大值为________.14.已知△ABC 中,∠C 是直角,CA =CB ,D 是CB 的中点,E 是AB 上一点,且AE =2EB ,求证:AD ⊥CE.15.已知A ,B ,C 三点的坐标分别为A(3,0),B(0,3),C(cosα,sinα),其中α∈(π2,3π2). (1)若|AC →|=|BC →|,求角α的值. (2)若AC →·BC →=-1,求tan(α+π4)的值.16.已知向量p =(2sinx ,3cosx),q =(-sinx,2sinx),函数f(x)=p·q. (1)求f(x)的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且f(C)=1,c =1,ab =23,且a>b ,求a ,b 的值.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第03节 二项式定理一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【“五个一名校联盟” 高三教学质量监测(一)5】在154)212(+x 的展开式中,系数是有理数的项共有 ( )A.4项B.5项C.6项D.7项 【答案】A2.【宝鸡市高三数学质量检测(一)】若)21(3xx n-的展开式中第四项为常数项,则=n ( )A . 4 B. 5 C. 6 D. 7 【答案】B【解析】依题意,()()3333133243122n n n n T C x C x x ---⎛⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,∵其展开式中第四项为常数项,∴3102n --=,∴5n =,故选B . 3.【改编题】6(1)(1)x x +-展开式中3x 项系数为( )A.14 B .15 C .16 D .17 【答案】C 【解析】6(1)x 展开式的通项为616(kk k T C x -+=-3626(1)k kkC x--=-,令2k =,得2223615T C x x ==,令0k =,得03316T C x x ==,故3x 项为32311516x x x x ⋅+⋅=,所以3x 项系数为16.4.【金丽衢十二校高三第二次联考】二项式2111()x x-的展开式中,系数最大的项为( )A.第五项B.第六项C.第七项D.第六和第七项【答案】C【解析】依题意得展开式的通项的系数为111(1)r r r T C +=-.二项系数最大的是511C 与611C .所以系数最大的是6711T C =.5.【江西赣州市六校高三上学期期末联考】已知8a x x ⎛⎫- ⎪⎝⎭展开式中常数项为5670,其中a 是常数,则展开式中各项系数的和是( )A .28B .48C .28或48D .1或28【答案】C6.【高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7【答案】C7.【高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.8.【高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为()A.122 B .112 C .102 D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n , 所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯. 9.【咸阳市高考模拟考试试题(三)】若n x x )2(3+展开式中存在常数项,则n 的值可以是( )A .8B .9C .10D .12 【答案】C10.【潍坊市高三3月模拟考试】设0(sin cos )k x x dx π=-⎰,若8280128(1)...kx a a x a x a x -=++++,则1238...a a a a ++++=( )(A) 1 (B)0 (C)l (D)256【答案】B11.【浙江高考第5题】在46)1()1(y x ++的展开式中,记nm y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 210【答案】C【解析】由题意可得()()()()3211236646443,02,11,20,32060364120f f f f C C C C C C ++=+++=+++=,故选C12.【原创题】210(1)x x -+展开式中3x 项的系数为( ).A.210 B .120 C .90 D .210【答案】D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.【大纲高考第13题】8y x ⎛⎫-⎪ ⎪⎝⎭的展开式中22x y 的系数为. 【答案】70. 14.【改编题】对任意实数x ,有423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,则3a 的值为.【答案】8【解析】 44)23()1(+-=-x x ,又423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,∴32216214343=⨯=⋅⋅=C C a . 15.【高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是(用数字作答).【答案】40-.【解析】 55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.16.【高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.【答案】3三、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知在332n x x ⎛- ⎪⎭的展开式中,第6项为常数项. (1)求n ;(2)求含x2的项的系数;(3)求展开式中所有的有理项.【解析】(1)通项公式为2333111()()22n k k n k k k k k k n n T C x x C x ---+=-=-,因为第6项为常数项, 所以k =5时,n -2×53=0,即n =10. (2)令10-2k 3=2,得k =2,故含x2的项的系数是2210145()24C -=. (3)根据通项公式,由题意⎩⎪⎨⎪⎧10-2k 3∈Z0≤k ≤10k ∈N ,令10-2k 3=r (r ∈Z),则10-2k =3r ,k =5-32r , ∵k ∈N ,∴r 应为偶数.∴r 可取2,0,-2,即k 可取2,5,8, ∴第3项,第6项与第9项为有理项, 它们分别为222101()2C x -,55101()2C -,882101()2C x -.18.已知223)n x x 的展开式的二项式系数和比(31)n x -的展开式的二项式系数和大992.求在212nx x ⎛⎫- ⎪⎝⎭的展开式中, (1)二项式系数最大的项;(2)系数的绝对值最大的项.19.设(1-2x)2 013=a0+a1x +a2x2+…+a2 013x2 013 (x ∈R).(1)求a0+a1+a2+…+a2 013的值;(2)求a1+a3+a5+…+a2 013的值;(3)求|a0|+|a1|+|a2|+…+|a2 013|的值.解 (1)令x =1,得a0+a1+a2+…+a2 013=(-1)2 013=-1.①(2)令x =-1,得a0-a1+a2-a3+…-a2 013=32 013.②与①式联立,①-②得2(a1+a3+…+a2 013)=-1-32 013,∴a1+a3+…+a2 013=-1+32 0132. (3)Tr +1=Cr 2 013(-2x)r =(-1)r ·Cr 2 013(2x)r ,∴a2k -1<0,a2k>0 (k ∈N*).∴|a0|+|a1|+|a2|+…+|a2 013|=a0-a1+a2-…-a2 013=32 013(令x =-1).20.【第二次大联考数学江苏版】对于给定的函数()f x ,定义()n f x 如下:()0()C (1)n k k n k n n k k f x f x x n -==-∑,其中2n n ∈*N ≥,. (1)当()1f x =时,求证:()1n f x =;(2)当()f x x =时,比较2014(2013)f 与2013(2014)f 的大小;(3)当2()f x x =时,求()n f x 的不为0的零点.。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0063132
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫ ⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<aC .13<<-a 或23>a D .3-<a 或231<<a 2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B. 221 C. 22 D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.了解指数函数模型的实际背景.2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算.3.理解指数幂的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点.4.知道指数函数是一类重要的函数模型.5.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化为自然对数或常用对数;了解对数在简化运算中的作用.6.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.7.知道对数函数是一类重要的函数模型.8.了解指数函数y =ax 与对数函数y =logax 互为反函数(a>0,且a≠1).【热点题型】题型一指数式与根式的计算(例1、计算 (1)733-3324-6319+4333=________.(2)⎝⎛⎭⎫2790.5+0.1-2+⎝⎛⎭⎫21027-23-3π0+3748=________.【提分秘籍】化简指数幂的一般步骤是:有括号先算括号里的,无括号先进行指数运算(即先乘方、开方),再乘除,最后加减,负指数幂化为正指数幂的倒数;底数是负数,先确定符号;底数是小数,先要化成分数;底数是带分数的,先要化成假分数;若是根式,应化为分数指数幂,然后再尽可能用幂的形式表示,便于运用指数幂的运算性质.【举一反三】若x>0,则(2x 14+332)(2x 14-332)-4x -12(x -x 12)=________.题型二指数函数的图象问题(例2、若方程|ax -1|=2a(a>0,且a≠1)有两解,则a 的取值范围是________.【提分秘籍】y =ax ,y =|ax|,y =a|x|(a>0且a≠1)三者之间的关系:y =ax 与y =|ax|是同一函数的不同表现形式.函数y =a|x|与y =ax 不同,前者是一个偶函数,其图象关于y 轴对称,当x≥0时两函数图象相同.【举一反三】已知c<0,下列不等式中成立的一个是()A .c>2cB .c>⎝⎛⎭⎫12cC .2c<⎝⎛⎭⎫12c D .2c>⎝⎛⎭⎫12c题型三指数函数性质的应用 例3、设a =40.8,b =80.46,c =⎝⎛⎭⎫12-1.2,则a ,b ,c 的大小关系为() A .a>b>c B .b>a>cC .c>a>bD .c>b>a【提分秘籍】(1)比较大小问题.常利用指数函数的单调性及中间值(0或1)法.(2)简单的指数方程或不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)指数型函数中参数的取值范围问题.在解决涉及指数函数的单调性或最值问题时,应注意对底数a 的分类讨论.【举一反三】若函数f(x)=⎩⎨⎧ 1x ,x<0,⎝⎛⎭⎫13x ,x≥0,则不等式-13≤f(x)≤13的解集为()A .[-1,2)∪[3,+∞)B .(-∞,-3]∪[1,+∞)C.⎣⎡⎭⎫32,+∞ D .(1, 3 ]∪[3,+∞)题型四对数运算例4、(1)(3+2)2log(3-2)5=( )A .1B.12C.14D.15(2)=________.(3)若log147=a,14b =5,则a ,b 表示log3528=________.【提分秘籍】对数式的化简与求值的常用思路: (1)先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.(2)先将对数式化为同底数对数的和、差、倍数的运算,然后逆用对数的运算法则,转化为同底数真数的积、商、幂再运算.【举一反三】lg 25+lg 2·lg 50+(lg 2)2=()A .1B .2C .3D .4题型五对数函数的图象及应用例5、(1)函数f(x)=lg(|x|-1)的大致图象是()(2)设方程10x =|lg(-x)|的两个根分别为x1,x2,则()A .x1x2<0B .x1x2=0C .x1x2>1D .0<x1x2<1【提分秘籍】在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.在研究方程的根时,可把方程的根看作两个函数图象交点的横坐标,通过研究两个函数图象得出方程根的关系.【举一反三】若函数y =logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是()题型六对数函数的性质及应用例6、对于函数f(x)=log 12(x2-2ax +3),解答下列问题:(1)若f(x)的定义域为R ,求实数a 的取值范围;(2)若f(x)的值域为R ,求实数a 的取值范围;(3)若函数f(x)在(-∞,1]内为增函数,求实数a 的取值范围.【提分秘籍】对数函数性质的考查多与复合函数联系在一起.要注意两点:(1)要认清复合函数的构成,判断出单调性.(2)不要忽略定义域.【举一反三】已知函数f(x)=log4(ax2+2x +3).(1)若f(1)=1,求f(x)的单调区间.(2)是否存在实数a ,使f(x)的最小值为0?若存在,求出a 的值;若不存在,说明理由.【高考风向标】1.【高考新课标1,文10】已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩,且()3f a =-,则(6)f a -=( )(A )74-(B )54-(C )34-(D )14- 2.【高考山东,文8】若函数21()2x x f x a+=-是奇函数,则使3f x >()成立的x 的取值范围为( ) (A )() (B)() (C )0,1()(D )1,+∞()3.【高考山东,文2】设0.6 1.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是( )(A )a b c <<(B )a cb <<(C )b ac <<(D )b c a <<4.【高考新课标1,文12】设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A )1-(B )1(C )2(D )45.【高考浙江,文9】计算:22log 2=,24log 3log 32+=.6.【高考四川,文12】lg0.01+log216=_____________.7.【高考湖北,文17】a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()g a . 当a =_________时,()g a 的值最小.8.【高考上海,文8】方程2)23(log )59(log 1212+-=---x x 的解为.9.(·天津卷)设a =log2π,b =log 12π,c =π-2,则()A .a >b >cB .b >a >cC .a >c >bD .c >b >a10.(·四川卷)已知b >0,log5b =a ,lg b =c ,5d =10,则下列等式一定成立的是()A .d =acB .a =cdC .c =adD .d =a +c11.(·安徽卷)设a =log37,b =21.1,c =0.83.1,则()A .b<a<cB .c<a<bC .c<b<aD .a<c<b12.(·福建卷)若函数y =logax(a>0,且a≠1)的图像如图所示,则下列函数图像正确的是()ABCD13.(·辽宁卷)已知a =2-13,b =log213,c =log 1213,则()A .a >b >cB .a >c >bC .c >b >aD .c >a >b14.(·全国新课标卷Ⅰ] 设函数f(x)=⎩⎪⎨⎪⎧ex -1,x <1,x 13,x≥1,则使得f(x)≤2成立的x 的取值范围是________.15.(·山东卷)已知实数x ,y 满足ax<ay(0<a<1),则下列关系式恒成立的是()A .x3>y3B .sin x>sin yC .ln(x2+1)>ln(y2+1)D.1x2+1>1y2+116.(·陕西卷)下列函数中,满足“f(x +y)=f(x)f(y)”的单调递增函数是()A .f(x)=x3B .f(x)=3xC .f(x)=x 12D .f(x)=⎝⎛⎭⎫12x18.(·陕西卷)已知4a =2,lg x =a ,则x =________.19.(·四川卷)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P(x ,y),则|PA|+|PB|的取值范围是()A .[5,2 5 ]B .[10,2 5 ]C .[10,4 5 ]D .[25,4 5 ]20.(·天津卷) 函数f(x)=lg x2的单调递减区间是________.21.(·安徽卷) ⎝⎛⎭⎫1681-34+log354+log345=________.22.(·浙江卷) 在同一直角坐标系中,函数f(x)=xa(x >0),g(x)=logax 的图像可能是( )A BC D23.(·福建卷) 若函数y =logax(a>0,且a≠1)的图像如图所示,则下列函数图像正确的是( )A BC D24.(·广东卷) 等比数列{an}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=________.25.(·辽宁卷) 已知a =2-13,b =log213,c =log 1213,则()A.a>b>cB.a>c>bC.c>b>a D.c>a>b26.(·山东卷)已知函数y=loga(x+c)(a,c为常数,其中a>0,a≠1)的图像如图1-1所示,则下列结论成立的是()图1-1A.a>1,x>1 B.a>1,0<c<1C.0<a<1,c>1 D.0<a<1,0<c<127.(·四川卷)已知b>0,log5b=a,lg b=c,5d=10,则下列等式一定成立的是()A.d=acB.a=cdC.c=adD.d=a+c28.(·重庆卷)若log4(3a+4b)=log2ab,则a+b的最小值是()A.6+23B.7+23C.6+4 3 D.7+43【高考押题】1.函数y=a|x|(a>1)的图像是()2.已知函数f(x)=⎩⎪⎨⎪⎧log3x ,x>02x x≤0,则f(9)+f(0)=()A .0B .1C .2D .33.不论a 为何值时,函数y =(a -1)2x -a2恒过定点,则这个定点的坐标是 (). A.⎝⎛⎭⎫1,-12 B.⎝⎛⎭⎫1,12 C.⎝⎛⎭⎫-1,-12D.⎝⎛⎭⎫-1,124.定义运算:a*b =⎩⎪⎨⎪⎧a ,a≤b ,b ,a>b ,如1*2=1,则函数f(x)=2x*2x 的值域为().A .RB .(0,+∞)C .(0,1]D .[1,+∞)5.若a>1,b>0,且ab +a -b =22,则ab -a -b 的值为() A. 6 B .2或-2C .-2D .26.若函数f(x)=(k -1)ax -a -x(a>0且a≠1)在R 上既是奇函数,又是减函数,则g(x)=loga(x +k)的图象是下图中的().7.已知实数a =log45,b =⎝⎛⎭⎫120,c =log30.4,则a ,b ,c 的大小关系为()A .b<c<aB .b<a<cC .c<a<bD .c<b<a8.设f(x)=lg(21-x +a)是奇函数,则使f(x)<0的x 的取值范围是().A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)9.若函数y =loga(x2-ax +1)有最小值,则a 的取值范围是(). A .0<a<1 B .0<a<2,a≠1 C .1<a<2 D .a≥210.若函数f(x)=loga(x2-ax +3)(a>0且a≠1)满足对任意的x1,x2,当x1<x2≤a2时,f(x1)-f(x2)>0,则实数a 的取值范围为().A .(0,1)∪(1,3)B .(1,3)C .(0,1)∪(1,23)D .(1,23)11.已知函数f(x)=2x -12x +1.(1)判断函数f(x)的奇偶性; (2)求证f(x)在R 上为增函数.12.已知函数f(x)=b·ax(其中a ,b 为常量,且a>0,a≠1)的图象经过点A(1,6),B(3,24). (1)求f(x);(2)若不等式(1a )x +(1b )x -m≥0在x ∈(-∞,1]时恒成立,求实数m 的取值范围.13.已知函数f(x)=⎝⎛⎭⎫13ax2-4x +3. (1)若a =-1,求f(x)的单调区间; (2)若f(x)有最大值3,求a 的值.14.已知定义在R 上的函数f(x)=2x -12|x|.(1)若f(x)=32,求x 的值;(2)若2tf(2t)+mf(t)≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.15.若函数y =lg(3-4x +x2)的定义域为M.当x ∈M 时,求f(x)=2x +2-3×4x 的最值及相应的x 的值.16.已知函数f(x)=loga x +bx -b (a >0,b >0,a≠1).(1)求f(x)的定义域; (2)讨论f(x)的奇偶性; (3)讨论f(x)的单调性;17.已知函数f(x)=loga x +1x -1,(a>0,且a≠1).(1)求函数的定义域,并证明:f(x)=loga x +1x -1在定义域上是奇函数;(2)对于x ∈[2,4],f(x)=loga x +1x -1>loga mx -127-x 恒成立,求m 的取值范围.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).【热点题型】题型一 三角函数式的化简与给角求值 【例1】 (1)已知α∈(0,π),化简:(1+sin α+cos α)·(cos α2-sin α2)2+2cos α=________.(2)[2sin 50°+sin 10°(1+3tan 10°)]·2sin280°=______. 【提分秘籍】(1)三角函数式的化简要遵循“三看”原则:①一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;②二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;③三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等.(2)对于给角求值问题,一般给定的角是非特殊角,这时要善于将非特殊角转化为特殊角.另外此类问题也常通过代数变形(比如:正负项相消、分子分母相约等)的方式来求值.【举一反三】(1)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .22-1(2)(·临沂模拟)化简:sin2αsin2β+cos2αcos2β-12cos 2αcos 2β=________. 题型二三角函数的给值求值、给值求角【例2】 (1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值;(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值. 【提分秘籍】(1)解题中注意变角,如本题中α+β2=⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β;(2)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝⎛⎭⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝⎛⎭⎫-π2,π2,选正弦较好. 【举一反三】已知cos α=17,cos(α-β)=1314,且0<β<α<π2, (1)求tan 2α的值; (2)求β.题型三三角变换的简单应用【例3】已知函数f(x)=Asin ⎝⎛⎭⎫x +π4,x ∈R ,且f ⎝⎛⎭⎫5π12=32.(1)求A 的值;(2)若f(θ)-f(-θ)=32,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫3π4-θ.【提分秘籍】解三角函数问题的基本思想是“变换”,通过适当的变换达到由此及彼的目的,变换的基本方向有两个,一个是变换函数的名称,一个是变换角的形式.变换函数名称可以使用诱导公式、同角三角函数关系、二倍角的余弦公式等;变换角的形式,可以使用两角和与差的三角函数公式、倍角公式等.【举一反三】已知函数f(x)=sin ⎝⎛⎭⎫3x +π4.(1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值. 【高考风向标】 【高考重庆,文6】若11tan,tan()32,则tan =()(A)17 (B) 16 (C) 57 (D) 56【高考上海,文1】函数x x f 2sin 31)(-=的最小正周期为.【高考广东,文16】(本小题满分12分)已知tan 2α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值; (2)求2sin 2sin sin cos cos 21ααααα+--的值. 2sin 2sin sin cos cos 21ααααα+--()222sin cos sin sin cos 2cos 11αααααα=+--- 222sin cos sin sin cos 2cos αααααα=+-1.(·广东卷) 若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是( )A .l1⊥l4B .l1∥l4C .l1与l4既不垂直也不平行D .l1与l4的位置关系不确定2. (·湖北卷) 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.3.(·湖南卷) 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值; (2)求BE 的长.图1-44.(·江西卷) 已知函数f(x)=(a +2cos2x)cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π). (1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值.5.(·全国卷) △AB C 的内角A ,B ,C 的对边分别为a ,b ,c.已知3acos C =2ccos A ,tan A =13,求B. 6.(·新课标全国卷Ⅱ] 函数f(x)=sin(x +φ)-2sin φcos x 的最大值为________.7.(·山东卷) △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知a =3,cos A =63,B =A +π2. (1)求b 的值; (2)求△ABC 的面积.8.(·四川卷) 如图1-3所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高度是60 m ,则河流的宽度BC 等于( )图1-3A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m 9.(·四川卷) 已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求co s α-sin α的值.10.(·重庆卷) 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8.(1)若a =2,b =52,求cos C 的值;(2)若sin Acos2B 2+sin Bcos2A 2=2sin C ,且△ABC 的面积S =92sin C ,求a 和b 的值. 【高考押题】1.若tan θ=3,则sin 2θ1+cos 2θ=( )A. 3 B .-3 C.33D .-332.已知sin α+cos α=13,则sin2⎝⎛⎭⎫π4-α=( )A.118 B.1718 C.89D.293.已知α∈⎝⎛⎭⎫π,32π,且cos α=-45,则tan ⎝⎛⎭⎫π4-α等于( )A .7B.17C .-17D .-74.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( ) A.5π12B.π3C.π4D.π65.设α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且tan α=1+sin βcos β,则 ( )A .3α-β=π2 B .2α-β=π2 C .3α+β=π2D .2α+β=π26.若sin ⎝⎛⎭⎫π2+θ=35,则cos 2θ=________.7.函数f(x)=sin ⎝⎛⎭⎫2x -π4-22sin2x 的最小正周期是________.8.已知co s4α-sin4α=23,且α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫2α+π3=________. 9.已知α∈⎝⎛⎭⎫π2,π,sin α=55. (1)求sin ⎝⎛⎭⎫π4+α的值;(2)求cos ⎝⎛⎭⎫5π6-2α的值. 10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 高考模拟复习试卷试题模拟卷。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0063 176
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性;2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝⎛⎭⎫-π2,π2内的单调性. 【重点知识梳理】1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z)函数 y =sin xy =cos xy =tan x图象定义域RR{x |x ∈R ,且x≠⎭⎬⎫kπ+π2,k ∈Z值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性 奇函数偶函数 奇函数递增 区间 ⎣⎡⎦⎤2kπ-π2,2kπ+π2[2kπ-π,2kπ]⎝⎛⎭⎫kπ-π2,kπ+π2递减 区间 ⎣⎡⎦⎤2kπ+π2,2kπ+3π2 [2kπ,2kπ+π]无对称 中心 (kπ,0) ⎝⎛⎭⎫kπ+π2,0⎝⎛⎭⎫kπ2,0对称轴 方程 x =kπ+π2x =kπ无【高频考点突破】考点一 三角函数的定义域、值域【例1】 (1)函数y =1tan x -1的定义域为____________.(2)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x≤9)的最大值与最小值之和为() A .2- 3 B .0 C .-1 D .-1-3 【规律方法】(1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型:①形如y =asin x +bcos x +c 的三角函数化为y =Asin(ωx +φ)+k 的形式,再求最值(值域);②形如y =asin2x +bsin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =asin xcos x +b(sin x±cos x)+c 的三角函数,可先设t =sin x±cos x ,化为关于t 的二次函数求值域(最值).【变式探究】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =sin x -cos x +sin xcos x 的值域为________. 考点二 三角函数的奇偶性、周期性、对称性【例2】 (1)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f(x)=sin(ωx +φ)的图象的两条相邻的对称轴,则φ=()A.π4B.π3C.π2D.3π4(2)函数y =2cos2⎝⎛⎭⎫x -π4-1是() A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数 【规律方法】(1)求f(x)=Asin(ωx +φ)(ω≠0)的对称轴,只需令ωx +φ=π2+kπ(k ∈Z),求x ;求f(x)的对称中心的横坐标,只需令ωx +φ=kπ(k ∈Z)即可.(2)求最小正周期时可先把所给三角函数式化为y =Asin(ωx +φ)或y =Acos(ωx +φ)的形式,则最小正周期为T =2π|ω|;奇偶性的判断关键是解析式是否为y =Asin ωx 或y =Acos ωx +b 的形式.【变式探究】 (1)如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为() A.π6 B.π4 C.π3 D.π2(2)若函数f(x)=sin x +φ3(φ∈[0,2π])是偶函数,则φ=() A.π2 B.2π3 C.3π2 D.5π3 考点三 三角函数的单调性【例3】 (1)已知f(x)=2sin ⎝⎛⎭⎫x +π4,x ∈[0,π],则f(x)的单调递增区间为________.(2)已知ω>0,函数f(x)=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是() A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34C.⎝⎛⎦⎤0,12 D .(0,2] 【规律方法】(1)求较为复杂的三角函数的单调区间时,首先化简成y =Asin(ωx +φ)形式,再求y =Asin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.(2)对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.【变式探究】 (1)若函数f(x)=sin ωx(ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于()A.23B.32 C .2 D .3(2)函数f(x)=sin ⎝⎛⎭⎫-2x +π3的单调减区间为______. 【真题感悟】【高考浙江,文11】函数()2sin sin cos 1f x x x x =++的最小正周期是,最小值是. 【高考陕西,文14】如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin(6πx +Φ)+k ,据此函数可知,这段时间水深(单位:m)的最大值为____________.【高考湖南,文15】已知ω>0,在函数y=2sin ωx 与y=2cos ωx 的图像的交点中,距离最短的两个交点的距离为23,则ω =_____.【高考天津,文14】已知函数()()sin cos 0f x x x ωωω=+>,x ∈R ,若函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为.【高考福建,文21】已知函数()2103sin cos 10cos 222x x x f x =+. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2.(ⅰ)求函数()g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >. 【高考重庆,文18】已知函数f(x)=12sin2x 32cos x . (Ⅰ)求f (x )的最小周期和最小值,(Ⅱ)将函数f (x )的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图像.当x ∈,2ππ⎡⎤⎢⎥⎣⎦时,求g(x)的值域. (·安徽卷) 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为 2.求cos A 与a 的值.(·福建卷) 将函数y =sin x 的图像向左平移π2个单位,得到函数y =f(x)的图像,则下列说法正确的是( )A .y =f(x)是奇函数B .y =f(x)的周期为πC .y =f(x)的图像关于直线x =π2对称D .y =f(x)的图像关于点⎝⎛⎭⎫-π2,0对称 (·江苏卷) 已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图像有一个横坐标为π3的交点,则φ的值是________.(·全国新课标卷Ⅰ] 在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③(·江苏卷) 函数y =3sin ⎝⎛⎭⎫2x +π4的最小正周期为________.(·辽宁卷) 设向量a =(3sin x ,sin x),b =(cos x ,sin x),x ∈0,π2. (1)若|a|=|b|,求x 的值;(2)设函数f(x)=a·b ,求f(x)的最大值.(·山东卷) 函数y =xcos x +sin x 的图像大致为( )图1-3(·新课标全国卷Ⅰ] 设当x =θ时,函数f(x)=sin x -2cos x 取得最大值,则cos θ=________. 【押题专练】1.函数y =|2sin x|的最小正周期为( ) A .π B .2π C.π2D.π42.已知f(x)=cos 2x -1,g(x)=f(x +m)+n ,则使g(x)为奇函数的实数m ,n 的可能取值为( ) A .m =π2,n =-1 B .m =π2,n =1 C .m =-π4,n =-1D .m =-π4,n =13.已知函数y =sin x 的定义域为[a ,b],值域为⎣⎡⎦⎤-1,12,则b -a 的值不可能是( )A.π3B.2π3 C .π D.4π34.已知函数f(x)=sin πx 的部分图象如图1所示,则图2所示的函数的部分图象对应的函数解析式可以是( )A .y =f ⎝⎛⎭⎫2x -12B .y =f ⎝⎛⎭⎫x 2-12C .y =f(2x -1)D .y =f ⎝⎛⎭⎫x 2-1 5.定义行列式运算:⎪⎪⎪⎪⎪⎪a1a2a3a4=a1a4-a2a3,将函数f(x)=⎪⎪⎪⎪⎪⎪3 cos x 1 sin x 的图象向左平移m 个单位(m>0),若所得图象对应的函数为偶函数,则m 的最小值为( )A.π8B.π3C.56πD.2π36.已知f(x)=sin x ,x ∈R ,g(x)的图象与f(x)的图象关于点⎝⎛⎭⎫π4,0对称,则在区间[0,2π]上满足f(x)≤g(x)的x 的取值范围是( )A.⎣⎡⎦⎤π4,3π4 B .⎣⎡⎦⎤3π4,7π4C.⎣⎡⎦⎤π2,3π2D.⎣⎡⎦⎤3π4,3π2 7.若函数f(x)=sin(2x +φ)(φ∈[0,π])是偶函数,则φ=________. 8.函数f(x)=sin ⎝⎛⎭⎫2x -π4-22sin2x 的最小正周期是________.9.函数f(x)=2sin ωx(ω>0)在⎣⎡⎦⎤0,π4上单调递增,且在这个区间上的最大值是3,那么ω等于________.10.已知函数y =sin ⎝⎛⎭⎫π3-2x ,求:(1)函数的周期;(2)求函数在[-π,0]上的单调递减区间.11.已知函数f(x)=2sin2⎝⎛⎭⎫π4x +9π4. (1)求函数f(x)的最小正周期; (2)计算f(1)+f(2)+…+f(2 013)的值.12.设函数f(x)=sin(2x +φ)(-π<φ<0),y =f(x)的图象的一条对称轴是直线x =π8. (1)求φ;(2)求函数y =f(x)的单调递增区间.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第03节 几何概型A 基础巩固训练1.在区间[0,π]上随机取一个数x ,则事件“sin x≥cos x”发生的概率为( ) A.14 B.12 C.34 D .1 【答案】 C【解析】 ∵sin x≥cos x ,x ∈[0,π], ∴π4≤x≤π, ∴事件“sin x≥cos x”发生的概率为π-π4π-0=34.2.(·西城模拟)在区间[0,2]上任取两个实数a ,b ,则函数f(x)=x3+ax -b 在区间[-1,1]上有且只有一个零点的概率是( )A.18B.14C.34D.78【答案】D3.如图10-6-8所示,墙上挂有一边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,a2为半径的扇形,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是( ) A .1-π4B.π4C .1-π8D.与a 的取值有关【解析】 由题意知,阴影部分的面积为a2-4×14×π⎝⎛⎭⎫a 22=⎝⎛⎭⎫1-π4a2,故概率为1-π4. 【答案】 A4. (·阜阳模拟)一艘轮船从O 点的正东方向10 km 处出发,沿直线向O 点的正北方向10 km 处的港口航行,某台风中心在点O ,距中心不超过r km 的位置都会受其影响,且r 是区间[5,10]内的一个随机数,则轮船在航行途中会遭受台风影响的概率是( ) A.2-12B.1-22C.2-1D.2- 2【答案】 D【解析】 以O 为圆心,r 为半径作圆,易知当r >52时,轮船会遭受台风影响,所以P =10-5210-5=10-525=2- 2. 5.在棱长为2的正方体ABCD -A1B1C1D1中,点O 为底面ABCD 的中心,在正方体ABCD -A1B1C1D1内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 【答案】1-π12B 能力提升训练1. 【高考辽宁卷第6题】若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π【答案】B2. 在区间(0,1)内任取两个实数,则这两个实数的和大于13的概率为()A.1718B.79C.29D.118【答案】A3.【湖北八校高三第二次联考数学试题】记集合{}22(,)|4A x y x y=+≤和集合{}(,)|20,0,0B x y x y x y=+-≤≥≥表示的平面区域分别为1Ω和2Ω,若在区域1Ω内任取一点(,)M x y,则点M落在区域2Ω的概率为.【答案】12πBAyxO4.一只小蜜蜂在一个棱长为4的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A .18B .116C .127D .2764【答案】A【解析】根据几何概型知识,概率为体积之比,即P =4-2343=18. 5. (·福建三明质量检测)已知集合M ={x|-2≤x ≤8},N ={x|x2-3x +2≤0},在集合M 中任取一个元素x ,则“x ∈(M ∩N)”的概率是( )A .110B .16C .310D .12【答案】A【解析】因为N ={x|x2-3x +2≤0}=[1,2],所以M ∩N =[1,2],所以所求的概率为2-18+2=110.C 思维扩展训练1. 【东莞市高三模拟考试一】已知(2,1)A ,(1,2)B -,31,55C ⎛⎫- ⎪⎝⎭,动点(,)P a b 满足02OP OA ≤⋅≤且02OP OB ≤⋅≤,则点P 到点C 的距离大于14的概率为( )A .5164π-B .564πC .116π- D .16π 【答案】A2. 【高考重庆卷第15题】某校早上8:00开始上课,假设该校学生小张与小王在早上7:30—7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为_____(用数字作答)【答案】932【解析】用x表示小张到校的时间,3050x≤≤,用y表示小王到校的时间,3050y≤≤则所有可能的结果对应直角坐标平面内的正方形区域ABCD记“小张比小王至少早到5分钟”为事件M,则M所对区域为图中的阴影部分DEF∆所以()1151592202032DEFABCDSP AS∆⨯⨯===⨯正方形,所以答案应填:932.3. (济南市高三3月考模拟考试)如图,长方体ABCD—A1B1C1D1,有一动点在此长方体内随机运动,则此动点在三棱锥A—A1BD内的概率为.【答案】164. 【北京市丰台区高三一模】设不等式组2210x yy⎧+-≤⎨≥⎩,表示的平面区域为M,不等式组201t x ty t-≤≤⎧⎪⎨≤≤-⎪⎩,表示的平面区域为N.在M内随机取一个点,这个点在N内的概率的最大值是_________.【答案】2π5. 若k∈[-3,3],则k的值使得过A(1,1)可以作两条直线与圆(x-k)2+y2=2相切的概率等于( )A .12B .13C .23D .34【答案】C【解析】点在圆外,过该点可做两条直线与圆相切.故使圆心与点A 的距离大于半径即可,即(1-k)2+1>2,解得k <0或k >2,所以所求k ∈[-3,0)∪(2,3],所求概率P =46=23.。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0064179
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件. 【热点题型】题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ等于( )A.15B.25C.35D.45(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.【提分秘籍】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【举一反三】已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( ) A.23B.43 C .-3D .0题型二平面向量的坐标运算例2 已知A(-2,4),B(3,-1),C(-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b , (1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M 、N 的坐标及向量MN →的坐标. 【提分秘籍】向量的坐标运算主要是利用加、减、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.【举一反三】(1)已知平面向量a =(1,1),b =(1,-1),则向量12a -32b 等于( ) A .(-2,-1) B .(-2,1) C .(-1,0) D .(-1,2)(2)已知A(7,1)、B(1,4),直线y =12ax 与线段AB 交于C ,且AC →=2CB →,则实数a =________. 题型三向量共线的坐标表示例3 (1)已知平面向量a =(1,2),b =(-2,m),且a ∥b ,则2a +3b =________. (2)(·陕西)设0<θ<π2,向量a =(s in2θ,cosθ),b =(cosθ,1),若a ∥b ,则tanθ=________. 【提分秘籍】(1)两平面向量共线的充要条件有两种形式:①若a =(x1,y1),b =(x2,y2),则a ∥b 的充要条件是x1y2-x2y1=0;②若a ∥b(b≠0),则a =λb.(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.【举一反三】(1)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A(1,2),B(2,1),C(4,2),则点D 的坐标为________.(2)△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若p =(a +c ,b),q =(b -a ,c -a),且p ∥q ,则角C =________.【高考风向标】1.【高考新课标1,文2】已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( ) (A )(7,4)--(B )(7,4)(C )(1,4)-(D )(1,4)1.(·重庆卷) 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b)⊥c ,则实数k =( )A .-92 B .0 C .3 D.1522.(·福建卷) 在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e1=(0,0),e2=(1,2) B .e1=(-1,2),e2=(5,-2) C .e1=(3,5),e2=(6,10) D .e1=(2,-3),e2=(-2,3)3.(·山东卷) 已知向量a =(m ,cos 2x),b =(sin 2x ,n),函数f(x)=a·b ,且y =f(x)的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2. (1)求m ,n 的值;(2)将y =f(x)的图像向左平移φ(0<φ<π)个单位后得到函数y =g(x)的图像,若y =g(x)图像上各最高点到点(0,3)的距离的最小值为1,求y =g(x)的单调递增区间.4.(·陕西卷) 设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.5.(·陕西卷) 在直角坐标系xOy 中,已知点A(1,1),B(2,3),C(3,2),点P(x ,y)在△ABC 三边围成的区域(含边界)上.(1)若PA →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R),用x ,y 表示m -n ,并求m -n 的最大值.6.(·安徽卷) 在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P|OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( )A .2 2B .2 3C .4 2D .4 37.(·湖南卷) 已知a ,b 是单位向量,a·b =0,若向量c 满足|c -a -b|=1,则|c|的取值范围是( )A .[2-1,2+1]B .[2-1,2+2]C .[1,2+1]D .1,2+28.(·北京卷) 向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb(λ,μ∈R),则λμ=________.图1-39.(·辽宁卷) 已知点A(1,3),B(4,-1),则与向量AB 同方向的单位向量为( ) A.⎝⎛⎭⎫35,-45 B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45 D.⎝⎛⎭⎫-45,35 10.(·天津卷) 在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点,若AC →·BE →=1,则AB 的长为________.11.(·新课标全国卷Ⅱ] 已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________.12.(·重庆卷) 如图1-9所示,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F1作x 轴的垂线交椭圆于A ,A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P′,过P ,P′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外,若PQ ⊥P′Q ,求圆Q 的标准方程.图1-913.(·重庆卷) 在平面上,AB1→⊥AB2→,|OB1|=|OB2→|=1,AP →=AB1→+AB2→.若|OP →|<12,则|OA →|的取值范围是( )A.⎝⎛⎦⎥⎤0,52 B.⎝ ⎛⎦⎥⎤52,72 C.⎝ ⎛⎦⎥⎤52,2 D.⎝ ⎛⎦⎥⎤72,2【高考押题】1.已知点A(1,3),B(4,-1),则与向量A B →同方向的单位向量为( ) A.⎝⎛⎭⎫35,-45B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45D.⎝⎛⎭⎫-45,35 2.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)3.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb)∥c ,则λ等于( ) A.14B.12C .1D .24.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m 等于( )A .2B .3C .4D .55.如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2PA →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =146.若三点A(2,2),B(a,0),C(0,b) (ab≠0)共线,则1a +1b 的值为________.7.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.8.已知A(-3,0),B(0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为________.9.已知A(1,1)、B(3,-1)、C(a ,b). (1)若A 、B 、C 三点共线,求a 、b 的关系式; (2)若AC →=2AB →,求点C 的坐标.10.已知O(0,0),A(1,2),B(4,5)及OP →=OA →+tAB →,试问: (1)t 为何值时,P 在x 轴上?在y 轴上?在第三象限?(2)四边形OABP 能否成为平行四边形,若能,求出相应的t 值;若不能,请说明理由.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【考情解读】1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类函数. 【重点知识梳理】 1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类分类原则 类型 满足条件 按项数分类 有穷数列 项数有限 无穷数列 项数无限 按项与项间 的大小关系分类 递增数列 an +1>an 其中 n ∈N*递减数列 an +1<an 常数列 an +1=an按其他 标准分类有界数列 存在正数M ,使|an|≤M摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式如果数列{an}的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.5.已知数列{an}的前n 项和Sn ,则an =⎩⎪⎨⎪⎧S1 (n =1),Sn -Sn -1(n≥2).【高频考点突破】考点一 由数列的前几项求数列的通项【例1】根据下面各数列前几项的值,写出数列的一个通项公式: (1)-1,7,-13,19,…; (2)23,415,635,863,1099,…; (3)12,2,92,8,252,…;(4)5,55,555,5 555,….规律方法 根据所给数列的前几项求其通项时,需仔细观察分析,抓住以下几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.【变式探究】 (1)数列-11×2,12×3,-13×4,14×5,…的一个通项公式an =________. (2)数列{an}的前4项是32,1,710,917,则这个数列的一个通项公式是an =________.【答案】(1)(-1)n 1n (n +1)(2)2n +1n2+1考点二 利用Sn 与an 的关系求通项【例2】设数列{an}的前n 项和为Sn ,数列{Sn}的前n 项和为Tn ,满足Tn =2Sn -n2,n ∈N*. (1)求a1的值;(2)求数列{an}的通项公式.规律方法 数列的通项an 与前n 项和Sn 的关系是an =⎩⎪⎨⎪⎧S1,n =1,Sn -Sn -1,n≥2.当n =1时,a1若适合S n -Sn -1,则n =1的情况可并入n≥2时的通项an ;当n =1时,a1若不适合Sn -Sn -1,则用分段函数的形式表示.【变式探究】 (1)已知数列{an}的前n 项和为Sn ,a1=1,Sn =2an +1,则Sn =()A .2n -1 B.⎝⎛⎭⎫32n -1C.⎝⎛⎭⎫23n -1 D.12n -1(2)已知数列{an}的前n 项和Sn =3n2-2n +1,则其通项公式为________.【答案】(1)B(2)an =⎩⎪⎨⎪⎧2,n =16n -5,n≥2考点三 由递推关系求通项 【例3】在数列{an}中,(1)若a1=2,an +1=an +n +1,则通项an =________; (2)若a1=1,Sn =n +23an ,则通项an =________.【答案】(1)n (n +1)2+1(2)n (n +1)2规律方法 已知递推关系式求通项,一般用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.【变式探究】 (1)在数列{an}中,a1=1,an+1=3an+2,则它的一个通项公式为an=________.(2)设{an}是首项为1的正项数列,且(n+1)a2n+1-na2n+an+1·an=0(n=1,2,3,…),则它的通项公式an=________.【答案】(1)2×3n-1-1(2)1n考点四数列问题中的函数思想数列的单调性问题作为高考考查的一个难点,掌握其处理的方法非常关键,由于数列可看作关于n的函数,所以可借助函数单调性的处理方法来解决.常见的处理方法如下:一是利用作差法比较an+1与an的大小;二是借助常见函数的图象判断数列单调性;三是利用导函数.【例4】数列{an}的通项公式是an =n2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,an 有最小值?并求出最小值. (2)对于n ∈N*,都有an +1>an.求实数k 的取值范围.【真题感悟】【高考安徽,文13】已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前9项和等于.【答案】271.(·江西卷)已知首项都是1的两个数列{an},{bn}(bn≠0,n ∈N*)满足anbn +1-an +1bn +2bn +1bn =0.(1)令cn =anbn ,求数列{cn}的通项公式; (2)若bn =3n -1,求数列{an}的前n 项和Sn.2.(·新课标全国卷Ⅰ] 已知数列{an}的前n 项和为Sn ,a1=1,an≠0,anan +1=λSn -1,其中λ为常数.(1)证明:an +2-an =λ.(2)是否存在λ,使得{an}为等差数列?并说明理由.3.(·新课标全国卷Ⅱ] 已知数列{an}满足a1=1,an +1=3an +1.(1)证明⎩⎨⎧⎭⎬⎫an +12是等比数列,并求{an}的通项公式;(2)证明1a1+1a2+…+1an <32.4.(·重庆卷)设a1=1,an+1=a2n-2an+2+b(n∈N*).(1)若b=1,求a2,a3及数列{an}的通项公式.(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论.5.(·安徽卷)如图1-3所示,互不相同的点A1,A2,…,An,…和B1,B2,…,Bn,…分别在角O 的两条边上,所有AnBn相互平行,且所有梯形AnBnBn+1An+1的面积均相等,设OAn=an,若a1=1,a2=2,则数列{an}的通项公式是________.图1-3【答案】an=3n-26.(·辽宁卷)下面是关于公差d>0的等差数列{}an 的四个命题: p1:数列{}an 是递增数列; p2:数列{}nan 是递增数列;p3:数列⎩⎨⎧⎭⎬⎫an n 是递增数列;p4:数列{}an +3nd 是递增数列. 其中的真命题为( )A .p1,p2B .p3,p4C .p2,p3D .p1,p4 【答案】D7.(·全国卷)等差数列{an}前n 项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项公式.【押题专练】1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是an 等于 ()A.(-1)n +12B .cos nπ2C .cos n +12πD .cos n +22π【答案】D2.数列{an}满足an +1+an =2n -3,若a1=2,则a8-a4= () A .7B .6C .5D .4【答案】D3.数列{an}的前n 项和为Sn ,若a1=1,an +1=3Sn(n≥1),则a6等于 () A .3×44B .3×44+1C .45D .45+1【答案】A4.设an =-3n2+15n -18,则数列{an}中的最大项的值是()A.163B.133C .4D .0【答案】D5.已知数列{an}的通项公式为an =n2-2λn(n ∈N*),则“λ<1”是“数列{an}为递增数列”的 () A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】A6.数列{an}的通项an =nn2+90,则数列{an}中的最大项是()A .310B .19 C.119D.1060【答案】C7.已知数列{an}满足an +1=an -an -1(n≥2),a1=1,a2=3,记Sn =a1+a2+…+an ,则下列结论正确的是() A .a2 014=-1,S2 014=2 B .a2 014=-3,S2 014=5 C .a2 014=-3,S2 014=2D .a2 014=-1,S2 014=5【答案】D8.已知数列{an}的前n 项和为Sn ,Sn =2an -n ,则an =________.【答案】2n -19.已知数列{an}的前n 项和Sn =n2+2n +1(n ∈N*),则an =________.【答案】⎩⎪⎨⎪⎧4,n =12n +1,n≥210.数列{an}中,a1=1,对于所有的n≥2,n ∈N*,都有a1·a2·a3·…·an =n2,则a3+a5=________.【答案】611611.数列{an}中,已知a1=1,a2=2,a n +1=an +an +2(n ∈N*),则a7=________.【答案】112.已知数列{an}中,an=1+1a+2(n-1)(n∈N*,a∈R,且a≠0).(1)若a=-7,求数列{an}的最大项和最小项的值;(2)若对任意的n∈N*,都有an≤a6成立,求实数a的取值范围.13.设数列{an}的前n项和为Sn,且Sn=4an-p,其中p是不为零的常数.(1)证明:数列{an}是等比数列;(2)当p=3时,数列{bn}满足bn+1=bn+an(n∈N*),b1=2,求数列{bn}的通项公式.14.设数列{an}的前n项和为Sn.已知a1=a(a≠3),an+1=Sn+3n,n∈N*.(1)设bn=Sn-3n,求数列{bn}的通项公式;(2)若an+1≥an,n∈N*,求a的取值范围.高考模拟复习试卷试题模拟卷。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0063 201
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫ ⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<aC .13<<-a 或23>a D .3-<a 或231<<a 2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B. 221 C. 22 D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.2.根据具体函数的图象,能够用二分法求相应方程的近似解.【热点题型】题型一函数零点的判断与求解【例1】 (1)设f(x)=ex +x -4,则函数f(x)的零点位于区间()A .(-1,0)B .(0,1)C .(1,2)D .(2,3)(2)已知f(x)是定义在R 上的奇函数,当x≥0时,f(x)=x2-3x.则函数g(x)=f(x)-x +3的零点的集合为()A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}【提分秘籍】(1)确定函数的零点所在的区间时,通常利用零点存在性定理,转化为确定区间两端点对应的函数值的符号是否相反.(2)根据函数的零点与相应方程根的关系可知,求函数的零点与求相应方程的根是等价的.对于求方程f(x)=g(x)的根,可以构造函数F(x)=f(x)-g(x),函数F(x)的零点即方程f(x)=g(x)的根.【举一反三】已知函数f(x)=⎩⎪⎨⎪⎧2x -1,x≤1,1+log2x ,x >1,则函数f(x)的零点为() A.12,0 B .-2,0 C.12 D .0题型二根据函数零点的存在情况,求参数的值【例2】已知函数f(x)=-x2+2ex +m -1,g(x)=x +e2x (x >0).(1)若y =g(x)-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g(x)-f(x)=0有两个相异实根.【提分秘籍】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.【举一反三】(1)函数f(x)=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是()A .(1,3)B .(1,2)C .(0,3)D .(0,2)(2)已知函数f(x)=⎩⎪⎨⎪⎧|2x -1|,x <2,3x -1,x≥2,若方程f(x)-a =0有三个不同的实数根,则实数a 的取值范围是() A .(1,3) B .(0,3)C .(0,2)D .(0,1)题型三与二次函数有关的零点问题【例3】是否存在这样的实数a ,使函数f(x)=x2+(3a -2)x +a -1在区间[-1,3]上恒有一个零点,且只有一个零点?若存在,求出a 的取值范围;若不存在,说明理由.【提分秘籍】解决与二次函数有关的零点问题:(1)可利用一元二次方程的求根公式;(2)可用一元二次方程的判别式及根与系数之间的关系;(3)利用二次函数的图象列不等式组.【举一反三】已知f(x)=x2+(a2-1)x +(a -2)的一个零点比1大,一个零点比1小,求实数a 的取值范围.【高考风向标】【高考安徽,文14】在平面直角坐标系xOy 中,若直线a y 2=与函数1||--=a x y 的图像只有一个交点,则a 的值为.【高考湖北,文13】函数2π()2sin sin()2f x x x x =+-的零点个数为_________.【高考湖南,文14】若函数()|22|x f x b =--有两个零点,则实数b 的取值范围是_____.【高考山东,文10】设函数3,1()2,1x x b x f x x -<⎧=⎨≥⎩,若5(())46f f =,则b = ( ) (A )1 (B )78 (C )34 (D)12(·北京卷)已知函数f(x)=6x -log2x ,在下列区间中,包含f(x)的零点的区间是()A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)(·浙江卷)已知函数f(x)=x3+ax2+bx +c ,且0<f(-1)=f(-2)=f(-3)≤3,则()A .c≤3B .3<c≤6C .6<c≤9D .c >9(·重庆卷)已知函数f(x)=⎩⎪⎨⎪⎧1x +1-3,x ∈(-1,0],x ,x ∈(0,1],且g(x)=f(x)-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是() A.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,12 B.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,12 C.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,23 D.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,23(·福建卷)函数f(x)=⎩⎪⎨⎪⎧x2-2,x≤0,2x -6+ln x ,x >0的零点个数是________.(·湖北卷)已知f(x)是定义在R 上的奇函数,当x≥0时,f(x)=x2-3x ,则函数g(x)=f(x)-x +3的零点的集合为()A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}(·江苏卷)已知f(x)是定义在R 上且周期为3的函数,当x ∈[0,3)时,f(x)=⎪⎪⎪⎪x2-2x +12.若函数y =f(x)-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.(·江西卷)已知函数f(x)=⎩⎪⎨⎪⎧a·2x ,x≥0,2-x ,x<0(a ∈R).若f[f(-1)]=1,则a =() A.14 B.12 C .1 D .2(·浙江卷)设函数f(x)=⎩⎪⎨⎪⎧x2+2x +2,x≤0,-x2,x >0.若f(f(a))=2,则a =________.(·全国卷)函数f(x)=ax3+3x2+3x(a≠0).(1)讨论f(x)的单调性;(2)若f(x)在区间(1,2)是增函数,求a 的取值范围.(·天津卷)已知函数f(x)=⎩⎪⎨⎪⎧|x2+5x +4|,x≤0,2|x -2|,x >0.若函数y =f(x)-a|x|恰有4个零点,则实数a 的取值范围为________.【高考押题】1.函数f(x)=2x +x3-2在区间(0,2)内的零点个数是 ()A .0B .1C .2D .32.函数y =ln(x +1)与y =1x 的图象交点的横坐标所在区间为()A .(0,1)B .(1,2)C .(2,3)D .(3,4)3.若a <b <c ,则函数f(x)=(x -a)(x -b)+(x -b)(x -c)+(x -c)(x -a)的两个零点分别位于区间 ()A .(a ,b)和(b ,c)内B .(-∞,a)和(a ,b)内C .(b ,c)和(c ,+∞)内D .(-∞,a)和(c ,+∞)内4.若函数f(x)=3ax +1-2a 在区间(-1,1)内存在一个零点,则a 的取值范围是 () A.⎝⎛⎭⎫15,+∞ B .(-∞,-1)∪⎝⎛⎭⎫15,+∞ C.⎝⎛⎭⎫-1,15 D .(-∞,-1)5.已知函数f(x)=x +2x ,g(x)=x +ln x ,h(x)=x -x -1的零点分别为x1,x2,x3,则x1,x2,x3的大小关系是() A .x2<x1<x3B .x1<x2<x3C .x1<x3<x2D .x3<x2<x16.函数f(x)=x -ln(x +1)-1的零点个数是________.7.函数f(x)=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N)内,则n =________.8.已知函数f(x)=⎩⎪⎨⎪⎧2x -1,x >0,-x2-2x ,x≤0,若函数g(x)=f(x)-m 有3个零点,则实数m 的取值范围是________.9.若关于x 的方程22x +2xa +a +1=0有实根,求实数a 的取值范围.10.已知关于x 的二次方程x2+2mx +2m +1=0有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.了解球、棱柱、棱锥、台的表面积和体积的计算公式.【热点题型】题型一空间几何体的三视图和直观图例1、(1)一几何体的直观图如图,下列给出的四个俯视图中正确的是()(2)正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.答案(1)B(2)6 16a2解析(1)该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此选B.(2)画出坐标系x′O′y′,作出△OAB的直观图O′A′B′(如图).D′为O′A′的中点.易知D′B′=12DB(D 为OA 的中点),∴S △O′A′B′=12×22S △OAB =24×34a2=616a2.【提分秘籍】(1)三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”;(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.【举一反三】(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6cm ,O′C′=2cm ,则原图形是( )A .正方形B .矩形C .菱形D .一般的平行四边形答案 (1)B (2)C解析 (1)如图,几何体为三棱柱.题型二 空间几何体的表面积与体积例2、(1)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13(2)一个多面体的三视图如图所示,则该多面体的体积为( )A.233B.476C .6D .7(3)有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,则这三个球的表面积之比为________.答案 (1)C (2)A (3)1∶2∶3解析 (1)由三视图可知几何体是如图所示的两个圆柱的组合体.其中左面圆柱的高为4cm ,底面半径为2cm ,右面圆柱的高为2cm ,底面半径为3cm ,则组合体的体积V1=π×22×4+π×32×2=16π+18π=34π(cm3),原毛坯体积V2=π×32×6=54π(cm3),则所求比值为54π-34π54π=1027.(2)该几何体是正方体去掉两个角所形成的多面体,其体积为V =2×2×2-2×13×12×1×1×1=233.(3)设正方体的棱长为a ,①正方体的内切球球心是正方体的中心,切点是六个面的中心,经过四个切点及球心作截面如图①所示,有2r1=a ,∴r1=a 2,S1=4πr 21=πa2.【提分秘籍】(1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)由三视图求几何体的面积、体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.【举一反三】(1)一个空间几何体的三视图如图所示,则该几何体的表面积为()A.48 B.32+817C.48+817 D.80(2)把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成三棱锥C-ABD的正视图与俯视图如图所示,则侧视图的面积为()A.12 B .22 C.14 D.24答案 (1)C (2)C解析 (1)由三视图知该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12=17.所以S 表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.(2)因为C 在平面ABD 上的射影为BD 的中点O ,在边长为1的正方形ABCD 中,AO =CO =12AC =22,所以侧视图的面积等于S △AOC =12CO·AO =12×22×22=14,故选C.题型三 空间几何体的结构特征例3、 给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体;⑤棱台的侧棱延长后交于一点.其中正确命题的序号是________.答案 ②③④⑤解析 ①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体AC1中的三棱锥C1-ABC,四个面都是直角三角形;⑤正确,由棱台的概念可知.【提分秘籍】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.【举一反三】给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1 C.2 D.3答案A图1 图2【高考风向标】1.【高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是()A .83cmB .123cmC .3233cmD .4033cm【答案】C【解析】由三视图可知,该几何体是一个棱长为2的正方体与一个底面边长为2,高为2的正四棱锥的组合体,故其体积为32313222233V cm =+⨯⨯=.故选C. 2.【高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为( )123π+ (B) 136π (C) 73π (D) 52π 【答案】B【解析】由三视图可知该几何体是由一个底面半径为1,高为2的圆柱,再加上一个半圆锥:其底面半径为1,高也为1,构成的一个组合体,故其体积为61311612122πππ=⨯⨯⨯+⨯⨯,故选B. 3.【高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+【答案】D4、【高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2(C )4 (D )8【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B.5.【高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于()1112A.822+ B.1122+ C.1422+ D.15【答案】B6.【高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A)223π(B)423π()22π()42π【答案】B【解析】由题意知,该等腰直角三角形的斜边长为22,斜边上的高为2,所得旋转体为同底等高的全等圆锥,所以,其体积为2142(2)223ππ⨯⨯=,故选B.7【高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是( )(A )13+ (B )122+ (C )23+ (D )22【答案】C【解析】由该几何体的三视图可知,该几何体的直观图,如下图所示:其中侧面PAC ⊥底面ABC ,且PAC ∆≌ABC ∆,由三视图中所给数据可知: 2====BC AB PC PA ,取AC 中点,O 连接BO PO ,,则POB Rt ∆中,1==BO PO ⇒2=PB ∴3222212432+=⋅⋅+⋅⋅=S ,故选C. 8.【高考天津,文10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m .【答案】8π3 【解析】该几何体是由两个高为1的圆锥与一个高为2的圆柱组合而成,所以该几何体的体积为318π2π1π2(m )33⨯⨯⨯+⨯= . 9.【高考四川,文14】在三棱住ABC -A1B1C1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B1C1的中点,则三棱锥P -A1MN 的体积是______.【答案】12410.(·安徽卷)一个多面体的三视图如图1-2所示,则该多面体的体积是( )图1-2 A.233 B.476 C .6 D .7【答案】A 【解析】如图所示,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的部分,其体积V =8-2×13×12×1×1×1=233.11.(·湖南卷)一块石材表示的几何体的三视图如图1-2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )图1-2A .1B .2C .3D .4【答案】B【解析】由三视图可知,石材为一个三棱柱(相对应的长方体的一半),故可知能得到的最大球为三棱柱的内切球.由题意可知正视图三角形的内切圆的半径即为球的半径,可得R =6+8-102=2. 12.(·陕西卷)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π【答案】C【解析】由题意可知,旋转体是一个底面半径为1,高为1的圆柱,故其侧面积为2π×1×1=2π.13.(·全国卷)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16πC .9π D.27π4【答案】A14.(·陕西卷)四面体ABCD 及其三视图如图1-4所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H.图1-4(1)求四面体ABCD 的体积;(2)证明:四边形EFGH 是矩形. 【解析】解:(1)由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1,∴AD ⊥平面BDC ,∴四面体ABCD 的体积V =13×12×2×2×1=23.(2)证明:∵BC ∥平面EFGH ,平面EFGH∩平面BDC =FG ,平面EFGH∩ 平面ABC =EH ,∴BC ∥FG ,BC ∥EH ,∴FG ∥EH.同理EF ∥AD ,HG ∥AD ,∴EF ∥HG ,∴四边形EFGH 是平行四边形.又∵AD ⊥平面BDC ,∴AD ⊥BC ,∴EF ⊥FG ,∴四边形EFGH 是矩形.【高考押题】1.下列结论中正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任一点的连线都是母线答案 D解析 当一个几何体由具有相同的底面且顶点在底面两侧的两个三棱锥构成时,尽管各面都是三角形,但它不是三棱锥,故A 错误;若三角形不是直角三角形或是直角三角形但旋转轴不是直角边所在直线,所得几何体就不是圆锥,B 错误;若六棱锥的所有棱都相等,则底面多边形是正六边形,由几何图形知,若以正六边形为底面,则棱长必然要大于底面边长,故C 错误.2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有( )A .20B .15C .12D .10答案 D解析 如图,在五棱柱ABCDE -A1B1C1D1E1中,从顶点A 出发的对角线有两条:AC1,AD1,同理从B ,C ,D ,E 点出发的对角线均有两条,共2×5=10(条).3.已知底面边长为1,侧棱长为2的正四棱柱(底面是正方形的直棱柱)的各顶点均在同一个球面上,则该球的体积为( )A.32π3B .4πC .2πD.4π3答案 D解析 正四棱柱的外接球的球心为上下底面的中心连线的中点,所以球的半径r =222+222=1,球的体积V =4π3r3=4π3.故选D.4.某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A .72cm3B .90cm3C .108cm3D .138cm3答案 B解析 该几何体为一个组合体,左侧为三棱柱,右侧为长方体,如图所示.V =V 三棱柱+V 长方体=12×4×3×3+4×3×6=18+72=90(cm3).5.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为()答案B解析由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故A不正确.6.若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与表面积的比值为________.答案2π2π+17.一个几何体的三视图如图所示,其中侧视图与俯视图均为半径是2的圆,则这个几何体的体积是________.答案 8π解析 由三视图知该几何体是半径为2的球被截去四分之一后剩下的几何体,则该几何体的体积V =43×π×23×34=8π.8.如图所示的三个几何体,一个是长方体,一个是直三棱柱,一个是过圆柱上、下底面圆心切下圆柱的四分之一部分,若这三个几何体的正视图和俯视图是相同的正方形,求它们的表面积之比.9.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20cm 和30cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如图所示,三棱台ABC —A1B1C1中,O 、O1分别为两底面中心,D 、D1分别为BC 和B1C1的中点,则DD1为棱台的斜高.由题意知A1B1=20,AB =30,则OD =53,O1D1=1033,由S 侧=S 上+S 下,得 12×(20+30)×3DD1=34×(202+302),解得DD1=1333,在直角梯形O1ODD1中,O1O =DD21-OD -O1D12=43, 所以棱台的高为43cm.高考模拟复习试卷试题模拟卷。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0063146
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题. 【重点知识梳理】 1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a>0,b>0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a2+b2≥2ab(a ,b ∈R). (2)b a +ab ≥2(a ,b 同号). (3)ab≤⎝⎛⎭⎫a +b 2 2 (a ,b ∈R). (4)a2+b22≥⎝⎛⎭⎫a +b 2 2 (a ,b ∈R). 3.算术平均数与几何平均数设a>0,b>0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题 已知x>0,y>0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p.(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p24.(简记:和定积最大) 【高频考点突破】考点一 利用基本不等式证明简单不等式 【例1】 已知x >0,y >0,z >0.求证:⎝⎛⎭⎫y x +z x ⎝⎛⎭⎫x y +z y ⎝⎛⎭⎫x z +y z ≥8. 【规律方法】利用基本不等式证明新的不等式的基本思路是:利用基本不等式对所证明的不等式中的某些部分放大或者缩小,在含有三个字母的不等式证明中要注意利用对称性.【变式探究】 已知a >0,b >0,c >0,且a +b +c =1.求证:1a +1b +1c ≥9.考点二 利用基本不等式求最值 【例2】 解答下列问题:(1)已知a >0,b >0,且4a +b =1,求ab 的最大值; (2)若正数x ,y 满足x +3y =5xy ,求3x +4y 的最小值; (3)已知x <54,求f(x)=4x -2+14x -5的最大值;(4)已知函数f(x)=4x +ax (x >0,a >0)在x =3时取得最小值,求a 的值. 【规律方法】(1)利用基本不等式解决条件最值的关键是构造和为定值或乘积为定值,主要有两种思路:①对条件使用基本不等式,建立所求目标函数的不等式求解.②条件变形,进行“1”的代换求目标函数最值.(2)有些题目虽然不具备直接用基本不等式求最值的条件,但可以通过添项、分离常数、平方等手段使之能运用基本不等式.常用的方法还有:拆项法、变系数法、凑因子法、分离常数法、换元法、整体代换法等.【变式探究】(1)设a >0,若关于x 的不等式x +ax ≥4在x ∈(0,+∞)上恒成立,则a 的最小值为( ) A .4 B .2 C .16 D .1(2)设0<x <52,则函数y =4x(5-2x)的最大值为______.(3)设x >-1,则函数y =(x +5)(x +2)x +1的最小值为________.考点三 基本不等式的实际应用【例3】运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝⎛⎭⎫2+x2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 【规律方法】有关函数最值的实际问题的解题技巧(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值;(2)设变量时一般要把求最大值或最小值的变量定义为函数;(3)解应用题时,一定要注意变量的实际意义及其取值范围;(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.【变式探究】 首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y =12x2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?【真题感悟】1.【高考湖南,文7】若实数,a b 满足12ab a b+=,则ab 的最小值为( ) A 、2 B 、2 C 、22 D 、42b a =ab 2.【高考重庆,文14】设,0,5a b a b ,则1++3a b 的最大值为________.3.【高考福建,文5】若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .54.(·辽宁卷)对于c>0,当非零实数a ,b 满足4a2-2ab +4b2-c =0且使|2a +b|最大时,3a -4b +5c 的最小值为________.5.(·山东卷)若⎝⎛⎭⎫ax2+b x 6的展开式中x3项的系数为20,则a2+b2的最小值为________. 6.(·福建卷)要制作一个容积为4 m3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 ( )A .80元B .120元C .160元D .240元7.(·重庆卷)若log4(3a +4b)=log2ab ,则a +b 的最小值是________.8.(·四川卷)已知F 为抛物线y2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是()A .2B .3 C.1728 D.109.(高考山东卷)设正实数x ,y ,z 满足x2-3xy +4y2-z =0,则当zxy 取得最小值时,x +2y -z 的最大值为()A .0 B.98 C .2 D.9410.(·重庆卷)(3-a )(a +6)(-6≤a≤3)的最大值为() A .9 B.92 C .3 D.3 22 【押题专练】1.设非零实数a ,b ,则“a2+b2≥2ab”是“a b +ba ≥2”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 2.已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是( )A.72B .4C.92D .5 3.若正数x ,y 满足4x2+9y2+3xy =30,则xy 的最大值是( )A.43B.53C .2D.544.已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是 ( ) A .3B .4C .5D .65.设x ,y ∈R ,a >1,b >1,若ax =by =3,a +b =23,则1x +1y 的最大值为( )A .2B.32C .1D.126.设正实数x ,y ,z 满足x2-3xy +4y2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为 ( ) A .0B .1C.94D .37.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 8.已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y 的最小值.9.小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为(25-x)万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)10.函数f(x)=lgx2-x,若f(a)+f(b)=0,则3a+1b的最小值为________.11.某造纸厂拟建一座底面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】 1.了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义. 【热点题型】题型一平面向量的有关概念 【例1】给出下列命题: ①若|a|=|b|,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c. 其中正确命题的序号是()A .②③B .②④C .③④D .②③④【提分秘籍】(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a|的关系:a|a|是与a 同方向的单位向量.【举一反三】 给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③若λa =0 (λ为实数),则λ必为零;④已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为() A .1 B .2 C .3 D .4解析 ①错误.两向量共线要看其方向而不是起点与终点.②正确.因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误.当a =0时,不论λ为何值,λa =0.④错误.当λ=μ=0时,λa =μb ,此时,a 与b 可以是任意向量. 答案 C题型二 平面向量的线性运算【例2】 (1)在△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a·b =0,|a|=1,|b|=2,则AD →=() A.13a -13b B.23a -23b C.35a -35b D.45a -45b(2)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.解析 (1)∵a·b =0,∴∠ACB =90°,∴AB =5,CD =255, ∴BD =55,AD =455,∴AD ∶BD =4∶1. ∴AD →=45AB →=45(CB →-CA →)=45a -45b. (2)因为ABCD 为平行四边形, 所以AB →+AD →=AC →=2AO →, 已知AB →+AD →=λAO →,故λ=2.答案 (1)D(2)2 【提分秘籍】(1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.【举一反三】(1)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=()A .a -12b B.12a -b C .a +12b D.12a +b(2)如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则()A.AD →+BE →+CF →=0B.BD →-CF →+DF →=0C.AD →+CE →-CF →=0D.BD →-BE →-FC →=0解析 (1)连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a.(2)由题意知:AD →=FE →,BE →=DF →,CF →=ED →,而FE →+ED →+DF →=0,∴AD →+BE →+CF →=0. 答案 (1)D(2)A题型三共线向量定理的应用【例3】设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b).求证:A ,B ,D 三点共线; (2)试确定实数k ,使ka +b 和a +kb 共线.【提分秘籍】(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.【举一反三】(1)已知向量i 与j 不共线,且AB →=i +mj ,AD →=ni +j.若A ,B ,D 三点共线,则实数m ,n 应该满足的条件是()A .m +n =1B .m +n =-1C .mn =1D .mn =-1(2)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m 的值为________.解析 (1)由A ,B ,D 共线可设AB →=λAD →,于是有i +mj =λ(ni +j)=λni +λj.又i ,j 不共线,因此⎩⎪⎨⎪⎧λn =1,λ=m , 即有mn =1.(2)设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b),PQ →=OQ →-OP →=nb -ma ,PG →=OG →-OP →=⎝⎛⎭⎫13-m a +13b ,由P ,G ,Q 三点共线得,存在实数λ,使得PQ →=λPG →,即nb -ma =λ⎝⎛⎭⎫13-m a +13λb , 从而⎩⎨⎧-m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ得1n +1m =3.答案 (1)C(2)3 【高考风向标】1.【高考安徽,文15】ABC ∆是边长为2的等边三角形,已知向量b a 、满足a AB2=→,b a AC+=→2,则下列结论中正确的是.(写出所有正确结论得序号)①a 为单位向量;②b 为单位向量;③b a ⊥;④→BC b // ;⑤→⊥+BC b a )4(。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0062133
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】 1.了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义. 【热点题型】题型一平面向量的有关概念 【例1】给出下列命题: ①若|a|=|b|,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c. 其中正确命题的序号是()A .②③B .②④C .③④D .②③④【提分秘籍】(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a|的关系:a|a|是与a 同方向的单位向量.【举一反三】 给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③若λa =0 (λ为实数),则λ必为零;④已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为() A .1 B .2 C .3 D .4解析 ①错误.两向量共线要看其方向而不是起点与终点.②正确.因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误.当a =0时,不论λ为何值,λa =0.④错误.当λ=μ=0时,λa =μb ,此时,a 与b 可以是任意向量. 答案 C题型二 平面向量的线性运算【例2】 (1)在△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a·b =0,|a|=1,|b|=2,则AD →=() A.13a -13b B.23a -23b C.35a -35b D.45a -45b(2)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.解析 (1)∵a·b =0,∴∠ACB =90°,∴AB =5,CD =255, ∴BD =55,AD =455,∴AD ∶BD =4∶1. ∴AD →=45AB →=45(CB →-CA →)=45a -45b. (2)因为ABCD 为平行四边形, 所以AB →+AD →=AC →=2AO →, 已知AB →+AD →=λAO →,故λ=2.答案 (1)D(2)2 【提分秘籍】(1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.【举一反三】(1)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=()A .a -12b B.12a -b C .a +12b D.12a +b(2)如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则()A.AD →+BE →+CF →=0B.BD →-CF →+DF →=0C.AD →+CE →-CF →=0D.BD →-BE →-FC →=0解析 (1)连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a.(2)由题意知:AD →=FE →,BE →=DF →,CF →=ED →,而FE →+ED →+DF →=0,∴AD →+BE →+CF →=0. 答案 (1)D(2)A题型三共线向量定理的应用【例3】设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b).求证:A ,B ,D 三点共线; (2)试确定实数k ,使ka +b 和a +kb 共线.【提分秘籍】(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.【举一反三】(1)已知向量i 与j 不共线,且AB →=i +mj ,AD →=ni +j.若A ,B ,D 三点共线,则实数m ,n 应该满足的条件是()A .m +n =1B .m +n =-1C .mn =1D .mn =-1(2)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m 的值为________.解析 (1)由A ,B ,D 共线可设AB →=λAD →,于是有i +mj =λ(ni +j)=λni +λj.又i ,j 不共线,因此⎩⎪⎨⎪⎧λn =1,λ=m , 即有mn =1.(2)设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b),PQ →=OQ →-OP →=nb -ma ,PG →=OG →-OP →=⎝⎛⎭⎫13-m a +13b ,由P ,G ,Q 三点共线得,存在实数λ,使得PQ →=λPG →,即nb -ma =λ⎝⎛⎭⎫13-m a +13λb ,从而⎩⎨⎧-m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ得1n +1m =3.答案 (1)C(2)3 【高考风向标】1.【高考安徽,文15】ABC ∆是边长为2的等边三角形,已知向量b a 、满足a AB 2=→,b a AC+=→2,则下列结论中正确的是.(写出所有正确结论得序号)①a 为单位向量;②b 为单位向量;③b a ⊥;④→BC b // ;⑤→⊥+BC b a )4(。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0063 163
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷第03节 几何概型A 基础巩固训练1.在区间[0,π]上随机取一个数x ,则事件“sin x≥cos x”发生的概率为( ) A.14 B.12 C.34D .1 2.(·西城模拟)在区间[0,2]上任取两个实数a ,b ,则函数f(x)=x3+ax -b 在区间[-1,1]上有且只有一个零点的概率是( )A.18B.14C.34D.783.如图10-6-8所示,墙上挂有一边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,a2为半径的扇形,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是( ) A .1-π4B.π4C .1-π8D.与a 的取值有关4. (·阜阳模拟)一艘轮船从O 点的正东方向10 km 处出发,沿直线向O 点的正北方向10 km 处的港口航行,某台风中心在点O ,距中心不超过r km 的位置都会受其影响,且r 是区间[5,10]内的一个随机数,则轮船在航行途中会遭受台风影响的概率是( ) A.2-12B.1-22C.2-1D.2- 25.在棱长为2的正方体ABCD -A1B1C1D1中,点O 为底面ABCD 的中心,在正方体ABCD -A1B1C1D1内随机取一点P ,则点P 到点O 的距离大于1的概率为________. B 能力提升训练1. 【高考辽宁卷第6题】若将一个质点随机投入如图所示的长方形AB CD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π2. 在区间(0,1)内任取两个实数,则这两个实数的和大于13的概率为( ) A .1718 B .79C .29D .1183.【湖北八校高三第二次联考数学试题】记集合{}22(,)|4A x y x y =+≤和集合{}(,)|20,0,0B x y x y x y =+-≤≥≥表示的平面区域分别为1Ω和2Ω,若在区域1Ω内任取一点(,)M x y ,则点M 落在区域2Ω的概率为.4.一只小蜜蜂在一个棱长为4的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A .18B .116C .127D .27645. (·福建三明质量检测)已知集合M ={x|-2≤x ≤8},N ={x|x2-3x +2≤0},在集合M 中任取一个元素x ,则“x ∈(M ∩N)”的概率是( )A .110B .16C .310D .12C 思维扩展训练1. 【东莞市高三模拟考试一】已知(2,1)A ,(1,2)B -,31,55C ⎛⎫- ⎪⎝⎭,动点(,)P a b 满足02OP OA ≤⋅≤且02OP OB ≤⋅≤,则点P 到点C 的距离大于14的概率为( )A .5164π-B .564πC .116π- D .16π 2. 【高考重庆卷第15题】某校早上8:00开始上课,假设该校学生小张与小王在早上7:30—7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为_____(用数字作答)3. (济南市高三3月考模拟考试)如图,长方体ABCD —A1B1C 1D1,有一动点在此长方体内随机运动,则此动点在三棱锥A —A1BD 内的概率为.4. 【北京市丰台区高三一模】设不等式组22100x y y ⎧+-≤⎨≥⎩,表示的平面区域为M ,不等式组201t x t y t-≤≤⎧⎪⎨≤≤-⎪⎩,表示的平面区域为N.在M 内随机取一个点,这个点在N 内的概率的最大值是_________. 5. 若k ∈[-3,3],则k 的值使得过A(1,1)可以作两条直线与圆(x -k)2+y2=2相切的概率等于( )A .12 B .13 C .23D .34高考模拟复习试卷试题模拟卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0062196
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件. 【热点题型】题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ等于( )A.15B.25C.35D.45(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.【提分秘籍】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【举一反三】已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( ) A.23B.43 C .-3D .0题型二平面向量的坐标运算例2 已知A(-2,4),B(3,-1),C(-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b , (1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M 、N 的坐标及向量MN →的坐标. 【提分秘籍】向量的坐标运算主要是利用加、减、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.【举一反三】(1)已知平面向量a =(1,1),b =(1,-1),则向量12a -32b 等于( ) A .(-2,-1) B .(-2,1) C .(-1,0) D .(-1,2)(2)已知A(7,1)、B(1,4),直线y =12ax 与线段AB 交于C ,且AC →=2CB →,则实数a =________. 题型三向量共线的坐标表示例3 (1)已知平面向量a =(1,2),b =(-2,m),且a ∥b ,则2a +3b =________. (2)(·陕西)设0<θ<π2,向量a =(s in2θ,cosθ),b =(cosθ,1),若a ∥b ,则tanθ=________. 【提分秘籍】(1)两平面向量共线的充要条件有两种形式:①若a =(x1,y1),b =(x2,y2),则a ∥b 的充要条件是x1y2-x2y1=0;②若a ∥b(b≠0),则a =λb.(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.【举一反三】(1)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A(1,2),B(2,1),C(4,2),则点D 的坐标为________.(2)△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若p =(a +c ,b),q =(b -a ,c -a),且p ∥q ,则角C =________.【高考风向标】1.【高考新课标1,文2】已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( ) (A )(7,4)--(B )(7,4)(C )(1,4)-(D )(1,4)1.(·重庆卷) 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b)⊥c ,则实数k =( )A .-92 B .0 C .3 D.1522.(·福建卷) 在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e1=(0,0),e2=(1,2) B .e1=(-1,2),e2=(5,-2) C .e1=(3,5),e2=(6,10) D .e1=(2,-3),e2=(-2,3)3.(·山东卷) 已知向量a =(m ,cos 2x),b =(sin 2x ,n),函数f(x)=a·b ,且y =f(x)的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2. (1)求m ,n 的值;(2)将y =f(x)的图像向左平移φ(0<φ<π)个单位后得到函数y =g(x)的图像,若y =g(x)图像上各最高点到点(0,3)的距离的最小值为1,求y =g(x)的单调递增区间.4.(·陕西卷) 设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.5.(·陕西卷) 在直角坐标系xOy 中,已知点A(1,1),B(2,3),C(3,2),点P(x ,y)在△ABC 三边围成的区域(含边界)上.(1)若PA →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R),用x ,y 表示m -n ,并求m -n 的最大值.6.(·安徽卷) 在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P|OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( )A .2 2B .2 3C .4 2D .4 37.(·湖南卷) 已知a ,b 是单位向量,a·b =0,若向量c 满足|c -a -b|=1,则|c|的取值范围是( )A .[2-1,2+1]B .[2-1,2+2]C .[1,2+1]D .1,2+28.(·北京卷) 向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb(λ,μ∈R),则λμ=________.图1-39.(·辽宁卷) 已知点A(1,3),B(4,-1),则与向量AB 同方向的单位向量为( ) A.⎝⎛⎭⎫35,-45 B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45 D.⎝⎛⎭⎫-45,35 10.(·天津卷) 在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点,若AC →·BE →=1,则AB 的长为________.11.(·新课标全国卷Ⅱ] 已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________.12.(·重庆卷) 如图1-9所示,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F1作x 轴的垂线交椭圆于A ,A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P′,过P ,P′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外,若PQ ⊥P′Q ,求圆Q 的标准方程.图1-913.(·重庆卷) 在平面上,AB1→⊥AB2→,|OB1|=|OB2→|=1,AP →=AB1→+AB2→.若|OP →|<12,则|OA →|的取值范围是( )A.⎝⎛⎦⎥⎤0,52 B.⎝ ⎛⎦⎥⎤52,72 C.⎝ ⎛⎦⎥⎤52,2 D.⎝ ⎛⎦⎥⎤72,2【高考押题】1.已知点A(1,3),B(4,-1),则与向量A B →同方向的单位向量为( ) A.⎝⎛⎭⎫35,-45B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45D.⎝⎛⎭⎫-45,35 2.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)3.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb)∥c ,则λ等于( ) A.14B.12C .1D .24.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m 等于( )A .2B .3C .4D .55.如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2PA →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =146.若三点A(2,2),B(a,0),C(0,b) (ab≠0)共线,则1a +1b 的值为________.7.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.8.已知A(-3,0),B(0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为________.9.已知A(1,1)、B(3,-1)、C(a ,b). (1)若A 、B 、C 三点共线,求a 、b 的关系式; (2)若AC →=2AB →,求点C 的坐标.10.已知O(0,0),A(1,2),B(4,5)及OP →=OA →+tAB →,试问: (1)t 为何值时,P 在x 轴上?在y 轴上?在第三象限?(2)四边形OABP 能否成为平行四边形,若能,求出相应的t 值;若不能,请说明理由.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用. 【热点题型】题型一 考查函数的定义域 例 1.(1)(函数f(x)= 1-2x +1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)函数y =ln ⎝⎛⎭⎫1+1x + 1-x2的定义域为________.解析:(1)由题意可知⎩⎪⎨⎪⎧ 1-2x≥0x +3>0⇒⎩⎪⎨⎪⎧ 2x≤1x>-3⇒⎩⎪⎨⎪⎧x≤0,x>-3,∴定义域为(-3,0].(2)由⎩⎪⎨⎪⎧1+1x >0,1-x2≥0⇒⎩⎪⎨⎪⎧x<-1或x>0,-1≤x≤1⇒0<x≤1. ∴该函数的定义域为(0,1]. 答案:(1)A(2)(0,1] 【提分秘籍】1.函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,归纳起来常见的命题角度有:(1)求给定函数解析式的定义域.(2)已知f(x)的定义域,求f(g(x))的定义域. (3)已知定义域确定参数问题. 2.简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f(x)的定义域为[a ,b],则函数f(g(x))的定义域由不等式a≤g(x)≤b 求出. 【举一反三】已知f(x)的定义域为⎣⎡⎦⎤-12,12,求函数y =f ⎝⎛⎭⎫x2-x -12的定义域.题型二考查函数的解析式例2、(1)已知f(1-cos x)=sin2x ,求f(x)的解析式;(2)已知f(x)是二次函数且f(0)=2,f(x +1)-f(x)=x -1,求f(x)的解析式;(3)已知f(x)+2f ⎝⎛⎭⎫1x =x(x≠0),求f(x)的解析式. 解析 (1)f(1-cos x)=sin2x =1-cos2x , 令t =1-cos x ,则cos x =1-t ,t ∈[0,2], ∴f(t)=1-(1-t)2=2t -t2,t ∈[0,2], 即f(x)=2x -x2,x ∈[0,2].(2)设f(x)=ax2+bx +c(a≠0),由f(0)=2,得c =2, f(x +1)-f(x)=a(x +1)2+b(x +1)-ax2-bx =x -1, 即2ax +a +b =x -1,∴⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎨⎧a =12,b =-32.∴f(x)=12x2-32x +2.(3)∵f(x)+2f ⎝⎛⎭⎫1x =x ,∴f ⎝⎛⎭⎫1x +2f(x)=1x . 解方程组⎩⎨⎧ f x +2f ⎝⎛⎭⎫1x =x ,f ⎝⎛⎭⎫1x +2f x =1x,得f(x)=23x -x 3(x≠0).【提分秘籍】求函数解析式的常用方法 (1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x 替代g(x),便得f(x)的表达式.(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(3)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围.(4)解方程组法:已知关于f(x)与f ⎝⎛⎭⎫1x 或f(-x)的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f(x).【举一反三】已知函数f(x)满足f(x)+2f(3-x)=x2,则f(x)的解析式为( )A .f(x)=x2-12x +18B .f(x)=13x2-4x +6C .f(x)=6x +9D .f(x)=2x +3解析:由f(x)+2f(3-x)=x2可得f(3-x)+2f(x)=(3-x)2,由以上两式解得f(x)=13x2-4x +6.答案:B题型三考查分段函数例3、如图,点P 从点O 出发,分别按逆时针方向沿周长均为12的正三角形、正方形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系分别记为y =f(x),y =g(x),定义函数h(x)=⎩⎪⎨⎪⎧f x ,f x ≤g x ,g x ,f x >g x .对于函数y =h(x),下列结论正确的个数是( )①h(4)=10;②函数h(x)的图象关于直线x=6对称;③函数h(x)的值域为[0,13 ];④函数h(x)的递增区间为(0,5).A.1 B.2C.3 D.4答案C【提分秘籍】(1)求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.(2)若给出函数值或函数值的范围求的变量值或自变量的取值范围,应根据每一段的解析式分别求解.但要注意检验,是否符合相应段的自变量的取值范围.【举一反三】已知f(x)=⎩⎪⎨⎪⎧2x ,x>0,f x +1,x≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43等于________.解析:f ⎝⎛⎭⎫43=2×43=83, f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13=f ⎝⎛⎭⎫23=2×23=43, f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=83+43=4. 答案:4【高考风向标】1.【高考湖北,文6】函数256()4||lg 3x x f x x x -+--的定义域为( ) A .(2,3)B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]- 【答案】C.【解析】由函数()y f x =的表达式可知,函数()f x 的定义域应满足条件:2564||0,03x x x x -+-≥>-,解之得22,2,3x x x -≤≤>≠,即函数()f x 的定义域为(2,3)(3,4],故应选C. 3.【高考重庆,文3】函数22(x)log (x 2x 3)f 的定义域是( ) (A) [3,1] (B) (3,1)(C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞【答案】D【解析】由0)1)(3(0322>-+⇒>-+x x x x 解得3-<x 或1>x ,故选D.3.【高考四川,文8】某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx b y e +=( 2.718...e =为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )(A)16小时 (B)20小时 (C)24小时 (D)21小时【答案】C【解析】由题意,2219248bk b e e +⎧=⎪⎨=⎪⎩得1119212b k e e ⎧=⎪⎨=⎪⎩,于是当x =33时,y =e33k +b =(e11k)3·eb =31()2×192=24(小时)1.(·安徽卷)若函数f(x)(x ∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=⎩⎪⎨⎪⎧x (1-x ),0≤x≤1,sin πx ,1<x≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=______. 【答案】516 【解析】由题易知f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫-34+f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫34-f ⎝⎛⎭⎫76=-316+sin π6=516. 2.(·北京卷)下列函数中,定义域是R 且为增函数的是( )A .y =e -xB .y =x3C .y =ln xD .y =|x|【答案】B 【解析】由定义域为R ,排除选项C ,由函数单调递增,排除选项A ,D.3.(·江西卷)将连续正整数1,2,…,n(n ∈N*)从小到大排列构成一个数123…n ,F(n)为这个数的位数(如n =12时,此数为123456789101112,共有15个数字,F(12)=15),现从这个数中随机取一个数字,p(n)为恰好取到0的概率.(1)求p(100);(2)当n≤时,求F(n)的表达式;(3)令g(n)为这个数中数字0的个数,f(n)为这个数中数字9的个数,h(n)=f(n)-g(n),S ={n|h(n)=1,n≤100,n ∈N*},求当n ∈S 时p(n)的最大值.【解析】(1)当n =100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p(100)=11192.(2)F(n)=⎩⎪⎨⎪⎧n ,1≤n≤9,2n -9,10≤n≤99,3n -108,100≤n≤999,4n -1107,1000≤n≤.(3)当n =b(1≤b≤9,b ∈N*),g(n)=0;当n =10k +b(1≤k≤9,0≤b≤9,k ∈N*,b ∈N)时,g(n)=k ;当n =100时,g(n)=11,即g(n)=⎩⎪⎨⎪⎧0,1≤n≤9,k ,n =10k +b ,11,n =100.1≤k≤9,0≤b≤9,k ∈N*,b ∈N , 同理有f(n)=⎩⎪⎨⎪⎧0,1≤n≤8,k ,n =10k +b -1,1≤k≤8,0≤b≤9,k ∈N*,b ∈N ,n -80,89≤n≤98,20,n =99,100.由h(n)=f(n)-g(n)=1,可知n =9,19,29,39,49,59,69,79,89,90,所以当n≤100时,S ={9,19,29,39,49,59,69,79,89,90}.当n =9时,p(9)=0.当n =90时,p(90)=g (90)F (90)=9171=119. 当n =10k +9(1≤k≤8,k ∈N*)时,p(n)=g (n )F (n )=k 2n -9=k 20k +9,由y =k 20k +9关于k 单调递增,故当n =10k +9(1≤k≤8,k ∈N*)时,p(n)的最大值为p(89)=8169.又8169<119,所以当n ∈S 时,p(n)的最大值为119.4.(·山东卷)函数f(x)=1log2x -1的定义域为( ) A .(0,2) B .(0,2]C .(2,+∞)D .[2,+∞)【答案】C【解析】若函数f(x)有意义,则log2x -1>0,∴log2x >1,∴x >2.5.(·安徽卷)定义在R 上的函数f(x)满足f(x +1)=2f(x),若当0≤x≤1时,f(x)=x(1-x),则当-1≤x≤0时,f(x)=________.【答案】-x (x +1)2【解析】当-1≤x≤0时,0≤x +1≤1,由f(x +1)=2f(x)可得f(x)=12f(x +1)=-12x(x +1).6.(·安徽卷)函数y =ln1+1x +1-x2的定义域为________.【答案】(0,1] 【解析】实数x 满足1+1x >0且1-x2≥0.不等式1+1x >0,即x +1x >0,解得x>0或x<-1;不等式1-x2≥0的解为-1≤x≤1.故所求函数的定义域是(0,1].7.(·福建卷)已知函数f(x)=⎩⎪⎨⎪⎧2x3,x<0,-tanx ,0≤x <π2,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=________. 【答案】-2【解析】f π4=-tan π4=-1,f(-1)=-2. 8.(·江西卷)设函数 f(x)=⎩⎨⎧1a x ,0≤x≤a ,11-a (1-x ),a<x≤1.a 为常数且a ∈(0,1). (1)当a =12时,求f ⎝⎛⎭⎫f ⎝⎛⎭⎫13; (2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2;(3)对于(2)中的x1,x2,设A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),记△ABC 的面积为S(a),求S(a)在区间⎣⎡⎦⎤13,12上的最大值和最小值. 【解析】(1)当a =12时,f ⎝⎛⎭⎫13=23, f ⎝⎛⎭⎫f ⎝⎛⎭⎫13=f ⎝⎛⎭⎫23=2⎝⎛⎭⎫1-23=23. (2)f(f(x))=⎩⎪⎨⎪⎧1a2x ,0≤x≤a2,1a (1-a )(a -x ),a2<x≤a ,1(1-a )2(x -a ),a<x<a2-a +1,1a (1-a )(1-x ),a2-a +1≤x≤1.当0≤x≤a2时,由1a2x =x 解得x =0,因为f(0)=0,故x =0不是f(x)的二阶周期点;当a2<x≤a 时,由1a (1-a )(a -x)=x 解得x =a -a2+a +1∈(a2,a), 因f ⎝⎛⎭⎫a -a2+a +1=1a ·a -a2+a +1=1-a2+a +1≠a -a2+a +1, 故x =a -a2+a +1为f(x)的二阶周期点; 当a<x<a2-a +1时,由1(1-a )2(x -a)=x 解得x =12-a∈(a ,a2-a +1), 因f ⎝⎛⎭⎫12-a =11-a ·⎝⎛⎭⎫1-12-a =12-a ,故x =12-a 不是f(x)的二阶周期点; 当a2-a +1≤x≤1时,由1a (1-a )(1-x)=x 解得x =1-a2+a +1∈(a2-a +1,1), 因f ⎝⎛⎭⎫1-a2+a +1=1(1-a )·⎝⎛⎭⎫1-1-a2+a +1 =a -a2+a +1≠1-a2+a +1. 故x =1-a2+a +1为f(x)的二阶周期点. 因此,函数f(x)有且仅有两个二阶周期点,x1=a -a2+a +1,x2=1-a2+a +1.故对于任意a ∈⎣⎡⎦⎤13,12,g(a)=a3-2a2-2a +2>0, S′(a)=12·a (a3-2a2-2a +2)(-a2+a +1)2>0) 则S(a)在区间⎣⎡⎦⎤13,12上单调递增, 故S(a)在区间⎣⎡⎦⎤13,12上的最小值为S ⎝⎛⎭⎫13=133,最大值为S ⎝⎛⎭⎫12=120.9.(·辽宁卷)已知函数f(x)=x2-2(a +2)x +a2,g(x)=-x2+2(a -2)x -a2+8.设 H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p ,q}表示p ,q 中的较大值,min{p ,q}表示p ,q 中的较小值),记H1(x)的最小值为A ,H2(x)的最大值为B ,则A -B =( )A .a2-2a -16B .a2+2a -16C .-16D .16【答案】C【解析】由题意知当f(x)=g(x)时,即x2-2(a +2)x +a2=-x2+2(a -2)x -a2+8,整理得x2-2ax +a2-4=0,所以x =a +2或x =a -2,H1(x)=max{f(x),g(x)}=⎩⎪⎨⎪⎧x2-2(a +2)x +a2(x≤a -2),-x2+2(a -2)x -a2+8,(a -2<x<a +2),x2-2(a +2)x +a2(x≥a +2),H2(x)=min{f(x),g(x)}=⎩⎪⎨⎪⎧-x2+2(a -2)x -a2+8(x≤a -2)x2-2(a +2)x +a2,(a -2<x<a +2)-x2+2(a -2)x -a2+8(x≥a +2).由图形可知(图略),A =H1(x)min =-4a -4,B =H2(x)max =12-4a ,则A -B =-16,故选C.10.(·辽宁卷)已知函数f(x)=ln(1+9x2-3x)+1,则f(lg 2)+flg 12=( )A .-1B .0C .1D .2【答案】D【解析】由已知条件可知,f(x)+f(-x)=ln(1+9x2-3x)+1+ln(1+9(-x )2+3x)+1=2,而lg 2+lg 12=lg 2-lg 2=0,故而f(lg 2)+f ⎝⎛⎭⎫lg 12=2. 11.(·新课标全国卷Ⅱ] 经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图1-9所示.经销商为下一个销售季度购进了130 t 该产品.以X(单位:t ,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.图1-9(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.11.(·山东卷)函数f(x)=1-2x +1x +3的定义域为( ) A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1]【答案】A【解析】要使函数有意义,须有⎩⎪⎨⎪⎧1-2x≥0,x +3>0,解之得-3<x≤0. 12.(·四川卷)已知圆C 的方程为x2+(y -4)2=4,点O 是坐标原点.直线l :y =kx 与圆C 交于M ,N 两点.(1)求k 的取值范围;(2)设Q(m ,n)是线段MN 上的点,且2|OQ|2=1|OM|2+1|ON|2.请将n 表示为m 的函数.【解析】(1)将y =kx 代入x2+(y -4)2=4,得(1+k2)x2-8kx +12=0.(*)由Δ=(-8k)2-4(1+k2)×12>0,得k2>3.所以,k 的取值范围是(-∞,-3)∪(3+∞).(2)因为M ,N 在直线l 上,可设点M ,N 的坐标分别为(x1,kx1),(x2,kx2),则|OM|2=(1+k2)x21,|ON|2=(1+k2)x22.又|OQ|2=m2+n2=(1+k2)m2, 由2|OQ|2=1|OM|2+1|ON|2,得 2(1+k2)m2=1(1+k2)x21+1(1+k2)x22, 即2m2=1x21+1x22=(x1+x2)2-2x1x2x21x22. 由(*)式可知,x1+x2=8k 1+k2,x1x2=121+k2, 所以m2=365k2-3. 因为点Q 在直线y =kx 上,所以k =n m ,代入m2=365k2-3中并化简,得5n2-3m2=36. 由m2=365k2-3及k2>3,可知0<m2<3,即m ∈(-3,0)∪(0,3). 根据题意,点Q 在圆C 内,则n>0,所以n =36+3m25=15m2+1805. 于是,n 与m 的函数关系为n =15m2+1805(m ∈(-3,0)∪(0,3)). 13.(·浙江卷)已知函数f(x)= x -1.若f(a)=3,则实数a = ________.【答案】10【解析】f(a)=a -1=3.则a -1=9,a =10.14.(·重庆卷)函数y =1log2(x -2)的定义域是( ) A .(-∞,2) B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)【答案】C【解析】由题可知⎩⎪⎨⎪⎧x -2>0,x -2≠1,所以x >2且x≠3,故选C. 【高考押题】1.下列函数中,与函数y =13x 定义域相同的函数为 ( ). A .y =1sin xB .y =ln x xC .y =xexD .y =sin x x解析 函数y =13x的定义域为{x|x≠0,x ∈R}与函数y =sin xx 的定义域相同,故选D. 答案 D2.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y =x2+1,值域为{1,3}的同族函数有( ).A .1个B .2个C .3个D .4个解析 由x2+1=1,得x =0.由x2+1=3,得x =±2,所以函数的定义域可以是{0,2},{0,-2},{0,2,-2},故值域为{1,3}的同族函数共有3个. 答案 C3.若函数y =f(x)的定义域为M ={x|-2≤x≤2},值域为N ={y|0≤y≤2},则函数y =f(x)的图象可能是( ).解析 根据函数的定义,观察得出选项B. 答案 B4.已知函数f(x)=⎩⎪⎨⎪⎧|lg x|,0<x≤10,-12x +6,x>10.若a ,b ,c 互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是( ). A .(1,10) B .(5,6) C .(10,12)D .(20,24)解析 a ,b ,c 互不相等,不妨设a<b<c ,∵f(a)=f(b)=f(c),由图可知0<a<1,1<b<10,10<c<12. ∵f(a)=f(b), ∴|lg a|=|lg b|,∴lg a =-lg b ,即lg a =lg 1b ⇒a =1b , ∴ab =1,10<abc =c<12.故应选C.答案 C5.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b≤1,b ,a -b >1.设函数f(x)=(x2-2)⊗(x -x2),x ∈R.若函数y =f(x)-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ).A .(-∞,-2]∪⎝⎛⎭⎫-1,32B .(-∞,-2]∪⎝⎛⎭⎫-1,-34C.⎝⎛⎭⎫-1,14∪⎝⎛⎭⎫14,+∞D.⎝⎛⎭⎫-1,-34∪⎣⎡⎭⎫14,+∞答案 B6.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回甲地用了30分钟,则小王从出发到返回原地所经过的路程y 和其所用的时间x 的函数的图象为( )解析 注意本题中选择项的横坐标为小王从出发到返回原地所用的时间,纵坐标是经过的路程,故选D. 答案 D7.已知函数f(x),g(x)分别由下表给出,x 1 2 3 f(x)131x 1 2 3 g(x)321则f[g(1)]的值为________,满足f[g(x)]>g[f(x)]的x 的值是________.解析 ∵g(1)=3,∴f[g(1)]=f(3)=1,由表格可以发现g(2)=2,f(2)=3,∴f(g(2))=3,g(f(2))=1. 答案 1 28.已知函数f(x)=⎩⎪⎨⎪⎧x2+1,x≥0,1,x<0,则满足不等式f(1-x2)>f(2x)的x 的取值范围是________.解析 由题意有⎩⎪⎨⎪⎧ 1-x2>0,2x<0或⎩⎪⎨⎪⎧1-x2>2x ,2x≥0解得-1<x<0或0≤x<2-1,∴所求x 的取值范围为(-1,2-1).答案 (-1,2-1)9.已知函数f(x)的图象如图所示,则函数g(x)=2log的定义域是______.解析 要使函数有意义,须f(x)>0,由f(x)的图象可知, 当x ∈(2,8]时,f(x)>0. 答案 (2,8]10.设函数f(x)=⎩⎪⎨⎪⎧1,1≤x≤2,x -1,2<x≤3,g(x)=f(x)-ax ,x ∈[1,3],其中a ∈R ,记函数g(x)的最大值与最小值的差为h(a). (1)求函数h(a)的解析式;(2)画出函数y =h(x)的图象并指出h(x)的最小值.解 (1)由题意知g(x)=⎩⎪⎨⎪⎧1-ax ,1≤x≤2,1-a x -1,2<x≤3,当a<0时,函数g(x)是[1,3]上的增函数,此时g(x)max =g(3)=2-3a ,g(x)min =g(1)=1-a ,所以h(a)=1-2a ;当a>1时,函数g(x)是[1,3]上的减函数,此时g(x)min =g(3)=2-3a ,g(x)max =g(1)=1-a ,所以h(a)=2a -1;当0≤a≤1时,若x ∈[1,2],则g(x)=1-ax ,有g(2)≤g(x)≤g(1);若x ∈(2,3],则g(x)=(1-a)x -1,有g(2)<g(x)≤g(3),因此g(x)min =g(2)=1-2a ,而g(3)-g(1)=(2-3a)-(1-a)=1-2a ,故当0≤a≤12时,g(x)max =g(3)=2-3a ,有h(a)=1-a ; 当12<a≤1时,g(x)max =g(1)=1-a ,有h(a)=a.综上所述,h(a)=⎩⎪⎨⎪⎧1-2a ,a<0,1-a ,0≤a≤12,a ,12<a≤1,2a -1,a>1.(2)画出y =h(x)的图象,如图所示,数形结合可得h(x)min =h ⎝⎛⎭⎫12=12.11.求下列函数的定义域: (1)f(x)=lg 4-xx -3;(2)y =25-x2-lg cos x ; (3)y =lg(x -1)+lg x +1x -1+19-x.解 (1)⎩⎪⎨⎪⎧4-x >0x -3≠0,⇒x <4且x≠3,故该函数的定义域为(-∞,3)∪(3,4).(2)⎩⎪⎨⎪⎧25-x2≥0,cos x >0,即⎩⎪⎨⎪⎧-5≤x≤5,2kπ-π2<x <2kπ+π2,k ∈Z ,故所求定义域为⎣⎡⎭⎫-5,-3π2∪⎝⎛⎭⎫-π2,π2∪⎝⎛⎦⎤3π2,5.(3)⎩⎪⎨⎪⎧x -1>0,x +1x -1>0,9-x >0,即⎩⎪⎨⎪⎧x >1,x >1,x <9或x <-1,解得1<x <9. 故该函数的定义域为(1,9).12. 设x≥0时,f(x)=2;x <0时,f(x)=1,又规定:g(x)=()()3f x 1f x 22---(x >0),试写出y=g(x)的解析式,并画出其图象.其图象如图所示.13.二次函数f(x)满足f(x +1)-f(x)=2x ,且f(0)=1. (1)求f(x)的解析式;(2)在区间[-1,1]上,函数y =f(x)的图象恒在直线y =2x +m 的上方,试确定实数m 的取值范围. 解 (1)由f(0)=1,可设f(x)=ax2+bx +1(a≠0),故f(x +1)-f(x)=a(x +1)2+b(x +1)+1-(ax2+bx +1)=2ax +a +b ,由题意,得⎩⎪⎨⎪⎧ 2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1,故f(x)=x2-x +1.(2)由题意,得x2-x +1>2x +m ,即x2-3x +1>m ,对x ∈[-1,1]恒成立.令g(x)=x2-3x +1,则问题可转化为g(x)min>m ,又因为g(x)在[-1,1]上递减,所以g(x)min =g(1)=-1,故m<-1.高考模拟复习试卷试题模拟卷。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0063 190
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.了解球、棱柱、棱锥、台的表面积和体积的计算公式. 【重点知识梳理】1.柱、锥、台和球的表面积和体积名称几何体表面积体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥)S 表面积=S 侧+S 底V =13Sh 台体(棱台和圆台) S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR2V =43πR3【高频考点突破】 题型一 几何体的表面积例1、某几何体的三视图如图所示,则该几何体的表面积为( )A .180B .200C .220D .240【答案】D【变式探究】四棱锥P-ABCD的顶点P在底面ABCD中的投影恰好是点A,其三视图如图所示,则四棱锥P-ABCD的表面积为________.【答案】(2+2)a2题型二几何体的体积例2、(1)如图,在三棱柱A1B1C1-ABC中,D,E,F分别是AB,AC,AA1的中点.设三棱锥F-ADE 的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1∶V2=________.(2)某几何体的三视图如图所示,则该几何体的体积是________.【答案】(1)1∶24(2)16π-16【变式探究】如图是一个几何体的三视图.若它的体积是33,则a=________.【答案】3题型三 球的表面积与体积例3、已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为________.【答案】92π【变式探究】平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A.6πB .43πC .46πD .63π【答案】B题型四 多面体与球有关的切、接问题例4、如图所示,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体ABCD ,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一个球面上,则该球的体积为( )A.32π B .3π C.23π D .2π【答案】A【变式探究】已知一个正方体的所有顶点在一个球面上.若球的体积为9π2,则正方体的棱长为________.【答案】3【真题感悟】1.【高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是() A .83cm B .123cm C .3233cm D .4033cm【答案】C2.【高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为()123π+ (B) 136π (C) 73π (D) 52π【答案】B3.【高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3πB .4πC .24π+D .34π+【答案】D4、【高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1(B )2 (C )4(D )8 【答案】B5.【高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于()1112A.822+ B.1122+ C.1422+ D.15【答案】B6.【高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A)223π(B)423π()22π()42π【答案】B7【高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是()(A )13+ (B )122+ (C )23+ (D )22 【答案】C8.【高考天津,文10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m .【答案】8π39.【高考四川,文14】在三棱住ABC-A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M,N,P分别是AB,BC,B1C1的中点,则三棱锥P-A1MN的体积是______.【答案】1 2410.(·安徽卷)一个多面体的三视图如图1-2所示,则该多面体的体积是()图1-2A.233B.476 C .6 D .7 【答案】A11.(·湖南卷)一块石材表示的几何体的三视图如图1-2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )图1-2A .1B .2C .3D .4 【答案】B12.(·陕西卷)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π 【答案】C13.(·全国卷)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π4 【答案】A14.(·陕西卷)四面体ABCD 及其三视图如图1-4所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H.图1-4(1)求四面体ABCD 的体积; (2)证明:四边形EFGH 是矩形.15.(·天津卷) 已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.【答案】316.(·新课标全国卷Ⅱ)已知正四棱锥O -ABCD 的体积为3 22,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.【答案】24π17.(·湖北卷)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 【答案】318.(·新课标全国卷Ⅰ)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为________.【答案】9π2【押题专练】1.一个空间几何体的三视图及其相关数据如图所示,则这个空间几何体的表面积是( )A.11π2 B.11π2+6C .11πD.11π2+33【答案】D2.已知正三棱锥P -ABC 的主视图和俯视图如图所示,则此三棱锥的外接球的表面积为( )A .4πB .12π C.16π3D.64π3【答案】D3.一个几何体的三视图如图所示,则该几何体的体积为( )A .32B .18C .16D .10【答案】A4. SC 为球O 的直径,A ,B 是该球球面上的两点,AB =2,∠ASC =∠BSC =π4,若棱锥A -SBC 的体积为433,则球O 的体积为( )A.4π3B.32π3 C .27π D .43π【答案】B5.已知正三棱柱内接于一个半径为2的球,则正三棱柱的侧面积取得最大值时,其底面边长为( ) A. 6 B. 2 C. 3 D.2【答案】A6.一个几何体按比例绘制的三视图如图所示(单位:m),则该几何体的表面积为________m2.【答案】15+27.将边长为a 的正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的体积为________.【答案】23a38.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,该三棱锥的外接球的半径为2,则该三棱锥的体积为________.【答案】29.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为3,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.10.正三棱锥的高为1,底面边长为26,内有一个球与四个面都相切,求棱锥的表面积和球的半径.11.如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.(1)求证:BC⊥平面ACD;(2)求几何体D-ABC的体积.12.如图,△ABC中,∠ACB=90°,∠ABC=30°,BC=3,在三角形内挖去一个半圆(圆心O在边BC 上,半圆与AC、AB分别相切于点C、M,与BC交于点N),将△ABC绕直线BC旋转一周得到一个旋转体.(1)求该几何体中间一个空心球的表面积的大小;(2)求图中阴影部分绕直线BC旋转一周所得旋转体的体积.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第03节 几何概型A 基础巩固训练1.在区间[0,π]上随机取一个数x ,则事件“sin x≥cos x”发生的概率为( ) A.14 B.12 C.34 D .1 【答案】 C【解析】 ∵sin x≥cos x ,x ∈[0,π], ∴π4≤x≤π, ∴事件“sin x≥cos x”发生的概率为π-π4π-0=34.2.(·西城模拟)在区间[0,2]上任取两个实数a ,b ,则函数f(x)=x3+ax -b 在区间[-1,1]上有且只有一个零点的概率是( )A.18B.14C.34D.78【答案】D3.如图10-6-8所示,墙上挂有一边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,a2为半径的扇形,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是( ) A .1-π4B.π4C .1-π8D.与a 的取值有关【解析】 由题意知,阴影部分的面积为a2-4×14×π⎝⎛⎭⎫a 22=⎝⎛⎭⎫1-π4a2,故概率为1-π4.【答案】 A4. (·阜阳模拟)一艘轮船从O 点的正东方向10 km 处出发,沿直线向O 点的正北方向10 km 处的港口航行,某台风中心在点O ,距中心不超过r km 的位置都会受其影响,且r 是区间[5,10]内的一个随机数,则轮船在航行途中会遭受台风影响的概率是( ) A.2-12B.1-22C.2-1D.2- 2【答案】 D【解析】 以O 为圆心,r 为半径作圆,易知当r >52时,轮船会遭受台风影响,所以P =10-5210-5=10-525=2- 2. 5.在棱长为2的正方体ABCD -A1B1C1D1中,点O 为底面ABCD 的中心,在正方体ABCD -A1B1C1D1内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 【答案】1-π12B 能力提升训练1. 【高考辽宁卷第6题】若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π【答案】B2. 在区间(0,1)内任取两个实数,则这两个实数的和大于13的概率为()A.1718B.79C.29D.118【答案】A3.【湖北八校高三第二次联考数学试题】记集合{}22(,)|4A x y x y=+≤和集合{}(,)|20,0,0B x y x y x y=+-≤≥≥表示的平面区域分别为1Ω和2Ω,若在区域1Ω内任取一点(,)M x y,则点M落在区域2Ω的概率为.【答案】12πBAyxO4.一只小蜜蜂在一个棱长为4的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A .18B .116C .127D .2764【答案】A【解析】根据几何概型知识,概率为体积之比,即P =4-2343=18. 5. (·福建三明质量检测)已知集合M ={x|-2≤x ≤8},N ={x|x2-3x +2≤0},在集合M 中任取一个元素x ,则“x ∈(M ∩N)”的概率是( )A .110B .16C .310D .12【答案】A【解析】因为N ={x|x2-3x +2≤0}=[1,2],所以M ∩N =[1,2],所以所求的概率为2-18+2=110.C 思维扩展训练1. 【东莞市高三模拟考试一】已知(2,1)A ,(1,2)B -,31,55C ⎛⎫- ⎪⎝⎭,动点(,)P a b 满足02OP OA ≤⋅≤且02OP OB ≤⋅≤,则点P 到点C 的距离大于14的概率为( )A .5164π-B .564πC .116π- D .16π 【答案】A2. 【高考重庆卷第15题】某校早上8:00开始上课,假设该校学生小张与小王在早上7:30—7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为_____(用数字作答)【答案】932【解析】用x表示小张到校的时间,3050x≤≤,用y表示小王到校的时间,3050y≤≤则所有可能的结果对应直角坐标平面内的正方形区域ABCD记“小张比小王至少早到5分钟”为事件M,则M所对区域为图中的阴影部分DEF∆所以()1151592202032DEFABCDSP AS∆⨯⨯===⨯正方形,所以答案应填:932.3. (济南市高三3月考模拟考试)如图,长方体ABCD—A1B1C1D1,有一动点在此长方体内随机运动,则此动点在三棱锥A—A1BD内的概率为.【答案】164. 【北京市丰台区高三一模】设不等式组2210x yy⎧+-≤⎨≥⎩,表示的平面区域为M,不等式组201t x ty t-≤≤⎧⎪⎨≤≤-⎪⎩,表示的平面区域为N.在M内随机取一个点,这个点在N内的概率的最大值是_________.【答案】2π5. 若k∈[-3,3],则k的值使得过A(1,1)可以作两条直线与圆(x-k)2+y2=2相切的概率等于( )A .12B .13C .23D .34【答案】C【解析】点在圆外,过该点可做两条直线与圆相切.故使圆心与点A 的距离大于半径即可,即(1-k)2+1>2,解得k <0或k >2,所以所求k ∈[-3,0)∪(2,3],所求概率P =46=23.。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0064167
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件. 【热点题型】题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ等于( )A.15B.25C.35D.45(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.【提分秘籍】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【举一反三】已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( ) A.23B.43 C .-3D .0题型二平面向量的坐标运算例2 已知A(-2,4),B(3,-1),C(-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b , (1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M 、N 的坐标及向量MN →的坐标. 【提分秘籍】向量的坐标运算主要是利用加、减、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.【举一反三】(1)已知平面向量a =(1,1),b =(1,-1),则向量12a -32b 等于( ) A .(-2,-1) B .(-2,1) C .(-1,0) D .(-1,2)(2)已知A(7,1)、B(1,4),直线y =12ax 与线段AB 交于C ,且AC →=2CB →,则实数a =________. 题型三向量共线的坐标表示例3 (1)已知平面向量a =(1,2),b =(-2,m),且a ∥b ,则2a +3b =________. (2)(·陕西)设0<θ<π2,向量a =(s in2θ,cosθ),b =(cosθ,1),若a ∥b ,则tanθ=________. 【提分秘籍】(1)两平面向量共线的充要条件有两种形式:①若a =(x1,y1),b =(x2,y2),则a ∥b 的充要条件是x1y2-x2y1=0;②若a ∥b(b≠0),则a =λb.(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.【举一反三】(1)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A(1,2),B(2,1),C(4,2),则点D 的坐标为________.(2)△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若p =(a +c ,b),q =(b -a ,c -a),且p ∥q ,则角C =________.【高考风向标】1.【高考新课标1,文2】已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( ) (A )(7,4)--(B )(7,4)(C )(1,4)-(D )(1,4)1.(·重庆卷) 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b)⊥c ,则实数k =( )A .-92 B .0 C .3 D.1522.(·福建卷) 在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e1=(0,0),e2=(1,2) B .e1=(-1,2),e2=(5,-2) C .e1=(3,5),e2=(6,10) D .e1=(2,-3),e2=(-2,3)3.(·山东卷) 已知向量a =(m ,cos 2x),b =(sin 2x ,n),函数f(x)=a·b ,且y =f(x)的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2. (1)求m ,n 的值;(2)将y =f(x)的图像向左平移φ(0<φ<π)个单位后得到函数y =g(x)的图像,若y =g(x)图像上各最高点到点(0,3)的距离的最小值为1,求y =g(x)的单调递增区间.4.(·陕西卷) 设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.5.(·陕西卷) 在直角坐标系xOy 中,已知点A(1,1),B(2,3),C(3,2),点P(x ,y)在△ABC 三边围成的区域(含边界)上.(1)若PA →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R),用x ,y 表示m -n ,并求m -n 的最大值.6.(·安徽卷) 在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P|OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( )A .2 2B .2 3C .4 2D .4 37.(·湖南卷) 已知a ,b 是单位向量,a·b =0,若向量c 满足|c -a -b|=1,则|c|的取值范围是( )A .[2-1,2+1]B .[2-1,2+2]C .[1,2+1]D .1,2+28.(·北京卷) 向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb(λ,μ∈R),则λμ=________.图1-39.(·辽宁卷) 已知点A(1,3),B(4,-1),则与向量AB 同方向的单位向量为( ) A.⎝⎛⎭⎫35,-45 B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45 D.⎝⎛⎭⎫-45,35 10.(·天津卷) 在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点,若AC →·BE →=1,则AB 的长为________.11.(·新课标全国卷Ⅱ] 已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________.12.(·重庆卷) 如图1-9所示,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F1作x 轴的垂线交椭圆于A ,A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P′,过P ,P′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外,若PQ ⊥P′Q ,求圆Q 的标准方程.图1-913.(·重庆卷) 在平面上,AB1→⊥AB2→,|OB1|=|OB2→|=1,AP →=AB1→+AB2→.若|OP →|<12,则|OA →|的取值范围是( )A.⎝⎛⎦⎥⎤0,52 B.⎝ ⎛⎦⎥⎤52,72 C.⎝ ⎛⎦⎥⎤52,2 D.⎝ ⎛⎦⎥⎤72,2【高考押题】1.已知点A(1,3),B(4,-1),则与向量A B →同方向的单位向量为( ) A.⎝⎛⎭⎫35,-45B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45D.⎝⎛⎭⎫-45,35 2.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)3.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb)∥c ,则λ等于( ) A.14B.12C .1D .24.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m 等于( )A .2B .3C .4D .55.如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2PA →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =146.若三点A(2,2),B(a,0),C(0,b) (ab≠0)共线,则1a +1b 的值为________.7.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.8.已知A(-3,0),B(0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为________.9.已知A(1,1)、B(3,-1)、C(a ,b). (1)若A 、B 、C 三点共线,求a 、b 的关系式; (2)若AC →=2AB →,求点C 的坐标.10.已知O(0,0),A(1,2),B(4,5)及OP →=OA →+tAB →,试问: (1)t 为何值时,P 在x 轴上?在y 轴上?在第三象限?(2)四边形OABP 能否成为平行四边形,若能,求出相应的t 值;若不能,请说明理由.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【考情解读】1.考查对数函数的图象、性质;2.考查对数方程或不等式的求解;3.考查和对数函数有关的复合函数问题. 【重点知识梳理】 1.对数的概念一般地,对于指数式ab =N ,我们把“以a 为底N 的对数b ”记作logaN ,即b =logaN(a>0,且a ≠1).其中,数a 叫做对数的底数,N 叫做真数,读作“b 等于以a 为底N 的对数”. 2.对数的性质与运算法则 (1)对数的运算法则如果a>0且a≠1,M>0,N>0,那么①loga(MN)=logaM +logaN ;②loga MN =logaM -logaN ; ③logaMn =nlogaM (n ∈R);④logamMn =nm logaM. (2)对数的性质①alogaN =__N__;②logaaN =__N__(a>0且a≠1). (3)对数的重要公式①换底公式:logbN =logaNlogab (a ,b 均大于零且不等于1); ②logab =1logba ,推广logab·logbc·logcd =logad. 3.对数函数的图象与性质a>10<a<1图 象性 质(1)定义域:(0,+∞)(2)值域:R(3)过定点(1,0),即x =1时,y =0 (4)当x>1时,y>0 当0<x<1时,y<0 (5)当x>1时,y<0 当0<x<1时,y>0 (6)在(0,+∞)上是增函数(7)在(0,+∞)上是减函数4.反函数指数函数y =ax 与对数函数y =logax 互为反函数,它们的图象关于直线__y =x__对称. 【高频考点突破】 考点一 对数式的运算 例1、计算下列各式: (1)lg 25+lg 2·lg 50+(lg 2)2; (2)lg 32-lg 9+1·lg 27+lg 8-lg 1 000lg 0.3·lg 1.2;(3)(log32+log92)·(log43+log83). 【探究提高】(1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底或指数与对数互化.(2)熟练地运用对数的三个运算性质并配以代数式的恒等变形是对数计算、化简、证明常用的技巧. 【变式探究】求值:(1)log89log23;(2)(lg 5)2+lg 50·lg 2; (3)12lg 3249-43lg 8+lg 245. 考点二 对数函数的图象与性质例2、已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f(log47),b =f(log 123),c =f(0.2-0.6),则a ,b ,c 的大小关系是()A .c<a<bB .c<b<aC .b<c<aD .a <b<c【探究提高】(1)函数的单调性是函数最重要的性质,可以用来比较函数值的大小,解不等式等;(2)函数图象可以直观表示函数的所有关系,充分利用函数图象解题也体现了数形结合的思想.【变式探究】 (1)已知a =21.2,b =⎝⎛⎭⎫12-0.8,c =2log52,则a ,b ,c 的大小关系为 () A .c<b<aB .c<a<bC .b<a<cD .b<c<a(2)已知函数f(x)=loga(x +b) (a>0且a≠1)的图象过两点(-1,0)和(0,1),则a =________,b =________. 考点三 对数函数的综合应用 例3、已知函数f(x)=loga(3-ax).(1)当x ∈[0,2]时,函数f(x)恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.【探究提高】解决对数函数综合问题时,无论是讨论函数的性质,还是利用函数的性质(1)要分清函数的底数a ∈(0,1),还是a ∈(1,+∞);(2)确定函数的定义域,无论研究函数的什么性质或利用函数的某个性质,都要在其定义域上进行;(3)如果需将函数解析式变形,一定要保证其等价性,否则结论错误.【变式探究】已知函数f(x)=loga(8-2x) (a>0且a≠1).(1)若f(2)=2,求a 的值;(2)当a>1时,求函数y =f(x)+f(-x)的最大值.【真题感悟】1.【高考新课标1,文12】设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A )1-(B )1(C )2(D )42.【高考浙江,文9】计算:22log 2=,24log 3log 32+=.3.【高考四川,文12】lg0.01+log216=_____________.4.【高考湖北,文17】a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()g a . 当a =_________时,()g a 的值最小.【高考上海,文8】方程2)23(log )59(log 1212+-=---x x 的解为.1.(·天津卷) 函数f(x)=lg x2的单调递减区间是________.2.(·安徽卷) ⎝⎛⎭⎫1681-34+log354+log345=________. 3.(·浙江卷) 在同一直角坐标系中,函数f(x)=xa(x >0),g(x)=logax 的图像可能是( )4.(·福建卷) 若函数y =logax(a>0,且a≠1)的图像如图所示,则下列函数图像正确的是( )5.(·广东卷) 等比数列{an}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=________.6.(·辽宁卷) 已知a =2-13,b =log213,c =log 1213,则()A .a >b >cB .a >c >bC .c >b >aD .c >a >b7.(·山东卷) 已知函数y =loga(x +c)(a ,c 为常数,其中a>0,a≠1)的图像如图1-1所示,则下列结论成立的是( )A .a>1,x>1B .a>1,0<c<1C .0<a<1,c>1D .0<a<1,0<c<18.(·四川卷) 已知b >0,log5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( )A .d =acB .a =cdC .c =adD .d =a +c9.(·重庆卷) 若log4(3a +4b)=log2ab ,则a +b 的最小值是( )A .6+2 3B .7+2 3C .6+4 3D .7+4 3【押题专练】1.已知函数f(x)=ax +logax(a>0且a≠1)在[1,2]上的最大值与最小值之和为loga 2+6,则a 的值为() A.12B.14C .2D .42.已知x =lnπ,y =log52,z =e -12,则( )A .x <y <zB .z <x <yC .z <y <xD .y <z <x3.若f(x)=logax 在[2,+∞)上恒有f(x)>1,则实数a 的取值范围是( )A.⎝⎛⎭⎫12,1 B.⎝⎛⎭⎫0,12∪(1,2)C .(1,2) D.⎝⎛⎭⎫0,12∪(2,+∞)4.已知函数f (x)满足:当x≥4时,f(x)=⎝⎛⎭⎫12x ;当x<4时,f(x)=f(x +1),则f(2+log23)=( )A.124B.112C.18 D.385.设函数f(x)=若f(m) <f(-m),则实数m 的取值范围是( ) A .(-1,0)∪(0,1) B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)6.|1+lg 0.001|+ lg213-4lg 3+4+lg 6-lg 0.02的值为________.7.已知函数f(x)=⎩⎪⎨⎪⎧3x +1,x≤0log2x ,x>0,则使函数f(x)的图象位于直线y =1上方的x 的取值范围是______________.8.设函数f(x)定义在实数集上,f(2-x)=f(x),且当x≥1时,f(x)=ln x ,则f ⎝⎛⎭⎫13,f ⎝⎛⎭⎫12,f(2)的大小关系为________.(用“<”表示)9.若f(x)=x2-x +b ,且f(log2a)=b ,log2f(a)=2(a≠1).(1)求f(log2x)的最小值及对应的x 值;(2)x 取何值时,f(log2x)>f(1),且log2f(x)<f(1).10.已知函数f(x)=loga(x +1)-loga(1-x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.11.已知函数f(x)=log4(ax2+2x +3).(1)若f(x)定义域为R ,求a 的取值范围;(2)若f(1)=1,求f(x)的单调区间.高考模拟复习试卷试题模拟卷。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0066 48
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫ ⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<aC .13<<-a 或23>a D .3-<a 或231<<a 2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B. 221 C. 22 D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.理解空间直线、平面位置关系的定义,并了解有关的可以作为推理依据的公理和定理;2.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.【重点知识梳理】1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(4)公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.空间中两直线的位置关系(1)位置关系的分类⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a′∥a ,b′∥b ,把a′与b′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎤0,π2. (3)平行公理和等角定理①平行公理:平行于同一条直线的两条直线互相平行.②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.(2)平面与平面的位置关系有平行、相交两种情况.【高频考点突破】考点一 平面基本性质的应用【例1】 (1)以下四个命题中,正确命题的个数是()①不共面的四点中,其中任意三点不共线;②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面;③若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面;④依次首尾相接的四条线段必共面.A.0 B.1C.2 D.3(2)在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么正方体的过P,Q,R 的截面图形是()A.三角形 B.四边形C.五边形 D.六边形【变式探究】如图所示是正方体和正四面体,P,Q,R,S分别是所在棱的中点,则四个点共面的图形的序号是________.考点二空间两条直线的位置关系【例2】如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.【变式探究】 (1)如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行(2)在图中,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).考点三求异面直线所成的角【例3】如图,在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成角为60°.(1)求四棱锥的体积;(2)若E 是PB 的中点,求异面直线DE 与PA 所成角的余弦值.【变式探究】已知在三棱锥A -BCD 中,AB =CD ,且点M ,N 分别是BC ,AD 的中点.(1)若直线AB 与CD 所成的角为60°,则直线AB 和MN 所成的角为________.(2)若直线AB ⊥CD ,则直线AB 与MN 所成的角为________.【真题感悟】1.【高考广东,文18】(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.(1)证明:C//B 平面D P A ;(2)证明:C D B ⊥P ;(3)求点C 到平面D P A 的距离.C D B ⊥P2.【高考山东,文18】 如图,三棱台DEF ABC -中,2AB DE G H =,,分别为AC BC ,的中点.(I )求证://BD 平面FGH ;(II )若CF BC AB BC ⊥⊥,,求证:平面BCD ⊥平面EGH .1.(·辽宁卷)已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是()A .若m ∥α,n ∥α,则m ∥nB .若m ⊥α,n ⊂α,则m ⊥nC .若m ⊥α,m ⊥n ,则n ∥αD .若m ∥α,m ⊥n ,则n ⊥α2.(·福建卷)在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD.将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示.(1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.图1-53.(·新课标全国卷Ⅱ)直三棱柱ABC-A1B1C1中,∠BCA =90°,M ,N 分别是A1B1,A1C1的中点,BC =CA =CC1,则BM 与AN 所成角的余弦值为()A.110B.25C.3010D.224.(·四川卷)三棱锥A - BCD 及其侧视图、俯视图如图1-4所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP .(1)证明:P 是线段BC 的中点;(2)求二面角A - NP - M 的余弦值.图1-4【押题专练】1.若空间三条直线a,b,c满足a⊥b,b⊥c,则直线a与c()A.一定平行B.一定相交C.一定是异面直线D.平行、相交、是异面直线都有可能2.已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b 和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面3.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1⊥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面4.在空间四边形ABCD中,AB=CD,AD=BC,AB≠AD,M,N分别是对角线AC与BD的中点,则MN与()A.AC,BD之一垂直B.AC,BD都垂直C.AC,BD都不垂直D.AC,BD不一定垂直5.两条异面直线在同一个平面上的正投影不可能是()A.两条相交直线B.两条平行直线C.两个点D.一条直线和直线外一点6.一个正方体的展开图如图所示,A,B,C,D为原正方体的顶点,则在原来的正方体中()A.AB∥CDB.AB与CD相交C.AB⊥CDD.AB与CD所成的角为60°7.如图所示,在空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD上的点,且CFCB=CGCD=23,则()A.EF与GH平行B.EF与GH异面C.EF与GH的交点M可能在直线AC上,也可能不在直线AC上D.EF与GH的交点M一定在直线AC上8.平面α,β相交,在α,β内各取两点,这四点都不在交线上,这四点能确定________个平面.9.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.10.如图,在正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________.11.四棱锥P -ABCD 的所有侧棱长都为5,底面ABCD 是边长为2的正方形,则CD 与PA 所成角的余弦值为________.12.如图,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠FAB =90°,BC 綉12AD ,BE 綉12FA ,G ,H 分别为FA ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?13.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为2的正方形,OA ⊥底面ABCD ,OA =2,M 为OA 的中点.(1)求四棱锥O -ABCD 的体积;(2)求异面直线OC 与MD 所成角的正切值的大小.14.如图所示,正方体ABCD -A1B1C1D1中,E ,F 分别是AB 和AA1的中点.求证:(1)E ,C ,D1,F 四点共面;(2)CE ,D1F ,DA 三线共点.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.了解球、棱柱、棱锥、台的表面积和体积的计算公式.【热点题型】题型一空间几何体的三视图和直观图例1、(1)一几何体的直观图如图,下列给出的四个俯视图中正确的是()(2)正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.【提分秘籍】(1)三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”;(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.【举一反三】(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥 B.三棱柱C.四棱锥 D.四棱柱(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6cm,O′C′=2cm,则原图形是()A.正方形 B.矩形C.菱形D.一般的平行四边形题型二空间几何体的表面积与体积例2、(1)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727B.59C.1027D.13(2)一个多面体的三视图如图所示,则该多面体的体积为()A.233B.476C .6D .7(3)有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,则这三个球的表面积之比为________.【提分秘籍】(1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)由三视图求几何体的面积、体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.【举一反三】(1)一个空间几何体的三视图如图所示,则该几何体的表面积为()A .48B .32+817C .48+817D .80(2)把边长为1的正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,形成三棱锥C -ABD 的正视图与俯视图如图所示,则侧视图的面积为()A.12 B .22C.14D.24题型三空间几何体的结构特征例3、 给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体;⑤棱台的侧棱延长后交于一点.其中正确命题的序号是________.【提分秘籍】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.【举一反三】给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A .0B .1C .2D .3【高考风向标】1.【高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是()A .83cmB .123cmC .3233cmD .4033cm2.【高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为()123π+ (B) 136π (C) 73π (D) 52π 3.【高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+4、【高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1(B )2(C )4(D )85.【高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于( )1112A .822+B .1122+C .1422+D .156.【高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )223π(B )423π()22π()42π7【高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是( )(A )13(B )122+(C )23 (D )228.【高考天津,文10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m .9.【高考四川,文14】在三棱住ABC -A1B1C1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B1C1的中点,则三棱锥P -A1MN 的体积是______.10.(·安徽卷)一个多面体的三视图如图1-2所示,则该多面体的体积是( )图1-2A.233B.476 C .6 D .711.(·湖南卷)一块石材表示的几何体的三视图如图1-2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )图1-2A .1B .2C .3D .412.(·陕西卷)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π13.(·全国卷)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16πC .9π D.27π414.(·陕西卷)四面体ABCD 及其三视图如图1-4所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H.图1-4(1)求四面体ABCD 的体积;(2)证明:四边形EFGH 是矩形.【高考押题】1.下列结论中正确的是()A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任一点的连线都是母线2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有()A .20B .15C .12D .103.已知底面边长为1,侧棱长为2的正四棱柱(底面是正方形的直棱柱)的各顶点均在同一个球面上,则该球的体积为()A.32π3B .4πC .2πD.4π34.某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A .72cm3B .90cm3C .108cm3D .138cm35.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为()6.若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与表面积的比值为________.7.一个几何体的三视图如图所示,其中侧视图与俯视图均为半径是2的圆,则这个几何体的体积是________.8.如图所示的三个几何体,一个是长方体,一个是直三棱柱,一个是过圆柱上、下底面圆心切下圆柱的四分之一部分,若这三个几何体的正视图和俯视图是相同的正方形,求它们的表面积之比.9.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20cm 和30cm,且其侧面积等于两底面面积之和,求棱台的高.高考模拟复习试卷试题模拟卷。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0062150
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).【热点题型】题型一 三角函数式的化简与给角求值 【例1】 (1)已知α∈(0,π),化简:(1+sin α+cos α)·(cos α2-sin α2)2+2cos α=________.(2)[2sin 50°+sin 10°(1+3tan 10°)]·2sin280°=______.解析 (1)原式=⎝⎛⎭⎫2cos2α2+2sin α2cos α2·⎝⎛⎭⎫cos α2-sin α24cos2α2=cos α2⎝⎛⎭⎫cos2α2-sin2α2⎪⎪⎪⎪cos α2=cos α2cos α⎪⎪⎪⎪cos α2.因为0<α<π,所以0<α2<π2,所以cos α2>0,所以原式=cos α. (2)原式=⎝ ⎛⎭⎪⎫2sin 50°+sin 10°·cos 10°+3sin 10°cos 10°·2sin 80°=(2sin 50°+2sin 10°·12cos 10°+32sin 10°cos 10°)· 2cos 10°=22[sin 50°·cos 10°+sin 10°·cos(60°-10°)] =22sin(50°+10°)=22×32= 6. 答案 (1)cos α (2)6 【提分秘籍】(1)三角函数式的化简要遵循“三看”原则:①一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;②二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;③三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等.(2)对于给角求值问题,一般给定的角是非特殊角,这时要善于将非特殊角转化为特殊角.另外此类问题也常通过代数变形(比如:正负项相消、分子分母相约等)的方式来求值.【举一反三】(1)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .22-1(2)(·临沂模拟)化简:sin2αsin2β+cos2αcos2β-12cos 2αcos 2β=________.(2)法一 (从“角”入手,复角化单角)原式=sin2αsin2β+cos2αcos2β-12(2cos2α-1)(2cos2β-1) =sin2αsin2β+cos2αcos2β-12(4cos2αcos2β-2cos2α-2cos2β+1) =sin2αsin2β-cos2αcos2β+cos2α+cos2β-12 =sin2αsin2β+cos2αsin2β+cos2β-12 =sin2β+cos2β-12 =1-12=12.法二 (从“名”入手,异名化同名)原式=sin2αsin2β+(1-sin2α)cos2β-12cos 2αcos 2β =cos2β-sin2α(cos2β-sin2β)-12cos 2αcos 2β =cos2β-cos 2β(sin2α+12cos 2α) =1+cos 2β2-12cos 2β=12.法三 (从“幂”入手,利用降幂公式先降次)原式=1-cos 2α2·1-cos 2β2+1+cos 2α2·1+cos 2β2-12cos 2α·cos 2β =14(1+cos 2α·cos 2β-cos 2α-cos 2β)+14(1+cos 2α·cos 2β+cos 2α+cos 2β)-12cos 2α·cos 2β =14+14=12.题型二三角函数的给值求值、给值求角【例2】 (1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值;(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值. 解 (1)∵0<β<π2<α<π, ∴π4<α-β2<π, -π4<α2-β<π2,∴sin ⎝⎛⎭⎫α-β2=1-cos2⎝⎛⎭⎫α-β2=459,cos ⎝⎛⎭⎫α2-β= 1-sin2⎝⎛⎭⎫α2-β=53,∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β=cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2s in ⎝⎛⎭⎫α2-β=⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos2α+β2-1=2×49×5729-1=-239729.【提分秘籍】(1)解题中注意变角,如本题中α+β2=⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β;(2)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝⎛⎭⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝⎛⎭⎫-π2,π2,选正弦较好. 【举一反三】已知cos α=17,cos(α-β)=1314,且0<β<α<π2, (1)求tan 2α的值; (2)求β.解 (1)∵cos α=17,0<α<π2, ∴sin α=437,∴tan α=43, ∴tan 2α=2tan α1-tan2α=2×431-48=-8347.(2)∵0<β<α<π2,∴0<α-β<π2, ∴sin(α-β)=3314, ∴cos β=cos[α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=12. ∴β=π3.题型三三角变换的简单应用【例3】已知函数f(x)=Asin ⎝⎛⎭⎫x +π4,x ∈R ,且f ⎝⎛⎭⎫5π12=32.(1)求A 的值;(2)若f(θ)-f(-θ)=32,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫3π4-θ.解 (1)由f ⎝⎛⎭⎫5π12=32,得Asin 2π3=32,又sin 2π3=32,∴A = 3.(2)由(1)得f(x)=3sin ⎝⎛⎭⎫x +π4,由f(θ)+f(-θ)=32,得3sin ⎝⎛⎭⎫θ+π4+3sin ⎝⎛⎭⎫-θ+π4=32, 化简得cos θ=64,∵θ∈⎝⎛⎭⎫0,π2,∴sin θ=1-cos 2θ=1-⎝ ⎛⎭⎪⎫642=104,故f ⎝⎛⎭⎫3π4-θ=3sin ⎝⎛⎭⎫3π4-θ+π4=3sin θ=3×104=304.【提分秘籍】解三角函数问题的基本思想是“变换”,通过适当的变换达到由此及彼的目的,变换的基本方向有两个,一个是变换函数的名称,一个是变换角的形式.变换函数名称可以使用诱导公式、同角三角函数关系、二倍角的余弦公式等;变换角的形式,可以使用两角和与差的三角函数公式、倍角公式等.【举一反三】已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.(2)由已知,有sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos2α-sin2α),所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos2α-sin2α),即sin α+cos α=45(cos α-sin α)2(sin α+cos α). 当sin α+cos α=0时,由α是第二象限角, 知α=3π4+2kπ,k ∈Z. 此时cos α-sin α=- 2.当sin α+cos α≠0时,有(cos α-sin α)2=54. 由α是第二象限角,知cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52. 【高考风向标】【高考重庆,文6】若11tan ,tan()32,则tan =() (A) 17 (B) 16 (C) 57 (D) 56【答案】A【解析】11tan()tan 123tan tan[()]111tan()tan 7123αβαβαβααβα-+-=+-===+++⨯,故选A.【高考上海,文1】函数x x f 2sin 31)(-=的最小正周期为.【答案】π【解析】因为x x 2cos 1sin 22-=,所以x x x f 2cos 2321)2cos 1(231)(+-=--=,所以函数)(x f 的最小正周期为ππ=22. 【高考广东,文16】(本小题满分12分)已知tan 2α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值; (2)求2sin 2sin sin cos cos 21ααααα+--的值. 【答案】(1)3-;(2)1. 【解析】(1)tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭- (2)2sin 2sin sin cos cos 21ααααα+--()222sin cos sin sin cos 2cos 11αααααα=+--- 222sin cos sin sin cos 2cos αααααα=+-22tan tan tan 2ααα=+- 222222⨯=+- 1=1.(·广东卷) 若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是( )A .l1⊥l4B .l1∥l4C .l1与l4既不垂直也不平行D .l1与l4的位置关系不确定 【答案】D【解析】本题考查空间中直线的位置关系,构造正方体进行判断即可.如图所示,在正方体ABCD-A1B1C1D1中,设BB1是直线l1,BC 是直线l2,AD 是直线l3,则DD1是直线l4,此时l1∥l4;设BB1是直线l1,BC 是直线l2,A1D1是直线l3,则C1D1是直线l4,此时l1⊥l4.故l1与l4的位置关系不确定.2. (·湖北卷) 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.【解析】(1)f(8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10.故实验室上午8时的温度为10 ℃.3.(·湖南卷) 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值; (2)求BE 的长.图1-4【解析】设∠CED =α.(1)在△CDE 中,由余弦定理,得 EC2=CD2+DE2-2CD·DE·cos ∠EDC ,于是由题设知,7=CD2+1+CD ,即CD2+CD - 6=0,解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC =CD sin α. 于是,sin α=CD·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin2α=1-2149=277.而∠AEB=2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12cos α+32sin α =-12×277+32×217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE ,故 BE =2cos ∠AEB =2714=47.4.(·江西卷) 已知函数f(x)=(a +2cos2x)cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π). (1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值.5.(·全国卷) △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知3acos C =2ccos A ,tan A =13,求B. 【解析】由题设和正弦定理得3sin Acos C =2sin Ccos A , 故3tan Acos C =2sin C.因为tan A =13, 所以cos C =2sin C , 所以tan C =12,所以tan B =tan[180°-(A +C)] =-tan(A +C) =tan A +tan Ctan Atan C -1=-1, 所以B =135°.6.(·新课标全国卷Ⅱ] 函数f(x)=sin(x +φ)-2sin φcos x 的最大值为________. 【答案】1【解析】 f(x)=sin(x +φ)-2sin φcos x =sin xcos φ+cos xsin φ-2sin φcos x =sin xcos φ-cos xsin φ=sin(x -φ),其最大值为1.7.(·山东卷) △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知a =3,cos A =63,B =A +π2. (1)求b 的值; (2)求△ABC 的面积. 【解析】(1)在△ABC 中,由题意知,sin A =1-cos2A =33. 又因为B =A +π2,所以sin B =sin ⎝⎛⎭⎫A +π2=cos A =63.由正弦定理可得,b =asin Bsin A =3×6333=3 2.(2)由B =A +π2得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33.由A +B +C =π,得C =π-(A +B), 所以sin C =sin[π-(A +B)] =sin(A +B)=sin Acos B +cos Asin B=33×⎝ ⎛⎭⎪⎫-33+63×63=13.因此△ABC 的面积S =12absin C =12×3×32×13=322.8.(·四川卷) 如图1-3所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高度是60 m ,则河流的宽度BC 等于( )图1-3A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m 【答案】C9.(·四川卷) 已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.【解析】(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2kπ,π2+2kπ,k ∈Z ,由-π2+2kπ≤3x +π4≤π2+2kπ,k ∈Z ,得-π4+2kπ3≤x≤π12+2kπ3,k ∈Z ,所以函数f(x)的单调递增区间为⎣⎡⎦⎤-π4+2kπ3,π12+2kπ3,k ∈Z. (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos2α-sin2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αco s π4-sin αsi n π4(cos2α-sin2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2kπ,k ∈Z. 此时,cos α-sin α=- 2.当sin α+cos α≠0时,(co s α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52.10.(·重庆卷) 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8. (1)若a =2,b =52,求cos C 的值;(2)若sin Acos2B 2+sin Bcos2A 2=2sin C ,且△ABC 的面积S =92sin C ,求a 和b 的值. 【解析】(1)由题意可知c =8-(a +b)=72. 由余弦定理得cos C =a2+b2-c22ab= 22+⎝⎛⎭⎫522-⎝⎛⎭⎫7222×2×52=-15.(2)由sin Acos2B 2+sin Bcos2A2=2sin C 可得 sin A·1+cos B 2+sin B·1+cos A 2=2sin C ,化简得sin A +sin Acos B +sin B +sin Bcos A =4sin C.因为sin Acos B +cos Asin B =sin(A +B)=sin C ,所以sin A +sin B =3sin C. 由正弦定理可知a +b =3c.又a +b +c =8,所以a +b =6.由于S =12absin C =92sin C ,所以ab =9,从而a2-6a +9=0,解得a =3,所以b =3. 【高考押题】1.若tan θ=3,则sin 2θ1+cos 2θ=( )A. 3 B .-3 C.33D .-33解析sin 2θ1+cos 2θ=2sin θcos θ1+2cos2θ-1=tan θ= 3.答案 A2.已知sin α+cos α=13,则sin2⎝⎛⎭⎫π4-α=( )A.118 B.1718 C.89D.29解析 由sin α+cos α=13两边平方得1+sin 2α=19,解得sin 2α=-89,所以sin2⎝⎛⎭⎫π4-α=1-cos ⎝⎛⎭⎫π2-2α2=1-sin 2α2=1+892=1718,故选B.答案 B3.已知α∈⎝⎛⎭⎫π,32π,且cos α=-45,则tan ⎝⎛⎭⎫π4-α等于( )A .7B.17C .-17D .-7解析 因α∈⎝⎛⎭⎫π,32π,且cos α=-45,所以sin α<0,即sin α=-35,所以tan α=34.所以tan ⎝⎛⎭⎫π4-α=1-tan α1+tan α=1-341+34=17.答案 B4.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( ) A.5π12B.π3C.π4D.π65.设α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且tan α=1+sin βcos β,则 ( )A .3α-β=π2 B .2α-β=π2 C .3α+β=π2D .2α+β=π2解析 由条件得sin αcos α=1+sin βcos β,即sin α cos β=cos α(1+sin β),sin(α-β)=cos α=sin ⎝⎛⎭⎫π2-α,因为-π2<α-β<π2,0<π2-α<π2,所以α-β=π2-α,所以2α-β=π2,故选B. 答案 B6.若sin ⎝⎛⎭⎫π2+θ=35,则cos 2θ=________.解析 ∵sin ⎝⎛⎭⎫π2+θ=cos θ=35, ∴cos 2θ=2cos2θ-1=2×⎝⎛⎭⎫352-1=-725.答案 -7257.函数f(x)=sin ⎝⎛⎭⎫2x -π4-22sin2x 的最小正周期是________.解析 ∵f(x)=22sin 2x -22cos 2x -2(1-cos 2x) =22sin 2x +22cos 2x -2=sin(2x +π4)-2, ∴最小正周期T =2π2=π. 答案 π8.已知cos4α-sin4α=23,且α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫2α+π3=________.解析 ∵cos4α-sin4α=(sin2α+cos2α)(cos2α-sin2α)=cos 2α=23,又α∈⎝⎛⎭⎫0,π2,∴2α∈(0,π),∴sin 2α=1-cos22α=53, ∴cos ⎝⎛⎭⎫2α+π3=12cos 2α-32sin 2α =12×23-32×53=2-156. 答案2-1569.已知α∈⎝⎛⎭⎫π2,π,sin α=55. (1)求sin ⎝⎛⎭⎫π4+α的值; (2)求cos ⎝⎛⎭⎫5π6-2α的值.10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值.解 (1)因为sin α2+cos α2=62,两边同时平方,得sinα=12.又π2<α<π,所以cos α=-1-sin2α=-32. (2)因为π2<α<π,π2<β<π, 所以-π2<α-β<π2.又s in(α-β)=-35,得cos (α-β)=45. cos β=cos []α-(α-β) =cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35=-43+310.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【考情解读】1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系. 【重点知识梳理】 1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:an +1-an =d(n ∈N*,d 为常数),或an -an -1=d(n≥2,d 为常数). 2.等差数列的通项公式与前n 项和公式(1)若等差数列{an}的首项是a1,公差是d ,则其通项公式为an =a1+(n -1)d . 通项公式的推广:an =am +(n -m)d(m ,n ∈N*). (2)等差数列的前n 项和公式 Sn =n (a1+an )2=na1+n (n -1)2d(其中n ∈N*,a1为首项,d 为公差,an 为第n 项). 3.等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.(2)若{an}为等差数列,且m +n =p +q ,则am +an =ap +aq(m ,n ,p ,q ∈N*).(3)若{an}是等差数列,公差为d ,则ak ,ak +m ,ak +2m ,…(k ,m ∈N*)是公差为md 的等差数列. (4)数列Sm ,S2m -Sm ,S3m -S2m ,…也是等差数列. (5)S2n -1=(2n -1)an.(6)若n 为偶数,则S 偶-S 奇=nd2; 若n 为奇数,则S 奇-S 偶=a 中(中间项). 4.等差数列的前n 项和公式与函数的关系 Sn =d 2n2+⎝⎛⎭⎫a1-d 2n.数列{an}是等差数列⇔Sn =An2+Bn(A ,B 为常数). 5.等差数列的前n 项和的最值在等差数列{an}中,a1>0,d <0,则Sn 存在最大值;若a1<0,d >0,则Sn 存在最小值. 【高频考点突破】考点一 等差数列的性质及基本量的求解【例1】 (1)设Sn 为等差数列{an}的前n 项和,S8=4a3,a7=-2,则a9=() A .-6 B .-4 C .-2 D .2(2)(·浙江卷)已知等差数列{an}的公差d >0.设{an}的前n 项和为Sn ,a1=1,S2·S3=36. ①求d 及Sn ;②求m ,k(m ,k ∈N*)的值,使得am +am +1+am +2+…+am +k =65.规律方法 (1)一般地,运用等差数列性质,可以化繁为简、优化解题过程.但要注意性质运用的条件,如m +n =p +q ,则am +an =ap +aq(m ,n ,p ,q ∈N*),只有当序号之和相等、项数相同时才成立.(2)在求解等差数列基本量问题中主要使用的是方程思想,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.【变式探究】 (1)设数列{an},{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于()A .0B .37C .100D .-37(2)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为()A .13B .12C .11D .10(3)已知等差数列{an}的前n 项和为Sn ,且S10=10,S20=30,则S30=________. 考点二 等差数列的判定与证明【例2】若数列{an}的前n 项和为Sn ,且满足an +2SnSn -1=0(n≥2),a1=12.(1)求证:⎩⎨⎧⎭⎬⎫1Sn 成等差数列;(2)求数列{an}的通项公式.规律方法 证明一个数列是否为等差数列的基本方法有两种:一是定义法,证明an -an -1=d(n≥2,d 为常数);二是等差中项法,证明2an +1=an +an +2.若证明一个数列不是等差数列,则只需举出反例即可,也可以用反证法.【变式探究】已知公差大于零的等差数列{an}的前n 项和为Sn ,且满足a3·a4=117,a2+a5=22. (1)求数列{an}的通项公式;(2)若数列{bn}满足bn =Snn +c ,是否存在非零实数c 使得{bn}为等差数列?若存在,求出c 的值;若不存在,请说明理由.考点三 等差数列前n 项和的最值问题【例3】等差数列{an}的首项a1>0,设其前n 项和为Sn ,且S5=S12,则当n 为何值时,Sn 有最大值?规律方法 求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项;(2)利用性质求出其正负转折项,便可求得和的最值;(3)将等差数列的前n 项和Sn =An2+Bn(A ,B 为常数)看作二次函数,根据二次函数的性质求最值.【变式探究】 (1)等差数列{an}的前n 项和为Sn ,已知a5+a7=4,a6+a8=-2,则当Sn 取最大值时,n 的值是()A .5B .6C .7D .8(2)设数列{an}是公差d <0的等差数列,Sn 为前n 项和,若S6=5a1+10d ,则Sn 取最大值时,n 的值为()A .5B .6C .5或6D .11(3)已知等差数列{an}的首项a1=20,公差d =-2,则前n 项和Sn 的最大值为________. 【真题感悟】【高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =()(A )172(B )192(C )10(D )12 【高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为,则该数列的首项为________ 【高考福建,文16】若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于________.【高考浙江,文10】已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a =,d =.1.(·安徽卷)数列{an}是等差数列,若a1+1,a3+3,a5+5构成公比为q 的等比数列,则q =________.2.(·北京卷)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n =________时,{an}的前n 项和最大.3.(·福建卷)等差数列{an}的前n 项和为Sn ,若a1=2,S3=12,则a6等于( ) A .8 B .10 C .12 D .144.(·湖北卷)已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列. (1)求数列{an}的通项公式.(2)记Sn 为数列{an}的前n 项和,是否存在正整数n ,使得Sn>60n +800?若存在,求n 的最小值;若不存在,说明理由.5.(·湖南卷)已知数列{an}满足a1=1,|an +1-an|=pn ,n ∈N*. (1)若{an}是递增数列,且a1,2a2,3a3成等差数列,求p 的值;(2)若p =12,且{a2n -1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式. 6.(·辽宁卷)设等差数列{an}的公差为d.若数列{2a1an}为递减数列,则( ) A .d<0 B .d>0 C .a1d<0 D .a1d>07.(·全国卷)等差数列{an}的前n 项和为Sn.已知a1=10,a2为整数,且Sn≤S4. (1)求{an}的通项公式;(2)设bn =1anan +1,求数列{bn}的前n 项和Tn.8.(·新课标全国卷Ⅰ] 已知数列{an}的前n 项和为Sn ,a1=1,an≠0,anan +1=λSn -1,其中λ为常数.(1)证明:an +2-an =λ.(2)是否存在λ,使得{an}为等差数列?并说明理由.9.(·山东卷)已知等差数列{an}的公差为2,前n 项和为Sn ,且S1,S2,S4成等比数列. (1)求数列{an}的通项公式;(2)令bn =(-1)n -14n anan +1,求数列{bn}的前n 项和Tn.10.(·陕西卷)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c. (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C); (2)若a ,b ,c 成等比数列,求cos B 的最小值.11.(·天津卷)设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1的值为________.12.(·重庆卷)设a1=1,an +1=a2n -2an +2+b(n ∈N*). (1)若b =1,求a2,a3及数列{an}的通项公式.(2)若b =-1,问:是否存在实数c 使得a2n<c<a2n +1对所有n ∈N*成立?证明你的结论. 13.(·新课标全国卷Ⅰ] 某几何体的三视图如图1-3所示,则该几何体的体积为( )图1-3A .16+8πB .8+8πC .16+16πD .8+16π14.(·新课标全国卷Ⅰ] 设等差数列{an}的前n 项和为Sn ,若Sm -1=-2,Sm =0,Sm +1=3,则m =( )A .3B .4C .5D .615.(·广东卷)在等差数列{an}中,已知a3+a8=10,则3a5+a7=________.16.(·北京卷)已知{an}是由非负整数组成的无穷数列,该数列前n 项的最大值记为An ,第n 项之后各项an +1,an +2,…的最小值记为Bn ,dn =An -Bn.(1)若{an}为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n ∈N*,an +4=an),写出d1,d2,d3,d4的值;(2)设d 是非负整数,证明:dn =-d(n =1,2,3,…)的充分必要条件为{an}是公差为d 的等差数列; (3)证明:若a1=2,dn =1(n =1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1. 17.(·全国卷)等差数列{an}前n 项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项公式.18.(·山东卷)设等差数列{an}的前n 项和为Sn ,且S4=4S2,a2n =2an +1. (1)求数列{an}的通项公式;(2)设数列{bn}的前n 项和为Tn ,且Tn +an +12n =λ(λ为常数),令cn =b2n(n ∈N*),求数列{cn}的前n 项和Rn.19.(·四川卷) 在等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{an}的首项、公差及前n 项和.20.(·新课标全国卷Ⅱ] 等差数列{an}的前n 项和为Sn ,已知S10=0,S15=25,则nSn 的最小值为________.21.(·重庆卷)已知{an}是等差数列,a1=1,公差d≠0,Sn 为其前n 项和,若a1,a2,a5成等比数列,则S8=________.【押题专练】1.记Sn 为等差数列{an}的前n 项和,若S33-S22=1,则其公差d = ()A.12 B .2 C .3D .42.设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1=()A .2B .-2C.12D .-123.已知等差数列{an},且3(a3+a5)+2(a7+a10+a13)=48,则数列{an}的前13项之和为 () A .24B .39C .104D .524.设Sn 是等差数列{an}的前n 项和,公差d≠0,若S11=132,a3+ak =24,则正整数k 的值为 () A .9B .10C .11D .125.已知数列{an}满足an +1=an -57,且a1=5,设{an}的前n 项和为Sn ,则使得Sn 取得最大值的序号n 的值为() A .7B .8C .7或8D .8或96.《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为 ()A.53B.103C.56D.1167.设Sn 为等差数列{an}的前n 项和,(n +1)Sn <nSn +1(n ∈N*).若a8a7<-1,则 () A .Sn 的最大值是S8 B .Sn 的最小值是S8 C .Sn 的最大值是S7D .Sn 的最小值是S78.在等差数列{an}中,a15=33,a25=66,则a35=________.9.设Sn 为等差数列{an}的前n 项和,S2=S6,a4=1,则a5=________. 10.已知等差数列{an}中,S3=9,S6=36,则a7+a8+a9=________. 11.设等差数列{an}的前n 项和为Sn ,若a1<0,S2 015=0. (1)求Sn 的最小值及此时n 的值; (2)求n 的取值集合,使an≥Sn.12.已知等差数列的前三项依次为a ,4,3a ,前n 项和为Sn ,且S k =110. (1)求a 及k 的值;(2)设数列{bn}的通项bn =Snn ,证明数列{bn}是等差数列,并求其前n 项和Tn. 高考模拟复习试卷试题模拟卷。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0061192
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;2.掌握椭圆的定义、几何图形、标准方程及简单几何性质.【重点知识梳理】1.椭圆的定义在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0) 轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|=2c离心率e=ca∈(0,1)a,b,c的关系c2=a2-b2考点一椭圆的定义及其应用【例1】 (1)(如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是()A .椭圆B .双曲线C .抛物线D .圆(2)已知F1,F2是椭圆C :x2a2+y2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF →1⊥PF →2.若△PF1F2的面积为9,则b =________.【变式探究】 (1)已知F1,F2是椭圆x216+y29=1的两焦点,过点F2的直线交椭圆于A ,B 两点,在△AF1B 中,若有两边之和是10,则第三边的长度为( )A .6B .5C .4D .3(2)与圆C1:(x +3)2+y2=1外切,且与圆C2:(x -3)2+y2=81内切的动圆圆心P 的轨迹方程为________.即P在以C1(-3,0),C2(3,0)为焦点,长轴长为10的椭圆上,得点P的轨迹方程为x225+y216=1.答案(1)A(2)x225+y216=1考点二求椭圆的标准方程【例2】 (1)在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为2 2.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么椭圆C的方程为________.(2)设F1,F2分别是椭圆E:x2+y2b2=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点.若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为________.(3)已知椭圆的长轴长是短轴长的3倍,且过点A(3,0),并且以坐标轴为对称轴,则椭圆的标准方程为________.【变式探究】 求满足下列条件的椭圆的标准方程: (1)与椭圆x24+y23=1有相同的离心率且经过点(2,-3);(2)已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3,过P 且与长轴垂直的直线恰过椭圆的一个焦点;(3)经过两点⎝⎛⎭⎫-32,52,()3,5.由⎩⎪⎨⎪⎧⎝⎛⎭⎫-322m +⎝⎛⎭⎫522n =1,3m +5n =1,解得m =16,n =110.∴椭圆方程为y210+x26=1. 考点三 椭圆的几何性质【例3】 (1)(·江西卷)过点M(1,1)作斜率为-12的直线与椭圆C :x2a2+y2b2=1(a>b>0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.(2)(·包头测试与评估)已知椭圆x2a2+y2b2=1的左顶点为A ,左焦点为F ,点P 为该椭圆上任意一点;若该椭圆的上顶点到焦点的距离为2,离心率e =12,则AP →·FP →的取值范围是________.不等式.例如,-a≤x≤a ,-b≤y≤b ,0<e <1等,在求椭圆相关量的范围时,要注意应用这些不等关系.【变式探究】 已知椭圆C1:x2a2+y2b2=1(a >b >0)的右焦点为F ,上顶点为A ,P 为C1上任一点,MN 是圆C2:x2+(y -3)2=1的一条直径,与AF 平行且在y 轴上的截距为3-2的直线l 恰好与圆C2相切.(1)求椭圆C1的离心率;(2)若PM →·PN →的最大值为49,求椭圆C1的方程.考点四 直线与椭圆的位置关系【例4】 (·四川卷)已知椭圆C :x2a2+y2b2=1(a >b >0)的左焦点为F(-2,0),离心率为63. (1)求椭圆C 的标准方程;(2)设O为坐标原点,T为直线x=-3上一点,过F作TF的垂线交椭圆于P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.规律方法(1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=(1+k2)[(x1+x2)2-4x1x2] =⎝⎛⎭⎫1+1k2[(y1+y2)2-4y1y2](k 为直线斜率). 提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式大于零. 【变式探究】 (·陕西卷)已知椭圆x2a2+y2b2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F1(-c ,0),F2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F1F2为直径的圆交于C ,D 两点,且满足|AB||CD|=534,求直线l 的方程.由|AB||CD|=534,得4-m25-4m2=1,解得m =±33,满足(*).∴直线l 的方程为y =-12x +33或y =-12x -33. 考点五 圆锥曲线上点的对称问题圆锥曲线上两点关于直线的对称问题是高考命题的热点,该问题集中点弦、直线与圆锥曲线的位置关系、点与圆锥曲线的位置关系、方程、函数、不等式、点差法等重要数学知识和方法于一体,符合在知识网络交汇处、思想方法的交织线上和能力层次的交叉区内设置问题的命题特点,此类试题综合性强,难度大,对数学知识和能力的考查具有一定的深度,具有很好的选拔功能,是高考命题的热点.圆锥曲线上两点关于直线的对称问题主要有联立方程法和点差法两种解法.【例5】 椭圆E 经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x 轴上,离心率e =12,其中∠F1AF2的平分线所在的直线l 的方程为y =2x -1.(1)求椭圆E 的方程;(2)在椭圆上是否存在关于直线l 对称的相异两点?若存在,请找出;若不存在,说明理由.【真题感悟】1.【高考广东,文8】已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9B .4C .3D .22.【高考福建,文11】已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A . 3B .3(0,]4C .3D .3[,1)43.【高考浙江,文15】椭圆22221x y a b +=(0a b >>)的右焦点()F ,0c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是.4.【高考安徽,文20】设椭圆E 的方程为22221(0),x y a b a b+=>>点O 为坐标原点,点A 的坐标为(,0)a ,点B 的坐标为(0,b ),点M 在线段AB 上,满足2,BM MA =直线OM 的斜率为510. (Ⅰ)求E 的离心率e;(Ⅱ)设点C 的坐标为(0,b ),N 为线段AC 的中点,证明:MN ⊥AB. 【答案】(Ⅰ)55(Ⅱ)详见解析. 【解析】(Ⅰ)解:由题设条件知,点)31,32(b a M ,又105=OM k 从而1052=a b .进而b b a c b a 2,522=-==,故552==a c e . (Ⅱ)证:由N 是AC 的中点知,点N 的坐标为⎪⎭⎫ ⎝⎛-2,2b a ,可得⎪⎭⎫⎝⎛=65,6b a NM . 又()b a AB ,-=,从而有()22225616561a b b a NM AB -=+-=⋅ 由(Ⅰ)得计算结果可知,522b a =所以0=⋅NM AB ,故AB MN ⊥.5.【高考北京,文20】(本小题满分14分)已知椭圆C:2233x y +=,过点()D 1,0且不过点()2,1E 的直线与椭圆C 交于A ,B 两点,直线AE 与直线3x =交于点M .(I )求椭圆C 的离心率;(II )若AB 垂直于x 轴,求直线BM 的斜率;(III )试判断直线BM 与直线D E 的位置关系,并说明理由.6.【高考湖南,文20】(本小题满分13分)已知抛物线21:4C x y =的焦点F 也是椭圆22222:1y x C a b+=(0)a b >>的一个焦点,1C 与2C 的公共弦长为26,过点F 的直线l 与1C 相交于,A B 两点,C相交于,C D两点,且AC与BD同向.与2C的方程;(I)求2,求直线l的斜率.(II)若AC BD7.【高考山东,文21】平面直角坐标系xOy 中,已知椭圆C :2222+=1(>>0)x y b bαα的离心率为32312)在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :2222+=144x y a b,P 为椭圆C 上任意一点,过点P 的直线=+y kx m 交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值; (ii)求ABQ ∆面积的最大值.【答案】(I )2214x y +=;(II )(i )||2||OQ OP =;(ii ) 3. 【解析】(I )由题意知22311,4a b+=223a b -=,解得224,1a b ==, 所以椭圆C 的方程为22 1.4x y += (II )由(I )知椭圆E 的方程为221164x y +=.8.【高考陕西,文20】如图,椭圆2222:1(0)x yE a ba b+=>>经过点(0,1)A-2.(I)求椭圆E的方程;(II)经过点(1,1),且斜率为k的直线与椭圆E交于不同两点,P Q(均异于点A),证明:直线AP与AQ的斜率之和为2.9.【高考四川,文20】如图,椭圆E:22221x ya b+=(a>b>0)的离心率是22,点P(0,1)在短轴CD上,且PC PD⋅=-1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得OA OB PA PB λ⋅+⋅为定值?若存在,求λ的值;若不存在,请说明理由.此时,OA OB PA PB λ⋅+⋅=-3为定值A DBC O x y P当直线AB 斜率不存在时,直线AB 即为直线CD此时OA OB PA PB OC OD PC PD λ⋅+⋅=⋅+⋅=-2-1=-3 故存在常数λ=-1,使得OA OB PA PB λ⋅+⋅为定值-3.10.【高考天津,文19】(本小题满分14分)已知椭圆22221(a b 0)x y ab 的上顶点为B,左焦点为F ,离心率为55, (I )求直线BF 的斜率;(II )设直线BF 与椭圆交于点P (P 异于点B ),过点B 且垂直于BP 的直线与椭圆交于点Q (Q 异于点B )直线PQ 与y 轴交于点M,||=||PM MQ .(i )求的值;(ii )若75||sin =9PM BQP ,求椭圆的方程.0M x =得7.8M P PQ MQ x x x x x x λ-===-1.(·四川卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程.(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当|TF||PQ|最小时,求点T的坐标.2.(·安徽卷)设F1,F2分别是椭圆E :x2+y2b2=1(0<b <1)的左、右焦点,过点F1的直线交椭圆E 于A ,B 两点.若|AF1|=3|F1B|,AF2⊥x 轴,则椭圆E 的方程为________.【答案】x2+32y2=1 【解析】3.(·北京卷)已知椭圆C:x2+2y2=4.(1)求椭圆C的离心率;(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,试判断直线AB与圆x2+y2=2的位置关系,并证明你的结论.d=|2x0-ty0|(y0-2)2+(x0-t)2.又x20+2y20=4,t=-2y0x0,故d=⎪⎪⎪⎪2x0+2y20x0x20+y20+4y20x20+4=⎪⎪⎪⎪4+x20x0x40+8x20+162x20= 2.此时直线AB与圆x2+y2=2相切.4.(·福建卷)设P,Q分别为圆x2+(y-6)2=2和椭圆x210+y2=1上的点,则P,Q两点间的最大距离是()A.5 2 B.46+2C.7+2 D.625.(·湖北卷)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为()A.433 B.233 C.3 D.26.(·湖南卷)如图1-7,O为坐标原点,椭圆C1:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为e1;双曲线C2:x2a2-y2b2=1的左、右焦点分别为F3,F4,离心率为e2.已知e1e2=32,且|F2F4|=3-1.(1)求C1,C2的方程;(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点.当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.图1-77.(·江西卷)过点M(1,1)作斜率为-12的直线与椭圆C :x2a2+y2b2=1(a>b>0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.8.(·辽宁卷)已知椭圆C :x29+y24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN|+|BN|=______.【答案】12 【解析】取MN 的中点为G ,点G 在椭圆C 上.设点M 关于C 的焦点F1的对称点为A ,点M 关于C 的焦点F2的对称点为B ,则有|GF1|=12|AN|,|GF2|=12|BN|,所以|AN|+|BN|=2(|GF1|+|GF2|)=4a =12.9.(·辽宁卷)圆x2+y2=4的切线与x 轴正半轴,y 轴正半轴围成—个三角形,当该三角形面积最小时,切点为P(如图1-6所示).双曲线C1:x2a2-y2b2=1过点P 且离心率为 3.图1-6(1)求C1的方程;(2)椭圆C2过点P 且与C1有相同的焦点,直线l 过C2的右焦点且与C2交于A ,B 两点.若以线段AB 为直径的圆过点P ,求l 的方程.10.(·全国卷)已知椭圆C :x2a2+y2b2=1(a>b>0)的左、右焦点为F1,F2,离心率为33,过F2的直线l 交C 于A ,B 两点.若△AF1B 的周长为43,则C 的方程为()A.x23+y22=1B.x23+y2=1 C.x212+y28=1 D.x212+y24=1【答案】A 【解析】根据题意,因为△AF1B 的周长为43,所以|AF1|+|AB|+|BF1|=|AF1|+|AF2|+|BF1|+|BF2|=4a =43,所以a = 3.又因为椭圆的离心率e =c a =33,所以c =1,b2=a2-c2=3-1=2,所以椭圆C 的方程为x23+y22=1.11.(·新课标全国卷Ⅰ] 已知点A(0,-2),椭圆E :x2a2+y2b2=1(a>b>0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.12.(·新课标全国卷Ⅱ] 设F1,F2分别是椭圆C :x2a2+y2b2=1(a >b >0)的左、右焦点,M 是C 上一点且MF2与x 轴垂直,直线MF1与C 的另一个交点为N.(1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且|MN|= 5|F1N|,求a ,b.13.(·山东卷)已知a >b >0,椭圆C1的方程为x2a2+y2b2=1,双曲线C2的方程为x2a2-y2b2=1,C1与C2的离心率之积为32,则C2的渐近线方程为()A. x±2y =0B. 2x±y =0C. x±2y =0D. 2x±y =014.(·陕西卷)如图1-5所示,曲线C由上半椭圆C1:y2a2+x2b2=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为3 2.(1)求a,b的值;(2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.图1-5∵k≠0,∴k -4(k +2)=0,解得k =-83. 经检验,k =-83符合题意, 故直线l 的方程为y =-83(x -1).方法二:若设直线l 的方程为x =my +1(m≠0),比照方法一给分.15.(·陕西卷)如图1-5所示,曲线C 由上半椭圆C1:y2a2+x2b2=1(a>b>0,y≥0)和部分抛物线C2:y =-x2+1(y≤0)连接而成,C1与C2的公共点为A ,B ,其中C1的离心率为32.(1)求a ,b 的值;(2)过点B 的直线l 与C1,C2分别交于点P ,Q(均异于点A ,B),若AP ⊥AQ ,求直线l 的方程.图1-516.(·天津卷)设椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|=32|F1F2|.(1)求椭圆的离心率;(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.17.(·浙江卷)如图1-6,设椭圆C:x2a2+y2b2=1(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(1)已知直线l的斜率为k,用a,b,k表示点P的坐标;(2)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a-b.图1-618.(·重庆卷)如图1-4所示,设椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点D 在椭圆上,DF1⊥F1F2,|F1F2||DF1|=22,△DF1F2的面积为22.(1)求椭圆的标准方程;(2)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.图1-419.(高考四川卷)从椭圆x2a2+y2b2=1(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是()A.24B.12C.22D.3220.(高考浙江卷)如图,点P(0,-1)是椭圆C1:x2a2+y2b2=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积取最大值时直线l1的方程.≤3224k2+3·134k2+3=161313,当且仅当k=±102时取等号.所以所求直线l1的方程为y=±102x-1.【押题专练】1.设F1,F2分别是椭圆x225+y216=1的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则P点到椭圆左焦点的距离为()A.4 B.3C.2 D.52.已知椭圆x210-m+y2m-2=1的焦距为4,则m等于()A.4 B.8C.4或8 D.以上均不对3.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于12,则C的方程是() A.x23+y24=1 B.x24+y23=1C.x24+y23=1 D.x24+y2=1解析依题意,所求椭圆的焦点位于x轴上,且c=1,e=ca=12⇒a=2,b2=a2-c2=3,因此其方程是x24+y23=1,故选C.答案C4.已知椭圆x24+y22=1上有一点P ,F1,F2是椭圆的左、右焦点,若△F1PF2为直角三角形,则这样的点P 有( )A .3个B .4个C .6个D .8个5.已知椭圆C :x2a2+y2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF.若|AB|=10,|BF|=8,cos ∠ABF =45,则C 的离心率为( )A.35B.57C.45D.676.设F1,F2分别是椭圆E :x24+y23=1的左、右焦点,过F1的直线l 与E 相交于A ,B 两点,且|AF2|,|AB|,|BF2|成等差数列,则|AB|=( )A.103 B .3 C.83 D .27.设F1,F2分别是椭圆x225+y216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM|+|PF1|的最大值为( )A .10B .12C .15D .18解析 |PF1|+|PF2|=10,|PF1|=10-|PF2|,|PM|+|PF1|=10+|PM|-|PF2|,易知M 点在椭圆外,连接MF2并延长交椭圆于P 点, 此时|PM|-|PF2|取最大值|MF2|, 故|PM|+|PF1|的最大值为10+|MF2|=10+(6-3)2+42=15. 答案 C8.已知P 为椭圆x225+y216=1上的一点,M ,N 分别为圆(x +3)2+y2=1和圆(x -3)2+y2=4上的点,则|PM|+|PN|的最小值为________.9.已知椭圆x2a2+y2b2=1(a>b>0)的离心率等于13,其焦点分别为A ,B ,C 为椭圆上异于长轴端点的任意一点,则在△ABC 中,sin A +sin Bsin C 的值等于________.10.已知F1(-c ,0),F2(c ,0)为椭圆x2a2+y2b2=1(a >b >0)的两个焦点,P 为椭圆上一点,且PF1→·PF2→=c2,则此椭圆离心率的取值范围是________.11.椭圆x2a2+y25=1(a 为定值,且a >5)的左焦点为F ,直线x =m 与椭圆相交于点A ,B.若△FAB 的周长的最大值是12,则该椭圆的离心率是________.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件. 【热点题型】题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ等于( )A.15B.25C.35D.45(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.【提分秘籍】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【举一反三】已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( ) A.23B.43 C .-3D .0题型二平面向量的坐标运算例2 已知A(-2,4),B(3,-1),C(-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b , (1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M 、N 的坐标及向量MN →的坐标. 【提分秘籍】向量的坐标运算主要是利用加、减、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.【举一反三】(1)已知平面向量a =(1,1),b =(1,-1),则向量12a -32b 等于( ) A .(-2,-1) B .(-2,1) C .(-1,0) D .(-1,2)(2)已知A(7,1)、B(1,4),直线y =12ax 与线段AB 交于C ,且AC →=2CB →,则实数a =________. 题型三向量共线的坐标表示例3 (1)已知平面向量a =(1,2),b =(-2,m),且a ∥b ,则2a +3b =________. (2)(·陕西)设0<θ<π2,向量a =(sin2θ,cosθ),b =(cosθ,1),若a ∥b ,则tanθ=________. 【提分秘籍】(1)两平面向量共线的充要条件有两种形式:①若a =(x1,y1),b =(x2,y2),则a ∥b 的充要条件是x1y2-x2y1=0;②若a ∥b(b≠0),则a =λb.(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.【举一反三】(1)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A(1,2),B(2,1),C(4,2),则点D 的坐标为________.(2)△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若p =(a +c ,b),q =(b -a ,c -a),且p ∥q ,则角C =________.【高考风向标】1.【高考新课标1,文2】已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( ) (A )(7,4)--(B )(7,4)(C )(1,4)-(D )(1,4)1.(·重庆卷) 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b)⊥c ,则实数k =( )A .-92 B .0 C .3 D.1522.(·福建卷) 在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e1=(0,0),e2=(1,2) B .e1=(-1,2),e2=(5,-2) C .e1=(3,5),e2=(6,10) D .e1=(2,-3),e2=(-2,3)3.(·山东卷) 已知向量a =(m ,cos 2x),b =(sin 2x ,n),函数f(x)=a·b ,且y =f(x)的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2. (1)求m ,n 的值;(2)将y =f(x)的图像向左平移φ(0<φ<π)个单位后得到函数y =g(x)的图像,若y =g(x)图像上各最高点到点(0,3)的距离的最小值为1,求y =g(x)的单调递增区间.4.(·陕西卷) 设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.5.(·陕西卷) 在直角坐标系xOy 中,已知点A(1,1),B(2,3),C(3,2),点P(x ,y)在△ABC 三边围成的区域(含边界)上.(1)若PA →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R),用x ,y 表示m -n ,并求m -n 的最大值.6.(·安徽卷) 在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P|OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( )A .2 2B .2 3C .4 2D .4 37.(·湖南卷) 已知a ,b 是单位向量,a·b =0,若向量c 满足|c -a -b|=1,则|c|的取值范围是( )A .[2-1,2+1]B .[2-1,2+2]C .[1,2+1]D .1,2+28.(·北京卷) 向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb(λ,μ∈R),则λμ=________.图1-39.(·辽宁卷) 已知点A(1,3),B(4,-1),则与向量AB 同方向的单位向量为( ) A.⎝⎛⎭⎫35,-45 B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45 D.⎝⎛⎭⎫-45,35 10.(·天津卷) 在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点,若AC →·BE →=1,则AB 的长为________.11.(·新课标全国卷Ⅱ] 已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________.12.(·重庆卷) 如图1-9所示,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F1作x 轴的垂线交椭圆于A ,A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P′,过P ,P′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外,若PQ ⊥P′Q ,求圆Q 的标准方程.图1-913.(·重庆卷) 在平面上,AB1→⊥AB2→,|OB1|=|OB2→|=1,AP →=AB1→+AB2→.若|OP →|<12,则|OA →|的取值范围是( )A.⎝⎛⎦⎥⎤0,52 B.⎝ ⎛⎦⎥⎤52,72 C.⎝ ⎛⎦⎥⎤52,2 D.⎝ ⎛⎦⎥⎤72,2【高考押题】1.已知点A(1,3),B(4,-1),则与向量A B →同方向的单位向量为( ) A.⎝⎛⎭⎫35,-45B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45D.⎝⎛⎭⎫-45,35 2.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)3.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb)∥c ,则λ等于( ) A.14B.12C .1D .24.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m 等于( )A .2B .3C .4D .55.如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2PA →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =146.若三点A(2,2),B(a,0),C(0,b) (ab≠0)共线,则1a +1b 的值为________.7.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.8.已知A(-3,0),B(0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为________.9.已知A(1,1)、B(3,-1)、C(a ,b). (1)若A 、B 、C 三点共线,求a 、b 的关系式; (2)若AC →=2AB →,求点C 的坐标.10.已知O(0,0),A(1,2),B(4,5)及OP →=OA →+tAB →,试问: (1)t 为何值时,P 在x 轴上?在y 轴上?在第三象限?(2)四边形OABP 能否成为平行四边形,若能,求出相应的t 值;若不能,请说明理由.高考模拟复习试卷试题模拟卷。
高考数学模拟复习试卷试题模拟卷第八章 直线与圆0064153
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【考情解读】1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).【重点知识梳理】1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sinαcosβ±cosαsinβ. cos(α∓β)=cosαcosβ±sinαsinβ. tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 sin 2α=2sinαcosα.cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α. tan 2α=2tan α1-tan2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tanαtanβ). (2)cos2α=1+cos 2α2,sin2α=1-cos 2α2. (3)1+sin 2α=(sinα+cosα)2, 1-sin 2α=(sinα-cosα)2,sin α±cos α=2sin ⎝⎛⎭⎫α±π4.4.函数f(α)=asin α+bcos α(a ,b 为常数),可以化为f(α)=a2+b2sin(α+φ)⎝⎛⎭⎫其中tan φ=b a 或f(α)=a2+b2·cos(α-φ)⎝⎛⎭⎫其中tan φ=a b . 【高频考点突破】考点一 三角函数式的化简与给角求值【例1】 (1)已知α∈(0,π),化简:(1+sin α+cos α)·(cos α2-sin α2)2+2cos α=________.(2)[2sin 50°+sin 10°(1+3tan 10°)]·2sin280°=______.【答案】(1)cos α (2)6 【规律方法】(1)三角函数式的化简要遵循“三看”原则:①一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;②二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;③三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等.(2)对于给角求值问题,一般给定的角是非特殊角,这时要善于将非特殊角转化为特殊角.另外此类问题也常通过代数变形(比如:正负项相消、分子分母相约等)的方式来求值.【变式探究】 (1)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .22-1(2)化简:sin2αsin2β+cos2αcos2β-12cos 2αcos 2β=________.【答案】(1)C (2)12考点二 三角函数的给值求值、给值求角【例2】 (1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值;(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.【规律方法】(1)解题中注意变角,如本题中α+β2=⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β;(2)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝⎛⎭⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝⎛⎭⎫-π2,π2,选正弦较好.【变式探究】 已知cos α=17,cos(α-β)=1314,且0<β<α<π2, (1)求tan 2α的值; (2)求β.考点三 三角变换的简单应用【例3】 (·广东卷)已知函数f(x)=Asin ⎝⎛⎭⎫x +π4,x ∈R ,且f ⎝⎛⎭⎫5π12=32.(1)求A 的值;(2)若f(θ)-f(-θ)=32,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫3π4-θ.【规律方法】解三角函数问题的基本思想是“变换”,通过适当的变换达到由此及彼的目的,变换的基本方向有两个,一个是变换函数的名称,一个是变换角的形式.变换函数名称可以使用诱导公式、同角三角函数关系、二倍角的余弦公式等;变换角的形式,可以使用两角和与差的三角函数公式、倍角公式等.【变式探究】 已知函数f(x)=sin ⎝⎛⎭⎫3x +π4.(1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.【真题感悟】【高考重庆,文6】若11tan ,tan()32,则tan =() (A) 17 (B) 16 (C) 57 (D) 56【答案】A【高考上海,文1】函数x x f 2sin 31)(-=的最小正周期为.【答案】π【高考广东,文16】(本小题满分12分)已知tan 2α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值; (2)求2sin 2sin sin cos cos 21ααααα+--的值.【答案】(1)3-;(2)1.1.(·广东卷) 若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是( )A .l1⊥l4B .l1∥l4C .l1与l4既不垂直也不平行D .l1与l4的位置关系不确定 【答案】D2. (·湖北卷) 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.3.(·湖南卷) 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值; (2)求BE 的长.图1-44.(·江西卷) 已知函数f(x)=(a +2cos2x)cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值.5.(·全国卷) △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知3acos C =2ccos A ,tan A =13,求B.6.(·新课标全国卷Ⅱ] 函数f(x)=sin(x +φ)-2sin φcos x 的最大值为________. 【答案】17.(·山东卷) △ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cos A=63,B=A+π2.(1)求b的值;(2)求△ABC的面积.8.(·四川卷) 如图1-3所示,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高度是60 m,则河流的宽度BC等于()图1-3A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m 【答案】C9.(·四川卷) 已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.10.(·重庆卷) 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8. (1)若a =2,b =52,求cos C 的值;(2)若sin Acos2B 2+si n Bcos2A 2=2sin C ,且△ABC 的面积S =92sin C ,求a 和b 的值.【押题专练】1.若tan θ=3,则sin 2θ1+cos 2θ=( )A. 3 B .-3 C.33D .-33【答案】A2.已知sin α+cos α=13,则sin2⎝⎛⎭⎫π4-α= ( )A.118 B.1718 C.89D.29【答案】B3.已知α∈⎝⎛⎭⎫π,32π,且cos α=-45,则tan ⎝⎛⎭⎫π4-α等于 ( )A .7B.17C .-17D .-7【答案】B4.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于 ( ) A.5π12B.π3C.π4D.π6【答案】C6.在△ABC 中,tan A +tan B +3=3tan A·tan B ,则C 等于 ( ) A.π3B.2π3C.π6D.π4【答案】A7.cos π9·cos 2π9·cos ⎝⎛⎭⎫-23π9=( )A .-18 B .-116 C.116D.18【答案】A8.设f(x)=1+cos 2x 2sin ⎝⎛⎭⎫π2-x+sin x +a2sin⎝⎛⎭⎫x +π4的最大值为2+3,则常数a =________.【答案】±39.若sin ⎝⎛⎭⎫π2+θ=35,则cos 2θ=________.【答案】-72510.函数f(x)=sin ⎝⎛⎭⎫2x -π4-22sin2x 的最小正周期是________.【答案】π11.已知cos4α-sin4α=23,且α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫2α+π3=________.【答案】2-15612.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值.13.已知函数f(x)=cos2x +sin xcos x ,x ∈R.(1)求f ⎝⎛⎭⎫π6的值;(2)若sin α=35,且α∈⎝⎛⎭⎫π2,π,求f ⎝⎛⎭⎫α2+π24.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.理解同角三角函数的基本关系式:s in2α+cos2α=1,sin αcos α=tanα;2.能利用单位圆中的三角函数线推导出π2±α,π±α,-α的正弦、余弦、正切的诱导公式. 【热点题型】题型一 同角三角函数基本关系式及应用【例1】 (1)已知tan α=2,则2sin α-3cos α4sin α-9cos α=_______________.(2)已知tan θ=2,则sin2θ+sin θcos θ-2cos2θ=( ) A .-43 B.54C .-34 D.45【提分秘籍】若已知正切值,求一个关于正弦和余弦的齐次分式的值,则可以通过分子、分母同时除以一个余弦的齐次幂将其转化为一个关于正切的分式,代入正切值就可以求出这个分式的值,这是同角三角函数关系中的一类基本题型.【举一反三】若3sin α+cos α=0,则1cos2α+2sin αcos α的值为( )A.103B.53C.23 D .-2解析 3sin α+cos α=0⇒cos α≠0⇒tan α=-13, 1cos2α+2sin αcos α=cos2α+sin2αcos2α+2sin αcos α=1+tan2α1+2tan α=1+⎝⎛⎭⎫-1321-23=103.答案 A题型二 利用诱导公式化简三角函数式【例2】 (1)sin(-1 200°)cos 1 290°+cos(-1 020°)·sin(-1 050°) =________.(2)设f(α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin2α+cos ⎝⎛⎭⎫3π2+α-sin2⎝⎛⎭⎫π2+α(1+2sin α≠0),则 f⎝⎛⎭⎫-23π6=________.解析 (1)原式=-sin 1 200°cos 1 290°-cos 1 020°sin 1 050° =-sin(3×360°+120°)cos(3×360°+210°)-cos(2×360°+300°) sin(2×360°+330°)=-sin 120°cos 210°-cos 300°sin 330°=-sin(180°-60°)cos(180°+30°)-cos(360°-60°)·sin(360°-30°)=sin 60°cos 30°+cos 60°sin 30°=32×32+12×12=1.(2)∵f(α)=(-2sin α)(-cos α)+cos α1+sin2α+sin α-cos2α=2sin αcos α+cos α2sin2α+sin α=cos α(1+2sin α)sin α(1+2sin α)=1tan α,∴f ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-4π+π6=1tan π6= 3. 答案 (1)1 (2)3 【提分秘籍】利用诱导公式化简三角函数的基本思路和化简要求:(1)基本思路:①分析结构特点,选择恰当公式;②利用公式化成单角三角函数;③整理得最简形式.(2)化简要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.【举一反三】(1)s in(-1 071°)sin 99°+sin(-171°)sin(-261°)+ tan(-1 089°)tan(-540°)=________.(2)化简:tan (π-α)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-α-π)sin (-π-α)=________.题型三利用诱导公式求值【例3】 (1)已知sin ⎝⎛⎭⎫π3-α=12,则cos ⎝⎛⎭⎫π6+α=______. (2)已知tan ⎝⎛⎭⎫π6-α=33,则tan ⎝⎛⎭⎫56π+α=________.解析 (1)∵⎝⎛⎭⎫π3-α+⎝⎛⎭⎫π6+α=π2,∴cos ⎝⎛⎭⎫π6+α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3-α=sin ⎝⎛⎭⎫π3-α=12.(2)∵⎝⎛⎭⎫π6-α+⎝⎛⎭⎫5π6+α=π,∴tan ⎝⎛⎭⎫56π+α= -tan ⎣⎡⎦⎤π-⎝⎛⎭⎫56π+α=-tan ⎝⎛⎭⎫π6-α=-33. 答案 (1)12 (2)-33 【提分秘籍】巧用相关角的关系会简化解题过程.常见的互余关系有π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等,常见的互补关系有π3+θ与2π3-θ;π4+θ与3π4-θ等.【举一反三】(1)已知sin ⎝⎛⎭⎫7π12+α=23,则cos ⎝⎛⎭⎫α-11π12=________.(2)若tan(π+α)=-12,则tan(3π-α)=________.【高考风向标】【高考福建,文6】若5sin 13α=-,且α为第四象限角,则tan α的值等于( ) A .125 B .125- C .512 D .512-【答案】D【解析】由5sin 13α=-,且α为第四象限角,则212cos 1sin 13αα=-=,则sin tan cos ααα= 512=-,故选D . 【高考安徽,文16】已知函数2()(sin cos )cos 2f x x x x =++ (Ⅰ)求()f x 最小正周期; (Ⅱ)求()f x 在区间[0,]2π上的最大值和最小值.【答案】(Ⅰ)π ;(Ⅱ)最大值为120 【解析】(Ⅰ)因为x x x x x x x x f 2cos 2sin 12cos cos sin 2cos sin )(22++=+++=1)42sin(2++=πx所以函数)(x f 的最小正周期为ππ==22T . (Ⅱ)由(Ⅰ)得计算结果,1)42sin(2)(++=πx x f当]2,0[π∈x 时,]45,4[42πππ∈+x由正弦函数x y sin =在]45,4[ππ上的图象知,当242ππ=+x ,即8π=x 时,)(x f 取最大值12+;当4542ππ=+x ,即4π=x 时,)(x f 取最小值0.综上,)(x f 在[0,]2π上的最大值为12+,最小值为0.【高考四川,文19】已知A 、B 、C 为△ABC 的内角,tanA 、tanB 是关于方程x2+3px -p +1=0(p ∈R)两个实根.(Ⅰ)求C 的大小(Ⅱ)若AB =1,AC =6,求p 的值【解析】(Ⅰ)由已知,方程x2+3px -p +1=0的判别式 △=(3p)2-4(-p +1)=3p2+4p -4≥0 所以p≤-2或p≥23由韦达定理,有tanA +tanB =-3p ,tanAtanB =1-p 于是1-tanAtanB =1-(1-p)=p≠0 从而tan(A +B)=tan tan 331tan tan A B pA B +-==--所以tanC =-tan(A +B)3 所以C =60° (Ⅱ)由正弦定理,得sinB =0sin 6sin 602AC C AB ==解得B =45°或B =135°(舍去) 于是A =180°-B -C =75°则tanA=tan75°=tan(45°+30°)=000031tan45tan303231tan45tan30313++==+--所以p=-3(tanA+tanB)=-3(2+3+1)=-1-3(·福建卷) 已知函数f(x)=2cos x(sin x+cos x).(1)求f⎝⎛⎭⎫5π4的值;(2)求函数f(x)的最小正周期及单调递增区间.方法二:f(x)=2sin xcos x+2cos2x=sin 2x+cos 2x+1=2sin⎝⎛⎭⎫2x+π4+1.(1)f⎝⎛⎭⎫5π4=2sin11π4+1=2sinπ4+1=2.(2)因为T =2π2=π,所以函数f(x)的最小正周期为π. 由2kπ-π2≤2x +π4≤2kπ+π2,k ∈Z , 得kπ-3π8≤x≤kπ+π8,k ∈Z.所以f(x)的单调递增区间为⎣⎡⎦⎤kπ-3π8,kπ+π8,k ∈Z.(·全国新课标卷Ⅰ] 若tan α>0,则( ) A .sin α>0 B .cos α>0 C .sin 2α>0 D .cos 2α>0 【答案】C 【解析】因为sin 2α=2sin αcos αsin2α+cos2α=2tan α1+tan2α>0,所以选C.(·山东卷) △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知a =3,cos A =63,B =A +π2. (1)求b 的值; (2)求△ABC 的面积.(2)由B =A +π2得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33.由A +B +C =π,得C =π-(A +B), 所以sin C =sin[π-(A +B)] =sin(A +B)=sin Acos B +cos Asin B =33×⎝ ⎛⎭⎪⎫-33+63×63=13.因此△ABC 的面积S =12absin C =12×3×32×13=322.(·全国卷) 已知α是第二象限角,sin α=513,则cos α=( ) A .-1213 B .-513 C.513 D.1213 【答案】A【解析】c os α=-1-sin2 α=-1213.(·四川卷) 设sin 2α=-sin α,α∈π2,π,则tan 2α的值是________. 【答案】3【高考押题】1.1-2sin (π+2)cos (π-2)=( ) A .sin 2-cos 2B .sin 2+cos 2C .±(sin 2-cos 2)D .cos 2-sin 2解析1-2sin (π+2)cos (π-2)=1-2sin 2cos 2=(sin 2-cos 2)2=|sin 2-cos 2|=sin 2-cos 2. 答案 A2.已知sin α=55,则sin4α-cos4α的值为( ) A .-15 B .-35 C.15D.35解析 sin4α-cos4α=sin2α-cos2α=2sin2α-1=25-1=-35. 答案 B3.已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( ) A .-32B.32C .-12D.12解析 因为α和β的终边关于直线y =x 对称,所以α+β=2kπ+π2(k ∈Z). 又β=-π3,所以α=2kπ+5π6(k ∈Z),即得sin α=12. 答案 D4.已知sin ⎝⎛⎭⎫π2+α=35,α∈⎝⎛⎭⎫0,π2,则si n(π+α)=( ) A.35 B .-35 C.45D .-45解析 由已知sin ⎝⎛⎭⎫π2+α=35,得cos α=35,∵α∈⎝⎛⎭⎫0,π2,∴sin α=45,∴s in(π+α)=-sin α=-45.答案 D5.已知sin ⎝⎛⎭⎫α-π4=13,则cos ⎝⎛⎭⎫π4+α=( )A.223B .-223C.13D .-13解析 ∵cos ⎝⎛⎭⎫π4+α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+α=sin ⎝⎛⎭⎫π4-α=-sin ⎝⎛⎭⎫α-π4=-13.答案 D6.如果sin(π+A)=12,那么cos ⎝⎛⎭⎫32π-A 的值是________.解析 ∵sin(π+A)=12,∴-sin A =12. ∴cos ⎝⎛⎭⎫32π-A =-sin A =12.答案 127.sin 43π·cos 56π·tan ⎝⎛⎭⎫-43π的值是________. 解析 原式=sin ⎝⎛⎭⎫π+π3·cos ⎝⎛⎭⎫π-π6·tan ⎝⎛⎭⎫-π-π3 =⎝⎛⎭⎫-sin π3·⎝⎛⎭⎫-cos π6·⎝⎛⎭⎫-tan π3=⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-32×(-3)=-334. 答案 -3348.已知cos ⎝⎛⎭⎫π6-θ=a(|a|≤1),则cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ的值是________.9.已知sin θ=45,π2<θ<π.(1)求tan θ的值;(2)求sin2θ+2sin θcos θ3sin2θ+cos2θ的值. 解 (1)∵sin2θ+cos2θ=1,∴cos2θ=925.又π2<θ<π,∴cos θ=-35.∴tan θ=sin θcos θ=-43.(2)由(1)知,sin2θ+2sin θcos θ3sin2θ+cos2θ=tan2θ+2tan θ3tan2θ+1=-857. 10.已知在△ABC 中,sin A +cos A =15.(1)求sin Acos A 的值;(2)判断△ABC 是锐角三角形还是钝角三角形;(3)求tan A 的值.解 (1)∵sin A +cos A =15,①∴两边平方得1+2sin Acos A =125,∴sin Acos A =-1225,(2)由sin Acos A =-1225<0,且0<A <π,可知cos A <0,∴A 为钝角,∴△ABC 是钝角三角形.(3)∵(sin A -cos A)2=1-2sin Acos A =1+2425=4925,又sin A >0,cos A <0,∴sin A -cos A >0,∴sin A -cos A =75, ②∴由①,②可得sin A =45,cos A =-35,∴tan A =sin A cos A =45-35=-43.高考模拟复习试卷试题模拟卷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<a C .13<<-a 或23>a D .3-<a 或231<<a2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B.221C. 22D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义;2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.【热点题型】题型一二次函数模型【例1】A,B两城相距100 km,在两城之间距A城x(km)处建一核电站给A,B两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A城供电量为每月20亿度,B城供电量为每月10亿度.(1)求x的取值范围;(2)把月供电总费用y表示成x的函数;(3)核电站建在距A城多远,才能使供电总费用y最少?【提分秘籍】实际生活中的二次函数问题(如面积、利润、产量等),可根据已知条件确定二次函数模型,结合二次函数的图象、单调性、零点解决,解题中一定注意函数的定义域.【举一反三】某汽车销售公司在A,B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y1=4.1x -0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是()A.10.5万元 B.11万元C.43万元 D.43.025万元解析 设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x)辆,所以可得利润y =4.1x -0.1x2+2(16-x)=-0.1x2+2.1x +32=-0.1(x -212)2+0.1×2124+32.因为x ∈[0,16]且x ∈N ,所以当x =10或11时,总利润取得最大值43万元.答案 C题型二 指数函数、对数函数模型【例2】世界人口在过去40年翻了一番,则每年人口平均增长率是(参考数据lg 2≈0.301 0,100.007 5≈1.017)( )A .1.5%B .1.6%C .1.7%D .1.8%解析 设每年人口平均增长率为x ,则(1+x)40=2,两边取以10为底的对数,则40 lg(1+x)=lg 2,所以lg(1+x)=lg 240≈0.007 5,所以100.007 5=1+x ,得1+x =1.017,所以x =1.7%.答案 C 【提分秘籍】在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常用指数函数模型表示.通常可以表示为y =N(1+p)x(其中N 为基础数,p 为增长率,x 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.【举一反三】某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A .略有盈利B .略有亏损C .没有盈利也没有亏损D .无法判断盈亏情况解析 设该股民购这支股票的价格为a 元,则经历n 次涨停后的价格为a(1+10%)n =a×1.1n 元,经历n 次跌停后的价格为a×1.1n×(1-10%)n =a×1.1n×0.9n =a×(1.1×0.9)n =0.99n·a <a ,故该股民这支股票略有亏损.答案 B题型三 分段函数模型【例3】 某旅游景点预计1月份起前x 个月的旅游人数的和p(x)(单位:万人)与x 的关系近似地满足p(x)=12x(x +1)(39-2x)(x ∈N*,且x≤12).已知第x 个月的人均消费额q(x)(单位:元)与x 的近似关系是q(x)=⎩⎪⎨⎪⎧35-2x (x ∈N*,且1≤x≤6),160x(x ∈N*,且7≤x≤12).(1)写出第x 个月的旅游人数f(x)(单位:人)与x 的函数关系式; (2)试问第几个月旅游消费总额最大?最大月旅游消费总额为多少元? 解 (1)当x =1时,f(1)=p(1)=37, 当2≤x≤12,且x ∈N*时, f(x)=p(x)-p(x -1)=12x(x +1)(39-2x)-12(x -1)x(41-2x)=-3x2+40x , 验证x =1也满足此式,所以f(x)=-3x2+40x(x ∈N*,且1≤x≤12).【提分秘籍】(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型,如出租车的票价与路程的函数就是分段函数.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.【举一反三】某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣,如果顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,按下表折扣分别累计计算.可以享受折扣优惠金额折扣率不超过500元的部分 5% 超过500元的部分10%某人在此商场购物总金额为x 元,可以获得的折扣金额为y 元,则y 关于x 的解析式为 y =⎩⎪⎨⎪⎧0,0<x≤800,5%(x -800),800<x≤1 300,10%(x -1 300)+25,x >1 300.若y =30元,则他购物实际所付金额为________元.解析 若x =1 300元,则y =5%(1 300-800)=25(元)<30(元),因此x >1 300. ∴由10%(x -1 300)+25=30,得x =1 350(元). 答案 1 350 【高考风向标】【高考上海,文21】(本小题14分)本题共2小题,第1小题6分,第2小题8分.如图,C B A ,,三地有直道相通,5=AB 千米,3=AC 千米,4=BC 千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为)(t f (单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是ACB ,速度为8千米/小时.乙到达B 地后原地等待.设1t t =时乙到达C 地.(1)求1t 与)(1t f 的值;(2)已知警员的对讲机的有效通话距离是3千米.当11≤≤t t 时,求)(t f 的表达式,并判断)(t f 在]1,[1t 上得最大值是否超过3?说明理由.【答案】(1)h 83,8413千米;(2)超过了3千米.【高考四川,文8】某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx b y e +=( 2.718...e =为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )(A)16小时 (B)20小时 (C)24小时 (D)21小时 【答案】C【解析】由题意,2219248bk be e +⎧=⎪⎨=⎪⎩得1119212bk e e⎧=⎪⎨=⎪⎩,于是当x =33时,y =e33k +b =(e11k)3·eb =31()2×192=24(小时)(·北京卷)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t(单位:分钟)满足函数关系p =at2+bt +c(a ,b ,c 是常数),图1-2记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )图1-2A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟 【答案】B【解析】由题意得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,解之得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2,∴p =-0.2t2+1.5t -2=-0.2(t -3.75)2+0.8125,即当t =3.75时,p 有最大值.(·陕西卷)如图1-2所示,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )图1-2A .y =12x3-12x2-x B .y =12x3+12x2-3x C .y =14x3-x D .y =14x3+12x2-2x【解析】由题意可知,该三次函数的图像过原点,则其常数项为0,不妨设其解析式为y =f(x)=ax3+bx2+cx ,则f′(x)=3ax2+2bx +c ,∴f′(0)=-1,f′(2)=3,可得c =-1,3a +b =1.又y =ax3+bx2+cx 过点(2,0),∴4a +2b =1,∴a =12,b =-12,c =-1,∴y =f(x)=12x3-12x2-x.【高考押题】1.下表是函数值y 随自变量x 变化的一组数据,它最可能的函数模型是 ( )x 4 5 6 7 8 9 10 y15171921232527A .一次函数模型B .幂函数模型C .指数函数模型D .对数函数模型解析 根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.答案 A2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t(年)的函数关系图象正确的是( )解析 前3年年产量的增长速度越来越快,说明呈高速增长,只有A ,C 图象符合要求,而后3年年产量保持不变,故选A.答案 A3.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为 ( )A.p +q 2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-1解析 设两年前的年底该市的生产总值为a ,则第二年年底的生产总值为a(1+p)(1+q).设这两年生产总值的年平均增长率为x ,则a(1+x)2=a(1+p)(1+q),由于连续两年持续增加,所以x >0,因此x =(1+p )(1+q )-1,故选D.4.某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为( )A .10B .11C .13D .21答案 A5.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差 ( )A .10元B .20元C .30元 D.403元解析 设A 种方式对应的函数解析式为s =k1t +20, B 种方式对应的函数解析式为s =k2t ,当t =100时,100k1+20=100k2,∴k2-k1=15, t =150时,150k2-150k1-20=150×15-20=10. 答案 A6. A 、B 两只船分别从在东西方向上相距145 km 的甲乙两地开出.A 从甲地自东向西行驶.B 从乙地自北向南行驶,A 的速度是40 km h ,B 的速度是 16 kmh ,经过________小时,AB 间的距离最短.解析 设经过xh ,A ,B 相距为y km ,则y =(145-40x )2+(16x )2(0≤x≤298),求得函数的最小值时x 的值为258. 答案 2587.一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为 y =ae -bt(cm3),经过 8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.8.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.解析 设内接矩形另一边长为y ,则由相似三角形性质可得x 40=40-y40,解得y =40-x ,所以面积S =x(40-x)=-x2+40x =-(x -20)2+400(0<x <40),当x =20时,Smax =400.答案 209.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?10.已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律:θ=m·2t+21-t(t≥0,并且m>0).(1)如果m=2,求经过多少时间,物体的温度为5摄氏度;(2)若物体的温度总不低于2摄氏度,求m的取值范围.13.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x ∈N*)件.当x≤ 20时,年销售总收入为(33x -x2)万元;当x >20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元,则y(万元)与x(件)的函数关系式为________,该工厂的年产量为________件时,所得年利润最大(年利润=年销售总收入-年总投资).解析 当0<x≤20时,y =(33x -x2)-x -100=-x2+32x -100;当x >20时,y =260-100-x =160-x.故y =⎩⎪⎨⎪⎧-x2+32x -100,0<x≤20,160-x ,x >20(x ∈N*).当0<x≤20时,y =-x2+32x -100=-(x -16)2+156,x =16时,ymax =156.而当x >20时,160-x <140,故x =16时取得最大年利润.答案 y =⎩⎪⎨⎪⎧-x2+32x -100,0<x≤20,160-x ,x >20(x ∈N*) 1614.某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线的一段,已知跳水板AB 长为2 m ,跳水板距水面CD 的高BC 为3 m ,CE =5 m ,CF =6 m ,为安全和空中姿态优美,训练时跳水曲线应在离起跳点h m(h≥1)时达到距水面最大高度4 m ,规定:以CD 为横轴,CB 为纵轴建立直角坐标系.(1)当h =1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF 内入水时才能达到压水花的训练要求,求达到压水花的训练要求时h 的取值范围.解 (1)由题意知最高点为(2+h ,4),h≥1, 设抛物线方程为y =a[x -(2+h)]2+4,当h =1时,最高点为(3,4),方程为y =a(x -3)2+4, 将A(2,3)代入,得3=a(2-3)2+4,解得a =-1. ∴当h =1时,跳水曲线所在的抛物线方程为 y =-(x -3)2+4.(2)将点A(2,3)代入y =a[x -(2+h)]2+4 得ah2=-1,所以a =-1h2.由题意,得方程a[x -(2+h)]2+4=0在区间[5,6]内有一解. 令f(x)=a[x -(2+h)]2+4=-1h2[x -(2+h)]2+4,则f(5)=-1h2(3-h)2+4≥0,且f(6)=-1h2(4-h)2+4≤0.解得1≤h≤43.达到压水花的训练要求时h 的取值范围为[1,43].高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【考情解读】1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系. 【重点知识梳理】 1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:an +1-an =d(n ∈N*,d 为常数),或an -an -1=d(n≥2,d 为常数). 2.等差数列的通项公式与前n 项和公式(1)若等差数列{an}的首项是a1,公差是d ,则其通项公式为an =a1+(n -1)d . 通项公式的推广:an =am +(n -m)d(m ,n ∈N*). (2)等差数列的前n 项和公式 Sn =n (a1+an )2=na1+n (n -1)2d(其中n ∈N*,a1为首项,d 为公差,an 为第n 项). 3.等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.(2)若{an}为等差数列,且m +n =p +q ,则am +an =ap +aq(m ,n ,p ,q ∈N*).(3)若{an}是等差数列,公差为d ,则ak ,ak +m ,ak +2m ,…(k ,m ∈N*)是公差为md 的等差数列. (4)数列Sm ,S2m -Sm ,S3m -S2m ,…也是等差数列. (5)S2n -1=(2n -1)an.(6)若n 为偶数,则S 偶-S 奇=nd2; 若n 为奇数,则S 奇-S 偶=a 中(中间项). 4.等差数列的前n 项和公式与函数的关系 Sn =d 2n2+⎝⎛⎭⎫a1-d 2n.数列{an}是等差数列⇔Sn =An2+Bn(A ,B 为常数). 5.等差数列的前n 项和的最值在等差数列{an}中,a1>0,d <0,则Sn 存在最大值;若a1<0,d >0,则Sn 存在最小值. 【高频考点突破】考点一 等差数列的性质及基本量的求解【例1】 (1)设Sn 为等差数列{an}的前n 项和,S8=4a3,a7=-2,则a9=() A .-6 B .-4 C .-2 D .2(2)(·浙江卷)已知等差数列{an}的公差d >0.设{an}的前n 项和为Sn ,a1=1,S2·S3=36. ①求d 及Sn ;②求m ,k(m ,k ∈N*)的值,使得am +am +1+am +2+…+am +k =65.规律方法 (1)一般地,运用等差数列性质,可以化繁为简、优化解题过程.但要注意性质运用的条件,如m +n =p +q ,则am +an =ap +aq(m ,n ,p ,q ∈N*),只有当序号之和相等、项数相同时才成立.(2)在求解等差数列基本量问题中主要使用的是方程思想,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.【变式探究】 (1)设数列{an},{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于()A .0B .37C .100D .-37(2)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为()A .13B .12C .11D .10(3)已知等差数列{an}的前n 项和为Sn ,且S10=10,S20=30,则S30=________. 考点二 等差数列的判定与证明【例2】若数列{an}的前n 项和为Sn ,且满足an +2SnSn -1=0(n≥2),a1=12.(1)求证:⎩⎨⎧⎭⎬⎫1Sn 成等差数列;(2)求数列{an}的通项公式.规律方法 证明一个数列是否为等差数列的基本方法有两种:一是定义法,证明an -an -1=d(n≥2,d 为常数);二是等差中项法,证明2an +1=an +an +2.若证明一个数列不是等差数列,则只需举出反例即可,也可以用反证法.【变式探究】已知公差大于零的等差数列{an}的前n 项和为Sn ,且满足a3·a4=117,a2+a5=22. (1)求数列{an}的通项公式;(2)若数列{bn}满足bn =Snn +c ,是否存在非零实数c 使得{bn}为等差数列?若存在,求出c 的值;若不存在,请说明理由.考点三 等差数列前n 项和的最值问题【例3】等差数列{an}的首项a1>0,设其前n 项和为Sn ,且S5=S12,则当n 为何值时,Sn 有最大值?规律方法 求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项;(2)利用性质求出其正负转折项,便可求得和的最值;(3)将等差数列的前n 项和Sn =An2+Bn(A ,B 为常数)看作二次函数,根据二次函数的性质求最值.【变式探究】 (1)等差数列{an}的前n 项和为Sn ,已知a5+a7=4,a6+a8=-2,则当Sn 取最大值时,n 的值是()A .5B .6C .7D .8(2)设数列{an}是公差d <0的等差数列,Sn 为前n 项和,若S6=5a1+10d ,则Sn 取最大值时,n 的值为()A .5B .6C .5或6D .11(3)已知等差数列{an}的首项a1=20,公差d =-2,则前n 项和Sn 的最大值为________. 【真题感悟】【高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =()(A )172(B )192(C )10(D )12 【高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为,则该数列的首项为________ 【高考福建,文16】若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于________.【高考浙江,文10】已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a =,d =.1.(·安徽卷)数列{an}是等差数列,若a1+1,a3+3,a5+5构成公比为q 的等比数列,则q =________.2.(·北京卷)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n =________时,{an}的前n 项和最大.3.(·福建卷)等差数列{an}的前n 项和为Sn ,若a1=2,S3=12,则a6等于( ) A .8 B .10 C .12 D .144.(·湖北卷)已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列. (1)求数列{an}的通项公式.(2)记Sn 为数列{an}的前n 项和,是否存在正整数n ,使得Sn>60n +800?若存在,求n 的最小值;若不存在,说明理由.5.(·湖南卷)已知数列{an}满足a1=1,|an +1-an|=pn ,n ∈N*. (1)若{an}是递增数列,且a1,2a2,3a3成等差数列,求p 的值;(2)若p =12,且{a2n -1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式. 6.(·辽宁卷)设等差数列{an}的公差为d.若数列{2a1an}为递减数列,则( ) A .d<0 B .d>0 C .a1d<0 D .a1d>07.(·全国卷)等差数列{an}的前n 项和为Sn.已知a1=10,a2为整数,且Sn≤S4. (1)求{an}的通项公式;(2)设bn =1anan +1,求数列{bn}的前n 项和Tn.8.(·新课标全国卷Ⅰ] 已知数列{an}的前n 项和为Sn ,a1=1,an≠0,anan +1=λSn -1,其中λ为常数.(1)证明:an +2-an =λ.(2)是否存在λ,使得{an}为等差数列?并说明理由.9.(·山东卷)已知等差数列{an}的公差为2,前n 项和为Sn ,且S1,S2,S4成等比数列. (1)求数列{an}的通项公式;(2)令bn =(-1)n -14n anan +1,求数列{bn}的前n 项和Tn.10.(·陕西卷)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c. (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C); (2)若a ,b ,c 成等比数列,求cos B 的最小值.11.(·天津卷)设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1的值为________.12.(·重庆卷)设a1=1,an+1=a2n-2an+2+b(n∈N*).(1)若b=1,求a2,a3及数列{an}的通项公式.(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论.13.(·新课标全国卷Ⅰ] 某几何体的三视图如图1-3所示,则该几何体的体积为()图1-3A.16+8π B.8+8πC.16+16π D.8+16π14.(·新课标全国卷Ⅰ] 设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=()A.3 B.4 C.5 D.615.(·广东卷)在等差数列{an}中,已知a3+a8=10,则3a5+a7=________.16.(·北京卷)已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n 项之后各项an+1,an+2,…的最小值记为Bn,dn=An-Bn.(1)若{an}为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n∈N*,an+4=an),写出d1,d2,d3,d4的值;(2)设d是非负整数,证明:dn=-d(n=1,2,3,…)的充分必要条件为{an}是公差为d的等差数列;(3)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.17.(·全国卷)等差数列{an}前n项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项公式.18.(·山东卷)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.(1)求数列{an}的通项公式;(2)设数列{bn}的前n 项和为Tn ,且Tn +an +12n =λ(λ为常数),令cn =b2n(n ∈N*),求数列{cn}的前n 项和Rn.19.(·四川卷) 在等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{an}的首项、公差及前n 项和.20.(·新课标全国卷Ⅱ] 等差数列{an}的前n 项和为Sn ,已知S10=0,S15=25,则nSn 的最小值为________.21.(·重庆卷)已知{an}是等差数列,a1=1,公差d≠0,Sn 为其前n 项和,若a1,a2,a5成等比数列,则S8=________.【押题专练】1.记Sn 为等差数列{an}的前n 项和,若S33-S22=1,则其公差d = ()A.12 B .2 C .3D .42.设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1=()A .2B .-2C.12D .-123.已知等差数列{an},且3(a3+a5)+2(a7+a10+a13)=48,则数列{an}的前13项之和为 () A .24B .39C .104D .524.设Sn 是等差数列{an}的前n 项和,公差d≠0,若S11=132,a3+ak =24,则正整数k 的值为 () A .9B .10C .11D .125.已知数列{an}满足an +1=an -57,且a1=5,设{an}的前n 项和为Sn ,则使得Sn 取得最大值的序号n 的值为() A .7B .8C .7或8D .8或96.《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为 ()A.53B.103C.56D.1167.设Sn 为等差数列{an}的前n 项和,(n +1)Sn <nSn +1(n ∈N*).若a8a7<-1,则 () A .Sn 的最大值是S8B .Sn 的最小值是S8C .Sn 的最大值是S7D .Sn 的最小值是S78.在等差数列{an}中,a15=33,a25=66,则a35=________.9.设Sn 为等差数列{an}的前n 项和,S2=S6,a4=1,则a5=________.10.已知等差数列{an}中,S3=9,S6=36,则a7+a8+a9=________.11.设等差数列{an}的前n 项和为Sn ,若a1<0,S2 015=0.(1)求Sn 的最小值及此时n 的值;(2)求n 的取值集合,使a n≥Sn.12.已知等差数列的前三项依次为a ,4,3a ,前n 项和为Sn ,且S k =110.(1)求a 及k 的值;(2)设数列{bn}的通项bn =Sn n ,证明数列{bn}是等差数列,并求其前n 项和Tn. 高考模拟复习试卷试题模拟卷。