最新山西省中考数学试卷及答案汇总
山西省2024届中考模拟数学试卷版含答案
![山西省2024届中考模拟数学试卷版含答案](https://img.taocdn.com/s3/m/9ab71471cdbff121dd36a32d7375a417866fc136.png)
一、选择题(每题2分,共30分)1. 若 a > b,则下列哪个选项一定成立?A. a c > b cB. a + c > b + cC. ac > bcD. a/c > b/c (其中c ≠ 0)2. 已知等差数列 {an} 的前 n 项和为 Sn = n^2 + n,则数列的公差为多少?A. 1B. 2C. 3D. 43. 若一个三角形的两边长分别为 3 和 4,且这两边的夹角为90°,则这个三角形的周长为多少?A. 6B. 7C. 8D. 104. 若 x^2 2x 15 = 0,则 x 的值为多少?A. 3 或 5B. 5 或 3C. 2 或 4D. 4 或 25. 若一个正方形的对角线长为 10,则其边长为多少?A. 5√2B. 5√3C. 10√2D. 10√36. 若 |x 2| = 3,则 x 的值为多少?A. 1 或 5B. 5 或 1C. 2 或 4D. 4 或 27. 若 a > 0,b < 0,则下列哪个选项一定成立?A. a + b > 0B. a b > 0C. ab > 0D. a/b > 08. 若一个圆的半径为 5,则其直径为多少?A. 5B. 10C. 15D. 209. 若一个等腰三角形的底边长为 8,腰长为 10,则其周长为多少?A. 16B. 26D. 3610. 若 x^2 5x + 6 = 0,则 x 的值为多少?A. 2 或 3B. 2 或 3C. 1 或 6D. 1 或 611. 若 |x + 3| = 5,则 x 的值为多少?A. 8 或 2B. 2 或 8C. 5 或 2D. 5 或 212. 若 a < 0,b > 0,则下列哪个选项一定成立?A. a + b < 0B. a b < 0C. ab < 0D. a/b < 013. 若一个圆的周长为 31.4,则其半径为多少?A. 5B. 10C. 15D. 2014. 若一个等腰三角形的底边长为 12,腰长为 13,则其周长为多少?B. 30C. 36D. 3915. 若 x^2 7x + 10 = 0,则 x 的值为多少?A. 2 或 5B. 2 或 5C. 1 或 10D. 1 或 10二、判断题(每题1分,共20分)16. 若 a > b,则 a c > b c。
2022年山西中考数学试题及参考答案
![2022年山西中考数学试题及参考答案](https://img.taocdn.com/s3/m/fad44f0d4531b90d6c85ec3a87c24028915f85ba.png)
D. -6。
0窿3中国探火 中国火筋 中国行是探测航天神舟A B C D2022年山西中考数学试题及答案数 学第I 卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只 有一项符合题目要求,请选出并在答题卡上将该项涂黑)1. -6的相反数是( ) |A. 6B. 1C. -16 62. 2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度.下列航天图标,其文字上方的 图案是中心对称图形的是( )_________3. 粮食是人类赖以生存的重要物质基础.2021年我国粮食总产量再创新高,达68285万吨.该数据可用科学记数法表示为( ) .A. 6.8285 x 104 吨B. 68285 x 104 吨C. 6.8285 x 107 吨D. 6.8285 x 108 吨4. 神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的( )A.平移B.旋转C.轴对称D.黄金分割-11 -5. 不等式组{君马公的解集是( )A. x>lB. x<2C. l<x<2D. x<|6. 如图,Rt △如C 是一块直角三角板,其中ZC=90o,mG=30°.直尺的一边庞经过顶点4若DE//CB 测S45的度数为(A. 100° B. 120°7. 化简一的结果是(a -3 a 2-9A - g B. “-38. 如图,MBC 内接于00,血> 是。
的直径,若18=20。
,则ZCAD 的度数是( )A 60° B 65° C 70° D 75°9. “二十四节气”是中华上古农耕文明的曾慧结晶,被国际气象界誉为“中国第五大发明”.小文购买了 “二十四节气”主题邮票,他要将“立春”“立夏” “秋分”“大寒”四张邮票中的 两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随 机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是( )A. 2B. 1C. 1D. 13 2 6 810. 如图,扇形纸片力08的半径为3,沿如折叠扇形纸片,点O 恰好落在 您上的点C 处,图中阴影部分的面积为( )A. 3丸-3右B. 3兀-2尹C. 2冗-3力D. 6兀-%第II 卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11. 计算:V18xJl 的结果为..12. 根据物理学钻识z 在压力不变的情况下,某物体承受的压强P ( Pa )是它的受力面积S (m')的反比例函数,其函数图象如图所示.当S=O.25m2时, 该物体承受的压强p 的值为______p a .13. 生物学研究表明,植物光昏布甬逮率越高,单位时间内合成的有机物越多.为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两 个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:pi mol ・m"・s-i ),结果统计如下:C. 135° )C. a + 3)D.150°D.1a-3(第8题图)A ..........(第10题图)卜(H 02 03 04(第12题图)品种第一株第二株第三株第四株第五株平均数甲323025182025乙282526242225则两个大豆品种中光合作用速率更稳定的是(填“甲”或“乙”).14. 某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,啊期WWKT20%的价Wt 出售,则炒眼灯最多可降价 元.15. 如图,在正方形X8CD 中,点E 是边BC±的一点,点F 在边CD 的延长线上,《且职=皮,连接EF 交边AD 于点G.过点4作AN_LEF,垂足为点交边CQ 于点N.若BE=5, CN=8,则线段成V 的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)116. (本题共2不不题,每小题5分,共10分) (第15题图)(1)计算:⑴ x3-* +(-5 + 2)+ |-2|;(2)解方程组:J2x-y = 3,①|x + .y = 6.②17.(本题8分)如图,在矩形力BCD中,4C是对角线.』---------(1)实践与操作:利用尺规作线段/1C的垂直平分线,垂足为点。
中考数学试题及答案山西
![中考数学试题及答案山西](https://img.taocdn.com/s3/m/c54c0d4c03768e9951e79b89680203d8ce2f6ad1.png)
中考数学试题及答案山西第一题:已知数对 (a, b) 满足条件 a > b > 0,且满足方程 a^2 - b^2 = 55,求 a 和 b 的值。
解析:根据已知条件 a > b > 0,我们可以设 a = b + x,其中 x > 0。
代入方程 a^2 - b^2 = 55,得到 (b + x)^2 - b^2 = 55。
化简得 x^2 + 2bx = 55。
因为 x > 0,所以 x^2 > 0,即 x^2 + 2bx > 2bx > 0。
因此,方程 x^2 + 2bx = 55 没有正整数解。
所以,此题无解。
第二题:一架飞机在起始时刻从 A 点向 B 点以每小时 400 千米的速度飞行,同时从 B 点向 A 点以每小时 300 千米的速度飞行。
相遇后飞机返回原点,以每小时 500 千米的速度飞行。
求总共飞行的时间。
解析:设从 A 点到 B 点的距离为 d,飞机相遇的时间为 t。
在 t 小时内,飞机 A 飞行的距离为 400t 千米,飞机 B 飞行的距离为 300t 千米。
由条件可知,400t + 300t = d,即 700t = d。
当飞机返回原点时,它已经飞行了 2d 的距离。
根据飞机返回原点的速度 500 千米/小时,可得 500t = 2d。
将两个方程联立解得 t = d/700 并代入第一个方程得到 d = 700/3。
所以,总共飞行的时间为 t = d/700 = (700/3)/700 = 1/3 小时。
第三题:设函数 f(x) = x^2 - x,则当 x > 0 时,f(f(x)) = ?解析:将 f(x) = x^2 - x 代入 f(f(x)) 中:f(f(x)) = f(x^2 - x)= (x^2 - x)^2 - (x^2 - x)= x^4 - 2x^3 + x^2 - x^2 + x= x^4 - 2x^3 + x= x(x^3 - 2x^2 + 1)所以,当 x > 0 时,f(f(x)) = x(x^3 - 2x^2 + 1)。
山西省中考数学试题及答案
![山西省中考数学试题及答案](https://img.taocdn.com/s3/m/4852f9d76394dd88d0d233d4b14e852458fb39ec.png)
山西省中考数学试题及答案一、选择题1. 小明有5枚同样的硬币,他将这5枚硬币摞在一起。
如果顺序不同,摞硬币的方式共有几种?A. 5种B. 10种C. 20种D. 120种答案:D解析:第一枚硬币有5种摞法,第二枚硬币有4种摞法,第三枚硬币有3种摞法,依次类推,共有5 × 4 × 3 × 2 × 1 = 120种。
2. 一张矩形桌子的长是2.5米,宽是1.8米。
给这张桌子围上一个宽度为0.5米的边框,桌子加上边框的面积是多少平方米?A. 7.5平方米B. 8平方米C. 12平方米D. 14平方米答案:C解析:原桌子的面积为2.5 × 1.8 = 4.5平方米,边框的面积为[(2.5 + 0.5) × (1.8 + 0.5)] - 2.5 × 1.8 = 12平方米,桌子加上边框的面积为4.5 + 12 = 16.5平方米。
3. 两个正整数之和为120,差为50,这两个正整数分别是多少?A. 70和50B. 85和35C. 90和30D. 100和20答案:C解析:假设两个正整数分别为x和y,则有x + y = 120,x - y = 50。
通过解方程组可以得到x = 90,y = 30。
4. 一张纸折叠4次,叠起来后有多少层?A. 4层B. 8层C. 16层D. 32层答案:D解析:每次折叠纸张,层数翻倍。
第一次折叠为2层,第二次折叠为4层,第三次折叠为8层,第四次折叠为16层,共32层。
5. 一套图书原价150元,打折后优惠了30元,打折后的价格是原价的几分之几?A. 8/10B. 2/3C. 3/5D. 5/9答案:C解析:打折后的价格为150 - 30 = 120元,打折后的价格是原价的120/150 = 3/5。
二、填空题1. 计算:(3 - √(5 - 2x))² = 10的解为x = __。
答案:1解析:展开等式,得到9 - 6√(5 - 2x) + 5 - 2x = 10,化简后得到-6√(5 - 2x) - 2x - 6 = 0,进一步求解得到x = 1。
2022年山西省中考数学真题(解析版)
![2022年山西省中考数学真题(解析版)](https://img.taocdn.com/s3/m/1c03f882d0f34693daef5ef7ba0d4a7303766c44.png)
∴四边形OACB是菱形
∴
连接OC
∵
∴
∴ 是等边三角形
同理: 是等边三角形
故
由三线合一,在 中:
故选:B
【点睛】本题考查菱形的判定,菱形面积公式,扇形面积公式;解题关键是发现 是等边三角形
二、填空题(本大题共5个小题,每小题3分,共15分)
11.计算 的结果是________.
【答案】3
【解析】
【分析】直接利用二次根式的乘法法则计算得出答案.
【详解】解:原式=
=
=3.
故答案为:3.
【点睛】此题主要考查了二次根式的乘法法则,熟练掌握二次根式的乘法法则是解题关键.
12.根据物理学知识,在压力不变的情况下,某物体承受的压强 是它的受力面积 的反比例函数,其函数图象如图所示,当 时,该物体承受的压强p的值为_________Pa.
【答案】400
【详解】解:根据中心对称图形的定义,四个选项中,只有B选项的图形绕着某点旋转180°后能与原来的图形重合,
故选B.
【点睛】本题考查中心对称图形的判定,掌握中心对称图形的定义是解题的关键.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.
17.如图,在矩形ABCD中,AC是对角线.
(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD于点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母),
(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.
【答案】(1)作图见解析
(2) ,证明见解析
【解析】
A.100°B.120°C.135°D.150°
2022年山西省中考数学试卷(解析版)
![2022年山西省中考数学试卷(解析版)](https://img.taocdn.com/s3/m/5181e808abea998fcc22bcd126fff705cc175cd6.png)
2022年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)(2022•山西)﹣6的相反数为()A.6B.C.D.﹣62.(3分)(2022•山西)2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度.下列航天图标,其文字上方的图案是中心对称图形的是()A.B.C.D.3.(3分)(2022•山西)粮食是人类赖以生存的重要物质基础.2021年我国粮食总产量再创新高,达68285万吨.该数据可用科学记数法表示为()A.6.8285×104吨B.68285×104吨C.6.8285×107吨D.6.8285×108吨4.(3分)(2022•山西)神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()A.平移B.旋转C.轴对称D.黄金分割5.(3分)(2022•山西)不等式组的解集是()A.x≥1B.x<2C.1≤x<2D.x<6.(3分)(2022•山西)如图,Rt△ABC是一块直角三角板,其中∠C=90°,∠BAC=30°.直尺的一边DE经过顶点A,若DE∥CB,则∠DAB的度数为()A.100°B.120°C.135°D.150°7.(3分)(2022•山西)化简﹣的结果是()A.B.a﹣3C.a+3D.8.(3分)(2022•山西)如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD的度数是()A.60°B.65°C.70°D.75°9.(3分)(2022•山西)“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大寒”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是()A.B.C.D.10.(3分)(2022•山西)如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在上的点C处,图中阴影部分的面积为()A.3π﹣3B.3π﹣C.2π﹣3D.6π﹣二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)(2022•山西)计算:×的结果为.12.(3分)(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图象如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.13.(3分)(2022•山西)生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多.为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:μmol•m﹣2•s﹣1),结果统计如下:品种第一株第二株第三株第四株第五株平均数甲323025182025乙282526242225则两个大豆品种中光合作用速率更稳定的是(填“甲”或“乙”).14.(3分)(2022•山西)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价元.15.(3分)(2022•山西)如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD 的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN⊥EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(10分)(2022•山西)(1)计算:(﹣3)2×3﹣1+(﹣5+2)+|﹣2|;(2)解方程组:.17.(8分)(2022•山西)如图,在矩形ABCD中,AC是对角线.(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD于点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母).(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.18.(7分)(2022•山西)2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势.经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.19.(8分)(2022•山西)首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代•奋进新征程”.某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):××中学学生读书情况调查报告××中学学生读书情况调查主题调查抽样调查调查对象××中学学生方式数据的收集、整理与描述第一项您平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)A.8小时及以上;B.6~8小时;C.4~6小时;D.0~4小时.第二项您阅读的课外书的主要来源是(可多选)E.自行购买;F.从图书馆借阅;G.免费数字阅读;H.向他人借阅.……调查结论请根据以上调查报告,解答下列问题:(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.20.(8分)(2022•山西)阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务.用函数观点认识一元二次方程根的情况我们知道,一元二次方程ax2+bx+c=0(a≠0)的根就是相应的二次函数y=ax2+bx+c(a ≠0)的图象(称为抛物线)与x轴交点的横坐标.抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x轴的交点个数确定一元二次方程根的情况.下面根据抛物线的顶点坐标(﹣,)和一元二次方程根的判别式Δ=b2﹣4ac,分别分a>0和a<0两种情况进行分析:(1)a>0时,抛物线开口向上.①当Δ=b2﹣4ac>0时,有4ac﹣b2<0.∵a>0,∴顶点纵坐标<0.∴顶点在x轴的下方,抛物线与x轴有两个交点(如图1).②当Δ=b2﹣4ac=0时,有4ac﹣b2=0.∵a>0,∴顶点纵坐标=0.∴顶点在x轴上,抛物线与x轴有一个交点(如图2).∴一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根.③当Δ=b2﹣4ac<0时,……(2)a<0时,抛物线开口向下.……任务:(1)上面小论文中的分析过程,主要运用的数学思想是(从下面选项中选出两个即可);A.数形结合B.统计思想C.分类讨论D.转化思想(2)请参照小论文中当a>0时①②的分析过程,写出③中当a>0,Δ<0时,一元二次方程根的情况的分析过程,并画出相应的示意图;(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识.例如:可用函数观点来认识一元一次方程的解.请你再举出一例为.21.(8分)(2022•山西)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24m到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB 与CD之间的距离AC的长(结果精确到1m.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.73).22.(13分)(2022•山西)综合与实践问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF =90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N.猜想证明:(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN 的形状,并说明理由;问题解决:(2)如图②,在三角板旋转过程中,当∠B=∠MDB时,求线段CN的长;(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.23.(13分)(2022•山西)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.2022年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)(2022•山西)﹣6的相反数为()A.6B.C.D.﹣6【分析】根据相反数的定义:只有符号不同的两个数叫相反数,可以直接得到答案.【解答】解:﹣6的相反数是:6,故选:A.【点评】此题主要考查了相反数的定义,同学们要熟练掌握相反数的定义.2.(3分)(2022•山西)2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度.下列航天图标,其文字上方的图案是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义进行判断,即可得出答案.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【解答】解:选项A、C、D均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,选项B能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形,故选:B.【点评】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3.(3分)(2022•山西)粮食是人类赖以生存的重要物质基础.2021年我国粮食总产量再创新高,达68285万吨.该数据可用科学记数法表示为()A.6.8285×104吨B.68285×104吨C.6.8285×107吨D.6.8285×108吨【分析】将较大的数写成科学记数法形式:a×10n,其中1≤a<10,n为正整数即可.【解答】解:68285万吨=6.8285×104×104=6.8285×108(吨),故选:D.【点评】本题考查了科学记数法﹣表示较大的数,掌握a m•a n=a m+n是解题的关键.4.(3分)(2022•山西)神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()A.平移B.旋转C.轴对称D.黄金分割【分析】利用黄金分割比的意义解答即可.【解答】解:∵每圈螺纹的直径与相邻螺纹直径的比约为0.618,又黄金分割比为≈0.618,∴其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的黄金分割,故选:D.【点评】本题主要考查了数学与自然界与数学知识的联系,熟悉线段的黄金分割是解题的关键.5.(3分)(2022•山西)不等式组的解集是()A.x≥1B.x<2C.1≤x<2D.x<【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式2x+1≥3,得:x≥1,解不等式4x﹣1<7,得:x<2,则不等式组的解集为1≤x<2,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(3分)(2022•山西)如图,Rt△ABC是一块直角三角板,其中∠C=90°,∠BAC=30°.直尺的一边DE经过顶点A,若DE∥CB,则∠DAB的度数为()A.100°B.120°C.135°D.150°【分析】先根据平行线的性质求得∠DAC的度数,再根据角的和差关系求得结果.【解答】解:∵DE∥CB,∠C=90°,∴∠DAC=∠C=90°,∵∠BAC=30°,∴∠DAB=∠DAC+∠BAC=120°,故答案为:B.【点评】本题主要考查了平行线的性质以及三角形角和差计算,关键是利用平行线的性质求得∠DAC.7.(3分)(2022•山西)化简﹣的结果是()A.B.a﹣3C.a+3D.【分析】根据异分母分式的加减法法则,进行计算即可解答.【解答】解:﹣=﹣===,故选:A.【点评】本题考查了分式的加减法,熟练掌握异分母分式的加减法法则是解题的关键.8.(3分)(2022•山西)如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD的度数是()A.60°B.65°C.70°D.75°【分析】连接BD,根据直径所对的圆周角是直角可得∠ABD=90°,从而可求出∠CBD 的度数,然后利用同弧所对的圆周角相等即可解答.【解答】解:连接BD,∵AD是⊙O的直径,∴∠ABD=90°,∵∠ABC=20°,∴∠CBD=∠ABD﹣∠ABC=70°,∴∠CAD=∠CBD=70°,故选:C.【点评】本题考查了圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9.(3分)(2022•山西)“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大寒”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是()A.B.C.D.【分析】根据题意,可以画出相应的树状图,从而可以得到小乐抽到的两张邮票恰好是“立春”和“立夏”的概率.【解答】解:设立春用A表示,立夏用B表示,立秋用C表示,立冬用D表示,树状图如下,由上可得,一共有12种可能性,其中小乐抽到的两张邮票恰好是“立春”和“立夏”的可能性2种,∴小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是=,故选:C.【点评】本题考查列表法与树状图法,解答本题的关键是明确题意,画出相应的树状图.10.(3分)(2022•山西)如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在上的点C处,图中阴影部分的面积为()A.3π﹣3B.3π﹣C.2π﹣3D.6π﹣【分析】根据折叠的想找得到AC=AO,BC=BO,推出四边形AOBC是菱形,连接OC 交AB于D,根据等边三角形的性质得到∠CAO=∠AOC=60°,求得∠AOB=120°,根据菱形和扇形的面积公式即可得到结论.【解答】解:沿AB折叠扇形纸片,点O恰好落在上的点C处,∴AC=AO,BC=BO,∵AO=BO,∴四边形AOBC是菱形,连接OC交AB于D,∵OC=OA,∴△AOC是等边三角形,∴∠CAO=∠AOC=60°,∴∠AOB=120°,∵AC=3,∴OC=3,AD=AC=,∴AB=2AD=3,∴图中阴影部分的面积=S扇形AOB﹣S菱形AOBC=﹣3×3=3π﹣,故选:B.【点评】本题考查了扇形面积的计算,菱形的判定和性质,等边三角形的判定和性质,正确地作出辅助线是解题的关键.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)(2022•山西)计算:×的结果为3.【分析】按照二次根式的乘法法则计算即可.【解答】解:原式==3.故答案为:3.【点评】本题主要考查了二次根式的乘法运算.二次根式的运算法则:乘法法则=.12.(3分)(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图象如图所示.当S=0.25m2时,该物体承受的压强p的值为400Pa.【分析】设p=,把(0.1,1000)代入得到反比例函数的解析式,再把S=0.25代入解析式即可解决问题.【解答】解:设p=,∵函数图象经过(0.1,1000),∴k=100,∴p=,当S=0.25m2时,物体所受的压强p==400(Pa),故答案为:400.【点评】本题考查反比例函数的应用,待定系数法等知识,解题的关键是灵活应用待定系数法解决问题,属于中考常考题型.13.(3分)(2022•山西)生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多.为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:μmol•m﹣2•s﹣1),结果统计如下:品种第一株第二株第三株第四株第五株平均数甲323025182025乙282526242225则两个大豆品种中光合作用速率更稳定的是乙(填“甲”或“乙”).【分析】直接利用方差公式,进而计算得出答案.【解答】解:甲的方差为:=[(32﹣25)2+(30﹣25)2+(25﹣25)2+(18﹣25)2+(20﹣25)2]=29.6;乙的方差为:=[(28﹣25)2+(25﹣25)2+(26﹣25)2+(24﹣25)2+(22﹣25)2]=4.∵29.6>4,∴两个大豆品种中光合作用速率更稳定的是乙.故答案为:乙.【点评】此题考查了方差、平均数,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.(3分)(2022•山西)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价32元.【分析】设该护眼灯可降价x元,根据“以利润率不低于20%的价格降价出售”列一元一次不等式,求解即可.【解答】解:设该护眼灯可降价x元,根据题意,得,解得x≤32,故答案为:32.【点评】本题考查了一元一次不等式的应用,理解题意并根据题意建立一元一次不等式是解题的关键.15.(3分)(2022•山西)如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD 的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN⊥EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为4.【分析】连接AE,AF,EN,由正方形的性质可得AB=AD,BC=CD,∠ABE=∠BCD =∠ADF=90°,可证得△ABE≌△ADF(SAS),可得∠BAE=∠DAF,AE=AF,从而可得∠EAF=90°,根据等腰三角形三线合一可得点M为EF中点,由AN⊥EF可证得△AEM≌△AFM(SAS),△EMN≌△FMN(SAS),可得EN=FN,设DN=x,则EN=FN=x+5,CE=x+3,由勾股定理解得x=12,可得AB=CD=20,由勾股定理可得AE =5,从而可得AM=EM=FM=,由勾股定理可得MN=,即可求解.【解答】解:如图,连接AE,AF,EN,∵四边形ABCD为正方形,∴AB=AD,BC=CD,∠ABE=∠BCD=∠ADF=90°,∵BE=DF,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF,AE=AF,∴∠EAF=90°,∴△EAF为等腰直角三角形,∵AN⊥EF,∴EM=FM,∠EAM=∠F AM=45°,∴△AEM≌△AFM(SAS),△EMN≌△FMN(SAS),∴EN=FN,设DN=x,∵BE=DF=5,CN=8,∴CD=CN+DN=x+8,∴EN=FN=DN+DF=x+5,CE=BC﹣BE=CD﹣BE=x+8﹣5=x+3,在Rt△ECN中,由勾股定理可得:CN2+CE2=EN2,即82+(x+3)2=(x+5)2,解得:x=12,∴AB=CD=x+8=20,EN=x+5=17,在Rt△ABE中,由勾股定理可得:AE===5,∴AM=EM=FM==,在Rt△EMN中,由勾股定理可得:MN===,∴AN=AM+MN=+=4,故答案为:4.【点评】本题考查正方形的性质,勾股定理,等腰三角形的性质,全等三角形的判定与性质等知识点,解题的关键是正确作出辅助线,构建全等三角形解决问题.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(10分)(2022•山西)(1)计算:(﹣3)2×3﹣1+(﹣5+2)+|﹣2|;(2)解方程组:.【分析】(1)根据有理数的乘方,负整数指数幂,有理数的加法,绝对值计算即可;(2)根据加减消元法求解即可.【解答】解:(1)原式=9×+(﹣3)+2=3+(﹣3)+2=2;(2)①+②得:3x=9,∴x=3,将x=3代入②得:3+y=6,∴y=3,∴原方程组的解为.【点评】本题考查了实数的运算,有理数的乘方,负整数指数幂,绝对值,解二元一次方程组,解二元一次方程组的基本思路是消元,将二元方程转化为一元方程是解题的关键.17.(8分)(2022•山西)如图,在矩形ABCD中,AC是对角线.(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD于点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母).(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.【分析】(1)利用尺规作图﹣线段垂直平分线的作法,进行作图即可;(2)利用矩形的性质求证∠EAO=∠FCO,∠AEO=∠CFO,由线段的垂直平分线得出AO=CO,即可证明△AOE≌△COF,进而得出AE=CF.【解答】解:(1)如图,(2)AE=CF,证明如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,∵EF是AC的垂直平分线,∴AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴AE=CF.【点评】本题考查了基本作图,矩形的性质,全等三角形的判定与性质,熟练掌握线段垂直平分线的作法,矩形的性质,全等三角形的判定方法是解决问题的关键.18.(7分)(2022•山西)2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势.经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.【分析】原来的燃油汽车行驶1千米所需的油费(x+0.54)元,根据题意可得等量关系:燃油汽车所需油费200元所行使的路程×4=电动汽车所需电费200元所行使的路程,根据等量关系列出方程即可.【解答】解:设这款电动汽车平均每公里的充电费用为x元,根据题意,得,解得x=0.2,经检验,x=0.2是原方程的根,答:这款电动汽车平均每公里的充电费用为0.2元.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中等量关系,设出未知数,列出方程,注意不要忘记检验.19.(8分)(2022•山西)首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代•奋进新征程”.某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):××中学学生读书情况调查报告××中学学生读书情况调查主题抽样调查调查对象××中学学生调查方式数据的收集、整理与描述第一项您平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)A.8小时及以上;B.6~8小时;C.4~6小时;D.0~4小时.第二项您阅读的课外书的主要来源是(可多选)E.自行购买;F.从图书馆借阅;G.免费数字阅读;H.向他人借阅.……调查结论请根据以上调查报告,解答下列问题:(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.【分析】(1)由条形统计图和扇形统计图可得平均每周阅读课外书的时间大约是0~4小时的人数为33人,占抽样学生人数的11%,即可求解,由条形统计图可知从图书馆借阅的人数占总数人的62%,即可求解;(2)由扇形统计图可知平均每周阅读课外书时间在“8小时及以上”的人数占比为32%,即可求解;(3)由第一项可知阅读时间为“4~6小时”的人数最多,“0~4小时”的人数最少,由第二项可知阅读的课外书的主要来源中“从图书馆借阅”的人数最多,“向他人借阅”的人数最少等等.【解答】解:(1)∵平均每周阅读课外书的时间大约是0~4小时的人数为33人,占抽样学生人数的11%,∴参与本次抽样调查的学生人数为:33÷11%=300(人),∵从图书馆借阅的人数占总数人的62%,∴选择“从图书馆借阅”的人数为:300×62%=186(人),答:参与本次抽样调查的学生人数为300人,选择“从图书馆借阅”的人数为186人;(2)∵平均每周阅读课外书时间在“8小时及以上”的人数占比为32%,∴3600×32%=1152(人),答:该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数为1152人;(3)答案不唯一,如:由第一项可知:阅读时间为“4~6小时”的人数最多,“0~4小时”的人数最少,由第二项可知:阅读的课外书的主要来源中“从图书馆借阅”的人数最多,“向他人借阅”的人数最少.【点评】本题考查条形统计图,扇形统计图,用样本估计总体等知识点,解题的关键是掌握利用统计图提取所需信息.20.(8分)(2022•山西)阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务.用函数观点认识一元二次方程根的情况我们知道,一元二次方程ax2+bx+c=0(a≠0)的根就是相应的二次函数y=ax2+bx+c(a ≠0)的图象(称为抛物线)与x轴交点的横坐标.抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x轴的交点个数确定一元二次方程根的情况.下面根据抛物线的顶点坐标(﹣,)和一元二次方程根的判别式Δ=b2﹣4ac,分别分a>0和a<0两种情况进行分析:(1)a>0时,抛物线开口向上.①当Δ=b2﹣4ac>0时,有4ac﹣b2<0.∵a>0,∴顶点纵坐标<0.∴顶点在x轴的下方,抛物线与x轴有两个交点(如图1).②当Δ=b2﹣4ac=0时,有4ac﹣b2=0.∵a>0,∴顶点纵坐标=0.∴顶点在x轴上,抛物线与x轴有一个交点(如图2).∴一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根.③当Δ=b2﹣4ac<0时,……(2)a<0时,抛物线开口向下.。
山西省2024年中考学业水平测试信息导向卷数学试题及答案
![山西省2024年中考学业水平测试信息导向卷数学试题及答案](https://img.taocdn.com/s3/m/b933fe4d17fc700abb68a98271fe910ef12dae08.png)
山西2024年中考学业水平测试信息导向卷数学(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上。
写在本试卷上无效。
4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。
写在本试卷上无效。
5.考试结束后,将本试卷和答题卡一并交回。
参考公式:抛物线()20y ax bx c a =++≠的顶点坐标24,24b ac b aa ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-一、选择题:本题共10小题,每小题3分,共30分。
1.如图,点A 表示的数的相反数是()A.2B.-2C.21D.-212.剪纸艺术是我国民间传统文化之一,在下列剪纸作品中,不是轴对称图形的是()A. B. C. D.3.下列运算正确的是()A.23a a a += B.23a a a ⋅= C.623a a a ÷= D.()313a a -=4.每到四月,吕梁柳林柳絮柳絮如雪花般漫天飞舞,人们不堪其扰.据测定,柳絮纤维的直径约为0.0000105m ,该数用科学记数法表示为()A.51.0510⨯ B.41.0510-⨯ C.410.510-⨯ D.51.0510-⨯5.如图,ABC △内接于O ,110ABC ∠=︒,AB BC =,AD 是O 的直径,则DAB ∠的度数是()A.35°B.55°C.65°D.70°6.等腰三角形的顶角为x 度,一个底角的外角为y 度,则y 关于x 的函数表达式是()A.180y x=- B.1802y x=- C.902x y =+D.902x y =-7.如图(1),将一条对边互相平行的围巾折叠,并将其抽象成相应的数学模型如图(2),//AB CD ,折痕分别为AD ,CB ,若2DAB GCB ∠=∠,//DF CG ,则ADF ∠等于()A.30°B.45°C.60°D.80°8.如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流()A I 与电阻()R Ω成反比例函数的图象,该图象经过点()880,0.25P .根据图象可知,下列说法不正确的是()A.I 与R 的函数关系式是()2200I R R=>B.当0.5I =时,440R =C.当1000R >时,0.22I >D.当8801000R <<时,I 的取值范围是0.220.25I <<9.大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF ,若对角线AD 的长约为8mm AD =,则正六边形ABCDEF 的边长为()A.2mmB.mmC.mmD.4mm10.如图,矩形AOCD 的顶点()0,0O ,()0,4A ,顶点C 在x 轴的正半轴上.作如下操作:①对折矩形AOCD ,使得AD 与OC 重合,得到折痕EF ,把纸片展平;②再一次折叠纸片,使点A 落在EF 上,并使折痕经过点O ,得折痕OM ,同时,得到了线段ON .则点N 的坐标是()A .()4,2B .)C .(D .()二、填空题:本题共5小题,共15分。
2022太原中考数学试题及答案
![2022太原中考数学试题及答案](https://img.taocdn.com/s3/m/1316a0eacd22bcd126fff705cc17552706225e30.png)
2022太原中考数学试题及答案2022年太原市初中学业水平考试数学试卷一、选择题(本题共10个小题,每小题3分,共30分)1. 2022年太原市初中学业水平考试数学试卷共有选择题、填空题、解答题三种题型,其中选择题有10个小题,小题的分值为3分,则选择题的总分值为 A 30分。
A. 30B. 40C. 50D. 602. 2022年太原市初中学业水平考试数学试卷共有选择题、填空题、解答题三种题型,其中选择题有10个小题,小题的分值为3分,则填空题的总分值为 B 24分。
A. 24B. 30C. 36D. 423. 2022年太原市初中学业水平考试数学试卷共有选择题、填空题、解答题三种题型,其中选择题有10个小题,小题的分值为3分,则解答题的总分值为 C 90分。
A. 90B. 84C. 78D. 724. 2022年太原市初中学业水平考试数学试卷共有选择题、填空题、解答题三种题型,其中选择题有10个小题,小题的分值为3分,则选择题、填空题、解答题三种题型的总分值之和为 D 144分。
A. 144B. 120C. 108D. 905. 若一个数的相反数是-3,则这个数是 A 3。
A. 3B. -3C. 0D. 66. 若一个数的绝对值是5,则这个数是 D ±5。
A. 5B. -5C. 0D. ±57. 若a=2,b=-3,则a-b的值为 B 5。
A. 5B. -5C. 1D. -18. 若a=2,b=-3,则-a+b的值为 C -5。
A. 5B. -5C. -1D. 19. 若a=2,b=-3,则ab的值为 D -6。
A. 6B. -6C. 0D. -610. 若a=2,b=-3,则a+b的值为 C -1。
A. 1B. -1C. 5D. -5二、填空题(本题共5个小题,每小题3分,共15分)11. 若一个数的相反数是-3,则这个数是 3 。
12. 若一个数的绝对值是5,则这个数是 ±5 。
近五年山西中考数学真题及答案
![近五年山西中考数学真题及答案](https://img.taocdn.com/s3/m/4b17c62de97101f69e3143323968011ca300f72c.png)
2022年山西中考数学试卷及答案一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.﹣6的相反数为()A.6B.C.D.﹣62.2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度下列航天图标,其文字上方的图案是中心对称图形的是()A.B.C.D.3.粮食是人类赖以生存的重要物质基础.2021年我国粮食总产量再创新高,达68285万吨.该数据可用科学记数法表示为()A.6.8285×104吨B.68285×104吨C.6.8285×107吨D.6.8285×108吨4.神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()A.平移B.旋转C.轴对称D.黄金分割5.不等式组的解集是()A.x≥1B.x<2C.1≤x<2D.x<6.如图,Rt△ABC是一块直角三角板,其中∠C=90°,∠BAC=30°. 直尺的一边DE经过顶点A,若DE∥CB,则∠DAB的度数为()A.100°B.120°C.135°D.150°7.化简﹣的结果是()A.B.a﹣3C.a+3D.8.如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD的度数是()A.60°B.65°C.70°D.75°9.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界普为“中国第五大发明”,小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大赛”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是()A.B.C.D.10.如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在上的点C处,图中阴影部分的面积为()A.3π﹣3B.3π﹣C.2π﹣3D.6π﹣二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:×的结果为.12.根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图象如图所示,当S=0.25m2时,该物体承受的压强p的值为Pa.13. 生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多,为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:μmol•m﹣2•s﹣1),结果统计如下:品种第一株第二株第三株第四株第五株平均数甲323025182025乙282526242225则两个大豆品种中光合作用速率更稳定的是(填“甲”或“乙”).14.某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价元.15.如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN⊥EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(1)计算:(﹣3)2×3﹣1+(﹣5+2)+|﹣2|;(2)解方程组:.17.如图,在矩形ABCD中,AC是对角线.(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD于点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母),(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.18.2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势,经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.19.首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代·奋进新征程”.某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):××中学学生读书情况调查报告调查主题××中学学生读书情况调查方式抽样调查调查对象××中学学生数据的收集、整理与描述第一项您平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)A.8小时及以上;B.6~8小时;C.4~6小时;D.0~4小时.第二项您阅读的课外书的主要来源是(可多选)E.自行购买;F.从图书馆借阅;G.免费数字阅读;H.向他人借阅.调查……结论请根据以上调查报告,解答下列问题:(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.20.阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务用函数观点认识一元二次方程根的情况我们知道,一元二次方程ax2+bx+c=0(a≠0)的根就是相应的二次函数y=ax2+bx+c(a≠0)的图象(称为抛物线)与x轴交点的横坐标.抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点. 与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x轴的交点个数确定一元二次方程根的情况下面根据抛物线的顶点坐标(﹣,)和一元二次方程根的判别式Δ=b2﹣4ac,分别分a>0和a<0两种情况进行分析:(1)a>0时,抛物线开口向上.①当Δ=b2﹣4ac>0时,有4ac﹣b2<0.∵a>0,∴顶点纵坐标<0.∴顶点在x轴的下方,抛物线与x轴有两个交点(如图1).②当Δ=b2﹣4ac=0时,有4ac﹣b2=0.∵a>0,∴顶点纵坐标=0.∴顶点在x轴上,抛物线与x轴有一个交点(如图2).∴一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根.③当Δ=b2﹣4ac<0时,……(2)a<0时,抛物线开口向下.……任务:(1)上面小论文中的分析过程,主要运用的数学思想是(从下面选项中选出两个即可);A.数形结合B.统计思想C.分类讨论D.转化思想(2)请参照小论文中当a>0时①②的分析过程,写出③中当a>0,Δ<0时,一元二次方程根的情况的分析过程,并画出相应的示意图;(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识,例如:可用函数观点来认识一元一次方程的解.请你再举出一例为21.随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测星AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.73).22.综合与实践问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N,猜想证明:(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;问题解决:(2)如图②,在三角板旋转过程中,当∠B=∠MDB时,求线段CN的长;(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.23.综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l ∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.2021年山西中考数学真题及答案第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1. 计算28-+的结果是( )A. -6B. 6C. -10D. 102. 为推动世界冰雪运动的发展,我国将于2022年举办北京冬奥会.在此之前进行了冬奥会会标的征集活动,以下是部分参选作品,其文字上方的图案既是轴对称图形又是中心对称图形的是( ) A. B.C. D. 3. 下列运算正确的是( )A. ()3263m n m n -=- B. 532m m m -= C. ()2224m m +=+ D. ()4312334m m m m -÷= 4. 《中国核能发展报告2021》蓝皮书显示,2020年我国核能发电量为3662.43亿千瓦时,相当于造林77.14万公顷.已知1公顷410=平方米,则数据77.14万公顷用科学记数法表示为( )A. 477.1410⨯平方米B. 77.71410⨯平方米C. 877.1410⨯平方米D. 97.71410⨯平方米5. 已知反比例函数6y x =,则下列描述不正确的是( )A. 图象位于第一,第三象限B. 图象必经过点34,2⎛⎫ ⎪⎝⎭C. 图象不可能与坐标轴相交D. y 随x 的增大而减小 6. 每天登录“学习强国”App 进行学习,在获得积分的同时,还可获得“点点通”附加奖励,李老师最近一周每日“点点通”收入明细如下表,则这组数据的中位数和众数分别是( )星期一 二 三 四 五 六 日 收入(点) 15 21 27 27 21 30 21A. 27点,21点B. 21点,27点C. 21点,21点D. 24点,21点7. 如图,在O 中,AB 切O 于点A ,连接OB 交O 于点C ,过点A 作//AD OB 交O 于点D ,连接CD .若50B ∠=︒,则OCD ∠为( )A. 15︒B. 20︒C. 25︒D. 30︒8. 在勾股定理的学习过程中,我们已经学会了运用以下图形,验证著名的勾股定理:这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”.实际上它也可用于验证数与代数,图形与几何等领域中的许多数学公式和规律,它体现的数学思想是( )A. 统计思想B. 分类思想C. 数形结合思想D. 函数思想9. 如图,正六边形ABCDEF 的边长为2,以A 为圆心,AC 的长为半径画弧,得EC ,连接AC ,AE ,则图中阴影部分的面积为( )A. 2πB. 4πC. 33D. 233 10. 抛物线的函数表达式为()2321y x =-+,若将x 轴向上平移2个单位长度,将y 轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( )A. ()2313y x =++ B. ()2353y x =-+ C. ()2351y x =-- D. ()2311y x =+-第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11. 1227=__________.12. 如图是一片枫叶标本,其形状呈“掌状五裂型”,裂片具有少数突出的齿.将其放在平面直角坐标系中,表示叶片“顶部”A ,B 两点的坐标分别为()2,2-,()3,0-,则叶杆“底部”点C 的坐标为__________.13. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,8BD =,6AC =,//OE AB ,交BC 于点E ,则OE 的长为__________.14. 太原地铁2号线是山西省第一条开通运营的地铁线路,于2020年12月26日开通.如图是该地铁某站扶梯的示意图,扶梯AB 的坡度5:12i =(i 为铅直高度与水平宽度的比).王老师乘扶梯从扶梯底端A 以0.5米/秒的速度用时40秒到达扶梯顶端B ,则王老师上升的铅直高度BC 为__________米.15. 如图,在ABC △中,点D 是AB 边上的一点,且3AD BD =,连接CD 并取CD 的中点E ,连接BE ,若45ACD BED ∠=∠=︒,且62CD =,则AB 的长为__________.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本题共2个小题,每小题5分,共10分) (1)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭. (2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.2132132x x -->-解:()()2213326x x ->--………………………………第一步42966x x ->--……………………………………………第二步49662x x ->--+…………………………………………第三步510x ->-……………………………………………………第四步2x >…………………………………………………………第五步任务一:填空:①以上解题过程中,第二步是依据____________________(运算律)进行变形的;②第__________步开始出现错误,这一步错误的原因是______________________________;任务二:请直接写出该不等式的正确解集.解:__________.17.(本题6分)2021年7日1日建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).18.(本题7分)太原武宿国际机场简称“太原机场”,是山西省开通的首条定期国际客运航线.游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太输路全程是25千米,但交通比较拥堵;路线二:走太原环城高速全程是30千米,平均速度是路线一的53倍,因此到达太原机场的时间比走路线一少用7分钟,求走路线一到达太原机场需要多长时间.19.(本题10分)近日,教育部印发了《关于举办第三届中华经典诵写讲大赛的通知》,本届大赛以“传承中华经典,庆祝建党百年”为主题,分为“诵读中国”经典通读,“诗教中国”诗词讲解,“笔墨中国”汉字书写,“印记中国”印章篆刻比赛四类(依次记为A ,B ,C ,D ).为了解同学们参与这四类比赛的意向,某校学生会从有意向参与比赛的学生中随机抽取若干名学生进行了问卷调查(调查问卷如图所示),所有问卷全部收回,并将调查结果绘制成如下所示的统计图和统计表(均不完整).请根据图表提供的信息,解答下列问题:(1)参与本次问卷调查的总人数为__________人,统计表中C的百分比m为__________;(2)请补全统计图;(3)小华想用扇形统计图反映有意向参与各类比赛的人数占被调查总人数的百分比,是否可行?若可行,求出表示C类比赛的扇形圆心角的度数;若不可行,请说明理由;(4)学校“诗教中国”诗词讲解大赛初赛的规则是:组委会提供“春”“夏”“秋”“冬”四组题目(依次记为C,X,Q,D),由电脑随机给每位参赛选手派发一组,选手根据题目要求进行诗词讲解.请用列表或画树状图的方法求甲,乙两名选手抽到的题目在同一组的概率.20.(本题8分)阅读与思考图算法图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系:9325F C=+得出,当10C=时,50F=.但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种利用特制的线条进行计算的方法就是图算法. 再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?我们可以利用公式12111R R R =+求得R 的值,也可以设计一种图算法直接得出结果:我们先来画出一个120︒的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性.任务: (1)请根据以上材料简要说明图算法的优越性;(2)请用以下两种方法验证第二个例子中图算法的正确性:①用公式12111R R R =+计算:当17.5R =,25R =时,R 的值为多少; ②如图,在AOB △中,120AOB ∠=︒,OC 是AOB △的角平分线,7.5OA =,5OB =,用你所学的几何知识求线段OC 的长.21.(本题8分)某公园为引导游客观光游览公园的景点,在主要路口设置了导览指示牌.某校“综合与实践”活动小组想要测量此指示牌的高度,他们绘制了该指示牌支架侧面的截面图如图所示,并测得100cm AB =,80cm BC =,120ABC ∠=︒,75BCD ∠=︒,四边形DEFG 为矩形,且5cm DE =.请帮助该小组求出指示牌最高点A 到地面EF 的距离(结果精确到0.1cm .参考数据:sin750.97︒≈,cos750.26︒≈,tan75 3.73︒≈,2 1.41≈).22.(本题13分)综合与实践问题情境:数学活动课上,老师出示了一个问题:如图①,在ABCD 中,BE AD ⊥,垂足为E ,F 为CD 的中点,连接EF ,BF ,试猜想EF 与BF 的数量关系,并加以证明;独立思考:(1)请解答老师提出的问题;实践探究:(2)希望小组受此问题的启发,将ABCD 沿着BF (F 为CD 的中点)所在直线折叠,如图②,点C的对应点为'C 连接'DC 并延长交AB 于点G ,请判断AG 与BG 的数量关系,并加以证明;问题解决:(3)智慧小组突发奇想,将ABCD 沿过点B 的直线折叠,如图③,点A 的对应点为'A ,使'A B CD ⊥于点H ,折痕交AD 于点M ,连接'A M ,交CD 于点N .该小组提出一个问题:若此ABCD 的面积为20,边长5AB =,25BC =,求图中阴影部分(四边形BHNM )的面积.请你思考此问题,直接写出结果.23.(本题13分)综合与探究如图,抛物线21262y x x =+-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .(1)求A ,B ,C 三点的坐标并直接写出直线AC ,BC 的函数表达式;(2)点P 是直线AC 下方抛物线上的一个动点,过点P 作BC 的平行线l ,交线段AC 于点D .①试探究:在直线l 上是否存在点E ,使得以点D ,C ,B ,E 为顶点的四边形为菱形,若存在,求出点E 的坐标;若不存在,请说明理由;②设抛物线的对称轴与直线l 交于点M ,与直线AC 交于点N .当DMN AOC S S =△△时,请直接写出DM 的长.参考答案:一、选择题1-5:BBADD6-10:CBCAC 二、填空题11. 12. ()2,3-13.5214.1001315.三、解答题16.(1)解:原式1 18(8)4 =⨯+-⨯()826=+-=.(2)①乘法分配律(或分配律)②五不等式两边都除以-5,不等号的方向没有改变(或不符合不等式的性质3)2x<17. 解:设这个最小数为x.根据题意,得()865 x x+=.解,得15x=,213x=-(不符合题意,舍去).答:这个最小数为5.18. 解:设走路线一到达太原机场需要x分钟.根据题意,得52530 37x x⨯=-.解,得25x=.经检验,25x=是原方程的解.答:走路线一到达太原机场需要25分钟.19.(1)120 50% (2)(3)解:不可行.理由:答案不唯一,如:由统计表可知,70%30%50%20%1+++>.即有意向参与比赛的人数占调查总人数的百分比之和大于1;或8460120+>,即有意向参与A 类与C 类的人数之和大于总人数120等. (4)解:列表如下:乙 甲C XQDC (),C C (),C X (),C Q (),CD X(),X C (),X X (),X Q (),X DQ(),Q C(),Q X(),Q Q(),Q DD(),D C (),D X (),D Q (),D D或画树状图如下:由列表(或画树状图)可知,总共有16种结果,每种结果出现的可能性都相同.其中甲,乙两名选手抽到的题目在同一组的结果有4种.所以,()41164P ==抽到的题目在同一组.20.(1)解:答案不唯一,如:图算法方便;直观;或不用公式计算即可得出结果等.(2)①解:当17.5R =,25R =时,12111117.5517.557.553R R R +=+=+==⨯.∴3R =.②解:过点A 作//AM CO ,交BO 的延长线于点M .∵OC 平分AOB ∠,∴11121206022AOB ∠=∠=∠=⨯︒=︒.∵//AM CO ,∴3260∠=∠=︒,160M ∠=∠=︒. ∴360M ∠=∠=︒,∴OA OM =. ∴OAM △为等边三角形, ∴7.5OM AM OA ===.∵B B ∠=∠,1M ∠=∠,∴BCO BAM △△.∴OC BOMA BM =.∴57.557.5OC =+,∴3OC =.21. 解:过点A 作AH EF ⊥于点H ,交直线DG 于点M .过点B 作BN DG ⊥于点N ,BP AH ⊥于点P .则四边形BNMP 和四边形DEHM 均为矩形, ∴PM BN =,5cm MH DE ==,∴//BP DG . ∴75CBP BCD ∠=∠=︒.∴1207545ABP ABC CBP ∠=∠-∠=︒-︒=︒.在Rt ABP △中,90APB ∠=︒,sin 45AP AB ︒=,∴2sin 451005022AP AB =⋅︒=⨯=在Rt BCN △中,90BNC ∠=︒,sin 75BNBC ︒=,∴sin75800.9777.6BN BC =⋅︒≈⨯=. ∴77.6PM BN ==.∴50277.6550 1.4177.65153.1AH AP PM MH =++=+≈⨯++=.答:指示牌最高点A 到地面EF 的距离为153.1cm . 22. 解:(1)EF BF =.证法一:如图①,分别延长AD ,BF 相交于点M . ∵四边形ABCD 是平行四边形,∴//AD BC .∴2C ∠=∠,1M ∠=∠. ∵F 为CD 的中点,∴DF CF =,∴MDF BCF ≅△△.∴FM FB =.即F 为BM 的中点,∴12BF BM =.∵BE AD ⊥,∴90BEM ∠=︒,∴在Rt BEM △中,12EF BM =.∴EF BF =.证法二:如图①,过点F 作FM EB ⊥于点M , 则90EMF ∠=︒.∵BE AD ⊥,∴90AEB ∠=︒. ∴AEB EMF ∠=∠,∴//AD FM .∵四边形ABCD 是平行四边形,∴//AD BC .∴////AD FM BC .∴EM DFMB FC =. ∵F 为CD 的中点,∴DF FC =,∴EM MB =. ∵FM EB ⊥,∴FM 垂直平分EB ,∴EF BF =.(2)AG BG =.证法一:如图②,由折叠可知:112'2CFC ∠=∠=∠,'FC FC =. ∵F 为CD 的中点,∴12FC FD CD==.∴'FC FD =.∴34∠=∠.∵'34CFC ∠=∠+∠,∴14'2CFC ∠=∠.∴41∠=∠.∴//DG FB . ∵四边形ABCD 为平行四边形,∴//DC AB,∴四边形DGBF 为平行四边形.∴BG DF =,∴12BG AB =,∴AG BG =.证法二:连接'CC 交FB 于N .由折叠可知:'FC FC =,'CC FB ⊥. ∴'90C NB ∠=︒.∵F 为CD 的中点,∴12FC FD CD==.∴'FC FD =.∴12∠=∠.∵'FC FC =.∴''FC C FCC ∠=∠. 在'DC C △中,1''180DC C DCC ∠+∠+∠=︒,∴12''180FC C FCC ∠+∠=∠+∠=︒.∴222'180FC C ∠+∠=︒. ∴2'90FC C ∠+∠=︒,∴'90DC C ∠=︒. ∴''DC C C NB ∠=∠.∴//DG FC . ∵四边形ABCD 是平行四边形,∴//DC AB.∴四边形DGBF 是平行四边形,∴BG FD =.∴12BG AB =.∴AG BG =.(3)223.23. 解:(1)当0y =时,212602x x +-=,解,得16x =-,22x =.∵点A 在点B 的左侧,∴点A 的坐标为()6,0-.点B 的坐标为()2,0.当0x =时,6y =-.∴点C 的坐标为()0,6-.直线AC 的函数表达式为:6y x =--. 直线BC 的函数表达式为:36y x =-. (2)存在.设点D 的坐标为(),6m m --,其中60m -<<. ∵点B ,点C 的坐标分别为()2,0,()0,6-.∴222(2)(6)BD m m =-++,2222640BC =+=,22222DC m m m =+=.∵//DE BC ,∴当DE BC =时,以D ,C ,B ,E 为顶点的四边形是平行四边形. ①如图①,当BD BC =时,BDEC 是菱形,∴()()222640m m -++=.解,得14m =-,20m =(舍去).∴点D 的坐标为()4,2--.∴点E 的坐标为()6,8--.②如图②,当CD CB =时,CBED 是菱形.∴2240m =.解,得125m =-,225m =(舍去),∴点D 的坐标为()25,256--.∴点E 的坐标为()225,25-.综上所述,存在点E ,使得以D ,B ,C ,E 为顶点的四边形为菱形,且点E 的坐标为()6,8--或()225,25-.(3)3102020年山西中考数学试题及答案第I 卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.计算1(6)3⎛⎫-÷- ⎪⎝⎭的结果是() A .18-B .2C .18D .2-2.自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()A .B .C .D .3.下列运算正确的是() A .2325a a a +=B .2842a a a -÷=C .()32628aa -=- D .3264312a a a ⋅=4.下列几何体都是由4个大小相同的小正方体组成的,其中主视图与左视图相同的几何体是()A .B .C .D .5.泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。
2024年山西省中考数学试卷(附答案)
![2024年山西省中考数学试卷(附答案)](https://img.taocdn.com/s3/m/3718895ba7c30c22590102020740be1e650ecc0e.png)
2024年山西省中考数学试卷(附答案)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)中国空间站位于距离地面约400km的太空环境中.由于没有大气层保护,在太阳光线直射下,空间站表面温度可高于零上150℃,其背阳面温度可低于零下100℃.若零上150℃记作+150℃,则零下100℃记作()A.+100℃B.﹣100℃C.+50℃D.﹣50℃【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以,若零上150℃记作+150℃,则零下100℃记作﹣100℃.故选:B.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.2.(3分)1949年,伴随着新中国的诞生,中国科学院(简称“中科院”)成立.下列是中科院部分研究所的图标,其文字上方的图案是中心对称图形的是()A.山西煤炭化学研究所B.东北地理与农业生态研究所C.西安光学精密机械研究所D.生态环境研究中心【分析】根据中心对称图形的定义解答即可.【解答】解:A中的图形是中心对称图形,符合题意;B、C、D中的图形不是中心对称图形,不符合题意.故选:A.【点评】本题考查的是中心对称图形,熟知把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形是解题的关键.3.(3分)下列运算正确的是()A.2m+n=2mn B.m6÷m2=m3C.(﹣mn)2=﹣m2n2D.m2•m3=m5【分析】根据合并同类项的法则,同底数幂的乘法与除法法则,幂的乘方与积的乘方法则对各选项进行逐一计算即可.【解答】解:A、2m与n不是同类项,不能合并,原计算错误,不符合题意;B、m6÷m2=m4,原计算错误,不符合题意;C、(﹣mn)2=m2n2,原计算错误,不符合题意;D、m2•m3=m5,正确,符合题意.故选:D.【点评】本题考查的是合并同类项,同底数幂的乘法与除法,幂的乘方与积的乘方,熟知以上运算法则是解题的关键.4.(3分)斗拱是中国古典建筑上的重要部件.如图是一种斗形构件“三才升”的示意图及其主视图,则它的左视图为()A.B.C.D.【分析】左视图是从物体左面看所得到的图形.【解答】解:从左面看,上面部分是矩形,下面部分是梯形,矩形部分有一条看不见的线,应该画虚线,故选:C.【点评】本题考查了三视图的概念,要注意看不见的线应当画虚线.5.(3分)一只杯子静止在斜面上,其受力分析如图所示,重力G的方向竖直向下,支持力F1的方向与斜面垂直,摩擦力F2的方向与斜面平行.若斜面的坡角α=25°,则摩擦力F2与重力G方向的夹角β的度数为()A.155°B.125°C.115°D.65°【分析】根据平行线的性质得到∠3=90°,根据三角形的内角和定理得到∠α+∠1=90°,求得∠2=∠1=90°﹣25°=65°,根据平行线的性质即可得到结论.【解答】解:如图,∵支持力F1的方向与斜面垂直,摩擦力F2的方向与斜面平行,∴∠3=90°,∵重力G的方向竖直向下,∴∠α+∠1=90°,∴∠2=∠1=90°﹣25°=65°,∵摩擦力F2的方向与斜面平行,∴∠β+∠2=180°,∴∠β=180°﹣∠2=180°﹣65°=115°,故选:C.【点评】本题考查了平行线的性质,正确地识别图形是解题的关键.6.(3分)已知点A(x1,y1),B(x2,y2)都在正比例函数y=3x的图象上,若x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.y1≥y2【分析】根据一次函数的图象和性质即可解决问题.【解答】解:因为正比例函数y=3x的比例系数是3>0,所以y随x的增大而增大.又因为x1<x2,所以y1<y2.故选:B.【点评】本题主要考查了一次函数图象上点的坐标特征,熟知一次函数的图象和性质是解题的关键.7.(3分)如图,已知△ABC,以AB为直径的⊙O交BC于点D,与AC相切于点A,连接OD.若∠AOD =80°,则∠C的度数为()A.30°B.40°C.45°D.50°【分析】先根据圆周角定理得出∠B的度数,再由⊙O与AC相切,得出∠BAC=90°,据此可解决问题.【解答】解:∵,∴∠B=.∵以AB为直径的⊙O与AC相切于点A,∴∠BAC=90°,∴∠C=90°﹣40°=50°.故选:D.【点评】本题主要考查了切线的性质及圆周角定理,熟知圆周角定理及切线的性质是解题的关键.8.(3分)一个不透明的盒子里装有一个红球、一个白球和一个绿球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后不放回,再从中随机摸出一个球,则两次摸到的球恰好有一个红球的概率是()A.B.C.D.【分析】列表可得出所有等可能的结果数以及两次摸到的球恰好有一个红球的结果数,再利用概率公式可得出答案.【解答】解:列表如下:红白绿红(红,白)(红,绿)白(白,红)(白,绿)绿(绿,红)(绿,白)共有6种等可能的结果,其中两次摸到的球恰好有一个红球的结果有:(红,白),(红,绿),(白,红),(绿,红),共4种,∴两次摸到的球恰好有一个红球的概率为.故选:B.【点评】本题考查列表法与树状图法和概率公式,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.9.(3分)生物学研究表明,某种蛇在一定生长阶段,其体长y(cm)是尾长x(cm)的一次函数,部分数据如下表所示,则y与x之间的关系式为()尾长(cm)6810体长y(cm)45.560.575.5A.y=7.5x+0.5B.y=7.5x﹣0.5C.y=15x D.y=15x+45.5【分析】根据题意可设y=kx+b,利用待定系数法求出k,b即得x、y之间的函数关系式.【解答】解:蛇的长度y(cm)是其尾长x(cm)的一次函数,设y=kx+b,把x=6时,y=45.5;x=8时,y=60.5代入得,解得,∴y与x之间的关系式为y=7.5x+0.5.故选:A.【点评】本题主要考查用待定系数法求一次函数关系式,一次函数图象上点的坐标特征,熟练掌握待定系数法是解题的关键.10.(3分)在四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点,EG,FH交于点O.若四边形ABCD的对角线相等,则线段EG与FH一定满足的关系为()A.互相垂直平分B.互相平分且相等C.互相垂直且相等D.互相垂直平分且相等【分析】根据题意画出示意图,得出中点四边形的形状与原四边形对角线之间的关系即可解决问题.【解答】解:如图所示,连接BD,AC,∵点H和点E分别是AD和AB的中点,∴HE是△ABD的中位线,∴HE=.同理可得,GF=,∴HE=GF,HE∥GF,∴四边形HEFG是平行四边形.∵HE=,HG=,且AC=BD,∴HE=HG,∴平行四边形HEFG是菱形,∴EG与HF互相垂直平分.故选:A.【点评】本题主要考查了中点四边形、菱形的判定与性质及三角形的中位线定理,能根据三角形的中位线定理得出四边形ABCD的中点四边形是平行四边形及熟知菱形的判定与性质是解题的关键.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)比较大小:>2(填“>”、“<”或“=”).【分析】根据>即可推出>2.【解答】解:∵>,∴>2,故答案为:>.【点评】本题考查了实数的大小比较的应用,主要考查学生的比较能力.12.(3分)黄金分割是汉字结构最基本的规律.借助如图的正方形习字格书写的汉字“晋”端庄稳重、舒展美观.已知一条分割线的端点A,B分别在习字格的边MN,PQ上,且AB∥NP,“晋”字的笔画“、”的位置在AB的黄金分割点C处,且,若NP=2cm,则BC的长为()cm(结果保留根号).【分析】根据题意可得出四边形ANPB是矩形,进而得出AB的长,再根据BC与AB的比值即可解决问题.【解答】解:∵四边形MNPQ是正方形,∴∠N=∠P=90°,又∵AB∥NP,∴∠BAN+∠N=180°,∴∠BAN=90°,∴四边形ABPN是矩形,∴AB=NP=2cm.又∵,∴BC=()cm.故答案为:().【点评】本题主要考查了黄金分割及平行线的性质,熟知黄金分割的定义及平行线的性质是解题的关键.13.(3分)机器狗是一种模拟真实犬只形态和部分行为的机器装置,其最快移动速度v(m/s)是载重后总质量m(kg)的反比例函数.已知一款机器狗载重后总质量m=60kg时,它的最快移动速度v=6m/s;当其载重后总质量m=90kg时,它的最快移动速度v=4m/s.【分析】利用待定系数法求出反比例函数解析式,后再将m=90代入计算即可.【解答】解:设反比例函数解析式为v=,∵机器狗载重后总质量m=60kg时,它的最快移动速度v=6m/s;∴k=60×6=360,∴反比例函数解析式为v=,当m=90kg时,v==4(m/s),答:当其载重后总质量m=90kg时,它的最快移动速度v=4m/s.故答案为:4.【点评】本题考查了反比例函数的应用,待定系数法求反比例函数解析式是关键.14.(3分)如图1是小区围墙上的花窗,其形状是扇形的一部分,图2是其几何示意图(阴影部分为花窗).通过测量得到扇形AOB的圆心角为90°,OA=1m,点C,D分别为OA,OB的中点,则花窗的面积为m2.【分析】用扇形的面积减去△COD的面积即可解决问题.【解答】解:由题知,(m2),∵点C,D分别是OA,OB的中点,∴OC=OD=(m),∴(m2),∴花窗的面积为()m2故答案为:().【点评】本题主要考查了扇形面积的计算,熟知扇形的面积公式是解题的关键.15.(3分)如图,在▱ABCD中,AC为对角线,AE⊥BC于点E,点F是AE延长线上一点,且∠ACF=∠CAF,线段AB,CF的延长线交于点G.若AB=,AD=4,tan∠ABC=2,则BG的长为.【分析】方法一:过点F作FH⊥AC于H,延长AD与GC的延长线交于K,由tan∠ABC==2得AE=2BE,进而得BE=1,AE=2,则CE=3,AC=,再由∠ACF=∠CAF得FA=FC,则AH=CH=,由S△F AC=AC•FH=AF•CE,得FH=,在Rt△AFH中由勾股定理得AF=,则EF=AF﹣AE=,证明△FCE∽△FKA得AK=,则DK=AK﹣AD=,再证明△KDC ∽△KAG得AG=,由此可得BG的长.方法二:过点G作GH⊥BC,交CB的延长线于H,先求出BE=1,AE=2,CE=3,设EF=a,则AF =CF=2+a,由勾股定理求出a=,根据∠GBH=∠ABC得GH=2HB,设HB=b,则GH=2b,CH=BC+HB=4+b,GB=,证明△CEF∽△CHG得b=,由此可得GH的长.【解答】解法一:过点F作FH⊥AC于H,延长AD与GC的延长线交于K,如下图所示:∵四边形ABCD为平行四边形,∴AB=CD=,BC=AD=4,AB∥CD,BC∥AD,又∵AE⊥BC,在Rt△ABE中,tan∠ABC==2,∴AE=2BE,由勾股定理得:AE2+BE2=AB2,即(2BE)2+BE2=()2,∴BE=1,∴AE=2BE=2,∴CE=BC﹣BE=3,在Rt△ACE中,由勾股定理得:AC==,∵∠ACF=∠CAF,∴FA=FC,∵FH⊥AC,∴AH=CH=AC=,=AC•FH=AF•CE,∵S△F AC∴FH=,在Rt△AFH中,由勾股定理得:AF2﹣FH2=AH2,即,∴AF=,∴EF=AF﹣AE=,∵BC∥AD,∴△FCE∽△FKA,∴EF:AF=CE:AK,即,∴AK=,∴DK=AK﹣AD=,∵AB∥CD,∴△KDC∽△KAG,∴DK:AK=CD:AG,即,∴AG=,∴BG=AG﹣AB=.故答案为:.解法二:过点G作GH⊥BC,交CB的延长线于H,如下图所示:∵四边形ABCD为平行四边形,∴AB=CD=,BC=AD=4,AB∥CD,BC∥AD,又∵AE⊥BC在Rt△ABE中,tan∠ABC==,∴AE=2BE,由勾股定理得:AE2+BE2=AB2,即(2BE)2+BE2=()2,∴BE=1,∴AE=2BE=2,∴CE=BC﹣BE=3,设EF=a,则AF=AE+EF=2+a,∵∠ACF=∠CAF,∴AF=CF=2+a,在Rt△CEF中,由勾股定理得:CF2=CE2+EF2,即(2+a)2=32+a2,解得:a=,∵∠GBH=∠ABC,∴在Rt△GBH中,tan∠GBH=,∴GH=2HB,设HB=b,则GH=2b,CH=BC+HB=4+b,在Rt△GBH中,由勾股定理得:GB=,∵GH⊥BC,AF⊥BC,∴EF∥GH,∴△CEF∽△CHG,∴CE:CH=EF:GH,即3:(4+b)=:2b,解得:b=,∴GH==,故答案为:.【点评】此题主要考查了平行四边形的性质,解直角三角形的应用,相似三角形的判定和性质,熟练掌握平行四边形的性质,锐角三角函数的定义是解决问题的关键,正确地添加辅助线构造相似三角形,并利用相似三角形的性质进行计算是解决问题的难点.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(10分)(1)计算:(﹣6)×﹣()﹣2+[(﹣3)+(﹣1)];(2)化简(+)÷.【分析】(1)先算括号里面的,再算乘法,负整数指数幂,最后算加减即可;(2)先算括号里面的,再把除法化为乘法,最后约分即可.【解答】解:(1)(﹣6)×﹣()﹣2+[(﹣3)+(﹣1)]=(﹣6)×﹣()﹣2+(﹣3﹣1)=(﹣6)×﹣()﹣2﹣4=﹣2﹣4﹣4=﹣10;(2)(+)÷==•=.【点评】本题考查的是分式的混合运算,有理数的混合运算及负整数指数幂,熟知运算法则是解题的关键.17.(7分)为加强校园消防安全,学校计划购买某种型号的水基灭火器和干粉灭火器共50个.其中水基灭火器的单价为540元/个,干粉灭火器的单价为380元/个.若学校购买这两种灭火器的总价不超过21000元,则最多可购买这种型号的水基灭火器多少个?【分析】设可购买这种型号的水基灭火器x个,则购买干粉灭火器(50﹣x)个,根据学校购买这两种灭火器的总价不超过21000元,列出一元一次不等,解不等式即可.【解答】解:设可购买这种型号的水基灭火器x个,则购买干粉灭火器(50﹣x)个,根据题意得:540x+380(50﹣x)≤21000,解得:x≤12.5,∵x为整数,∴x取最大值为12,答:最多可购买这种型号的水基灭火器12个.【点评】本题考查了一元一次不等式的应用,找出数量关系,正确列出一元一次不等式是解题的关键.18.(10分)为激发青少年崇尚科学、探索未知的热情,学校开展“科学小博士”知识竞赛.各班以小组为单位组织初赛,规定满分为10分,9分及以上为优秀.数据整理:小夏将本班甲、乙两组同学(每组8人)初赛的成绩整理成如下的统计图.数据分析:小夏对这两个小组的成绩进行了如下分析:平均数(分)中位数(分)众数(分)方差优秀率甲组7.625a7 4.4837.5%乙组7.6257b0.73c请认真阅读上述信息,回答下列问题:(1)填空:a=7.5,b=7,c=25%;(2)小祺认为甲、乙两组成绩的平均数相等,因此两个组成绩一样好.小夏认为小祺的观点比较片面,请结合上表中的信息帮小夏说明理由(写出两条即可).【分析】(1)根据中位数,众数和优秀率的定义和计算公式计算即可;(2)从优秀率,中位数,众数和方差等角度中选出两个进行分析即可.【解答】解:(1)a==7.5(分),b=7(分),c=×100%=25%,故答案为:7.5;7;25%.(2)小祺的观点比较片面.理由不唯一,例如:①甲组成绩的优秀率为37.5%,高于乙组成绩的优秀率25%,∴从优秀率的角度看,甲组成绩比乙组好;②甲组成绩的中位数为7.5,高于乙组成绩的中位数,∴从中位数的角度看,甲组成绩比乙组好;因此不能仅从平均数的角度说明两组成绩一样好,可见,小祺的观点比较片面.【点评】本题考查的是方差,加权平均数,中位数和众数,熟练掌握上述知识点是解题的关键.19.(7分)当下电子产品更新换代速度加快,废旧智能手机数量不断增加.科学处理废旧智能手机,既可减少环境污染,还可回收其中的可利用资源.据研究,从每吨废旧智能手机中能提炼出的白银比黄金多760克.已知从2.5吨废旧智能手机中提炼出的黄金,与从0.6吨废旧智能手机中提炼出的白银克数相等.求从每吨废旧智能手机中能提炼出黄金与白银各多少克.【分析】设从每吨废旧智能手机中能提炼出黄金x克,白银y克,根据从每吨废旧智能手机中能提炼出的白银比黄金多760克.从2.5吨废旧智能手机中提炼出的黄金,与从0.6吨废旧智能手机中提炼出的白银克数相等.列出二元一次方程组,解方程组即可.【解答】解:设从每吨废旧智能手机中能提炼出黄金x克,白银y克,根据题意得:,解得:,即从每吨废旧智能手机中能提炼出黄金240克,白银1000克.答:从每吨废旧智能手机中能提炼出黄金240克,白银1000克.【点评】本题主要考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(7分)研学实践:为重温解放军东渡黄河“红色记忆”,学校组织研学活动.同学们来到毛主席东渡黄河纪念碑所在地,在了解相关历史背景后,利用航模搭载的3D扫描仪采集纪念碑的相关数据.数据采集:如图,点A是纪念碑顶部一点,AB的长表示点A到水平地面的距离.航模从纪念碑前水平地面的点M处竖直上升,飞行至距离地面20米的点C处时,测得点A的仰角∠ACD=18.4°;然后沿CN方向继续飞行,飞行方向与水平线的夹角∠NCD=37°,当到达点A正上方的点E处时,测得AE =9米;…数据应用:已知图中各点均在同一竖直平面内,E,A,B三点在同一直线上.请根据上述数据,计算纪念碑顶部点A到地面的距离AB的长(结果精确到1米.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin18.4°≈0.32,cos18.4°≈0.95,tan18.4°≈0.33).【分析】延长CD交AB于点H,根据矩形的性质得到CM=HB=20,解直角三角形即可得到结论.【解答】解:延长CD交AB于点H,由题意得,四边形CMBH为矩形,∴CM=HB=20,在Rt△ACH中,∠AHC=90°,∠ACH=18.4°,∴,∴,在Rt△ECH中,∠EHC=90°,∠ECH=37°,∴,∴,设AH=x.∵AE=9,∴EH=x+9,∴,解得x≈7.1,∴AB=AH+HB≈7.1+20=27.1≈27(米)答:点A到地面的距离AB的长约为27米.【点评】本题考查解直角三角形的应用—仰角俯角问题、锐角三角函数,解答本题的关键是明确题意,利用数形结合的思想解答.21.(9分)阅读与思考下面是博学小组研究性学习报告的部分内容,请认真阅读,并完成相应任务.关于“等边半正多边形”的研究报告博学小组研究对象:等边半正多边形研究思路:类比三角形、四边形,按“概念﹣性质﹣判定”的路径,由一般到特殊进行研究.研究方法:观察(测量、实验)﹣猜想﹣推理证明研究内容:【一般概念】对于一个凸多边形(边数为偶数),若其各边都相等,且相间的角相等、相邻的角不相等,我们称这个凸多边形为等边半正多边形.如图1,我们学习过的菱形(正方形除外)就是等边半正四边形,类似地,还有等边半正六边形、等边半正八边形…【特例研究】根据等边半正多边形的定义,对等边半正六边形研究如下:概念理解:如图2,如果六边形ABCDEF是等边半正六边形,那么AB=BC=CD=DE=EF=FA,∠A=∠C=∠E,∠B=∠D=∠F,且∠A≠∠B.性质探索:根据定义,探索等边半正六边形的性质,得到如下结论:内角:等边半正六边形相邻两个内角的和为▲°.对角线:…任务:(1)直接写出研究报告中“▲”处空缺的内容:240.(2)如图3,六边形ABCDEF是等边半正六边形.连接对角线AD,猜想∠BAD与∠FAD的数量关系,并说明理由;(3)如图4,已知△ACE是正三角形,⊙O是它的外接圆.请在图4中作一个等边半正六边形ABCDEF (要求:尺规作图,保留作图痕迹,不写作法).【分析】(1)六边形内角和为720°,由等边半正六边形的定义即可得出相邻两内角和为240°;(2)连接BD,FD,通过全等很容易证出∠BAD=∠FAD;(3)作AC、CE、AE的垂直平分线,在圆内线上取一点或者圆外取一点都行,切记不能取圆上,否则就是正六边形了.【解答】解:(2)∠BAD=∠FAD.理由如下:连接BD,FD.∵六边形ABCDEF是等边半正六边形.∴AB=BC=CD=DE=EF=FA,∠C=∠E.∴△BCD≌△FED.∴BD=FD.在△ABD与△AFD中,∴△BAD≌△FAD.∴∠BAD=∠FAD.(3)答案不唯一,作法一:作法二:如图,六边形ABCDEF即为所求.【点评】本题主要考查圆综合题,以等边半正六边形为背景,理解题意以及掌握圆和多边形的相关性质是解题关键.22.(12分)综合与实践问题情境:如图1,矩形MNKL是学校花园的示意图,其中一个花坛的轮廓可近似看成由抛物线的一部分与线段AB组成的封闭图形,点A,B在矩形的边MN上.现要对该花坛内种植区域进行划分,以种植不同花卉,学校面向全体同学征集设计方案.方案设计:如图2,AB=6米,AB的垂直平分线与抛物线交于点P,与AB交于点O,点P是抛物线的顶点,且PO=9米.欣欣设计的方案如下:第一步:在线段OP上确定点C,使∠ACB=90°,用篱笆沿线段AC,BC分隔出△ABC区域,种植串串红;第二步:在线段CP上取点F(不与C,P重合),过点F作AB的平行线,交抛物线于点D,E.用篱笆沿DE,CF将线段AC,BC与抛物线围成的区域分隔成三部分,分别种植不同花色的月季.方案实施:学校采用了欣欣的方案,在完成第一步△ABC区域的分隔后,发现仅剩6米篱笆材料.若要在第二步分隔中恰好用完6米材料,需确定DE与CF的长.为此,欣欣在图2中以AB所在直线为x 轴,OP所在直线为y轴建立平面直角坐标系.请按照她的方法解决问题:(1)在图2中画出坐标系,并求抛物线的函数表达式;(2)求6米材料恰好用完时DE与CF的长;(3)种植区域分隔完成后,欣欣又想用灯带对该花坛进行装饰,计划将灯带围成一个矩形.她尝试借助图2设计矩形四个顶点的位置,其中两个顶点在抛物线上,另外两个顶点分别在线段AC,BC上.直接写出符合设计要求的矩形周长的最大值.【分析】(1)由待定系数法即可求解;(2)在Rt△ABC中,∠ACB=90°,OA=OB,则,得到CF=OF﹣OC=﹣m2+9﹣3=﹣m2+6,即可求解;(3)由矩形周长=2(GH+GL)=2(﹣2m﹣m2+9﹣m﹣3)=﹣(m+1.5)2+≤,即可求解.【解答】解:(1)建立如图所示的平面直角坐标系,∵OP所在直线是AB的垂直平分线,且AB=6,∴.∴点B的坐标为(3,0),∵OP=9,∴点P的坐标为(0,9),∵点P是抛物线的顶点,∴设抛物线的函数表达式为y=ax2+9,∵点B(3,0)在抛物线y=ax2+9上,∴9a+9=0,解得:a=﹣1.∴抛物线的函数表达式为y=﹣x2+9(﹣3≤x≤3);(2)点D,E在抛物线y=﹣x2+9上,∴设点E的坐标为(m,﹣m2+9),∵DE∥AB,交y轴于点F,∴DF=EF=m,OF=﹣m2+9,∴DE=2m.∵在Rt△ABC中,∠ACB=90°,OA=OB,∴.∴CF=OF﹣OC=﹣m2+9﹣3=﹣m2+6,根据题息,得DE+CF=6,∴﹣m2+6+2m=6,解得:m1=2,m=0(不符合题意,舍去),∴m=2.∴DE=2m=4,CF=﹣m2+6=2答:DE的长为4米,CF的长为2米;(3)如图矩形灯带为GHML,由点A、B、C的坐标得,直线AC和BC的表达式分别为:y=x+3,y=﹣x+3,设点G(m,﹣m2+9)、H(﹣m,﹣m2+9)、L(m,m+3)、M(﹣m,m+3),则矩形周长=2(GH+GL)=2(﹣2m﹣m2+9﹣m﹣3)=﹣(m+1.5)2+≤,故矩形周长的最大值为米.【点评】本题考查的是二次函数综合运用,主要涉及到二次函数的图象和性质、矩形的性质,理解题意,建立适当坐标系求出函数表达式是解题的关键.23.(13分)综合与探究问题情境:如图1,四边形ABCD是菱形,过点A作AE⊥BC于点E,过点C作CF⊥AD于点F.猜想证明:(1)判断四边形AECF的形状,并说明理由;深入探究:(2)将图1中的△ABE绕点A逆时针旋转,得到△AHG,点E,B的对应点分别为点G,H.①如图2,当线段AH经过点C时,GH所在直线分别与线段AD,CD交于点M,N.猜想线段CH与MD的数量关系,并说明理由;②当直线GH与直线CD垂直时,直线GH分别与直线AD,CD交于点M,N,直线AH与线段CD交于点Q.若AB=5,BE=4,直接写出四边形AMNQ的面积.【分析】(1)根据矩形的判定方法(有三个角是直角的四边形是矩形)很容易证出;(2)①方法一可先证△HAM≌△DAC,得出AM=AC,减去公共边得出CH=MD.方法二证△CDH ≌△MHD,可直接得出CH=MD;②对于旋转的存在性问题,首先分类讨论,根据情况画出草图,再利用旋转的性质以及锐角三角函数或相似进行计算即可,需要主要的是四边形AMNQ的面积是不规则,需要用去用三角形面积的和差解决.【解答】解:(1)四边形AECF为矩形.理由如下:∵AE⊥BC,CF⊥AD,∴∠AEC=90°,∠AFC=90°,∵四边形ABCD为菱形,∴AD∥BC,∴∠AFC+∠ECF=180°,∠ECF=180°﹣∠AFC=90°∴四边形AECF为矩形.(2)①CH=MD.理由如下:证法一:∵四边形ABCD为菱形,∴AB=AD,∠B=∠D.∵△ABE旋转得到△AHG,∴AB=AH,∠B=∠H.∴AH=AD,∠H=∠D.∵∠HAM=∠DAC,∴△HAM≌△DAC,∴AM=AC,∴AH﹣AC=AD﹣AM,∴CH=MD.证法二:如图,连接HD.∵四边形ABCD为菱形,∴AB=AD,∠B=∠ADC,∵△ABE旋转得到△AHG,∴AB=AH,∠B=∠AHM,∴AH=AD,∠AHM=∠ADC,∴∠AHD=∠ADH,∴∠AHD﹣∠AHM=∠ADH﹣∠ADC,∴∠MHD=∠CDH,∵DH=HD,∴△CDH≌△MHD,∴CH=MD.②情况一:如图,当点G旋转至BA的延长线上时,GH⊥CD,此时S四边形AMNQ=.∵AB=5,BE=4,∴由勾股定理可得AE=3,∵△ABE旋转到△AHG,∴AG=AE=3,GH=BE=4,∠H=∠B,∵GN⊥CD,∴GN=AE=3,∴NH=1,∵AD∥BC,∴∠GAM=∠B,∴tan∠GAM=tan∠B,即,解得GM=,则MH=,∵tan∠H=tan∠B,∴在Rt△QNH中,QN=,=S△AMH﹣S△QNH=MH•AG﹣NH•QN=.∴S四边形AMNQ=.情况二:如图,当点G旋转至BA上时,GH⊥CD,此时S四边形AMNQ同第一种情况的计算思路可得:NH=7,QN=,AG=3,MH=,=S△QNH﹣S△AMH=NH•QN﹣MH•AG=.∴S四边形AMNQ综上,四边形AMNQ的面积为或.。
2022年山西省中考数学试卷(含答案)
![2022年山西省中考数学试卷(含答案)](https://img.taocdn.com/s3/m/2c6511396ad97f192279168884868762caaebbde.png)
2022年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)(2022•山西)﹣6的相反数为()A.6B.C.D.﹣62.(3分)(2022•山西)2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度.下列航天图标,其文字上方的图案是中心对称图形的是()A.B.C.D.3.(3分)(2022•山西)粮食是人类赖以生存的重要物质基础.2021年我国粮食总产量再创新高,达68285万吨.该数据可用科学记数法表示为()A.6.8285×104吨B.68285×104吨C.6.8285×107吨D.6.8285×108吨4.(3分)(2022•山西)神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()A.平移B.旋转C.轴对称D.黄金分割5.(3分)(2022•山西)不等式组的解集是()A.x≥1B.x<2C.1≤x<2D.x<6.(3分)(2022•山西)如图,Rt△ABC是一块直角三角板,其中∠C=90°,∠BAC=30°.直尺的一边DE经过顶点A,若DE∥CB,则∠DAB的度数为()A.100°B.120°C.135°D.150°7.(3分)(2022•山西)化简﹣的结果是()A.B.a﹣3C.a+3D.8.(3分)(2022•山西)如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD的度数是()A.60°B.65°C.70°D.75°9.(3分)(2022•山西)“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大寒”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是()A.B.C.D.10.(3分)(2022•山西)如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在上的点C处,图中阴影部分的面积为()A.3π﹣3B.3π﹣C.2π﹣3D.6π﹣二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)(2022•山西)计算:×的结果为.12.(3分)(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图象如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.13.(3分)(2022•山西)生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多.为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:μmol•m﹣2•s﹣1),结果统计如下:品种第一株第二株第三株第四株第五株平均数甲323025182025乙282526242225则两个大豆品种中光合作用速率更稳定的是(填“甲”或“乙”).14.(3分)(2022•山西)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价元.15.(3分)(2022•山西)如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD 的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN⊥EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(10分)(2022•山西)(1)计算:(﹣3)2×3﹣1+(﹣5+2)+|﹣2|;(2)解方程组:.17.(8分)(2022•山西)如图,在矩形ABCD中,AC是对角线.(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD于点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母).(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.18.(7分)(2022•山西)2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势.经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.19.(8分)(2022•山西)首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代•奋进新征程”.某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):××中学学生读书情况调查报告××中学学生读书情况调查主题调查抽样调查调查对象××中学学生方式数据的收集、整理与描述第一项您平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)A.8小时及以上;B.6~8小时;C.4~6小时;D.0~4小时.第二项您阅读的课外书的主要来源是(可多选)E.自行购买;F.从图书馆借阅;G.免费数字阅读;H.向他人借阅.……调查结论请根据以上调查报告,解答下列问题:(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.20.(8分)(2022•山西)阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务.用函数观点认识一元二次方程根的情况我们知道,一元二次方程ax2+bx+c=0(a≠0)的根就是相应的二次函数y=ax2+bx+c(a ≠0)的图象(称为抛物线)与x轴交点的横坐标.抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x轴的交点个数确定一元二次方程根的情况.下面根据抛物线的顶点坐标(﹣,)和一元二次方程根的判别式Δ=b2﹣4ac,分别分a>0和a<0两种情况进行分析:(1)a>0时,抛物线开口向上.①当Δ=b2﹣4ac>0时,有4ac﹣b2<0.∵a>0,∴顶点纵坐标<0.∴顶点在x轴的下方,抛物线与x轴有两个交点(如图1).②当Δ=b2﹣4ac=0时,有4ac﹣b2=0.∵a>0,∴顶点纵坐标=0.∴顶点在x轴上,抛物线与x轴有一个交点(如图2).∴一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根.③当Δ=b2﹣4ac<0时,……(2)a<0时,抛物线开口向下.……任务:(1)上面小论文中的分析过程,主要运用的数学思想是(从下面选项中选出两个即可);A.数形结合B.统计思想C.分类讨论D.转化思想(2)请参照小论文中当a>0时①②的分析过程,写出③中当a>0,Δ<0时,一元二次方程根的情况的分析过程,并画出相应的示意图;(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识.例如:可用函数观点来认识一元一次方程的解.请你再举出一例为.21.(8分)(2022•山西)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24m到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB 与CD之间的距离AC的长(结果精确到1m.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.73).22.(13分)(2022•山西)综合与实践问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF =90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N.猜想证明:(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN 的形状,并说明理由;问题解决:(2)如图②,在三角板旋转过程中,当∠B=∠MDB时,求线段CN的长;(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.23.(13分)(2022•山西)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.2022年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)(2022•山西)﹣6的相反数为()A.6B.C.D.﹣6【分析】根据相反数的定义:只有符号不同的两个数叫相反数,可以直接得到答案.【解答】解:﹣6的相反数是:6,故选:A.【点评】此题主要考查了相反数的定义,同学们要熟练掌握相反数的定义.2.(3分)(2022•山西)2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度.下列航天图标,其文字上方的图案是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义进行判断,即可得出答案.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【解答】解:选项A、C、D均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,选项B能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形,故选:B.【点评】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3.(3分)(2022•山西)粮食是人类赖以生存的重要物质基础.2021年我国粮食总产量再创新高,达68285万吨.该数据可用科学记数法表示为()A.6.8285×104吨B.68285×104吨C.6.8285×107吨D.6.8285×108吨【分析】将较大的数写成科学记数法形式:a×10n,其中1≤a<10,n为正整数即可.【解答】解:68285万吨=6.8285×104×104=6.8285×108(吨),故选:D.【点评】本题考查了科学记数法﹣表示较大的数,掌握a m•a n=a m+n是解题的关键.4.(3分)(2022•山西)神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()A.平移B.旋转C.轴对称D.黄金分割【分析】利用黄金分割比的意义解答即可.【解答】解:∵每圈螺纹的直径与相邻螺纹直径的比约为0.618,又黄金分割比为≈0.618,∴其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的黄金分割,故选:D.【点评】本题主要考查了数学与自然界与数学知识的联系,熟悉线段的黄金分割是解题的关键.5.(3分)(2022•山西)不等式组的解集是()A.x≥1B.x<2C.1≤x<2D.x<【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式2x+1≥3,得:x≥1,解不等式4x﹣1<7,得:x<2,则不等式组的解集为1≤x<2,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(3分)(2022•山西)如图,Rt△ABC是一块直角三角板,其中∠C=90°,∠BAC=30°.直尺的一边DE经过顶点A,若DE∥CB,则∠DAB的度数为()A.100°B.120°C.135°D.150°【分析】先根据平行线的性质求得∠DAC的度数,再根据角的和差关系求得结果.【解答】解:∵DE∥CB,∠C=90°,∴∠DAC=∠C=90°,∵∠BAC=30°,∴∠DAB=∠DAC+∠BAC=120°,故答案为:B.【点评】本题主要考查了平行线的性质以及三角形角和差计算,关键是利用平行线的性质求得∠DAC.7.(3分)(2022•山西)化简﹣的结果是()A.B.a﹣3C.a+3D.【分析】根据异分母分式的加减法法则,进行计算即可解答.【解答】解:﹣=﹣===,故选:A.【点评】本题考查了分式的加减法,熟练掌握异分母分式的加减法法则是解题的关键.8.(3分)(2022•山西)如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD的度数是()A.60°B.65°C.70°D.75°【分析】连接BD,根据直径所对的圆周角是直角可得∠ABD=90°,从而可求出∠CBD 的度数,然后利用同弧所对的圆周角相等即可解答.【解答】解:连接BD,∵AD是⊙O的直径,∴∠ABD=90°,∵∠ABC=20°,∴∠CBD=∠ABD﹣∠ABC=70°,∴∠CAD=∠CBD=70°,故选:C.【点评】本题考查了圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9.(3分)(2022•山西)“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大寒”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是()A.B.C.D.【分析】根据题意,可以画出相应的树状图,从而可以得到小乐抽到的两张邮票恰好是“立春”和“立夏”的概率.【解答】解:设立春用A表示,立夏用B表示,立秋用C表示,立冬用D表示,树状图如下,由上可得,一共有12种可能性,其中小乐抽到的两张邮票恰好是“立春”和“立夏”的可能性2种,∴小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是=,故选:C.【点评】本题考查列表法与树状图法,解答本题的关键是明确题意,画出相应的树状图.10.(3分)(2022•山西)如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在上的点C处,图中阴影部分的面积为()A.3π﹣3B.3π﹣C.2π﹣3D.6π﹣【分析】根据折叠的想找得到AC=AO,BC=BO,推出四边形AOBC是菱形,连接OC 交AB于D,根据等边三角形的性质得到∠CAO=∠AOC=60°,求得∠AOB=120°,根据菱形和扇形的面积公式即可得到结论.【解答】解:沿AB折叠扇形纸片,点O恰好落在上的点C处,∴AC=AO,BC=BO,∵AO=BO,∴四边形AOBC是菱形,连接OC交AB于D,∵OC=OA,∴△AOC是等边三角形,∴∠CAO=∠AOC=60°,∴∠AOB=120°,∵AC=3,∴OC=3,AD=AC=,∴AB=2AD=3,∴图中阴影部分的面积=S扇形AOB﹣S菱形AOBC=﹣3×3=3π﹣,故选:B.【点评】本题考查了扇形面积的计算,菱形的判定和性质,等边三角形的判定和性质,正确地作出辅助线是解题的关键.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)(2022•山西)计算:×的结果为3.【分析】按照二次根式的乘法法则计算即可.【解答】解:原式==3.故答案为:3.【点评】本题主要考查了二次根式的乘法运算.二次根式的运算法则:乘法法则=.12.(3分)(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图象如图所示.当S=0.25m2时,该物体承受的压强p的值为400Pa.【分析】设p=,把(0.1,1000)代入得到反比例函数的解析式,再把S=0.25代入解析式即可解决问题.【解答】解:设p=,∵函数图象经过(0.1,1000),∴k=100,∴p=,当S=0.25m2时,物体所受的压强p==400(Pa),故答案为:400.【点评】本题考查反比例函数的应用,待定系数法等知识,解题的关键是灵活应用待定系数法解决问题,属于中考常考题型.13.(3分)(2022•山西)生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多.为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:μmol•m﹣2•s﹣1),结果统计如下:品种第一株第二株第三株第四株第五株平均数甲323025182025乙282526242225则两个大豆品种中光合作用速率更稳定的是乙(填“甲”或“乙”).【分析】直接利用方差公式,进而计算得出答案.【解答】解:甲的方差为:=[(32﹣25)2+(30﹣25)2+(25﹣25)2+(18﹣25)2+(20﹣25)2]=29.6;乙的方差为:=[(28﹣25)2+(25﹣25)2+(26﹣25)2+(24﹣25)2+(22﹣25)2]=4.∵29.6>4,∴两个大豆品种中光合作用速率更稳定的是乙.故答案为:乙.【点评】此题考查了方差、平均数,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.(3分)(2022•山西)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价32元.【分析】设该护眼灯可降价x元,根据“以利润率不低于20%的价格降价出售”列一元一次不等式,求解即可.【解答】解:设该护眼灯可降价x元,根据题意,得,解得x≤32,故答案为:32.【点评】本题考查了一元一次不等式的应用,理解题意并根据题意建立一元一次不等式是解题的关键.15.(3分)(2022•山西)如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD 的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN⊥EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为4.【分析】连接AE,AF,EN,由正方形的性质可得AB=AD,BC=CD,∠ABE=∠BCD =∠ADF=90°,可证得△ABE≌△ADF(SAS),可得∠BAE=∠DAF,AE=AF,从而可得∠EAF=90°,根据等腰三角形三线合一可得点M为EF中点,由AN⊥EF可证得△AEM≌△AFM(SAS),△EMN≌△FMN(SAS),可得EN=FN,设DN=x,则EN=FN=x+5,CE=x+3,由勾股定理解得x=12,可得AB=CD=20,由勾股定理可得AE =5,从而可得AM=EM=FM=,由勾股定理可得MN=,即可求解.【解答】解:如图,连接AE,AF,EN,∵四边形ABCD为正方形,∴AB=AD,BC=CD,∠ABE=∠BCD=∠ADF=90°,∵BE=DF,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF,AE=AF,∴∠EAF=90°,∴△EAF为等腰直角三角形,∵AN⊥EF,∴EM=FM,∠EAM=∠F AM=45°,∴△AEM≌△AFM(SAS),△EMN≌△FMN(SAS),∴EN=FN,设DN=x,∵BE=DF=5,CN=8,∴CD=CN+DN=x+8,∴EN=FN=DN+DF=x+5,CE=BC﹣BE=CD﹣BE=x+8﹣5=x+3,在Rt△ECN中,由勾股定理可得:CN2+CE2=EN2,即82+(x+3)2=(x+5)2,解得:x=12,∴AB=CD=x+8=20,EN=x+5=17,在Rt△ABE中,由勾股定理可得:AE===5,∴AM=EM=FM==,在Rt△EMN中,由勾股定理可得:MN===,∴AN=AM+MN=+=4,故答案为:4.【点评】本题考查正方形的性质,勾股定理,等腰三角形的性质,全等三角形的判定与性质等知识点,解题的关键是正确作出辅助线,构建全等三角形解决问题.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(10分)(2022•山西)(1)计算:(﹣3)2×3﹣1+(﹣5+2)+|﹣2|;(2)解方程组:.【分析】(1)根据有理数的乘方,负整数指数幂,有理数的加法,绝对值计算即可;(2)根据加减消元法求解即可.【解答】解:(1)原式=9×+(﹣3)+2=3+(﹣3)+2=2;(2)①+②得:3x=9,∴x=3,将x=3代入②得:3+y=6,∴y=3,∴原方程组的解为.【点评】本题考查了实数的运算,有理数的乘方,负整数指数幂,绝对值,解二元一次方程组,解二元一次方程组的基本思路是消元,将二元方程转化为一元方程是解题的关键.17.(8分)(2022•山西)如图,在矩形ABCD中,AC是对角线.(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD于点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母).(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.【分析】(1)利用尺规作图﹣线段垂直平分线的作法,进行作图即可;(2)利用矩形的性质求证∠EAO=∠FCO,∠AEO=∠CFO,由线段的垂直平分线得出AO=CO,即可证明△AOE≌△COF,进而得出AE=CF.【解答】解:(1)如图,(2)AE=CF,证明如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,∵EF是AC的垂直平分线,∴AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴AE=CF.【点评】本题考查了基本作图,矩形的性质,全等三角形的判定与性质,熟练掌握线段垂直平分线的作法,矩形的性质,全等三角形的判定方法是解决问题的关键.18.(7分)(2022•山西)2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势.经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.【分析】原来的燃油汽车行驶1千米所需的油费(x+0.54)元,根据题意可得等量关系:燃油汽车所需油费200元所行使的路程×4=电动汽车所需电费200元所行使的路程,根据等量关系列出方程即可.【解答】解:设这款电动汽车平均每公里的充电费用为x元,根据题意,得,解得x=0.2,经检验,x=0.2是原方程的根,答:这款电动汽车平均每公里的充电费用为0.2元.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中等量关系,设出未知数,列出方程,注意不要忘记检验.19.(8分)(2022•山西)首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代•奋进新征程”.某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):××中学学生读书情况调查报告××中学学生读书情况调查主题抽样调查调查对象××中学学生调查方式数据的收集、整理与描述第一项您平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)A.8小时及以上;B.6~8小时;C.4~6小时;D.0~4小时.第二项您阅读的课外书的主要来源是(可多选)E.自行购买;F.从图书馆借阅;G.免费数字阅读;H.向他人借阅.……调查结论请根据以上调查报告,解答下列问题:(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.【分析】(1)由条形统计图和扇形统计图可得平均每周阅读课外书的时间大约是0~4小时的人数为33人,占抽样学生人数的11%,即可求解,由条形统计图可知从图书馆借阅的人数占总数人的62%,即可求解;(2)由扇形统计图可知平均每周阅读课外书时间在“8小时及以上”的人数占比为32%,即可求解;(3)由第一项可知阅读时间为“4~6小时”的人数最多,“0~4小时”的人数最少,由第二项可知阅读的课外书的主要来源中“从图书馆借阅”的人数最多,“向他人借阅”的人数最少等等.【解答】解:(1)∵平均每周阅读课外书的时间大约是0~4小时的人数为33人,占抽样学生人数的11%,∴参与本次抽样调查的学生人数为:33÷11%=300(人),∵从图书馆借阅的人数占总数人的62%,∴选择“从图书馆借阅”的人数为:300×62%=186(人),答:参与本次抽样调查的学生人数为300人,选择“从图书馆借阅”的人数为186人;(2)∵平均每周阅读课外书时间在“8小时及以上”的人数占比为32%,∴3600×32%=1152(人),答:该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数为1152人;(3)答案不唯一,如:由第一项可知:阅读时间为“4~6小时”的人数最多,“0~4小时”的人数最少,由第二项可知:阅读的课外书的主要来源中“从图书馆借阅”的人数最多,“向他人借阅”的人数最少.【点评】本题考查条形统计图,扇形统计图,用样本估计总体等知识点,解题的关键是掌握利用统计图提取所需信息.20.(8分)(2022•山西)阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务.用函数观点认识一元二次方程根的情况我们知道,一元二次方程ax2+bx+c=0(a≠0)的根就是相应的二次函数y=ax2+bx+c(a ≠0)的图象(称为抛物线)与x轴交点的横坐标.抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x轴的交点个数确定一元二次方程根的情况.下面根据抛物线的顶点坐标(﹣,)和一元二次方程根的判别式Δ=b2﹣4ac,分别分a>0和a<0两种情况进行分析:(1)a>0时,抛物线开口向上.①当Δ=b2﹣4ac>0时,有4ac﹣b2<0.∵a>0,∴顶点纵坐标<0.∴顶点在x轴的下方,抛物线与x轴有两个交点(如图1).②当Δ=b2﹣4ac=0时,有4ac﹣b2=0.∵a>0,∴顶点纵坐标=0.∴顶点在x轴上,抛物线与x轴有一个交点(如图2).∴一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根.③当Δ=b2﹣4ac<0时,……(2)a<0时,抛物线开口向下.。
山西初三数学试题及答案
![山西初三数学试题及答案](https://img.taocdn.com/s3/m/91a7016abb1aa8114431b90d6c85ec3a87c28b88.png)
山西初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?()A. 3.14159B. √2C. 0.33333D. 2/3答案:B2. 一个数的相反数是-5,那么这个数是()A. 5B. -5C. 0D. 10答案:A3. 一个二次方程的解是x=2和x=-3,那么这个二次方程可以表示为()A. x^2 - 5x + 6 = 0B. x^2 + 5x - 6 = 0C. x^2 - 5x - 6 = 0D. x^2 + 5x + 6 = 0答案:A4. 下列哪个图形是轴对称图形?()A. 平行四边形B. 梯形C. 菱形D. 不规则多边形答案:C5. 一个等腰三角形的底角是45°,那么顶角是()A. 45°B. 60°C. 75°D. 90°答案:D6. 一个函数y=kx+b的图象经过点(1,2)和(-1,0),那么k和b的值分别是()A. k=1, b=1B. k=-1, b=1C. k=1, b=-1D. k=-1, b=-1答案:B7. 一个圆的半径是5cm,那么它的周长是()A. 10π cmB. 20π cmC. 25π cmD. 30π cm答案:C8. 一个扇形的圆心角是60°,半径是10cm,那么它的面积是()A. 10π cm²B. 20π cm²C. 30π cm²D. 50π cm²答案:B9. 一个长方体的长、宽、高分别是a、b、c,那么它的体积是()A. abcB. ab+bc+acC. a²+b²+c²D. (a+b+c)²答案:A10. 一个数列的前三项分别是1、2、4,那么第四项是()A. 8B. 6C. 4D. 2答案:A二、填空题(每题3分,共30分)11. 一个数的绝对值是5,那么这个数可以是 _5_ 或 _-5_。
山西省2024年中考考试数学试卷(含答案)
![山西省2024年中考考试数学试卷(含答案)](https://img.taocdn.com/s3/m/87601e3a1fb91a37f111f18583d049649b660e29.png)
山西省2024年中考考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.中国空间站位于距离地面约400km的太空环境中.由于没有大气层保护,在太阳光线直射下,空间站表面温度可高于零上,其背阳面温度可低于零下.若零上记作,则零下记作( )A. B. C. D.2.1949年,伴随着新中国的诞生,中国科学院(简称“中科院”)成立.下列是中科院部分研究所的图标,其文字上方的图案是中心对称图形的是( )A.B.C.D.3.下列运算正确的是( )A. B. C. D.4.斗拱是中国古典建筑上的重要部件.如图是一种斗形构件“三才升”的示意图及其主视图,则它的左视图为( )A. B. C. D.5.一只杯子静止在斜面上,其受力分析如图所示,重力G的方向竖直向下,支持力的方向与料面垂直,摩擦力的方向与斜面平行.若斜面的坡角,则摩擦力与重力G方向的夹角的度数为( )150C︒100C︒150C︒150C+︒100C︒100C+︒100C-︒50C+︒50C-︒22m n mn+=623m m m÷=222()mn m n-=-235m m m⋅=1F2F25α=︒2FβA. B. C. D.6.已知点,都在正比例函数的图象上,若,则与的大小关系是( )A. B. C. D.7.如图,已知,以AB 为直径的交BC 于点D ,与AC 相切于点A ,连接OD .若,则的度数为( )A. B. C. D.8.一个不透明的盒子里装有一个红球、一个白球和一个绿球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后不放回,再从中随机摸出一个球,则两次摸到的球恰好有一个红球的概率是( )9.生物学研究表明,某种蛇在一定生长阶段.其体长是尾长的一次函数,部分数据如下表所示,则y 与x 之间的关系式为( )10.在四边形中,点E ,F ,G ,H 分别是边,,,的中点,EG ,FH 交于点O .若四边形ABCD 的对角线相等,则线段EG 与FH 一定满足的关系为( )A.互相垂直平分B.互相平分且相等C.互相垂直且相等D.互相垂直平分且相等155︒125︒115︒65︒()11,A x y ()22,B x y 3y x =12x x <1y 2y 12y y >12y y <12y y =12y y ≥ABC △O 80AOD ∠=︒C ∠30︒40︒45︒50︒(cm)y (cm)x ABCD AB BC CD DA庄稳重、舒展美观.已知一条分制线的端点A ,B 分别在习字格的边MN ,PQ 上,且,则BC 的长为________(结果保留根号).13.机器狗是一种模拟真实犬只形态和部分行为的机器装置,其最快移动速度是载重后总质量的反比例函数.已知一款机器狗载重后总质量时,它的最快移动速度;当其载重后总质量时,它的最快移动速度________.14.如图1是小区围墙上的花窗,其形状是扇形的一部分,图2是其几何示意图(阴影部分为花窗).通过测量得到扇形AOB 的圆心角为,,点C ,D 分别为OA ,OB 的中点,则花窗的面积为________.15.如图,在中,AC 为对角线,于点E ,点F 是AE 延长线上一点,且,线段,的延长线交于点G .若,,则BG 的长为________.//AB NP =2cm NP =cm (m /s)v (kg)m 60kg m =6m /s v =90kg m =v =m /s 90︒1m OA =2m ABCD AE BC ⊥ACF CAF ∠=∠AB CF AB =4AD =tan 2ABC ∠=三、解答题16.(1)计算:;(2)化简:17.为加强校园消防安全,学校计划购买某种型号的水基灭火器和干粉灭火器共50个.其中水基灭火器的单价为540元/个,干粉灭火器的单价为380元/个.若学校购买这两种灭火器的总价不超过21000元则最多可购买这种型号的水基灭火器多少个?18.为激发青少年崇尚科学、探索木知的热情,学校开展“科学小博士”知识竞赛.各班以小组为单位组织初赛,规定满分为10分,9分及以上为优秀.数据整理:小夏将本班甲、乙两组同学(每组8人)初赛的成绩整理成如下的统计图,数据分析:小夏对这两个小组的成绩进行了如下分析:211(6)[(3)(1)]32-⎛⎫-⨯-+-+- ⎪⎝⎭1111x x ⎛⎫+ ⎪-+⎝⎭(1)填空:________,________,________.(2)小祺认为甲、乙两组成绩的平均数相等,因此两个组成绩一样好.小夏认为小祺的观点比较片面,请结合上表中的信息帮小夏说明理由(写出两条即可).19.当下电子产品更新换代速度加快,废旧智能手机数量不断增加,科学处理废旧智能手机,既可减少环境污染,还可回收其中的可利用资源据研究,从每吨废旧智能手机中能提炼出的白银比黄金多760克.已知从2.5吨废旧智能手机中提炼出的黄金,与从0.6吨废旧智能手机中提炼出的白银克数相等.求从每吨废旧智能手机中能提炼出黄金与白银各多少克.20.研学实践:为重温解放军东渡黄河“红色记忆”,学校组织研学活动.同学们来到毛主席东渡黄河纪念碑所在地,在了解相关历史背景后,利用航模搭载的3D 扫描仪采集纪念碑的相关数据.数据采集:如下图,点A 是纪念碑顶部一点,AB 的长表示点A 到水平地面的距离.航模从纪念碑前水平地面的点M 处竖直上升,飞行至距离地面20米的点C 处时,测得点A 的仰角;然后沿CN 方向继续飞行,飞行方向与水平线的夹角,当到达点A 正上方的点E 处时,测得米;…数据应用:已知图中各点均在同一竖直平面内,E ,A ,B 三点在同一直线上.请根据上述数据,计䇡纪念碑顶部点A 到地面的距离AB 的长(结果精确到1米.参考数据:,,,,,).a =b =c =18.4ACD ∠=︒37NCD ∠=︒9AE =sin 370.60︒≈cos370.80︒≈tan 370.75︒≈sin18.40.32︒≈cos18.40.95︒≈tan18.40.33︒≈21.阅读与思考下面是博学小组研究性学习报告的部分内容,请认真阅读”并完成相应任务.(1)直接写出研究报告中“▲”处空缺的内容;_________.(2)如图3,六边形ABCDEF 是等边半正六边形.连接对角线AD ,猜想与的数量关系,并说明理由;(3)如图4,已知是正三角形、是它的外接圆.请在图4中作一个等边半正六边形ABCDEF (要求:尺规作图、保留作图痕迹,不写作法).22.综合与实践问题情境:如图1,矩形MNKL 是学校花园的示意图,其中一个花坛的轮廓可近似看成由抛物线的一部分与线段AB 组成的封闭图形,点A ,B 在矩形的边MN 上.现要对该花坛内种植区域进行划分,以种植不同花卉,学校而向全体同学征集设计方案,方案设计:如图2,米,AB 的垂直平分线与抛物线交于点P ,与AB 交于点O ,点P 是抛物线的顶点,且米,欣欣设计的方案如下:第一步:在线段OP 上确定点C ,使.用篱笆沿线段AC ,BC 分隔出区域,种植串串红;BAD ∠FAD ∠ACE △O 6AB =9PO =90ACB ∠=︒ABC △第二步:在线段CP 上取点F (不与C ,P 重合),过点F 作AB 的平行线,交抛物线于点D ,E .用篱笆沿DE ,CF 将线段AC ,BC 与抛物线围成的区域分隔成三部分,分别种植不同花色的月季.方案实施:学校采用了欣欣的方案、在完成第一步区域的分隔后,发现仅剩6米篱笆材料.若要在第二步分隔中恰好用完6米材料,需确定DE 与CF 的长.为此,欣欣在图2中以AB 所在直线为x 轴,OP 所在直线为y 轴建立平面直角坐标系.请按照她的方法解决问题:(1)在图2中画出坐标系,并求抛物线的函数表达式;(2)求6米材料恰好用完时DE 与CF 的长;(3)种植区域分隔完成后,欣欣又想用灯带对该花坛进行装饰,计划将灯带围成一个矩形.她尝试借助图2设计矩形四个顶点的位置,其中两个顶点在抛物线上,另外两个顶点分别在线段AC ,BC 上.直接写出符合设计要求的矩形周长的最大值.23.综合与探究问题情境:如图1,四边形ABCD 是菱形,过点A 作于点E ,过点C 作于点F .猜想证明:(1)判断四边形AECF 的形状,并说明理由;深入探究:(2)将图1中的绕点A 逆时针旋转,得到,点E ,B的对应点ABC △AE BC ⊥CF AD ⊥ABE △AHG △分别为点G ,H .①如图2,当线段AH 经过点C 时,GH 所在直线分别与线段AD ,CD 交于点M ,N .猜想线段CH 与MD 的数量关系,并说明理由;②当直线GH 与直线CD 垂直时,直线GH 分别与直线AD ,CD 交于点M ,N ,直线AH 与线段CD 交于点.若,直接写出四边形AMNQ 的面积.Q 5,4AB BE ==参考答案1.答案:B解析:2.答案:A解析:3.答案:D解析:4.答案:C解析:5.答案:C解析:6.答案:B解析:7.答案:D解析:8.答案:B解析:9.答案:A解析:10.答案:A解析:11.答案:>解析:12.答案:解析:13.答案:4解析:14.答案:1)π1 48⎛⎫-⎪⎝⎭解析:解析:16.答案:(1)-10解析:(1)原式(2)原式17.答案:最多可购买这种型号的水基灭火器12个解析:设可购买这种型号的水基灭火器x 个,根据题意,得.得.因为x 为整数,且x 取最大值,所以.答:最多可购买这种型号的水基灭火器12个.18.答案:(1)7.5;7;25%(2)见解析解析:(1)7.5;7;25%.(2)答案不唯一,例如:①甲组成绩的优秀率为37.5%,高于乙组成绩的优秀率25%,所以从优秀率的角度看,甲组成绩比乙组好;②虽然甲、乙两组成绩的平均数相等,但甲组成绩的方差为4.48,高于乙组成绩的方差0.73,所以从方差的角度看,乙组成绩更整齐;③甲组成绩的中位数为7.5分,高于乙组成绩的中位数7分,所以从中位数的角度看,甲组成绩比乙组好,等.因此不能仅从平均数的角度说明两组成绩一样好,可见,小祺的观点比较片面.19.答案:从每吨废旧智能手机中能提炼出黄金210克,白银1000克解析:设从每吨废旧智能手机中能提炼出黄金x 克,白银y 克.24(4)=--+-10=-11(1)(1)(1)(1)2x x x x x x x ++-+-=⋅+-+2(1)(.1)(1)(1)2x x x x x x +-=⋅=+-+5403805021000x x +-≤()12.5x ≤12x =根据题意,得.解得.答:从每吨废旧智能手机中能提炼出黄金210克,白银1000克.20.答案:27米解析:延长CD 交AB 于点H .由题意得,四边形CMBH 为矩形..在中,,,,在中,,,.设.,,解得.(米)答:点A 到地面的距离AB 的长约为27米.21.答案:(1)240(2)见解析(3)见解析解析:(1)240.7602.50.6y x x y=+⎧⎨=⎩2401000x y =⎧⎨=⎩20CM HB ∴==Rt ACH △90AHC ∠=︒18.4ACH ∠=︒tan ACH ∴∠=tan tan18.40.33AH AH AH CH ACH ==≈∠︒Rt ECH △90EHC ∠=︒37ECH ∠=︒tan ECH ∴∠=tan tan 370.75EH EH EH CH ECH ==≈∠︒AH x =9AE = 0~9EH ∴=∴7.1x ≈7.12027.127AB AH HB ∴=+≈+=≈(2).理由如下:连接BD ,FD .六边形ABCDEF 是等边半正六边形.,.,.在与中,,.(3)答案不唯一,例如:如图,六边形ABCDEF 即为所求.22.答案:(1)(2)DE 的长为4米,CF 的长为2米解析:(1)建立如图所示的平面直角坐标系.所在直线是AB 的垂直平分线,且,BAD FAD ∠=∠ AB BC CD DE EF FA ∴=====C E ∠=∠BCD FED ∴≌△△BD FD ∴=ABD △AFD △,,,AB AF BD FD AD AD =⎧⎪=⎨⎪=⎩BAD FAD ∴≌△△BAD FAD ∴∠=∠29(33)y x x =-+-≤≤OP 6AB =.点B 的坐标为.,点P 的坐标为.点P 是抛物线的顶点,设抛物线的函数表达式为.点在抛物线上,.解得.抛物线的函数表达式为.(2)点D ,E 在抛物线上,设点E 的坐标为.,交y 轴于点F ,,,.在中,,,..根据题意,得,.解,得,(不符合题意,舍去),.,.116322OA OB AB ∴===⨯=∴(3,0)9OP = ∴(0,9) ∴2.9y a x =+ (3,0)B 29y ax =+990a ∴+=1a =-∴29(33)y x x =-+-≤≤ 29y x =-+∴()2,9m m -+//DE AB DF EF m ∴==29OF m =-+2DE m ∴= Rt ABC △90ACB ∠=︒OA OB =116322OC AB ∴==⨯=22936CF OF OC m m ∴=-=-+-=-+6DE CF +=2626m m ∴-++=12m =20m =2m ∴=24DE m ∴==262CF m =-+=答:DE 的长为4米,CF 的长为2米.23.答案:(1)矩形(2)①解析:(1)四边形AECF 为矩形.理由如下:,,,.四边形ABCD 为菱形,,..四边形AECF 为矩形.(2)①.理由如下:证法一:四边形ABCD 为菱形,,.旋转得到,,.,.,.,..证法二:如图,连接HD .四边形ABCD 为菱形,,.旋转得到,,.,....,..CH =AE BC ⊥ CF AD ⊥90AEC ∴∠=︒90AFC ∠=︒ //AD BC ∴180AFC ECF ∴∠+∠=︒18090ECF AFC ∴∠=︒-∠=︒∴CH MD = AB AD ∴=B D ∠=∠ABE △AHG △AB AH ∴=B H ∠=∠AH AD ∴=H D ∠=∠HAM DAC ∠=∠ HAM DAC ∴≌△△AM AC ∴=AH AC AD AM ∴-=-CH MD ∴= AB AD ∴=B ADC ∠=∠ABE △AHG △AB AH ∴=B AHM ∠=∠AH AD ∴=AHM ADC ∠=∠AHD ADH ∴∠=∠HD AHM ADH ADC ∠∠-∠=∠-∠ MHD CDH ∴∠=∠DH HD = CDH MHD ∴≌△△CH MD ∴=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个完整的花边图案(要求至少含有两种图形变换).
21.(本题8分)根据山西省统计信息网公布的数据,绘制了山西省2004~2008固定电话和移动电话年末用户条形统计图如下:
(1)填空:2004~2008移动电话年末用户的极差是万户,固定电话年末用户的中位数是万户;
24.(本题8分)某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润 (万元)与进货量 (吨)近似满足函数关系 ;乙种水果的销售利润 (万元)与进货量 (吨)近似满足函数关系 (其中 为常数),且进货量 为1吨时,销售利润 为1.4万元;进货量 为2吨时,销售利润 为2.6万元.
(1)如图1,观察并猜想,在旋转过程中,线段 与 有怎样的数量关系?并证明你的结论;
(2)如图2,当 时,试判断四边形 的形状,并说明理由;
(3)在(2)的情况下,求 的长.
26.(本题14分)如图,已知直线 与直线 相交于点 分别交 轴于 两点.矩形 的顶点 分别在直线 上,顶点 都在 轴上,且点 与点 重合.
(1)该顾客至少可得到元购物券,至多可得到元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
23.(本题8分)有一水库大坝的横截面是梯形 , 为水库的水面,点 在 上,某课题小组在老师的带领下想测量水的深度,他们测得背水坡 的长为12米,迎水坡上 的长为2米, 求水深.(精确到0.1米, )
(1)求 的面积;
(2)求矩形 的边 与 的长;
(3)若矩形 从原点出发,沿 轴的反方向以每秒1个单位长度的速度平移,设移动时间为 秒,矩形 与 重叠部分的面积为 ,求 关于 的函数关系式,并写出相应的 的取值范围.
2009年山西省初中毕业学业考试试卷
数学
一、选择题(每小题2分,共20分)
1.>2. 3.答案不唯一,如 4. 5.30
A.5B.6C.7D.8
16.如图, 是 的直径, 是. C. D.
17.如图(1),把一个长为 、宽为 的长方形( )沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为()
A. B. C. D.
18.如图,在 中, 的垂
6.210 7.(9,0)8.8 9. 10.
二、选择题(在下列各小题中,均给出四个备选答案,其中只有一个正确答案,请将正确答案的字母号填入下表相应的空格内,每小题3分,共24分)
题号
11
12
13
14
15
16
17
18
答案
D
C
D
D
B
A
A
B
三、解答题(本题共76分)
19.(1)解:原式= (2分)
= (3分)
= .(4分)
(2)解:原式= (2分)
= (3分)
=1.(4分)
(3)解:移项,得 配方,得 (2分)
∴ ∴ (4分)
(注:此题还可用公式法,分解因式法求解,请参照给分)
20.解:(1) ;(2分)
(2)答案不唯一,以下提供三种图案.
(注:如果花边图案中四个图案均与基本图案相同,则本小题只给2分;未画满四个“田”字格的,每缺1个扣1分.)
直平分线 交 的延长线于点 ,则 的长为()
A. B. C. D.2
三、解答题(本题共76分)
19.(每小题4分,共12分)
(1)计算:
(2)化简:
(3)解方程:
20.(本题6分)已知每个网格中小正方形的边长都是1,图1
中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成.
(1)填空:图1中阴影部分的面积是(结果保留 );
(1)求 (万元)与 (吨)之间的函数关系式.
(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为 吨,请你写出这两种水果所获得的销售利润之和 (万元)与 (吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?
25.(本题12分)在 中, 将 绕点 顺时针旋转角 得 交 于点 , 分别交 于 两点.
8.如图, 的对角线 、 相交于点 ,点 是 的中点, 的周长为16cm,则 的周长是cm.
9.若反比例函数的表达式为 ,则当 时, 的取值范围是.
10.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第 个图中所贴剪纸“○”的个数为 .
二、选择题(在下列各小题中,均给出四个备选答案,其中只有一个正确答案,请将正确答案的字母号填入下表相应的空格内,每小题3分,共24分)
3.请你写出一个有一根为1的一元二次方程:.
4.计算: =.
5.如图所示, 、 、 、 是圆上的点,
则 度.
6.李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨)结果如下:7,8,8,7,6,6,根据这些数据,估计四月份本单位用水总量为吨.
7.如图, 与 是位似图形,且顶点都在格点上,则位似中心的坐标是.
2009年山西省中考数学试卷及答案
2009年山西省初中毕业学业考试试卷
数学
一、选择题(每小题2分,共20分)
1.比较大小: (填“>”、“=”或“<“).
2.山西有着丰富的旅游资源,如五台山、平遥古城、乔家大院等著名景点,吸引了众多的海内外游客,2008年全省旅游总收入739.3亿元,这个数据用科学记数法可表示为.
11.下列计算正确的是()
A. B.
C. D.
12.反比例函数 的图象经过点 ,那么 的值是()
A. B. C. D.6
13.不等式组 的解集在数轴上可表示为()
A.B.
C.D.
14.解分式方程 ,可知方程()
A.解为 B.解为 C.解为 D.无解
15.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()
(2)你还能从图中获取哪些信息?请写出两条.
22.(本题8分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.