数学分析-上册--第三版-华东师范大学数学系-编

合集下载

学科数学804数学教育概论是哪个学校的自命题

学科数学804数学教育概论是哪个学校的自命题

学科数学804数学教育概论是哪个学校的自命题珠海考试科目:(812)专业综合(1)《代数学基础》(上),张英伯,王恺顺,北京师范大学出版社(2)《高等代数学》第三版,姚慕生,吴泉水,谢启鸿。

(3)《空间解析几何》(第四版),高红铸,王敬庚,傅若男,北京师范大学出版社(4)《解析几何》尤承业,北京大学出版社(5)《解析几何》(第三版),丘维声,北京大学出版社二、首都师范大学考试科目:(873)数学基础(1)《数学分析》高等教育出版社,第二、三版华东师范大学数学系;(2)《高等代数》高等教育出版社,第二、三版北京大学。

三、中央民族大学考试科目:(850)数学(微积分、线性代数)(不招收同等学力考生、双少生)四、天津师范大学考试科目:(904)数学教育理论(1)吴立宝,李春兰主编.《数学学科知识与教学能力(高中)》.北京师范大学出版社.2018;(2)张筱玮,潘超主编.《数学学科知识与教学能力(初中)》.北京师范大学出版社.2018五、河北北方学院考试科目:(904)数学分析与线性代数(1)《数学分析》华东师范大学数学系,高等教育出版社;(2)《线性代数》同济大学数学系,高等教育出版社。

六、太原师范学院考试科目:(824)数学教学论(不招收同等学力考生报名,要求本科阶段具有相同或相近专业背景)考试范围:数学教学论、现代数学教育观、数学教学反思、数学的基本特征、数学的文化价值、数学课程论的研究内容、数学课程的发展、义务教育数学课程标准(2011年版)和普通高中数学课程标准(2017年版)的基本理念及基本结构、数学有意义学习、数学建构主义学习、探究性学习理论、数学教学原则、数学教学方法、数学概念的教学、数学解题的教学、数学思想方法的教学、数学课堂教学的情境创设、数学课堂教学的提问、数学课堂教学语言、数学课的备课与说课、数学教育科研与写作。

七、山西师范大学考试科目:(829)教学技能与方法(只接收具有相同学科专业背景的考生)(1)教学技能(2015年)北京师范大学出版社陈旭远(2)教学技能(2013年)北京师范大学出版社张海珠八、内蒙古科技大学考试科目:(879)数学教学论九、内蒙古师范大学考试科目:(909)中学数学教学论(1)《数学教学论》曹一鸣张生春北京师范大学出版社2010(2)《中学数学教学论》代钦斯钦孟克陕西师范大学出版社2009。

凸函数的性质与应用

凸函数的性质与应用

凸函数的性质与应用数学与统计学院、数学与应用数学、0701班,湖北,黄石,4350021.引言凸函数是数学分析中的一个重要概念,它涉及了许多数学命题的讨论证明和应用,而且在现代优化学、运筹学、管理学、和工程测绘学等多个学科有着重要的意义和很好的应用.关于凸函数,虽然很多书籍都做了相应的介绍,但多是从不同的角度出发来进行不同的定义和应用.在高等数学中,利用导数讨论函数的性态时,经常遇到一类特殊函数—凸函数,由于凸函数具有一些特殊性质,利用这些性质可非常简单地证明一些初等不等式、函数不等式和积分不等式. 凸函数是一类重要的函数,在不等式的研究中尤为重要.本文通过凸函数的定义、性质的描述,主要研究其在不等式证明中的应用,举例说明解题思路与证明方法,并且证明了几个常见的重要不等式及高次函数的凸性猜想. 函数的凸性是函数在区间上变化的整体性态,把握函数在区间上的整体性态,不仅可以更加科学、准确地描绘函数的图象,而且有助于对函数的定性分析.2. 凸函数的有关概念2.1凸函数的定义、定理及其几何意义定义 若函数()f x 对于区间(),a b 内的任意12,x x 以及()0,1,λ∈恒有1212[(1)]()(1)()f x x f x f x λλλλ+-≤+-,则称()f x 为区间(),a b 上的凸函数.其几何意义为:凸函数曲线()y f x =上任意两点()()11,,x f x ()()22,x f x 间的割线总在曲线之上.定理1 若函数()f x 在区间(),a b 内连续,对于区间(),a b 内的任意12,x x 恒有12121[][()()]22x x f f x f x +≤+, 则称()f x 为区间(),a b 上的凸函数.其几何意义为:凸函数曲线()y f x =上任意两点()()11,,x f x ()()22,x f x 间割线的中点总在曲线上.定理2 若函数()f x 在区间(),a b 内可微,且对于区间(),a b 内的任意x 及0x ,恒有00()()()f x f x f x x '≥+-,则称()f x 为区间(),a b 上的凸函数.其几何意义为:凸函数曲线()y f x =上任一点处的切线,总在曲线之下. 注 若将定义1,2,3中的≤“”改为<“”则称()f x 为(),a b 上的严格凸函数. 2.2 凸函数定义与定理之间的等价性条件2.2.1 定义1与定理1的等价性证 定义1⇒定理1:显然,只要取12λ=即可由定义1推得定理1.定理1⇒定义1:我们首先推证()f x 对于任意的12,x x (),a b ∈及有理数()0,1λ∈,不等式1212[(1)]()(1)()f x x f x f x λλλλ+-≤+-,成立.事实上,对于此有理数λ,总可表示为有穷二进位小数,即121121122220.2n n n nn na a a a a a a ---++= , 其中0,1(1,2,,1);1i n a i n a ==-= 或由于1λ-也是有理数,故也可以表示为有穷的二进位小数,即1λ-=121121122220.2n n n nn nb b b b b b b ---++= , 其中()1,1,2,,1;i i b a i n =-=- 1,n b =这是因为()11λλ+-=的缘故, 因此111212[]()()i i f a x b x a f x b f x +≤+(1,2,,1)i n =- ,所以12[(1)]f x x λλ+-12112112112112222222[]22n n n n n n n nn na a a ab b b b f x x ------++++=+ 21212121111212112222()(22[]2n n n n n nn n a a a b b b a x b x x x f ------+++++= 2121212111121211222211[()]()2222n n n nn n n n a a a b b b f a x b x f x x ------++≤+++ 2121212111121211222211[()()]()2222n n n n n n n n a a a b b b a f x b f x f x x ------++≤+++ 121112212221111[()()][()()]()2222n n n a x b x a f x b f x a f x b f x f -+≤++++ 11122122122111[()()][()()][()()]222n n n a f x b f x a f x b f x a f x b f x ≤+++++12112112112112222222()()22n n n n n n n n n na a a ab b b b f x f x ------++++=+ 12()(1)().f x f x λλ=+-下面再推证()f x 对λ为无理数时定义1也成立.事实上,对任意无里数()0,1,λ∈{}(0,1),n λ⊂存在有理数列12(),(1)n n n n x x λλλλ→→∞+-→所以,12(1)()x x n λλ+-→∞,由于()f x 在(),a b 内连续,所以1212121212[(1)][lim (1)]lim [(1)]lim[()(1)()]()(1)()n n x n n n n x x f x x f x x f x x f x f x f x f x λλλλλλλλλλ→∞→∞→∞+-=+-=+-≤+-=+-综上即知,定义1与定理1等价.2.2.2 定义1与定理2的等价条件证 定义1⇒定理2:对(),a b 内任意的0x 及x ,若0,x x <则取0h >,使00,x x h x <+<由推论1得0000()()()()].f x h f x f x f x h x x +-+≤-上式中令0,h →由于()f x 可微,所以有0()f x '00()(),f x f x x x +≤-即00()()()f x f x f x x '≥+-.若0,x x <则取0h >,使00,,x x x x h x <<+<同理可证.2.2.3 定理2与定义1的等价条件对于区间(),a b 内的任意12,x x (不妨设12x x <)以及()0,1,λ∈令()121x x x λλ=+-,则12,x x x << ()()1121,x x x x λ-=-- 2x x -= ()()211,x x λ--由泰勒(Taylor)公式,我们有111222()()()()()()()()f x f x f x x f x f x f x x θθ''=+-=+-及其中1122x x x θθ<<<<,于是12()(1)()f x f x λλ+-12[(1)]f x x λλ=+-+2121(1)()[()()]x x f f λλθθ''---.再由单调性知21()()f f θθ''≥,所以12()(1)()f x f x λλ+-≥ 12[(1)]f x x λλ+-,即12[(1)]f x x λλ+-≤12()(1)()f x f x λλ+-.所以在一定条件下,定义1与定理3等价.3. 凸函数的有关结论 3.1 凸函数的运算性质性质1 若()f x 为区间I 上的凸函数, k 为非负实数,则()kf x 也为区间I 上的凸函数.性质2 若()(),f x g x 均为区间I 上的凸函数,则()f x + ()g x 也为区间I 上的凸函数.推论 若()(),f x g x 均为区间I 上的凸函数,12,k k 为非负实数,则()()12f x k g x +k 也为区间I 上的凸函数.性质3 若()f x 为区间I 上的凸函数,()g x 为J 上的凸增函数,且()f I J ⊂,则g f ⋅为区间I 上的凸函数.性质4 若()(),f x g x 均为区间I 上的凸函数,则()F x =()(){}max ,f x g x 也是区间I 上的凸函数.上述性质很容易证明,故在此省略.3.2 凸函数的其他性质引理 f 为I 上的凸函数的充要条件是:对于I 上的任意三点12x x x <<,总有32212132()()()()f x f x f x f x x x x x +-≤--. ()1证 [必要性]记3231,x x x x λ-=-则213(1).x x x λλ=+- 由f 的凸性知道()21313[(1)]()(1)()f x f x x f x f x λλλλ=+-≤+-=3221133131()()x x x xf x f x x x x x --+--.从而有()()312321213()()()()x x f x x x f x x x f x -≤-+-,即()()()322212321213()()()()()x x f x x x f x x x f x x x f x -+-≤-+-.整理后即得()1式.[充分性]在I 上任取两点1313,,(),x x x x <在[13,x x ]上任取一点213(1)x x x λλ=+- ()0,1,λ∈即3231.x x x x λ-=-由必要性的推导逆过程,即可证明 1313[(1)]()(1)()f x x f x f x λλλλ+-≤+-.故f 为I 上的凸函数.同理可证,f 为I 上的凸函数的充要条件是:对于I 上的任意三点12,x x x <<总有313221213132()()()()()()]]f x f x f x f x f x f x x x x x x x -+-≤≤---.性质1 设f 为区间I 上的严格凸函数,若有0x 是()f x 的极小值点,则0x 是()f x 在I 上唯一的极小值点.证明 若()f x 有异于0x 的另一极小值点1x I ∈ ,不妨设()()10f x f x ≤ 由于()f x 是在I 上的严格凸函数, 故对于任意的()0,1λ∈,都有()01010[(1)]()(1)()f x x f x f x f x λλλλ+-<+-≤.于是,任意的0δ>,1,只要充分接近时总有()0010(1),x x x U x λλδ=+-∈.但是,()0()f x f x ≤,这与1x 是()f x 的极小值点的条件矛盾,从而0x 是()f x 在I 上唯一的极小值点.性质2 设()f x 为(),a b 内的凸函数,有()f x 在I 的任一内闭区间()(),,a b αβ<上满足Lipschitz 条件.证明 要证明()f x 在(),αβ上满足Lipschitz 条件,即要证明:0,L ∃>使得()12,,x x αβ∀∈有1212()()f x f x L x x -≤-. ()2()()()(),,,,,,a b h h a b αβαβ⊂-+⊂因为,故可取充分小使得因此,()12,,x x αβ∀∈,12,x x <32x x h =+取,根据定义有32212132()()()()f x f x f x f x M mx x x x h+--≤≤--,(其中,M m 分别表示()f x 在(),h h αβ-+的上、下界)从而2121()()M mf x f x x x h--≤-, ()3 若1232,,x x x x h >=-可取由定义有32211223()()()()f x f x f x f x x x x x --≤--,从而32211223()()()()f x f x f x f x M m x x x x h---≤≤--.由此也可推出()3式.若12x x =,则()2显然成立.这就证明了()3式显然对于一切()12,,x x αβ∈都成立,因此()3式当12,x x 互换位置也应成立,故有2121()()M mf x f x x x h--≤-. 令M mL h-=,则原命题成立.性质3 设()f x 是(),a b 上的凸函数,则()f x 在(),a b 上处处存在左、右导数,且左导数小于、等于右导数.证明 ()()()00,,,x a b U x a b δ∀∈∃⊂.记()()00()(),,f x f x F x x a b x x +=∈-,()121200,x x x x x x δ<∈-任意且,,,有引理得()()1020121020()()()()f x f x f x f x F x F x x x x x ++=≤=--.()F x 在()00x x δ-,上单调递增;再在0x 右方任取一定点()00,x x λλδ∈+,,由引理得: ()()()12F F F x x λ≤≤所以()F x 在()00x x δ-,上单调递增且有上界, 故由单调有界原理: 极限()0lim x x F x -→存在,即0()f x +'存在; 任意102x x x <<由定义3有()()1020121020()()()()f x f x f x f x F x F x x x x x ++=≤=--.令1020,x x x x -+→→,则()f x 在0x 的左导数小于等于()f x 在0x 的右导数.性质4 设()f x 为(),a b 内可导凸函数,证明()0,x a b ∈ 为()f x 的极小值的充要条件是0()0f x '=.证明 [必要性]已知函数()f x 在0x 可导,且取得极小值,则0()0f x '=(极值的必要条件).[充分性] (),x a b ∀∈,0,x x ≠有00()()().f x f x x x ≥+-因为0()0f x '=,故(),,x a b ∀∈都有0()(),f x f x ≥所以0x 为()f x 的极小值点.定理1 设f 为区间I 上的可导函数,则下列论断互相等价;1) f 为I 上的凸函数, 2) f '为I 上的增函数, 3) 对I 上的任意两点12,,x x 有()21121()()()f x f x f x x x '≥+-. ()*证明 1)2)→ 任取I 上的两点1212,x x x x <()及充分小的正数,h 由于1122,x h x x x h -<<<+根据的凸性及引理有11212212()()()()()()f x f x h f x f x f x h f x h x x h---+-≤≤-.有f 是可导函数,令0h +→时可得211212()()()()f x f x f x f x x x -''≤≤-.所以f '为I 上的递增函数.2)3)→ 在以1212,()x x x x <为端点的区间上,应用拉格朗日中值定理和f '递增条件,有()()2121121()()()()f x f x f x x f x x x ξ''-=-≥-,移项后即得()*式成立,且当12x x >仍可得到相同结论3)1)→ 设以12,x x 为I 上的任意两点,312(1)x x x λλ=+-,由3)并利用131223211)()x x x x x x x x λλ-=---=-与(),()()133133312()()()()(1)()f x f x f x x x f x f x x x λ''≥+-=+--,()233233321()()()()()f x f x f x x x f x f x x x λ''≥+-=+-(),分别用λ和1λ-乘上列两式并相加,便得()()12312(1)()()(1)f x f x f x f x x λλλλ+-≥=+-,从而为I 上的凸函数.推论1 设()f x 为区间I 上的二阶可导函数,则()f x 为凸函数.()0,f x x I ''⇔≥∈.推论2 设()f x 为区间I 上的可微凸函数,则有0x I ∈是()f x 的极小值点.()00.f x ''⇔=定理2 设()f x 在(),a b 上连续,则()f x 是(),a b 上的凸函数的充要条件是:对任意含于(),a b 的闭区间[],,x h x h -+都有1()()2hhf x f x t dt h -≤+⎰. 证明 必要性:()()()()1,2t h f x f x t f x t ∀≤≤-++,故 ()()()()12[]2hhhhhf x f x t f x t f x t dt --≤-++≤+⎰⎰.充分性:假定存在12,x x <使()()1212122x x f f x f x +⎛⎫>+⎡⎤ ⎪⎣⎦⎝⎭ 作辅助函数()()()()11,x f x k x x f x ϕ=---其中2121()()f x f x k x x +=-则120,2x x ϕ+⎛⎫> ⎪⎝⎭因此[]()()[][]12012,max 0,0,,,,x x x x h x h x h x x ϕϕ=>=-+⊂取()()000t h x x t ϕϕ≤-+≥当时,且不恒为0,因此()()002hhh x xt dt ϕϕ->+⎰.再由()x ϕ的定义推出: ()002()hhf x t hf x dt -+>⎰这与条件矛盾, 故定理2得证.定理3 若()f x 为(),a b 内的凸函数,(),,i x a b ∈ 1,2,,,i n = 则()111.ni ni i i x f f x n n ==⎛⎫⎪ ⎪≤ ⎪ ⎪⎝⎭∑∑ 证明 对12,2n x ==不等式是显然的,设对1n -不等式成立. 因为1212111,1n n n x x x x x x n x n n n n-++++++-=⋅+-这里()()1211,,,,,1n n x x x n a b x a b n n λ-+++-=∈∈- 由题得()()111111.1nn i i n i i n i i x x n f f f x f x n n n nn ===⎛⎫⎛⎫ ⎪ ⎪- ⎪⎪≤+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑ 4.凸函数的一些应用4.1应用凸函数性质证明不等式在初等数学及数学分析的课程中,对于不等式的证明是一个重要内容.有时利用凸 函数的理论,证明一些不等式,将会更加简单.下面用例题加以说明.例1 求证:对任意实数,,a b 有()21.2a ba bee e +≤+ 证明 设()()(),0,,x f x e f x x ''=≥∈-∞+∞则故()xf x e =(),-∞+∞为上的凸函数.从而对121,,2x a x b λ===有定义 12121[][()()]22x x f f x f x +≤+. 即得()212a ba bee e +≤+. 注:该题构造函数,运用凸函数的定义很容易就导出.例2 设01,01,x a <<<<则有()()1111.aax x x -+-<-证明 设()()()()11101aaf x x x x -=+-<<.那么()()()()()()111111,aaaa f x a x x x ax ---'=-+-++-()()()()()()1111111aaa a f x a a x x a a x x ----''=--+---+()()()()1121111aaa a a a x x a a x x ------+--+()()()()()()12112111111aa a a a a a x x x x x x x x -----⎡⎤=--+-++++-+⎣⎦()()()()()()1212111111.a a aa a a x x a a x x ------=--+-=-+-于是 ,当01,01x a <<<<时,()0,f x ''>由严格凸函数的定义,其中12,1,0,x x x λ===得()()()()()110110,f x f x x x f x f =⋅+-⋅<⋅+-⋅⎡⎤⎣⎦即()()1111.aax x x -+-<-注:该题运用了定理1及推论1的结论.例3 在ABC 中,证明sin sin sin 2A B C ++()()()()sin ,0,,sin 0,0,f x x x f x x x ππ''=-∈=>∈证明 令由应用2得()()()33f A f B f C A B C F ++++⎛⎫≥ ⎪⎝⎭,即sin sin sin sin3A B CA B C ++++≤s i n ,3π≤=所以sinA+sinB+sinC 2注:该题运用了定理3的结论.例4设12n a a a 、、均为正数,且121n a a a +++= .求证: ()2222212121111.n n n a a a a a a n +⎛⎫⎛⎫⎛⎫++++++≥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭证 因为()2,f x x =()()()22,20,f x x f x f x x ''==>=由于得是凸函数,有凸函数的性质,有22212122121221211111111111.n n n n n a a a a a a a a a a a a n n n a a a ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫++++++ ⎪⎪≥⎪ ⎪⎝⎭⎛⎫=++++ ⎪⎝⎭()4由柯西不等式:222111n n n i i i i i i i a b a b ===⎛⎫⎛⎫⎛⎫⋅≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑得1212111111()1n n a a a a a a ⎛⎫+++=+++⋅ ⎪⎝⎭()12122111(),n n a a a a a a n =++++++≥212111()nn a a a ∴+++≥ ,由()4即得 ()2222212121111n n n a a a a a a n+⎛⎫⎛⎫⎛⎫+++++≥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .4.2关于凸函数的某些猜想猜想1 三次函数不是(),-∞+∞上的凸函数. 证 设()3232103,0.x x a x a x a a f a +++≠= 显然,()f x 在(),-∞+∞上可导,且()232123x x a x a f a ++'=,因为30,a ≠故()f x '在(),-∞+∞上不单调,所以不是凸函数.猜想2 试给出四次的函数在定义域上是凸函数的一个充分条件. 设()432432104,0,x x x a x a x a a f a a ++++≠=因为四次的在定义域上二次同样可导,且()324321432x x x a x a f a a +++'=, ()24321262x x x a f a a ++''=.根据3..1的推论1可知,下式()423420.64120a a a a >⎧⎪⎨-⋅⋅≤⎪⎩ 则该四次函数在(),-∞+∞是凸函数. 化简得① 423420.380a a a a >⎧⎨-⋅≤⎩ ② 423420.380a a a a <⎧⎨-⋅≤⎩ 则该四次函数在(),-∞+∞不是凸函数.③ 423420.380a a a a >⎧⎨-⋅>⎩设()24321262x x x a f a a ++''=与x 轴的两交点分别是()1212,,x x x x <则()x f 在()()12,,,x x -∞+∞内分别为凸函数,在()12,x x 内不是凸函数.④ 423420.380a a a a <⎧⎨-⋅>⎩ 同理设()x f ''与x 轴的两交点分别是()1212,,x x x x <则()x f 在()12,x x 内为凸函数,其他区间不是凸函数.猜想3 5次函数在实数范围内是否有为凸函数的?设5次函数的表达式为()54325432105,0,x x x x a x a x a a f a a a +++++≠= 显然该是在实数范围内二次可导.()432543215432,x x x x a x a f a a a ++++'= ()325432201262.x x x x a f a a a +++''=现在需要找出二次导数在实数范围内是否恒大于等于0. 我们设()()325432201262,x f x x x x a g a a a ''=+++=()2154360246.x x x g a a a =++'下面分情况讨论:()524530,2446060a a a a >⎧⎪⎨-⋅⋅≤⎪⎩ 即()0x g ≥'在R 上恒成立.则()x g 在R 上单调递增,此时5a 为某一定值,但是总,x R ∃∈使得()0,x g <即x R ∃∈使()0f x ''<成立.同四次的理一样,其他3种情况更不可能为凸函数. 所以五次函数在R 上不是凸函数.以此类推,高次函数()11100,,n n n n n f x a x a x a x a a --=+++≠5n 时,该函数在实数范围内不是凸函数.5.小结本文通过凸函数的定义、性质的描述,主要研究其在不等式证明中的应用,举例说明解题思路与证明方法,并且证明了几个常见的重要不等式及高次函数的凸性猜想.函数的凸性是函数在区间上变化的整体性态,把握函数在区间上的整体性态,不仅可以更加科学、准确地描绘函数的图象,而且有助于对函数的定性分析.致谢经过半年的忙碌和工作,本次毕业论文已经接近尾声,在这里首先要感谢我的指导老师柴国庆教授.柴老师平日里工作繁多,但在我做毕业论文的每个阶段,从初次选题到查阅资料,论文初稿的确定和修改,中期检查,后期详细设计等整个过程中都给予了我悉心的指导,还不惜把自己的研究成果让我参考、借鉴,细心地纠正论文中的错误并给予指导.如果没有他的大力支持,此次论文的完成将变得非常困难.除了敬佩柴老师的专业水平外,他的治学严谨和科学研究的精神也是我永远学习的榜样,然后还要感谢大学四年来所有的老师,为我们打下坚实的专业知识的基础.最后祝各位评审老师身体健康,工作顺利!参考文献[1]数学分析上第三版.华东师范大学数学系编.北京.高等教育出版社,2001,148-154.[2]李惜雯.数学分析例题解析及难点注释(上册).西安.西安交通大学出版社,2004.1,265-269.[3]林源渠方企勤.数学分析解题指南.北京.北京大学大学出版社,2003.11.84-87.[4]大学数学名师导学丛书.北京.中国水利水电出版社,2004208-212..[5]花树忠.邯郸市职工大学基础教学部.邯郸,056001.[6]李世杰.衢州市教育局.浙江.衢州,324002.[7]宋小军.西华师范大学数学与信息学院.四川文理学院学报.2010年5期.[8]陈迪红.长沙铁道学院学报.第12卷.第3期.1994年9月.[9]曹良干.阜阳师范学院学报.总22期.[10]陈太道.琼州大学.数学系.临沂师范学院学报第24卷,第3期.[11]李宗铎.湖南教育学院学报长沙大学.第18卷第2期.。

华东师范大学数学系编数学分析第三版上册教案

华东师范大学数学系编数学分析第三版上册教案

《数学分析》概述授课章节:《数学分析》概述教学目的:1.通过教学使学生对《数学分析》这门课有总体的了解,明确研究对象及主要内容; 2.通过教学使学生明确《数学分析》课在所学专业中的地位和主要作用,以引起重视; 3.通过教学使学生明确《数学分析》的课程安排、考核及成绩的评定标准;4.通过教学使学生懂得参考书的使用及作业的要求.教学重点:数学分析的研究对象、主要内容.教学难点:主要内容的介绍.教学方法:讲座形式.教学程序:讲座提纲1.《数学分析》这门课到底要研究什么(即研究对象)?2.《数学分析》的主要内容;3.《数学分析》与后继课程的关系;4.《数学分析》课程安排及考核;5.《数学分析》学习中应该注意的一些问题;6.《数学分析》的参考书目;7.作业要求.一、研究对象变量间的关系及变化过程,具体表现为函数及其性质.函数及其性质:单调性、有界性、奇偶性、最大(小)值、极大(小)值、周期性、图象、……需要指明的是:中学也研究函数的这些性质,但主要采用“静止”、“孤立”的方法去研究函数.而在《数学分析》中主要采用“运动”、“联系”、“变化”的过程把握变化的结果.因而《数学分析》中的方法具“运动性”、“变化性”.如何研究函数?通过什么方式、角度去研究呢?或用什么样的工具去研究函数呢?这些构成《数学分析》的主要内容.二、主要内容1.极限的方法(极限论).(2、3、4、16章) 例如,从极限的观点看函数1y x=. 一般函数的极限如何定义?其性质如何?—----极限论.2.微分(学).(5、6、17、18章)研究函数的增量相对于自变量的增量的变化率问题.例如:设()y f x =是一函数,令0,x x x =- 0()().y f x x f x ∆=+- 要问y ∆随x ∆的变化趋势如何?特别地,y x∆∆的变化趋势如何? 3.积分学:(8、9、10、11、19、20、21、22章)4.级数论:(12、13、14、15章) 研究无穷多个函数的可和性问题.例如211(||1)1n x x x x x-+++++=<- .综上,《数学分析》这门课主要由四大块内容组成:极限论、微分论、积分学和级数论.这四大块不是孤立的,而是存在着密切的联系.其中“极限论”是“基础”,其它是“上层建筑”.但这里需要提出的是,作为“基础”的“极限理论”的完善远远晚于其它几个方面的应用,因而引起许多争议.对此感兴趣的同学可读一读教材的附录中281-288页的“微积简史”部分,会对此有所了解.三、与后继课程的关系《数学分析》课程是数学系数学教育专业的专业基础核心课程,它的学习时间长(三个学期,234学时),学习内容多,学分最多(13学分),是从初等数学到高等数学过渡的桥梁,是学生学习数学教育专业其它后继课程(如:大学物理、微分方程、概率论与数理统计、微分几何、复变函数、计算机数值方法、实变函数与泛函分析等)的重要基础.这些课都以《数学分析》为先修课程,如果不开《数学分析》或晚开《数学分析》,将直接影响到这些课程的开设.同时还为培养学生分析问题和解决问题的能力提供必要的训练,从而提高学生的实践能力和创新能力.掌握这门课程的基本理论和基本方法,对于学习本专业基础课和专业课以及进一步学习、研究和应用都是至关重要.四、课程安排、考核及成绩评定方法1、学时分配:三个学期,总学时234,总学分13第一学期:每周5学时(上课内容从“第一章实数集与函数”到“第八章不定积分”,上课时间18周,学时90,学分5);第二学期:每周4学时(上课内容从“第九章定积分”到“第十五章傅里叶级数”,上课时间18周,学时72,学分4);第三学期:每周4学时(上课内容从“第十六章多元函数的极限与连续”到“第二十二章曲面积分”,上课时间18周,学时72,学分4).2、考核方式:闭卷考试(期中测验,期未期终考试).3、成绩评定:采用百分制平时成绩:30分(其中:1)作业占10%;2)听课率、课堂提问回答等占10%;3)期中测验占10%);期未考试:70分.五、学习体会从高中到大学,显然是衔接的,但毕竟是不同的阶段.主要表现在;中学数学 大学数学在教材方面 内容少,较直观、具体、理论性不强,研究的常量数学、固定的图形 内容多、较抽象、理论性强,研究的变量、图形的变化在听课方面 听 课前预习;课中认真听课和记笔记;课后及时复习在复习方面 整理笔记,及时复习在习题方面 主要是计算,验证少、理论性弱 概念、论证多、理论性强、数学语言表达准确,通过作业巩固学习内容六、参考书1.吴良森、毛羽辉等编《数学分析学习指导书》(上、下册),高等教育出版社,2004.8.2.刘玉琏、傅沛仁编《数学分析讲义》第三版(上、下册),高等教育出版社,1992.7.3.吉米多维奇著《数学分析习题集》,李荣冻译,人民教育出版社,1958.6.4.菲赫金哥尔茨著《微积分学教程》(修订本),叶彦谦等译,人民教育出版社,1959.8.七、作业要求作业整洁;字迹工整,书写清晰;解题格式要完整;勿抄作业,习题答案只能作为参考.。

(完整版)各种Schwarz积分不等式的归纳及其应用举例

(完整版)各种Schwarz积分不等式的归纳及其应用举例

目录摘要 (1)关键词 (1)Abstract (1)Key words (1)前言 (1)1. 预备知识 (1)2.Cauchy-Schwarz积分不等式及其推广 (2)2.1 Cauchy-Schwarz积分不等式 (2)2.2 Cauchy-Schwarz积分不等式形式上的推广 (4)2.3 Holder积分不等式 (5)2.4 Minkowski积分不等式 (9)3. 实例应用 (10)3.1 Cauchy-Schwarz积分不等式的实例 (10)3.2 Cauchy-Schwarz积分不等式形式推广的运用 (12)3.3 Holder积分不等式的应用 (12)3.4 运用Minkowski积分不得不等式证明范数 (13)4. 结束语 (13)参考文献 (14)各种Schwarz 积分不等式的归纳及其应用举例学生姓名: 学号:数学与信息科学学院 数学与应用数学指导老师: 职称:摘 要:本文归纳和总结给出不同形式的Schwarz 积分不等式,然后对其进行证明,并举例说明它在一些实际问题中的应用.关键词:Cauchy-Schwarz 积分不等式;行列式;Holder 积分不等式;Minkowski 积分不等式The examples of application and induction on some forms ofSchwarz integration inequalitiesAbstract :This paper will enumerate and then prove some forms of Schwarz integration inequality, thereby illustrate its implementation in practical problems.Key words :Cauchy-Schwarz integral inequality; D eterminant; Holder integral inequality; Minkowski integral inequality前言本文主要从三个方面归纳和总结了Schwarz 积分不等式,首先我们给出了Schwarz 积分不等式的一般形式、Schwarz 积分不等式的形式推广和Schwarz 积分不等式最出名的推广就是Holder 积分不等式以及Minkowski 积分不等式;其次运用理论来证明它的合理性;最后通过一些实例说明它在数学中,生活中的实际应用.1. 预备知识定理1.1 (Cauchy 不等式)[3]已知12,,...,,n a a a 12,,...,n b b b 为实数,则222111n n n i i i i i i i a b a b ===⎛⎫⎛⎫⎛⎫≤ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑∑∑. (1)等式成立当且仅当i i a b λ=,1,2,,i n =.这是最常见的Cauchy 不等式,其实当n=3可追朔至法国数学家grange . Cauc-hy 不等式可以推广至复数. 如何推广呢? 不等式只在实数时才有意义,对于复数自然的选择其长度. 对任意复数z x iy =+,其长度z =(1)而言我们只须将平方的意义,更改为复数的模数的平方即可.定理1.2 (Cauchy 不等式)[3]已知12,,...,,n a a a 12,,...,n b b b 为复数, 则222111nn ni ii i i i i a ba b ===⎛⎫⎛⎫≤ ⎪⎪⎝⎭⎝⎭∑∑∑ (2) 等式成立当且仅当i i a b λ=,1,2,,i n =,λ为复数.定理1.3 (Cauchy 不等式)[3]已知i a ,i b ∈C ,则112222,111i j i j i j i j a b a b ∞∞∞===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑ (3) 等式成立当且仅当i i a b λ=,1,2,,i n =,λ∈C .如果21i i a ∞=<∞∑、21i i b ∞=<∞∑,则1i ii a b∞=<∞∑.从Cauchy 不等式的角度而言,无穷数列{}1i i a ∞=的平方和收敛,21i i a ∞=<∞∑,是很自然而然出现的空间,在实变函数论或泛函分析中我们称之为2l 空间. 这是n 维实数空间n R 最自然的推广,它是一个Hilbert 空间,最重要的应用就是量子力学.在数学中尤其是分析学的思考过程通常是有限和⇔无穷级数⇔积分 (4)因此想当然Cauchy 不等式是可以推广至积分.2. Cauchy-Schwarz 积分不等式及其推广2.1 Cauchy-Schwarz 积分不等式定理2.1.1 (Cauchy-Schwarz 积分不等式)[1]已知()f x ,()g x 均在[],a b 上连续,则()222()()()()bb baaaf xg x dxf x dxg x dx ≤⎰⎰⎰. (5)证明 (法一:定义法)在积分学中,积分几乎都是从无穷级数推得的,下面我们也从级数开始,设[],a b 上有1n -个点,依次为0121n n a x x x x x b -=<<<<<=,它们把[],a b 分成n 个小区间[]1,i i i x x -∆=,i =1,2,…,n. i b an-∆=,记{}12,,,n T =∆∆∆. 这些分点构成对[],a b 的一个分割.在每个小区间i ∆上任取一点i ξ,作以()()i i f g ξξ为高,i ∆为底的小矩形.因为()f x ,()g x 均在[],a b 上连续,则()f x ,()g x 均在[],a b 上可积,有222111()()()()nn n i i i i i i i b a b a b a f g f g n n n ξξξξ===---⎛⎫⎛⎫⎛⎫≤ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑∑∑, 两边求极限,()2201lim ()()()()nbi i aT i b a f g f x g x dx n ξξ→=-⎛⎫= ⎪⎝⎭∑⎰,2222011lim ()()()()n n b i i a T i i b a b a f g f x g x dx n n ξξ→==--⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭∑∑⎰, 则()222()()()()bbbaaaf xg x dxf x dxg x dx ≤⎰⎰⎰.(法二:判别式)开始这个不等式最常见的证明方法就是利用判别式.因为[]()2222()()()2()()()bb b ba a a a xf t g t dt f t dt x f t g t dt x g t dt ⎡⎤+=++⎢⎥⎣⎦⎰⎰⎰⎰, 可视为x 的二次方程式,由于[]2()()0b axf t g t dt +≥⎰,而且2()0b a f t dt ≥⎰,所以上式表示的是开口向上而且在轴x 上方的抛物线,由于和x 轴不相交,所以没有实数,因此判别式小于或等于0.判别式()()()2224()()4()()0bbbaaaf tg t dtf t dtg t dt ∆=-≤⎰⎰⎰,整理得()222()()()()bb baaaf xg x dxf x dxg x dx ≤⎰⎰⎰.(法三:半正定)注意到关于1t ,2t 的二次型[]22222121122()()()2()()()bbbbaaaat f x t g x dx t f x dx t t f x g x dx t g x dx +=++⎰⎰⎰⎰为非负二次型,从而系数行列式()()()()()()()()bba a bbaaf x f x dx f xg x dx f x g x dxg x g x dx⎰⎰⎰⎰=2()baf x dx⎰2()bag x dx ⎰-()2()()0baf xg x dx≥⎰,即()222()()()()bbbaaaf xg x dxf x dxg x dx ≤⎰⎰⎰,从而定理2.2.1得证.从实变函数论的角度而言,我们仅需要求()f x 、()g x 是平方可积分函数([]2,L a b )则Cauchy-Schwarz 积分不等式仍然成立. 其空间关系可对照前一式(4):222R l L ⇔⇔. (6)2.2 Cauchy-Schwarz 积分不等式形式上的推广根据上面的Cauchy-Schwarz 积分不等式()222()()()()bb baaaf xg x dxf x dxg x dx ≤⎰⎰⎰的证明方法三中我们可以看出这个不等式可以改写为以下行列式形式:()()()()()()()()bba a bbaaf x f x dx f xg x dx f x g x dxg x g x dx⎰⎰⎰⎰0≥ .以这种形式给出的好处在于形式便于推广.定理2.2.1 (Schwarz 积分不等式形式推广)[2]设()f x ,()g x ,()h x 均在[],a b 上可积,则有()()()()()()()()()()()()0()()()()()()bbba a a bbba a a bbbaaaf x f x dx f xg x dx f xh x dxf xg x dx g x g x dxh x g x dx f x h x dxh x g x dxh x h x dx≥⎰⎰⎰⎰⎰⎰⎰⎰⎰. (7) 证明 注意到关于1t ,2t ,3t 的二次型[]2123()()()bat f x t g x t h x dx ++⎰222222123()()()b b baaat t f x dx t t g x dx t t h x dx=++⎰⎰⎰1213232()()2()()2()()b b baaat t f x g x dx t t f x h x dx t t g x h x dx +++⎰⎰⎰为非负二次型,从而其系数行列式()()()()()()()()()()()()0()()()()()()bbba a a bbba a a bbbaaaf x f x dx f xg x dx f xh x dx f x g x dx g x g x dx h x g x dx f x h x dxh x g x dxh x h x dx≥⎰⎰⎰⎰⎰⎰⎰⎰⎰, 从而定理2.2.1得证. 2.3 Holder 积分不等式定理2.3.1 (Holder 不等式)[3]已知12,,...,,n a a a 12,,...,n b b b 为任意复数,且p ,q 1≥,111p q+=,则 11111n nnpqp q i i i i i i i a b a b ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑. (8) 证明 令11ii n pp i i a a a ==⎛⎫⎪⎝⎭∑ , 11ii n qq i i b b b ==⎛⎫⎪⎝⎭∑,利用几何平均不等式①,得到11p qi i i i a b a b p q≤+, 或1111111111p q i ii i n nn n pqpqp q p q i i i i i i i i a b a b pqa b a b ====≤+⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑∑,取有限和,得11111111111111nnnpq i iii i i i n n n n pqpqp q p q i i i i i i i i a b a b pqa b a b =======≤+=⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑∑,因此可得11111n nnpqp q i i i i i i i a b a b ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑. 注 ①几何平均不等式2211()22a b ab a b ≤+⇔≤+.当2p q ==时就是Cauchy-Schwarz 不等式.Holder 不等式对n =∞也成立.另外最著名的就是积分不等式.定理2.3.2 ([],C a b 上的Holder 积分不等式)[3]已知()f x ,()g x [],C a b ∈,111p q+=,且p ,q 1≥则()()11()()()()bbbpqpqaaaf xg x dx f x dxg x dx≤⎰⎰⎰. (9)或更一般的形式定理2.3.3 ([],C a b 上的Holder 积分不等式)[3]已知1()f x ,2()f x ,…,()n f x [],C a b ∈,且1211p p ++ (1)p =1,1i p ≥ 则 ()()()12121111212()()()()()()nnbbbbpp p p p p n n aaaaf x f x f x dx f x dxf x dxf x dx≤⎰⎰⎰⎰. (10)证明 (定理2.3.2) 设()f x ,()g x [],C a b ∈,则当()0f x ≡或()0g x ≡时,上式(10)显然成立.令 i b ax a ia i x n-=+=+∆, (0,1,,i n =)则由Holder 不等式(9)可知11111()()()()n n npqp q i i i i i i i f x g x f x g x ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑, 上式两边同时乘以1n ,有1111111()()()()n nnpqp q i i i i i i i f x g x f x g x nn ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑,上式右端=11111()()nnpqp q i i i i n f x g x -==⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭∑∑=111111()()nnpqp q p q i i i i nf xg x ⎛⎫-+ ⎪⎝⎭==⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭∑∑ =1111()()nnpqp q i i i i f x g x n n ==⎛⎫⎛⎫⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑,于是11111()()()()nnnpqp q i i i i i i i f x g x f x g x ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑可转化为 11111()()()()nnnpqp q iii i i i i f x g x f x g x nn n ===⎛⎫⎛⎫⎪ ⎪⎪ ⎪≤ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑ ,而b a x n -∆=,故b an x-=∆,将n 代入11111()()()()nnnpqp q i i i i i i i f x g x f x g x nn n ===⎛⎫⎛⎫⎪ ⎪⎪ ⎪≤ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑,得 11111()()()()n nnpqp q i i i i i i i x x x f x g x f x g x b a b a b a ===∆∆∆⎛⎫⎛⎫≤ ⎪ ⎪---⎝⎭⎝⎭∑∑∑, 即11111111()()()()n n npqp qi i i i i i i f x g x x f x x g x x b a b a b a ===⎛⎫⎛⎫∆≤∆∆ ⎪ ⎪---⎝⎭⎝⎭∑∑∑ , 对上式两端取极限,当n →∞时,0x ∆→,得()()1111()()()()bbbpqpqa aaf xg x dx f x dxg x dx b a b a≤--⎰⎰⎰,化简上式,即得()()11()()()()bbbpqpqa aaf xg x dx f x dxg x dx ≤⎰⎰⎰,又由 ()()()()bb aaf xg x dx f x g x dx ≤⎰⎰,故()()11()()()()bbbpqpqaaaf xg x dx f x dxg x dx≤⎰⎰⎰,从而定理2.3.2得证.定理2.3.4 (pL 上的Holder 积分不等式)[5]设1p >,111p q+=,()[,]p f x L a b ∈,()[,]p g x L a b ∈,那么()()f x g x 在[,]a b 上L 可积,并且成立()()11()()()()bbbpqpqaaaf xg x dx f x dxg x dx ≤⎰⎰⎰. (11)证明 首先证明当1p >,111p q +=时,对任何正数A 及B ,有11p q A BA B p q≤+.(12)事实上,作辅助函数 ()x x x αϕα=-(0)x <<∞,01α<<,则 '1()(1)x x αϕα-=-,所以在(0,1)上'()0x ϕ>,在(1,)∞上'()0x ϕ<,因而(1)ϕ是函数()x ϕ在(0,)∞上的最大值,即 ()(1)1x ϕϕα≤=-,(0,)x ∈∞. 由此可得(1)x x ααα≤+-,(0,)x ∈∞.令 Ax B =,代入上面不等式,那么 (1)A A B B αααα≤+-.两边乘以B ,得到 1(1)A A B Bαααα-≤+- .令1p α=,则 11q α-=,于是上式成为 11p q A B A B p q≤+.如果()1()0bppaf x dx=⎰或()1()0bqqag x dx=⎰,则()0f x =..a e 于[,]a b 或 ()0g x =..a e 于[,]ab ,这时不等式(11)自然成立,所以不妨设()1()0bppaf x dx>⎰,()1()0bqqag x dx>⎰.作函数 ()1()()()bppaf x x f x dxϕ=⎰, ()1()()()bqqag x x g x dxψ=⎰.令()pA x ϕ= , ()qB x ψ=,代入不等式(12),得到()()()()pqx x x x pqϕψϕψ≤+. (13)由(13)立即可知()()x x ϕψ在[,]a b 上L 可积,由此可知)(()f x g x 也L 可积,对(13)的两边积分,得到 ()()()()1pqbbba aax x x x dx dx dx pqϕψϕψ≤+=⎰⎰⎰.因此()()11()()()()bbbpqpqaaaf xg x dx f x dxg x dx ≤⎰⎰⎰,证毕.2.4 Minkowski 积分不等式定理2.4.1 ([,]pL a b 上的Minkowski 积分不等式)[5]设1p ≥,()f x , ()g x ∈[,]p L a b ,那么()()[,]p f x g x L a b +∈,并且成立不等式111()()()()ppppppb b b a a a f x g x dx f x dx g x dx ⎛⎫⎛⎫⎛⎫≤+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰⎰. (14) 证明 当1p =时,因()()()()f x g x f x g x ≤+,由积分性质可知不等式(14)自然成立.如果1p >,因为(),()[,]pf xg x L a b ∈,所以()()[,]p q qf xg x L a b ∈,由Holder 积分不等式,有()11()()()()()()pppbbbpqqaa af x f xg x dx f x dx f x g x dx ⎛⎫≤ ⎪⎝⎭⎰⎰⎰,类似对()g x 也有()11()()()()()()pqqbbbpqqaa ag x f x g x dx g x dx f x g x dx⎛⎫≤ ⎪⎝⎭⎰⎰⎰,因而 1()()()()()()pbbp aaf xg x dx f x g x f x g x dx -=⎰⎰()()()()()()p pbbqqaaf x f xg x dx g x f x g x dx ≤+⎰⎰()111()()()()p q p q b b bpqa a af x dxg x dx f x g x dx ⎡⎤⎛⎫⎛⎫⎢⎥≤+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰⎰⎰(15)若()()0bpa f x g x dx =⎰,则()1()()bppaf xg x dx⎰,(14)式显然成立, 若()()0bpaf xg x dx ≠⎰,则在(15)式两边除以()1()()b pqaf xg x dx ⎰,得到()1111()()()()ppppbb b pqaa a f x g x f x dx g x dx -⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰. 由111p q+=,得到 111()()()()ppppppb b b a a a f x g x dx f x dx g x dx ⎛⎫⎛⎫⎛⎫≤+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰⎰, 证毕.无论是Holder 积分不等式,还是Minkowski 积分不等式,当2p q ==时,就是Cauc- hy- Schwarz 积分不等式.上面我们从空间R 和p L 空间上说明Holder 积分不等式和Min- kowski 积分不等式,对于p l 空间也有类似的Holder 积分不等式和Minkowski 积分不等式,11111pqpqi i i i i i i ξηξη∞∞∞===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑, (Holder 积分不等式)其中1p >,111p q+=,()123,,,p l ξξξ∈,()123,,,q l ηηη∈.pp p x yx y +≤+, (Minkowski 积分不等式)其中1p ≥,()123,,,x ξξξ=,()123,,,p y l ηηη=∈,11ppip i x ξ∞=⎛⎫= ⎪⎝⎭∑,11qq i pi y η∞=⎛⎫= ⎪⎝⎭∑.由此可知p l 按范数p x 成赋范线性空间.3. 实例应用3.1 Cauchy-Schwarz 积分不等式的实例例1. 设()f x 在[],a b 上连续,且()0f x ≥,()1b a f x dx =⎰. 证明:k R ∀>,有()()22()cos ()sin 1bbaaf x kxdx f x kxdx+≤⎰⎰.证明 因为()f x 在[],a b 上连续,则()f x 在[],a b 上可积,有()()22()cos baaf x kxdxkxdx =⎰⎰,()()22()()cos ()cos bb b aa af x dxf x kxdx f x kxdx =⎰⎰⎰,因为Cauchy-Schwarz 积分不等式,有()()()22()()cos bbaaakxdxf x dxf x kxdx ≤⎰⎰⎰,从而()22()cos ()cos bbaa f x kxdxf x kxdx ≤⎰⎰,同理()22()sin ()sin bbaaf x kxdxf x kxdx ≤⎰⎰,()()2222()cos ()sin ()(cos sin )1bb baaaf x kxdx f x kxdxf x kx kx dx +≤+=⎰⎰⎰.例2. 设()f x 在[]0,a 上连续可导,(0)0g =,证明:20()()()2a a a g x g x dx g x dx ≤⎰⎰′′. 等号成立()g x cx ⇔=(c 为常数).证明 设0()()xf xg t dt =⎰′,()()f x g t =′′,(0)0f =,因为()()(0)()()()xxg x g x g g t dt g t dt f x =-=≤=⎰⎰′′,()2222()()1()()()()1()()2222aaaa af x f a ag x g x dx f x f x dx g x dxg x dx ≤===⋅≤⎰⎰⎰⎰′′′′, 当()g x cx =时,左边=2222aa c c xdx =⎰,右边=222022a a a c c dx =⎰,则左边=右边.由Schwarz 积分不等式,()g x c =′,[]0,x a ∈()g x c =′或()g x c =-′,0()()x xg t dt cdt g x cx =⇒=⎰⎰′. 3.2 Cauchy-Schwarz 积分不等式形式推广的运用例3.[4]设()f x ,()g x 均在[],a b 上可积且满足: 1) ()0f x m ≥>, 2) ()0ba g x dx =⎰,则有:22222()()()()()()b b b b a aa a f x g x dx f x dx g x dx mb a g x dx ⎡⎤≤--⎢⎥⎣⎦⎰⎰⎰⎰.证明 利用(7),取()1h x =,并注意到()0bag x dx =⎰,则()()()()()()()()()()0bbba a abbaabaf x f x dx f xg x dx f x dx f x g x dxg x g x dxo f x dxb a-⎰⎰⎰⎰⎰⎰22222()()()()()()()()bbbbbaaa aa b a f x dx g x dx f x dx g x dx b a f x g x dx ⎡⎤⎡⎤=----⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰⎰0≥, 由此得到:222221()()()()()()b b b b b a a a a a f x g x dx f x dx g x dx f x dx g x dx b a ⎡⎤⎡⎤≤-⎢⎥⎢⎥⎣⎦⎣⎦-⎰⎰⎰⎰⎰,注意到定理中的条件1): ()0f x m ≥>,于是22()()baf x dx m b a ≥-⎰,从而22222()()()()()()b b b b a aa a f x g x dx f x dx g x dx mb a g x dx ⎡⎤≤--⎢⎥⎣⎦⎰⎰⎰⎰. 3.3 Holder 积分不等式的应用例4. 设()f x ,()g x 为区间[],a b 上的可积函数,m N ∈,则:()()11()()()()m b m ba mm ab af x dx f x dxg x g x dx ++≥⎰⎰⎰.证明 把区间[],a b 分成n 等分,每个小区间长为x ∆,在每个小区间上取一点i ξ,则有11111()()()()nm m i ni i n m mi i ii f xf xg g xξξξξ++===∆∆≥∆∑∑∑因为()f x ,()g x 可积所以上式0x ∆→两端取极限,由极限保号性和黎曼积分定义有()()11()()()()m b m ba mmab af x dx f x dxg x g x dx ++≥⎰⎰⎰结论得证.3.4 运用Minkowski 积分不等式证明范数例5.[5]当1p ≥时,证明[,]p L a b 按1()()ppbpa f x f x dx ⎛⎫= ⎪⎝⎭⎰定义中的范数()p f x 成为赋范线性空间.证明 由 1()()0ppb pa f x f x dx ⎛⎫=≥ ⎪⎝⎭⎰,且()0f x =等价于()0f x =, ()()pp f x f x αα=,其中α为任意实(复)数.又由 Minkowski 积分不等式,当1p ≥时,对任何(),()[,]p f x g x L a b ∈,有 1()()()()ppb pa f x g x f x g x dx ⎛⎫+=+ ⎪⎝⎭⎰11()()ppppb b a a f x dx g x dx ⎛⎫⎛⎫≤+ ⎪ ⎪⎝⎭⎝⎭⎰⎰()()p p f x g x =+,所以[,]p L a b 按()p f x 成为赋范线性空间.4. 结束语本文主要给出了各种类型的Schwarz积分不等式,首先我们给出了的最基本Schwarz积分不等式,也就是最常见的Schwarz积分不等式;其次将Schwarz积分不等式进行一般形式推广;然后给出Schwarz积分不等式最出名的推广Holder积分不等式;最后给出Minkowski积分不等式.每一种Schwarz积分不等式都给出了相应的新的证明方法并给出一些实例加以说明.参考文献:【1】华东师范大学数学系编,数学分析上册(第三版)[M].高等教育出版社,2001.6.【2】匡继昌,常用不等式[M].长沙:湖南教育出版社,1989.【3】林琦焜,Cauchy-Schwarz不等式之本质和意义[J].数学传播,1995,24(1):p26-42.【4】张小平, 解析不等式[M].北京:科学出版社,1987.【5】程其襄魏国强等编,实变函数与泛函分析基础(第二版)[M].高等教育出版社,2003.7.。

华东师范大学数学系《数学分析》(上)笔记和课后习题(含真题)详解(定积分的应用)

华东师范大学数学系《数学分析》(上)笔记和课后习题(含真题)详解(定积分的应用)

第10章 定积分的应用10.1 复习笔记一、平面图形的面积由连续曲线()(0)y f x =≥,以及直线,()x a x b a b ==<和x 轴所围曲边梯形的面积为()b baaA f x dx ydx ==⎰⎰如果()f x 在[,]a b 上不都是非负的,则所围图形的面积为()b baaA f x dx y dx ==⎰⎰一般地,由上、下两条连续曲线2()y f x =与1()y f x =以及两条直线,()x a x b a b ==<所围的平面图形(图l0-1),它的面积计算公式为21[()()]baA f x f x dx =⎰-图10-1二、由平行截面面积求体积 1.立体体积的一般计算公式 设为三维空间中的一立体,它夹在垂直于x 轴的两平面x =a 与x =b 之间(a <b ),称为位于[a,b]上的立体,若在任意一点x∈[a,b]处作垂直于x轴的平面,它截得的截面面积是关于x的函数,记为A(x),并称之为的截面面积函数(见图10-2),设A(x)是连续函数.图10-2 图10-3对[a,b]作分割过各个分点作垂直于x轴的平面x=xi,i=1,2,…,n,它们把分割成n个薄片,i=1,2,…,n任取那么每一薄片的体积(见图10-3)于是由定积分的定义和连续函数的可积性,当时,上式右边的极限存在,即为函数A (x)在[a,b]上的定积分,于是立体的体积定义为2.旋转体的体积a b上的连续函数,Ω是由平面图形设f是[,]≤≤≤≤0|||f(x)|,ay x b绕x轴旋转一周所得的旋转体,那么易知截面面积函数为2()[()],[,]A x f x x a b π=∈得到旋转体Ω的体积公式为2=[()]baV f x dxπ⎰三、平面曲线的弧长与曲率 1.平面曲线的弧长 (1)定义①如果存在有限极限ss T T =→0||||lim即任给0ε>,恒存在0δ>,使得对C 的任意分割T ,只要||||T δ<,就有|s |T s ε-<则称曲线C 是可求长的,并把极限s 定义为曲线C 的弧长.②设曲线AB 是一条没有自交点的闭的平面曲线.在AB 上任取点P ,将AB 分成两段非闭曲线,如果AP 和PB 都是可求长的,则称AB 是可求长的,并把AP 的弧长和PB 的弧长的和定义为AB 的弧长.③设曲线C 由参数方程(),(),[,]x x t y y t t αβ==∈给出.如果(t)x 与()y t 在[,]αβ上连续可微,且'()x t 与'()y t 不同时为零,即''()()0x t y t +≠,],[βα∈t ,则称C 为一条光滑曲线.(2)定理设曲线C 是一条没有自交点的非闭的平面曲线,由参数方程(),(),[,]x x t y y t t αβ==∈ (10-1)给出.若()x t 与()y t 在[,]αβ上连续可微,则C 是可求长的,且弧长为'2'2[()][()]s x t y t dt βα=+⎰ (10-2)(3)性质设AB 是一条没有自交点的非闭的可求长的平面曲线.如果D 是AB 上一点,则和AD 和DB 也是可求长的,并且AB 的弧长等于AD 的弧长与DB 的弧长的和.2.曲率 (1)定义如图10-4,设()t α表示曲线在点((),())P x t y t 处切线的倾角,==()()t t t ααα∆+∆-表示动点由P 沿曲线移至))(),((t t y x t x Q ∆+∆+时切线倾角的增量,若PQ 之长为s ∆,则称||K sα-∆=∆为弧段PQ 的平均曲率.如果存在有限极限|||lim ||lim |00dsd s s K s t ααα=∆∆=∆∆=→∆→∆则称此极限K 为曲线C 在点P 处的曲率.图10-4(2)计算公式设曲线C 是一条光滑的平面曲线,由参数方程(10-1)给出,则曲率的计算公式为2322)(||''''''''y x y x y x K +-=若曲线由()y f x =表示,则相应的曲率公式为2''3'2||(1+y )y K =四、旋转曲面的面积1.设平面光滑曲线C 的方程为(),[,]y f x x a b =∈(不妨设()0f x ≥),这段曲线绕x 轴旋转一周得到旋转曲面的面积为2(baS f x π=⎰2.如果光滑曲线C 由参数方程(),(),[,]x x ty y t t αβ==∈给出,且()0y t ≥,那么由弧微分知识推知曲线C 绕x 轴旋转所得旋转曲面的面积为2(S y t βαπ=⎰五、定积分的近似计算 1.梯形法公式121()(...)22bn n ay y b a f x dx y y y n --=+++++⎰2.抛物线法公式(辛普森Simpsom 公式)021*******()[4(...y )2(...)]6bn n n ab af x dx y y y y y y y n---≈+++++++++⎰10.2 课后习题详解§1 平面图形的面积1.求由抛物线y =x 2与y =2-x 2所围图形的面积.解:该平面图形如图10-1所示.两条曲线的交点为(-1,1)和(1,1),所围图形的面积为图10-12.求由曲线与直线所围图形的面积.解:该平面图形如图10-2所示.所围图形的面积为。

【精品】数学分析教案_(华东师大版)上册全集_1-10章

【精品】数学分析教案_(华东师大版)上册全集_1-10章

数学分析教案_(华东师大版)上册全集_1-10章第一章实数集与函数导言数学分析课程简介( 2 学时 )一、数学分析(mathematical analysis)简介:1.背景: 从切线、面积、计算 32sin、实数定义等问题引入.2.极限 ( limit ) ——变量数学的基本运算:3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论.微积运算是高等数学的基本运算.数学分析与微积分(calculus)的区别.二、数学分析的形成过程:1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想.2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期.3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期.4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期:三、数学分析课的特点:逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务.有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯.四、课堂讲授方法:1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材:[1]华东师范大学数学系编,数学分析,高等教育出版社,2001;[2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992;[3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;[4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999;[5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003.2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。

数学分析教材和参考书

数学分析教材和参考书

教材和参考书教材:《数学分析》(第二版),陈纪修,於崇华,金路编高等教育出版社, 上册:2004年6月,下册:2004年10月参考书:(1)《数学分析习题全解指南》,陈纪修,徐惠平,周渊,金路,邱维元高等教育出版社, 上册:2005年7月,下册:2005年11月(2)《高等数学引论》(第一卷),华罗庚著科学出版社(1964)(3)《微积分学教程》,菲赫金哥尔兹编,北京大学高等数学教研室译,人民教育出版社(1954)(4)《数学分析习题集》,吉米多维奇编,李荣译高等教育出版社(1958)(5)《数学分析原理》,卢丁著,赵慈庚,蒋铎译高等教育出版社(1979)(6)《数学分析》,陈传璋等编高等教育出版社(1978)(7)《数学分析》(上、下册),欧阳光中,朱学炎,秦曾复编,上海科学技术出版社(1983)(8)《数学分析》(第一、二、三卷),秦曾复,朱学炎编,高等教育出版社(1991)(9)《数学分析新讲》(第一、二、三册),张竹生编,北京大学出版社(1990)(10)《数学分析简明教程》(上、下册),邓东皋等编高等教育出版社(1999)(11)《数学分析》(第三版,上、下册),华东师范大学数学系,高等教育出版社(2002)(12)《数学分析教程》常庚哲,史济怀编,江苏教育出版社(1998)(13)《数学分析解题指南》林源渠,方企勤编,北京大学出版社(2003)(14)《数学分析中的典型问题与方法》裴礼文编,高等教育出版社(1993)复旦大学数学分析全套视频教程全程录像,ASF播放格式,国家级精品课程,三学期视频全程教师简介:陈纪修-基本信息博士生导师教授姓名:陈纪修任教专业:理学-数学类在职情况:在性别:男所在院系:数学科学学院陈纪修-本人简介姓名:陈纪修性别:男学位:博士职称:教授(博士生导师)高校教龄22年,曾获2001年上海市教学成果一等奖、获2001年国家级教学成果二等奖、获2002年全国普通高等学校优秀教材一等奖、2002年获政府特殊津贴;获宝钢教育奖(优秀教师奖);被评为“九五”国家基础科学人才培养基金实施和基地建设先进工作者。

皮亚诺型余项

皮亚诺型余项

目录摘要…………………………………………………………………………关键词………………………………………………………………………Abstract………………………………………………………………Key words…………………………………………………………………..1.引言……………………………………………………………………2.不同型泰勒公式证明……………………………………………………2.1泰勒公式2.2带有皮亚诺型余项泰勒公式的证明……………………………2.3带有柯西型余项泰勒公式的证明…………………………………….2.4带有拉格朗日余项泰勒公式的证明…………………………………2.5带有积分型余项泰勒公式的证明……………………………………3.不同型余项泰勒公应用…………………………………………………3.1.带有皮亚诺型余项的泰勒公式的应用………………………………3.1.1求未定式的极限的应用3.1.2广义积分敛散性判定的应用3.1.3数项级数和函数项级数敛散性判断的应用3.2带有柯西型余项的泰勒公式的应用…………………………..3.2.1初等函数的幂级数的展开式中的应用3.3带有拉格朗日型余项的泰勒公式的应用……………………………3.3.1证明中值公式的应用3.3.2证明等式和不等式的应用3.3.3近视值的计算的应用3.4带有积分型余项的泰勒公式的应用…………………………………3.4.1定积分计算中的应用4.结束语……………………………………………………………………参考文献……………………………………………………………………泰勒公式的证明内容摘要:泰勒公式是数学分析中一个非常重要的内容,不仅在理论上占有重要的地位,也在微分学理论中最一般的情形是泰勒公式, 它建立了函数的增量,自变量增量与一阶及高阶导数的关系,将一些复杂的函数近似地表示为简单的多项式函数,这种化繁为简的功能使它成为分析和研究其他数学问题的有力杠杆。

数学分析上册-华东师范大学数学系

数学分析上册-华东师范大学数学系

数学分析上册(第三版)华东师范大学数学系 编高等教育出版社内容简介本书是教育部“高等教育面向21世纪教学内容和课程体系改革计划”的研究成果,是面向21世纪课程教材,普通高等教育“九五”国家教委重点教材.内容包括实数集和函数,数列极限,函数极限,连续性,导数和微分,微分中值定理及其应用,实数完备性,不定积分,定积分及其应用,反常积分等,附录为微积分学简史,实数理论,积分表.本书可作为高等师范院校或其他类型学校数学专业的教材使用. 图书在版编目(CIP)数据 数学分析.上册华东师范大学数学系编.—3版.北京:高等教育出版社,2000 ISBN7-04-009137-2 Ⅰ.数… Ⅱ.华… Ⅲ.数学分析—高等学校—教材 Ⅳ.017 中国版本图书馆CIP数据核字(2000)第75486号数学分析 上册 第三版华东师范大学数学系 编出版发行 高等教育出版社社 址 北京市东城区沙滩后街55号 邮政编码 100009电 话 010-********传 真 010-********网 址 http: http:经 销 新华书店北京发行所印 刷 开 本 787×960 116版 次 1981年4月第1版印 张 22 年 月第 版字 数 400000印 次 年 月第 次印刷定 价 18.70元本书如有缺页、倒页、脱页等质量问题,请到所购图书销售部门联系调换。

版权所有 侵权必究责任编辑 高尚华封面设计 张 楠责任绘图 郝 林版式设计 马静如责任校对 马桂兰责任印制 第三版前言华东师范大学数学系编写的《数学分析》上、下册经过国家教委组织的专家评审,列入“九五”教委级重点教材;并承高等学校数学和力学指导委员会基础数学教学指导组对教材修订提出具体指导意见,我系数学分析编写组对本书在第二版使用基础上进行修订.此次修订前我们广泛征求了各使用院校的意见,召开了使用教材情况的座谈会,许多具有丰富教学经验的教师对本教材修改提供了许多积极、中肯的意见.在此基础上,我们在现行数学分析教学大纲的范围内对一些内容进行适当调整和增删;同时考虑到近代数学分析教材发展潮流,适度地反映这方面的进展情况,以适应对21世纪新教材的需求.关于实数理论,不少同类教材由小数出发叙述实数理论,这种方式比较容易理解,并且与中学数学教学衔接得比较紧密.我们在第一章中采用由小数引进实数的方法,并由此证明确界原理,希望这样处理有利于读者掌握这一实数基本原理.在单变量微分学中,除按传统方式由速度和曲线的切线引入导数概念外,同时也由极值问题引入稳定点概念,并使微分中值定理与其应用结合得更为紧密.积分理论方面,在引入定积分基本概念后,提前出现牛顿—莱布尼茨公式,这样能较早接触定积分计算.对于可积分条件先作直观描述,并用来证明某些函数类的可积性,难度较大的可积性三个充要条件放到该章最后一节,可根据需要选用.根据使用院校意见,反常积分和含参量积分各自独立成章.二重积分的变量变换公式在较强的条件下,利用格林公式进行证明;一般条件下的重积分变换公式采用连续模一致逼近的方法导出,对希望了解一般条件下严格证明的读者可能有益,这个证明放在重积分最后一节.在欧美、俄罗斯数学分析教材中对向量值函数微分学和外微分形式相当重视,在应用数学中也日见其重要性.在前二版有关内容的基础上,我们使用迭代法证明反函数定理,并由此证明隐函数定理及求导法,使得相应内容比较容易接受;外积运用了浅近的解释,使其与重积分变量变换公式相联系.上述两部分内容以“流形上微积分学初阶”为题构成第二十三章内容,供选学用.对于加“*”的章节,教学中可灵活选用,也可作为读者进一步阅读的内容或作为选修课的内容,以使本书适合多种层次的需求.2第三版前言附录Ⅰ 微积分学简史.由张奠宙教授作了修订,读者可从此附录了解微积分学发展的线索.附录Ⅱ 实数理论.采用戴德金分划由有理数集的分划叙述实数完备性比较直观、优美,仍是附录的重要组成部分.但用小数讲述实数理论与实用更靠近,在附录最后添加“无限小数四则运算的定义”与正文相呼应.附录Ⅲ 积分表.在这次修订中,我们审查了全部习题,适当进行了调整和补充,希望能更好符合教学的需要.这次修订由吴良森任主编.上册第一、二、三、四、七章由宋国栋编写;第五、六章由庞学诚编写;第八、九、十、十一章由毛羽辉编写,上册由毛羽辉负责编写组织及修改.下册第十二、十三、十四、十五章由胡善文编写;第十六、十七、十八、二十三章由吴良森编写;第十九、二十、二十一、二十二章由魏国强编写,下册由魏国强负责编写组织.最后由吴良森统一整理.庞学诚、魏国强分别审阅了上、下册的稿件.程其襄教授、陈昌平教授、张奠宙教授阅读了第二十三章主要内容的初稿,并提出了宝贵的意见,对他们的鼓励和支持深表感谢.郑英元教授对修订提了许多积极的建议.高等学校数学和力学指导委员会成员,吉林大学孙善利教授对本书修改提供了宝贵的意见.陕西师范大学、华南师范大学、南京师范大学、江西师范大学、广西师范大学、常熟高等专科学校等院校数学系对教材修改也都提出过仔细的意见,在此致以深切的谢意.华东理工大学谢国瑞教授和交通大学孙薇荣教授仔细审阅了本书上册的稿件,高等教育出版社高尚华编审审阅了下册的稿件,提出许多宝贵意见,在此表示感谢.第三版中还会有许多不足之处,恳切希望读者批评指正.编者1999年9月再版的话本书自1980年出版发行以来,由于它在取材、体系、可读性诸方面较为切合我国教学实际,而被许多兄弟院校所采用,并于1987年国家教育委员会举办的全国优秀教材评选中获全国优秀奖.近几年,许多学校在数学教学改革中,更新了一些课程,对数学分析提出了许多新的要求.基于这些情况,我们在这次再版中,除订正初版中的某些疏漏外,在不影响本书原有体系、格局的前提下,对某些内容作了适当的增删和调整,使全书内容更充实,结构更合理,且有更大的选择性,以期适应各类学校师生的需要.修改的主要内容有:在第一章精简某些与中学数学相重复的函数概念,增加实数集有关的一些内容,如有界集,确界和确界原理等.在极限理论方面,把出发点改为“确界原理”(原来是“单调有界原理”),并在第二章用它证明单调有界定理,第四章用它证明实指数幂的性质,最后在第八章完成对实数完备性的几个等价命题的证明,相应地,在附录Ⅱ实数理论中,也改用戴德金分划说定义实数,并证明了确界原理(原来采用柯西列定义实数,虽有不少优点,但不够直观,不易理解).此外,子列概念提前到第二章,第八章“极限与连续性(续)”(原为第七章)在内容和次序上也稍作调整.对于微分学,在单元部分,把原来的第六章中值定理与导数应用分为两章.在新的第六章“微分学基本定理与不定式极限”增加了导数极限定理与达布定理(小字排印),用以揭示导函数的性质;在新的第七章“运用导数研究函数性态”加强了日益显得重要的凸函数概念.在多元部分,除对原有内容作不同程度精简外,主要增加了第十九章“向量函数微分学”,以便在更一般形式上讨论多元函数理论,使读者对经典导数概念的认识得以深化.这一章目前暂作选学材料,期望今后能逐步用向量函数的方式取代传统内容成为多元函数微分学的主体.在积分学方面,于定积分中补充了第二积分中值定理(小字排印).压缩了反常积分与含参量积分的内容,并把它分别并入定积分与重积分各章中.为便于重积分部分的教学,在内容与结构上也稍作调整,其中第二十章主要讲述二、三重积分的概念、计算与应用,在第二十一章除对二重积分中某些问题作进一步讨论外,还介绍了n重积分(小字排印)和含参量非正常积分.此外,我们删去了“反常重积分”与“外微分与一般斯托克斯公式”两节.2再版的话关于级数部分,在新版中删去了对傅里叶级数一致收敛性的进一步讨论.张奠宙教授为本书写了“微积分学简史”(附录Ⅰ).我们认为,知道一点微积分的来龙去脉,对每一位数学教育工作者来说是必要和有益的.在这次修订中,我们重新审查了本书的全部习题,并进行了调整与补充,以便更加符合教学的需要.各节横线以上的习题仍然是必做题,每册书末都附有计算题答案.在新版中,用记号表示命题证明或例题求解的结束.上册增加了附录Ⅲ“积分表”,每册末尾增设了名词和人名索引,以供读者检索.这次修订工作由程其襄、郑英元、毛羽辉和宋国栋等四人完成,程其襄教授任主编,郑英元负责全书的统一整理工作.高等教育出版社郑洪深同志为本书的初版和再版做了许多深入细致的工作.我系数学分析教学组成员对本书的修订工作提出过许多积极的建议.本书自出版以来深得广大读者的关心与支持.在此,我们一并致以深切的谢意,并希望读者对本书给予批评与指正.编 者上册:1987年12月完成初稿,1990年2月完成修改稿.下册:1988年6月完成初稿,1990年6月完成修改稿.编者的话(初版)本书是根据1977年高等学校理科数学教材大纲讨论会所制定的《数学分析》大纲编写的.全书分上、下两册,可作为高等师范院校数学系教学用书,以及其他高等院校有关专业的教学参考书.关于本书的使用兹作以下一些说明:在极限问题的处理上,虽一开始就采用ε-δ定义,但若干较难的理论证明则放到微分学之后.实数理论作为附录放在上册的末尾.有关集合的基本概念,目前尚未在中学里全面普及,仍在附录Ⅰ中作了简要的介绍.本书有部分内容用小号字排印,在实际教学中可视情况选用.本书各节都附有适量的习题,并把它们分为基本题与选作题两类,中间用一道横线分开,横线之后的习题和各章的总练习题,读者可在教师指导下挑选一部分进行练习.书末并附有计算题的答案.本书由程其襄教授主编,编写组写出初稿后,经程其襄、周彭年、郑英元修改定稿(郑英元执笔整理).先后参加本书编写工作的有:陈昌平、陈美廉、徐钧涛、曹伟杰、杨庆中、黄丽萍、张奠宙、宋国栋等同志.此外,林克伦、华煜铣、顾鹤荣等同志也参加过一些工作.北京师范大学、武汉大学担任本书主审,先后参加审稿的单位有:上海师范学院、安徽师范大学、吉林师范大学、曲阜师范学院、西藏师范学院、陕西师范大学、贵阳师范学院、徐州师范学院、新乡师范学院以及四川师范学院、华中师范学院、华南师范学院、江西师范学院、昆明师范学院、南京师范学院等.甘肃师范大学的同志也对本书上册提出过仔细的修改意见.在审查过程中,大家对原稿提出了许多宝贵的意见和建议,我们曾根据这些意见作过许多重大的修改,特此表示衷心的感谢.由于我们水平有限,恳切希望读者对本书的缺点错误给予批评指正.编者1979.11又及,本书最后定稿时,曾照一九八年五月在上海举行的高等学校理科数学教材编审委员会审订的《数学分析》大纲作了修订.编者1980.9目 录第一章 实数集与函数§1 实数1…………………………………………………………………………………………………………………………………………………… 一 实数及其性质1………………………………………………………………… 二 绝对值与不等式3§2 数集·确界原理4………………………………………………………………………………………………………………………………………… 一 区间与邻域5………………………………………………………………… 二 有界集·确界原理5§3 函数概念10………………………………………………………………………………………………………………………………………………… 一 函数的定义10 二 函数的表示法11……………………………………………………………………………………………………………………………………… 三 函数的四则运算11………………………………………………………………………… 四 复合函数12…………………………………………………………………………… 五 反函数13………………………………………………………………………… 六 初等函数14§4 具有某些特性的函数16…………………………………………………………………………………………………………………………………… 一 有界函数16………………………………………………………………………… 二 单调函数17………………………………………………………………… 三 奇函数和偶函数19………………………………………………………………………… 四 周期函数19第二章 数列极限§1 数列极限概念23…………………………………………………………………§2 收敛数列的性质28………………………………………………………………§3 数列极限存在的条件35…………………………………………………………第三章 函数极限§1 函数极限概念42………………………………………………………………… 一 x趋于∞时函数的极限42………………………………………………………… 二 x趋于x0时函数的极限43………………………………………………………§2 函数极限的性质48………………………………………………………………§3 函数极限存在的条件52…………………………………………………………§4 两个重要的极限56……………………………………………………………… 一 证明limx→0sin xx=156……………………………………………………………… 二 证明limx→∞1+1xx=e56…………………………………………………………§5 无穷小量与无穷大量59………………………………………………………… 一 无穷小量59………………………………………………………………………… 二 无穷小量阶的比较60……………………………………………………………… 三 无穷大量62………………………………………………………………………… 四 曲线的渐近线64……………………………………………………………………第四章 函数的连续性§1 连续性概念69…………………………………………………………………… 一 函数在一点的连续性69…………………………………………………………… 二 间断点及其分类71………………………………………………………………… 三 区间上的连续函数72………………………………………………………………§2 连续函数的性质74……………………………………………………………… 一 连续函数的局部性质74…………………………………………………………… 二 闭区间上连续函数的基本性质75………………………………………………… 三 反函数的连续性78………………………………………………………………… 四 一致连续性79………………………………………………………………………§3 初等函数的连续性82…………………………………………………………… 一 指数函数的连续性82……………………………………………………………… 二 初等函数的连续性83………………………………………………………………第五章 导数和微分§1 导数的概念87…………………………………………………………………… 一 导数的定义87……………………………………………………………………… 二 导函数90…………………………………………………………………………… 三 导数的几何意义91…………………………………………………………………§2 求导法则95………………………………………………………………………… 一 导数的四则运算95…………………………………………………………………2目 录 二 反函数的导数97…………………………………………………………………… 三 复合函数的导数98………………………………………………………………… 四 基本求导法则与公式101…………………………………………………………§3 参变量函数的导数103…………………………………………………………§4 高阶导数106………………………………………………………………………§5 微分110…………………………………………………………………………… 一 微分的概念110…………………………………………………………………… 二 微分的运算法则112……………………………………………………………… 三 高阶微分113……………………………………………………………………… 四 微分在近似计算中的应用114……………………………………………………第六章 微分中值定理及其应用§1 拉格朗日定理和函数的单调性119…………………………………………… 一 罗尔定理与拉格朗日定理119…………………………………………………… 二 单调函数123………………………………………………………………………§2 柯西中值定理和不定式极限125……………………………………………… 一 柯西中值定理125………………………………………………………………… 二 不定式极限127……………………………………………………………………§3 泰勒公式134……………………………………………………………………… 一 带有佩亚诺型余项的泰勒公式134……………………………………………… 二 带有拉格朗日型余项的泰勒公式138…………………………………………… 三 在近似计算上的应用140…………………………………………………………§4 函数的极值与最大(小)值142………………………………………………… 一 极值判别142……………………………………………………………………… 二 最大值与最小值144………………………………………………………………§5 函数的凸性与拐点148…………………………………………………………§6 函数图象的讨论154……………………………………………………………… *§7 方程的近似解155…………………………………………………………………第七章 实数的完备性§1 关于实数集完备性的基本定理161…………………………………………… 一 区间套定理与柯西收敛准则161………………………………………………… 二 聚点定理与有限覆盖定理163…………………………………………………… *三 实数完备性基本定理的等价性166……………………………………………§2 闭区间上连续函数性质的证明168……………………………………………3目 录 *§3 上极限和下极限172………………………………………………………………第八章 不定积分§1 不定积分概念与基本积分公式176…………………………………………… 一 原函数与不定积分176…………………………………………………………… 二 基本积分表179……………………………………………………………………§2 换元积分法与分部积分法182………………………………………………… 一 换元积分法182…………………………………………………………………… 二 分部积分法187……………………………………………………………………§3 有理函数和可化为有理函数的不定积分190……………………………… 一 有理函数的不定积分190………………………………………………………… 二 三角函数有理式的不定积分194………………………………………………… 三 某些无理根式的不定积分195……………………………………………………第九章 定 积 分§1 定积分概念200…………………………………………………………………… 一 问题提出200……………………………………………………………………… 二 定积分的定义201…………………………………………………………………§2 牛顿—莱布尼茨公式204………………………………………………………§3 可积条件207……………………………………………………………………… 一 可积的必要条件207……………………………………………………………… 二 可积的充要条件208……………………………………………………………… 三 可积函数类209……………………………………………………………………§4 定积分的性质213………………………………………………………………… 一 定积分的基本性质213…………………………………………………………… 二 积分中值定理217…………………………………………………………………§5 微积分学基本定理·定积分计算(续)220…………………………………… 一 变限积分与原函数的存在性220………………………………………………… 二 换元积分法与分部积分法224…………………………………………………… 三 泰勒公式的积分型余项227……………………………………………………… *§6 可积性理论补叙231……………………………………………………………… 一 上和与下和的性质231…………………………………………………………… 二 可积的充要条件233………………………………………………………………4目 录第十章 定积分的应用§1 平面图形的面积239………………………………………………………………§2 由平行截面面积求体积243……………………………………………………§3 平面曲线的弧长与曲率247…………………………………………………… 一 平面曲线的弧长247……………………………………………………………… 二 曲率250……………………………………………………………………………§4 旋转曲面的面积253……………………………………………………………… 一 微元法253………………………………………………………………………… 二 旋转曲面的面积254………………………………………………………………§5 定积分在物理中的某些应用255……………………………………………… 一 液体静压力255…………………………………………………………………… 二 引力256…………………………………………………………………………… 三 功与平均功率257………………………………………………………………… *§6 定积分的近似计算259………………………………………………………… 一 梯形法260………………………………………………………………………… 二 抛物线法260………………………………………………………………………第十一章 反常积分§1 反常积分概念264………………………………………………………………… 一 问题提出264……………………………………………………………………… 二 两类反常积分的定义265…………………………………………………………§2 无穷积分的性质与收敛判别270……………………………………………… 一 无穷积分的性质270……………………………………………………………… 二 比较判别法271…………………………………………………………………… 三 狄利克雷判别法与阿贝尔判别法273……………………………………………§3 瑕积分的性质与收敛判别276…………………………………………………附录Ⅰ 微积分学简史281……………………………………………………………附录Ⅱ 实数理论289………………………………………………………………… 一 建立实数的原则289……………………………………………………………… 二 分析290…………………………………………………………………………… 三 分划全体所成的有序集292……………………………………………………… 四 R中的加法294…………………………………………………………………… 五 R中的乘法295…………………………………………………………………… 六 R作为Q的扩充297………………………………………………………………5目 录6目 录 七 实数的无限小数表示299………………………………………………………… 八 无限小数四则运算的定义300……………………………………………………附录Ⅲ 积分表303……………………………………………………………………………………………………………………………………… 一 含有x n的形式303…………………………………………………………… 二 含有a+bx的形式303 三 含有a2±x2,a>0的形式304…………………………………………………… 四 含有a+bx+cx2,b2≠4ac的形式304………………………………………… 五 含有a+bx的形式304………………………………………………………… 六 含有x2±a2,a>0的形式305………………………………………………… 七 含有a2-x2,a>0的形式306………………………………………………… 八 含有sin x或cos x的形式306…………………………………………………… 九 含有tan x,cot x,sec x,csc x的形式307……………………………………… 十 含有反三角函数的形式308……………………………………………………………………………………………………………………… 十一 含有e x的形式308 十二 含有ln x的形式309……………………………………………………………习题答案310………………………………………………………………………………索引330……………………………………………………………………………………人名索引334……………………………………………………………………第一章 实数集与函数§1 实 数数学分析研究的基本对象是定义在实数集上的函数.为此,我们先简要叙述实数的有关概念.一 实数及其性质在中学数学课程中,我们知道实数由有理数与无理数两部分组成.有理数可用分数形式pq(p、q为整数,q≠0)表示,也可用有限十进小数或无限十进循环小数来表示;而无限十进不循环小数则称为无理数.有理数和无理数统称为实数.为了以下讨论的需要,我们把有限小数(包括整数)也表示为无限小数.对此我们作如下规定:对于正有限小数(包括正整数)x,当x=a0.a1a2…a n时,其中0≤a i≤9,i=1,2,…,n,a n≠0,a0为非负整数,记x=a0.a1a2…(a n-1)9999…,而当x=a0为正整数时,则记x=(a0-1).9999…,例如2.001记为2.0009999…;对于负有限小数(包括负整数)y,则先将-y表示为无限小数,再在所得无限小数之前加负号,例如-8记为-7.9999…;又规定数0表示为0.0000….于是,任何实数都可用一个确定的无限小数来表示.我们已经熟知比较两个有理数大小的方法.现定义两个实数的大小关系.定义1 给定两个非负实数x=a0.a1a2…a n…, y=b0.b1b2…b n…,其中a0,b0为非负整数,a k,b k(k=1,2,…)为整数,0≤a k≤9,0≤b k≤9.若有a k=b k,k=0,1,2,…,则称x与y相等,记为x=y;若a0>b0或存在非负整数l,使得a k=b k(k=0,1,2,…,l)而a l+1>b l+1,则称x大于y或y小于x,分别记为x>y或y<x.对于负实数x,y,若按上述规定分别有-x=-y与-x>-y,则分别称x =y与x<y(或y>x).另外,自然规定任何非负实数大于任何负实数.以下给出通过有限小数来比较两个实数大小的等价条件.为此,先给出如下定义.定义2 设x=a0.a1a2…a n…为非负实数.称有理数x n=a0.a1a2…a n为实数x的n位不足近似,而有理数x n=x n+1 10n称为x的n位过剩近似,n=0,1,2,….对于负实数x=-a0.a1a2…a n…,其n位不足近似与过剩近似分别规定为x n=-a0.a1a2…a n-110n与x n=-a0.a1a2…a n. 注 不难看出,实数x的不足近似x n当n增大时不减,即有x0≤x1≤x2≤…,而过剩近似x n当n增大时不增,即有x0≥x1≥x2≥….我们有以下的命题 设x=a0.a1a2…与y=b0.b1b2…为两个实数,则x>y的等价条件是:存在非负整数n,使得x n>y n,其中x n表示x的n位不足近似,y n表示y的n位过剩近似.关于这个命题的证明,以及关于实数的四则运算法则的定义,可参阅本书附录Ⅱ第八节.例1 设x、y为实数,x<y.证明:存在有理数r满足x<r<y. 证 由于x<y,故存在非负整数n,使得x n<y n.令r=12(x n+y n),则r为有理数,且有x≤x n<r<y n≤y,即得x<r<y.为方便起见,通常将全体实数构成的集合记为R,即R={x x为实数}. 实数有如下一些主要性质:1.实数集R对加、减、乘、除(除数不为0)四则运算是封闭的,即任意两个2第一章 实数集与函数实数的和、差、积、商(除数不为0)仍然是实数.2.实数集是有序的,即任意两实数a、b必满足下述三个关系之一:a<b, a=b,a>b.3.实数的大小关系具有传递性,即若a>b,b>c,则有a>c.4.实数具有阿基米德(Archimedes)性,即对任何a、b∈R,若b>a>0,则存在正整数n,使得na>b.5.实数集R具有稠密性,即任何两个不相等的实数之间必有另一个实数,且既有有理数(见例1),也有无理数.6.如果在一直线(通常画成水平直线)上确定一点O作为原点,指定一个方向为正向(通常把指向右方的方向规定为正向),并规定一个单位长度,则称此直线为数轴.任一实数都对应数轴上唯一的一点;反之,数轴上的每一点也都唯一地代表一个实数.于是,实数集R与数轴上的点有着一一对应关系.在本书以后的叙述中,常把“实数a”与“数轴上的点a”这两种说法看作具有相同的含义.例2 设a、b∈R.证明:若对任何正数ε有a<b+ε,则a≤b.证 用反证法.倘若结论不成立,则根据实数集的有序性,有a>b.令ε=a -b,则ε为正数且a=b+ε,但这与假设a<b+ε相矛盾.从而必有a≤b.关于实数的定义与性质的详细论述,有兴趣的读者可参阅本书附录Ⅱ.二 绝对值与不等式实数a的绝对值定义为a=a,a≥0,-a,a<0.从数轴上看,数a的绝对值|a|就是点a到原点的距离.实数的绝对值有如下一些性质:1.|a|=|-a|≥0;当且仅当a=0时有|a|=0.2.-|a|≤a≤|a|.3.|a|<h-h<a<h;|a|≤h-h≤a≤h(h>0).4.对于任何a、b∈R有如下的三角形不等式:a-b≤a±b≤a+b. 5.|ab|=|a||b|.6.ab=|a||b|(b≠0).下面只证明性质4,其余性质由读者自行证明.由性质2有3§1 实 数-a≤a≤a,-b≤b≤b.两式相加后得到-(a+b)≤a+b≤a+b.根据性质3,上式等价于a+b≤a+b.(1)将(1)式中b换成-b,(1)式右边不变,即得|a-b|≤|a|+|b|,这就证明了性质4不等式的右半部分.又由|a|=|a-b+b|,据(1)式有a≤a-b+b.从而得a-b≤a-b.(2)将(2)式中b换成-b,即得|a|-|b|≤|a+b|.性质4得证.习 题1.设a为有理数,x为无理数.证明: (1)a+x是无理数; (2)当a≠0时,ax是无理数.2.试在数轴上表示出下列不等式的解: (1)x(x2-1)>0; (2)|x-1|<|x-3|; (3)x-1-2x-1≥3x-2.3.设a、b∈R.证明:若对任何正数ε有|a-b|<ε,则a=b.4.设x≠0,证明x+1x≥2,并说明其中等号何时成立.5.证明:对任何x∈R有 (1)|x-1|+|x-2|≥1; (2)|x-1|+|x-2|+|x-3|≥2.6.设a、b、c∈R+(R+表示全体正实数的集合).证明a2+b2-a2+c2≤b-c.你能说明此不等式的几何意义吗?7.设x>0,b>0,a≠b.证明a+xb+x介于1与ab之间.8.设p为正整数.证明:若p不是完全平方数,则p是无理数.9.设a、b为给定实数.试用不等式符号(不用绝对值符号)表示下列不等式的解: (1)|x-a|<|x-b|; (2)|x-a|<x-b; (3)|x2-a|<b.§2 数集·确界原理本节中我们先定义R中两类重要的数集———区间与邻域,然后讨论有界集4第一章 实数集与函数并给出确界定义和确界原理.一 区间与邻域设a 、b ∈R ,且a <b .我们称数集{x |a <x <b}为开区间,记作(a ,b);数集{x |a ≤x ≤b}称为闭区间,记作[a ,b];数集{x |a ≤x <b}和{x |a <x ≤b}都称为半开半闭区间,分别记作[a ,b)和(a ,b].以上这几类区间统称为有限区间.从数轴上来看,开区间(a ,b)表示a 、b 两点间所有点的集合,闭区间[a,b]比开区间(a ,b)多两个端点,半开半闭区间[a,b)比开区间(a,b)多一个端点a 等.满足关系式x ≥a 的全体实数x 的集合记作[a ,+∞),这里符号∞读作“无穷大”,+∞读作“正无穷大”.类似地,我们记(-∞,a]={x x ≤a},(a ,+∞)={x x >a},(-∞,a)={x x <a},(-∞,+∞)={x-∞<x <+∞}=R ,其中-∞读作“负无穷大”.以上这几类数集都称为无限区间.有限区间和无限区间统称为区间.设a ∈R ,δ>0.满足绝对值不等式|x -a |<δ的全体实数x 的集合称为点a 的δ邻域,记作U (a;δ),或简单地写作U(a ),即有U(a;δ)={xx -a <δ}=(a -δ,a +δ).点a 的空心δ邻域定义为U °(a;δ)={x 0<x -a <δ},它也可简单地记作U °(a).注意,U °(a;δ)与U(a;δ)的差别在于:U °(a;δ)不包含点a .此外,我们还常用到以下几种邻域:点a 的δ右邻域U +(a;δ)=[a ,a +δ),简记为U +(a);点a 的δ左邻域U -(a;δ)=(a -δ,a],简记为U -(a);(U -(a )与U +(a )去除点a 后,分别为点a 的空心δ左、右邻域,简记为U °-(a)与U °+(a).)∞邻域U(∞)={x |x |>M},其中M 为充分大的正数(下同);+∞邻域U(+∞)={x |x >M};-∞邻域U(-∞)={x |x <-M}.二 有界集·确界原理定义1 设S 为R 中的一个数集.若存在数M (L ),使得对一切x ∈S ,都有x ≤M (x ≥L ),则称S 为有上界(下界)的数集,数M (L )称为S 的一个上界(下界).5§2 数集·确界原理6第一章 实数集与函数若数集S既有上界又有下界,则称S为有界集.若S不是有界集,则称S 为无界集.例1 证明数集N+={n|n为正整数}有下界而无上界.证 显然,任何一个不大于1的实数都是N+的下界,故N+为有下界的数集.为证N+无上界,按照定义只须证明:对于无论多么大的数M,总存在某个正整数n0(∈N+),使得n0>M.事实上,对任何正数M(无论多么大),取n0= [M]+1①,则n0∈N+,且n0>M.这就证明了N+无上界.读者还可自行证明:任何有限区间都是有界集,无限区间都是无界集;由有限个数组成的数集是有界集.若数集S有上界,则显然它有无穷多个上界,而其中最小的一个上界常常具有重要的作用,称它为数集S的上确界.同样,有下界数集的最大下界,称为该数集的下确界.下面给出数集的上确界和下确界的精确定义.定义2 设S是R中的一个数集.若数η满足:(i)对一切x∈S,有x≤η,即η是S的上界;(ii)对任何α<η,存在x0∈S,使得x0>α,即η又是S的最小上界,则称数η为数集S的上确界,记作η=sup S②. 定义3 设S是R中的一个数集.若数ξ满足:(i)对一切x∈S,有x≥ξ,即ξ是S的下界;(ii)对任何β>ξ,存在x0∈S,使得x0<β,即ξ又是S的最大下界,则称数ξ为数集S的下确界,记作ξ=inf S. 上确界与下确界统称为确界.例2 设S={x|x为区间(0,1)中的有理数}.试按上、下确界的定义验证: sup S=1,inf S=0.解 先验证sup S=1:(i)对一切x∈S,显然有x≤1,即1是S的上界.(ii)对任何α<1,若α≤0,则任取x0∈S都有x0>α;若α>0,则由有理数集在实数集中的稠密性,在(α,1)中必有有理数x0,即存在x0∈S,使得x0>α.类似地可验证inf S=0.读者还可自行验证:闭区间[0,1]的上、下确界分别为1和0;对于数集[x]表示不超过数x的最大整数,例如[2.9]=2,[-4.1]=-5.①②sup是拉丁文supremum(上确界)一词的简写;下面的inf是拉丁文infimum(下确界)一词的简写.。

《数学分析》(第3版)(上下册) 华东师范大学 第21章重积分 21-4

《数学分析》(第3版)(上下册) 华东师范大学 第21章重积分 21-4
r 0 时, J(r,)0,因此不满足定理21.13 的条件.
但是仍然有下面的结论.பைடு நூலகம்
前页 后页 返回
y
2
E
F
2
O
A
D B
A
x
B
C
D
O
Rr
(a )
(b )
图2126
定理21.14 设 f (x, y) 满足定理21.13 的条件, 且在
极坐标变换 (8)下, x y 平面上的有界闭域 D 与 r 平
前页 后页 返回
一阶连续偏导数且它们的函数行列式 J(u,v)(x,y)0, (u,v) , (u,v)
则有
f ( x ,y ) d x d y f ( x ( u ,v ) ,y ( u ,v ) ) |J ( u ,v ) |d u d v .
D
证 用曲线网把 分成 n 个小区域 i , 在变换 T 作用
为 的扇形 BBAA后所得的区域(图21-26(a)),则
在变换 (8)下,D 对应于 [,R ] [ 0 ,2 ] ,且
D 与 之间是一一对应的( 图 21-26 (b) ). 又因在
上 J(r,)0,于是由定理21.13, 有
前页 后页 返回
f ( x ,y ) d x d y f ( r c o s,r s i n ) r d r d .( 1 0 )
n
f(x (u i,v i),y (u i,v i))|J (u i,v i)| ( i).
i 1
这个和式是可积函数 f ( x ( u ,v ) ,y ( u ,v ) ) |J ( u ,v ) |
在 上的积分和. 又由变换 T 的连续性可知, 当 的分割 T :{ 1 , 2 , n } 的细度 ||T ||0时, D 的 相应分割 T D :{ D 1 ,D 2 , D n } 的细度|| T D || 也趋于零. 因此得到

数学分析部分习题参考解答

数学分析部分习题参考解答

数学分析上册 第三版华东师范大学数学系部分习题参考解答P.4 习题1.设a 为有理数,x 为无理数,证明:(1)a + x 是无理数; (2)当0≠a 时,ax 是无理数.证明 (1)(反证)假设a + x 是有理数,则由有理数对减法的封闭性,知 x = a +x – a 是有理数. 这与题设“x 为无理数”矛盾,故a + x 是无理数.(2)假设ax 是有理数,于是aax x =是有理数,这与题设“x 为无理数”矛盾,故ax 是无理数.3.设R b a ∈,,证明:若对任何正数ε有ε<-||b a ,则 a = b .证明 由题设,对任何正数ε有0||+<-εb a ,再由教材P.3 例2,可得0||≤-b a ,于是0||=-b a ,从而 a = b .另证 (反证)假设0||>-b a ,由实数的稠密性,存在 r 使得0||>>-r b a . 这与题设“对任何正数ε有ε<-||b a ”矛盾,于是0||=-b a ,从而 a = b .5.证明:对任何R x ∈有(1)1|2||1|≥-+-x x ; (2)2|3||2||1|≥-+-+-x x x证明 (1)|2||1||)2()1(|1-+-≤---=x x x x(2)因为|2||1||1||)3(2||3|2-+-≤-=-+≤--x x x x x ,所以2|3||2||1|≥-+-+-x x x6.设+∈R c b a ,,证明 ||||2222c b c a b a -≤+-+证明 建立坐标系如图,在三角形OAC 中,OA 的长度是22b a +,OC 的长度是22c a +,AC 的长度为||c b -. 因为三角形两边的差小于第三边,所以有 ||||2222c b c a b a -≤+-+7.设 b a b x ≠>>,0,0,证明x b x a ++介于1与ba 之间. 证明 因为1||1-=-<+-=-++ba b b a x b b a x b x a ,1||)()(-=-<+-=-++b a b b a x b b x a b b a x b x a 所以x b x a ++介于1与ba 之间. 8.设 p 为正整数,证明:若 p 不是完全平方数,则p 是无理数. 证明 (反证)假设p 为有理数,则存在正整数 m 、n 使得m n p =,其中m 、n 互素. 于是22n p m =,因为 p 不是完全平方数,所以 p 能整除 n ,即存在整数 k ,使得kp n =. 于是222p k p m =,p k m 22=,从而 p 是 m 的约数,故m 、n 有公约数 p .这与“m 、n 互素”矛盾. 所以p 是无理数.P.9 习题2.设S 为非空数集,试对下列概念给出定义:(1)S 无上界;若M ∀,S x ∈∃0,使得M x >0,则称S 无上界.(请与S 有上界的定义相比较:若M ∃,使得S x ∈∀,有M x ≤,则称S 有上界)(2)S 无界.若0>∀M ,S x ∈∃0,使得M x >||0,则称S 无界.(请与S 有界的定义相比较:若0>∃M ,使得S x ∈∀,有M x ≤||,则称S 有界)3.试证明数集},2|{2R x x y y S ∈-==有上界而无下界.证明 S y ∈∀,有222≤-=x y ,故2是S 的一个上界.而对0>∀M ,取M x +=30,S M x y ∈--=-=12200,但M y -<0. 故数集S 无下界.4.求下列数集的上、下确界,并依定义加以验证:(1)},2|{2R x x x S ∈<=解 2sup =S ,2inf -=S . 下面依定义加以验证2sup =S (2inf -=S 可类似进行). S x ∈∀,有22<<-x ,即2是S 的一个上界,2-是S 的一个下界.2<∀α,若2-≤α,则S x ∈∀0,都有α>0x ;若22<<-α,则由实数的稠密性,必有实数 r ,使得22<<<-r α,即S r ∈,α不是上界,所以2sup =S .(2)},!|{+∈==N n n x x S解 S 无上界,故无上确界,非正常上确界为+∞=S sup .下面证明:1inf =S .① S x ∈∀,有1!≥=n x ,即 1 是S 的一个下界;② 1>∀β,因为 S ∈=!11,即β不是S 的下界. 所以 1inf =S .(3)})1,0(|{内的无理数为x x S =解 仿照教材P .6例2的方法,可以验证:1sup =S . 0inf =S⑷ },211|{+∈-==N n x x S n 解 1sup =S ,21inf =S 首先验证1sup =S .① S x ∈∀,有1211≤-=n x ,即 1 是S 的一个上界; ② 0>∀ε,取正整数0n ,使得ε<021n ,于是取02110n x -=. 从而S x ∈0,且ε->-=121100n x . 所以1sup =S5.设S 为非空有下界数集,证明:S S S min inf =⇔∈=ξξ证明:⇒)设S S ∈=ξinf ,则对一切S x ∈,有ξ≥x ,而S ∈ξ,故ξ是数集S 中的最小的数,即S min =ξ.⇐)设S min =ξ,则S ∈ξ;下面验证S inf =ξ;⑴ 对一切S x ∈,有ξ≥x ,即ξ是数集S 的下界;⑵ 对任何ξβ>,只须取ξ=0x ,则β<0x . 所以S inf =ξ.6.设S 为非空数集,定义}|{S x x S∈-=-. 证明: ⑴ S S sup inf -=- ⑵ S S inf sup -=-证 ⑴ 设-=S inf ξ,下面证明:S sup =-ξ.① 对一切S x ∈,有-∈-S x . 因为-=S inf ξ,所以有ξ≥-x ,于是ξ-≤x ,即ξ-是数集S 的上界;② 对任何ξα-<,有ξα>-. 因为-=S inf ξ,所以存在-∈S x 0,使得α-<0x .于是有S x ∈-0,使得α>-0x .由①,②可知S sup =-ξ.7.设A 、B 皆为非空有界数集,定义数集},,|{B y A x y x z z B A ∈∈+==+ 证明:(1)B A B A sup sup )sup(+=+; (2)B A B A inf inf )inf(+=+证明 (1)因为A 、B 皆为非空有界数集,所以A sup 和B sup 都存在.B A z +∈∀,由定义分别存在B y A x ∈∈,,使得y x z +=. 由于A x sup ≤,B y sup ≤,故B A y x z sup sup +≤+=,即B A sup sup +是数集B A +的一个上界.B A sup sup +<∀α,(要证α不是数集B A +的上界),A B sup sup <-α,由上确界A sup 的定义,知存在A x ∈0,使得B x sup 0->α. 于是B x sup 0<-α,再由上确界B sup 的定义,知存在B y ∈0,使得00x y ->α. 从而α>+=000y x z ,且B A z +∈0. 因此B A sup sup +是数集B A +的上确界,即B A B A sup sup )sup(+=+另证 B A z +∈∀,由定义分别存在B y A x ∈∈,,使得y x z +=. 由于A x sup ≤,B y sup ≤,故B A y x z sup sup +≤+=,于是B A B A sup sup )sup(+≤+. ①由上确界的定义,0>∀ε,A x ∈∃0,使得2sup 0ε->A x ,B y ∈∃0,使得2sup 0ε->B y ,从而ε-+>+≥+B A y x B A sup sup )sup(00,由教材P.3 例2,可得 B A B A sup sup )sup(+≥+ ②由①、②,可得 B A B A sup sup )sup(+=+类似地可证明:B A B A inf inf )inf(+=+P.15 习题9.试作函数)arcsin(sin x y =的图象解 )arcsin(sin x y =是以2π为周期,定义域为),(∞+-∞,值域为]2,2[ππ-的分段线性函数,其图象如图.11.试问||x y =是初等函数吗?解 因为2||x x y ==,可看成是两个初等函数u y =与2x u =的复合,所以||x y =是初等函数.12.证明关于函数[]x y =的如下不等式:(1)当0>x 时,111≤⎥⎦⎤⎢⎣⎡<-x x x (2)当0<x 时,x x x -<⎥⎦⎤⎢⎣⎡≤111 证明 (1)因为 1111+⎥⎦⎤⎢⎣⎡<≤⎥⎦⎤⎢⎣⎡x x x ,所以当0>x 时,有x x x x x +⎥⎦⎤⎢⎣⎡<≤⎥⎦⎤⎢⎣⎡111,从而有111≤⎥⎦⎤⎢⎣⎡<-x x x .(2)当0<x 时,在不等式1111+⎥⎦⎤⎢⎣⎡<≤⎥⎦⎤⎢⎣⎡x x x 中同时乘以x ,可得⎥⎦⎤⎢⎣⎡≤<+⎥⎦⎤⎢⎣⎡x x x x x 111,从而得到所需要的不等式x x x -<⎥⎦⎤⎢⎣⎡≤111. P.20 习题1.证明1)(2+=x x x f 是R 上的有界函数. 证明 因为对R 中的任何实数x 有21212=≤+x x x x )||21(2x x ≥+ 所以 f 在R 上有界.2.(1)叙述无界函数的定义;(2)证明21)(x x f =为(0,1)上的无界函数; (3)举出函数 f 的例子,使 f 为闭区间 [0,1] 上的无界函数. 解 (1)设函数D x x f ∈)(,若对任何0>M ,都存在D x ∈0,使得M x f >|)(|0,则称 f 是D 上的无界函数.(2)分析:0>∀M ,要找)1,0(0∈x ,使得M x >201. 为此只需Mx 10<. 证明 0>∀M ,取110+=M x ,则)1,0(0∈x ,且M M x >+=1120,所以f 为区间(0,1)上的无界函数. (3)函数⎪⎩⎪⎨⎧=≤<=00101)(x x x x f 是闭区间 [0,1] 上的无界函数.7.设f 、g 为定义在D 上的有界函数,满足)()(x g x f ≤,D x ∈证明:⑴ )(sup )(sup x g x f D x D x ∈∈≤;⑵ )(inf )(inf x g x f Dx D x ∈∈≤证 ⑴ D x ∈∀,有)(sup )()(x g x g x f D x ∈≤≤,即)(sup x g Dx ∈是f 在D 上的一个上界,所以)(sup )(sup x g x f Dx D x ∈∈≤.⑵ D x ∈∀,有)()()(inf x g x f x f D x ≤≤∈,即)(inf x f Dx ∈是g 在D 上的一个下界,所以)(inf )(inf x g x f Dx D x ∈∈≤. 8.设f 为定义在D 上的有界函数,证明:⑴ )(inf )}({sup x f x f D x D x ∈∈-=-; ⑵ )(sup )}({inf x f x f Dx D x ∈∈-=-证 ⑴ D x ∈∀,有)}({sup )(x f x f D x -≤-∈,于是)}({sup )(x f x f Dx --≥∈,即)}({sup x f D x --∈是f 在D 上的一个下界,从而)}({sup )(inf x f x f Dx D x --≥∈∈,所以)(inf )}({sup x f x f Dx D x ∈∈-≥- ①反之,D x ∈∀,有)(inf )(x f x f D x ∈≥,于是)(inf )(x f x f D x ∈-≤-,即)(inf x f Dx ∈-是f -在D 上的一个上界,从而)(inf )}({sup x f x f Dx D x ∈∈-≤- ②由①,②得,)(inf )}({sup x f x f Dx D x ∈∈-=-.9.证明:x tan 在)2,2(ππ-上无界,而在)2,2(ππ-内任一闭区间],[b a 上有界.证 0>∀M ,取)1arctan(0+=M x ,于是)2,2(0ππ-∈x . 则有M M x >+=1tan 0,所以x tan 在)2,2(ππ-上无界. 在)2,2(ππ-内任一闭区间],[b a 上,取|}tan ||,tan max{|b a M =,则],[b a x ∈∀,必有M x ≤|tan |,所以x tan 在],[b a 上有界.10.讨论狄利克雷函数⎩⎨⎧=为无理数当为有理数当x ,x x D 0,1)(,的有界性,单调性与周期性. 解 函数)(x D 是有界函数:1|)(|≤x D . 不是单调函数.)(x D 是周期函数,任何一个正有理数都是它的周期,故它没有最小周期. 证明如下:设 r 是任一正有理数. 若 x 是有理数,则r x ±是有理数,于是)(1)(x D r x D ==±;若 x 是无理数,则r x ±是无理数,于是)(0)(x D r x D ==±.任何无理数都不是)(x D 的周期.11.证明:x x x f sin )(+=在R 上严格增.证 设21x x <,于是2sin 2cos2sin sin )()(121212112212x x x x x x x x x x x f x f -++-=--+=- 因为0>∀x ,有x x <sin ,所以12121212|2sin |2|2sin 2cos 2|x x x x x x x x -<-≤-+,从而121212212sin 2cos 2x x x x x x x x -<-+<-. 所以有 02sin 2cos2)()(211212121212=-+->-++-=-x x x x x x x x x x x f x f 即x x x f sin )(+=在R 上严格增.P.21 总练习题1.设R b a ∈,,证明:⑴ |)|(21},max{b a b a b a -++=证 若b a ≥,则a b a =},max{,a b a b a b a b a =-++=-++)(21|)|(21,这时有|)|(21},max{b a b a b a -++=;若b a <,则b b a =},max{,=-++|)|(21b a b a b b a b a =+-+)(21,也有|)|(21},max{b a b a b a -++=,所以|)|(21},max{b a b a b a -++= 2.设f 和g 都是初等函数,定义)}(),(max{)(x g x f x M =,)}(),(min{)(x g x f x m =,D x ∈试问)(x M 和)(x m 是否为初等函数?解 由第1题有|))()(|)()((21)}(),(max{)(x g x f x g x f x g x f x M -++==,因为f 和g 都是初等函数,于是)()(x g x f -是初等函数,再由212})]()({[|)()(|x g x f x g x f -=-,知|)()(|x g x f -是初等函数,所以)(x M 是初等函数.8.设f 、g 和h 为增函数,满足)()()(x h x g x f ≤≤,R x ∈,证明:))(())(())((x h h x g g x f f ≤≤证 因为f 、g 为增函数,再由)()(x g x f ≤,得))(())((x g f x f f ≤,))(())((x g g x g f ≤,所以有))(())((x g g x f f ≤. 同理可得))(())((x h h x g g ≤.9.设f 、g 为区间),(b a 上的增函数,证明)}(),(max{)(x g x f x =ϕ,)}(),(min{)(x g x f x =ψ也都是区间),(b a 上的增函数.证 ⑴ 先证)}(),(max{)(x g x f x =ϕ是区间),(b a 上的增函数.设21x x <,于是有)()()}(),(m ax {)(12222x f x f x g x f x ≥≥=ϕ,)()()}(),(m ax {)(12222x g x g x g x f x ≥≥=ϕ,从而)()}(),(m ax {)(1112x x g x f x ϕϕ=≥,所以)(x ϕ是增函数.⑵ 其次证明)}(),(min{)(x g x f x =ψ是区间),(b a 上的增函数设21x x <,于是有)()()}(),(m in{)(21111x f x f x g x f x ≤≤=ψ)()()}(),(m in{)(21111x g x g x g x f x ≤≤=ψ从而 )()}(),(m in{)(2221x x g x f x ψψ=≤12.设f 、g 为D 上的有界函数,证明:⑴ )(sup )(inf )}()({inf x g x f x g x f Dx D x D x ∈∈∈+≤+ ⑵ )}()({sup )(inf )(sup x g x f x g x f Dx D x D x +≤+∈∈∈证 ⑴ 由p.17例2 (i),有)(inf )}({inf )}()({inf x f x g x g x f Dx D x D x ∈∈∈≤-++ ① 再由p.20习题8,有)(sup )}({inf x g x g Dx D x ∈∈-=- ② 结合①、②可得)(sup )(inf )}()({inf x g x f x g x f Dx D x D x ∈∈∈+≤+ 13.设f 、g 为D 上的非负有界函数,证明:⑴ )}()({inf )(inf )(inf x g x f x g x f Dx D x D x ⋅≤⋅∈∈∈ ⑵ )(inf )(sup )}()({sup x g x f x g x f Dx D x D x ∈∈∈⋅≤⋅证 ⑴ D x ∈∀,有)()(inf x f x f D x ≤∈,)()(inf x g x g D x ≤∈,从而)()()(inf )(inf x g x f x g x f Dx D x ⋅≤⋅∈∈. 即)(inf )(inf x g x f Dx D x ∈∈⋅是)()(x g x f ⋅在D 上的一个下界,所以有 )}()({inf )(inf )(inf x g x f x g x f Dx D x D x ⋅≤⋅∈∈∈ 15.设f 为定义在R 上以h 为周期的函数,a 为实数. 证明:若f 在 [ a , a +h ] 上有界,则f 在R 上有界.证 设f 在 [ a , a +h ] 上有界,即存在0>M ,使得],[h a a x +∈∀,有M x f ≤|)(|.R x ∈∀,必存在整数m 和实数],[0h a a x +∈,使得0x mh x +=. 于是M x f mh x f x f ≤=+=|)(||)(||)(|00,所以f 在R 上有界.16.设f 在区间I 上有界. 记)(sup x f M I x ∈=,)(inf x f m Ix ∈=,证明m M x f x f Ix x -=''-'∈'''|)()(|sup ,证 I x ∈∀,有M x f ≤)(,m x f ≥)(. 于是I x x ∈'''∀,,有m M x f x f -≤''-'|)()(|,即m M -是数集},:|)()(|{I x x x f x f ∈'''''-'的一个上界. 下面证明:m M -是数集},:|)()(|{I x x x f x f ∈'''''-'的最小上界.由上确界,下确界的定义知,0>∀ε,I x x ∈'''∃,,使得2)(ε->'M x f ,2)(ε+<''m x f ,从而εεε--=+-->''-'m M m M x f x f )2(2)()(. 所以m M -是数集},:|)()(|{I x x x f x f ∈'''''-'的最小上界.所以m M x f x f Ix x -=''-'∈'''|)()(|sup ,部分重点高校历年研究生入学考试试题选(供参考)1.(北京科技大学,1999年)叙述数集A 的上确界的定义,并证明:对任意有界数列}{n x ,}{n y ,总有}sup{}sup{}sup{n n n n y x y x +≤+证明 定义参考教材.由上确界的定义,有}sup{n n x x ≤,}sup{n n y y ≤,( ,2,1=n ). 于是}sup{}sup{n n n n y x y x +≤+,即实数}sup{}sup{n n y x +是数列}{n n y x +的一个上界,所以有}sup{}sup{}sup{n n n n y x y x +≤+2.(中国人民大学)设249)3lg(1)(x x x f -+-=,求)(x f 的定义域和)]7([-f f . 解 由049,13,032≥-≠->-x x x 解得)(x f 的定义域为)3,2()2,7[⋃-110lg 1)7(==-f ,所以342lg 1)]7([+=-f f 3.(华中理工大学)设1)(-=x x x f ,试验证x x f f f f =))]}(([{,并求])(1[x f f (0≠x ,1≠x ).解 由x x x x xx f x f x f f =---=-=1111)()()]([,得x x f f x f f f f ==)]([))]}(([{. x xx x x x x f x f f -=---=-=1111]1[])(1[ 4.(同济大学)设⎩⎨⎧≥<+=010,1)(x x x x f ,求)]([x f f . 解 当0≥x 时,1)1()]([==f x f f ,当01<≤-x 时,1)1()]([=+=x f x f f ,当1-<x 时,2)1()]([+=+=x x f x f f ,所以⎩⎨⎧-≥-<+=111,2)]([x x x x f f 5.(西北工业大学)设2)(x x x f +=,求 ⑴ )(x f 的定义域⑵2)]}([{21x f f ⑶ x x f x )(lim 0→ 解 ⑴ ⎩⎨⎧>≤=+=0,20,0||)(x x x x x x f ,所以)(x f 的定义域为),(∞+-∞. ⑵ 因为)(22)()]([2222x f x x x x x x x f f =+=+++=,所以22)()]}([{21x x x f x f f +== ⑶ 因为00lim )(lim 00==--→→x x x f x x ,+∞==-+→→x x x x f x x 2lim )(lim 00,所以x x f x )(lim 0→不存在6.(清华大学)设函数)(x f 在),(∞+-∞上是奇函数,a f =)1(且对任何x 值均有)2()()2(f x f x f =-+⑴ 试用a 表示)2(f 与)5(f⑵ 问a 取什么值时,)(x f 是以2为周期的周期函数.解 ⑴ 因为对任何x 值均有)2()()2(f x f x f +=+,令1-=x 得a f f f f f f f a -=-=-+=+-==)2()1()2()1()2()21()1(,所以a f 2)2(=.a f f f 3)2()1()3(=+=,a f f f 5)3()2()5(=+=⑵ 由)2()()2(f x f x f +=+知当且仅当0)2(=f ,即0=a 时,)(x f 是以2为周期的周期函数.7.(合肥工业大学)证明:定义在对称区间),(l l -内的任何函数)(x f ,必可表示成偶函数)(x H 与奇函数)(x G 之和的形式,且这种表示法是唯一的.证明 令)]()([21)(x f x f x H -+=,)]()([21)(x f x f x G --=,则)()()(x G x H x f +=,且容易证明)(x H 是偶函数,)(x G 是奇函数.下证唯一性. 若还有偶函数)(1x H 与奇函数)(1x G ,满足)()()(11x G x H x f +=,则有)()()()(11x G x G x H x H -=-, ①用x -代入①式,得)()()()(11x G x G x H x H -=- ②①+② 得 )()(1x H x H =,再代入②式得)()(1x G x G =8.(内蒙古大学)作函数||2|2|x y --=的图形解 ⎪⎪⎩⎪⎪⎨⎧>-≤≤-<≤<-=44424200x x x x x x x x y 9.(上海师范大学)是否存在这样的函数,它在区间]1,0[上每点都取有限值,但在此区间的任何点的任何邻域内都无界.答 存在,例如⎩⎨⎧>==1000,,)(或为无理数或为且互质x ,n ,n m n m x n ,x f 10.(武汉大学,1994年)设}{n x 为一个正无穷大数列,E 为}{n x 的一切项组成的数集,试证:必存在自然数p ,使得E x p inf =证明 因为}{n x 为一个正无穷大数列,所以存在自然数N ,使得当N n >时,1x x n >. 于是},,,m in{inf 21N x x x E =,由于},,,{21N x x x 为有限集,所以存在p x ,使得E x x x x N p inf },,,min{21== .11.(天津大学)证明:2是满足不等式22>r 的一切正有理数的下确界;证 设}0,2,|{2>>∈=r r Q r r A . 要证2是数集A 的下确界. A r ∈∀,有22>r ,所以2>r ,即2是数集A 的一个下界.0>∀ε,由有理数的稠密性,在)2,2(ε+上存在无穷多个有理数,于是可取)2,2(1ε+∈r ,即A r ∈1且ε+<21r . 所以2inf =A12.(华中师范大学)设函数)(x f 定义在区间I 上,如果对于任何I x x ∈21,,及)1,0(∈λ,恒有)()1()())1((2121x f x f x x f λλλλ-+≤-+,证明:在区间I 的任何闭子区间上)(x f 有界.证 I b a ⊂∀],[,要证)(x f 在],[b a 有界. ),(b a x ∈∀,存在)1,0(∈λ,使 )(a b a x -+=λ,即a b x )1(λλ-+=.M M M a f b f a b f x f =-+≤-+≤-+=)1()()1()())1(()(λλλλλλ ① 其中)}(),(max{b f a f M =],[b a x ∈∀,令x b a y -+=)(,则22y x b a +=+, M x f y f x f y x f b a f 21)(21)(21)(21)22()2(+≤+≤+=+,所以 M b a f x f -+≥)2(2)( ② 由①、②可得,],[b a x ∈∀,有M x f M b a f ≤≤-+)()2(2,所以)(x f 在],[b a 有界.。

同济大学硕士研究生参考书目

同济大学硕士研究生参考书目

2011年同济大学硕士生初试考试科目参考书010建筑与城市规划学院科目代码科目名称参考书目344风景园林基础《现代景观规划设计》(第三版),刘滨谊著,东南大学出版社, 2010年;《西方造园变迁史》,针之古中吉著,中国建筑工业出版社,1991年;《中国古典园林史》(第二版),周维权著,清华大学出版社,1999年;《图解人类景观》,刘滨谊等译,同济大学出版社,2006年;《景观生态规划原理》,王云才编著,中国建筑工业出版社,2007年;355建筑学基础《中国建筑史》《外国建筑史》陈志华《外国近现代建筑史》,罗小未全国统编教材及相关参考书629城市规划基础《城市规划原理》,李德华,中国建筑工业出版社,第三版,2001《中国城市建设史》,董鉴泓,中国建筑工业出版社,2004《外国城市建设史》,沈玉麟,中国建筑工业出版社,第二版,1996《历史文化名城保护理论与规划》,王景慧,阮仪三,王林编著,同济大学出版社,1999《历史城市保护学导论》,张松,上海科学技术出版社,2001《区域研究与区域规划》,彭震伟,同济大学出版社,1998《现代城市规划理论》,孙施文,中国建筑工业出版社,2007630风景园林基础《现代景观规划设计》(第三版),刘滨谊著,东南大学出版社, 2010年;《西方造园变迁史》,针之古中吉著,中国建筑工业出版社,1991年;《中国古典园林史》(第二版),周维权著,清华大学出版社,1999年;《图解人类景观》,刘滨谊等译,同济大学出版社,2006年;《景观生态规划原理》,王云才编著,中国建筑工业出版社,2007年;802古代建筑文献同名教材,同济大学教材科:《古文观止》,《中国历代园林文选》,《十三经注疏》,《二十二子》,以及各地地方志803设计基础大学本科相关教材804城市规划相关知识《城市工程系统规划》,戴慎志,中国建筑工业出版社,1999《城市给水排水工程规划》,戴慎志,安徽科技出版社,1999《城市基础设施规划手册》,戴慎志,中国建筑工业出版社,1982《城市对外交通》,同济大学编,建工出版社,1982《道路工程》,徐家钰,程家驹,同济大学出版社,1995《城市道路交通规划设计规范》和讲解材料(GB50220-95),国家技术监督局,建设部《城市道路与交通规划》(上),徐循初,汤宇卿,建工出版社,2005《城市规划》、《城市规划学刊》,1995年后有关论文《大都市地区快速交通和城镇发展》,潘海啸,同济大学出版社,2002805建筑构造与结构《建筑构造与设计基础》,刘昭如,科学出版社,2000年《结构选型》,陈保胜,同济大学出版社,2004年《建筑特种构造》,颜宏亮,同济大学出版社,2002年《设计力学》,陈保胜,同济大学出版社,2004年806景观规划设计大学本科相关教材和主要参考书010建筑与城市规划学院科目代码科目名称参考书目807建筑物理《建筑物理》,柳孝图,中国建筑工业出版社《节能建筑设计和技术》,宋德萱,同济大学出版社020土木工程学院科目代码科目名称参考书目808材料力学与结构力学1. 《材料力学》宋子康、蔡文安编,同济大学出版社,2001年6月(第二版)2.《结构力学教程》(Ⅰ、Ⅱ部分),龙驭球、包世华主编,高等教育出版社,2000~2001年3.《结构力学》(上、下册),朱慈勉主编,高等教育出版社,2004年809工程水文学《工程水文学》,邱大洪主编,人民交通出版社,1999810测绘科学技术基础1 《测量学》(第三版),顾孝烈,鲍峰,程效军编著,同济大学出版社,2006;2 《误差理论与测量平差基础》,武汉大学测绘学院测量平差学科组, 武汉大学出版社,2006;3 《误差理论与测量平差基础习题集》,武汉大学测绘学院测量平差学科组,武汉大学出版社,2005811工程地质学1 《工程地质学》,孔宪立、石振明主编,中国建筑工业出版社,2001;2 《工程地质分析原理》,张倬元、王士天、王兰生编著,地质出版社,2005030机械工程学院科目代码科目名称参考书目812机械设计《机械设计》(第八版),濮良贵主编,高等教育出版社,2006813机械原理《机械原理》,孙桓主编,第七版,高等教育出版社,2006814工业工程《工业工程基础》(修订版面向21世纪课程教材) ,汪应洛主编, 中国科学技术出版社,2005.08《物流工程与管理》,徐克林主编,上海交通大学出版社, 2003.07815传热学《传热学》(第四版)或(第五版),章熙民、任泽霈、梅飞鸣编著,中国建筑工业出版社;《传热学》(第三版),杨世铭,陶文铨编著,高等教育出版社816工程热力学《工程热力学》(第四版)或者(第五版),廉乐明等编,中国建筑工业出版社《工程热力学》(第三版),沈维道等编,高等教育出版社《工程热力学》(第三版),曾丹苓等编,高等教育出版社040经济与管理学院科目代码科目名称参考书目431金融学综合1、《货币金融学》,(美)米什金著,郑艳文译,中国人民大学出版社,2006年2、《金融经济学》,陈伟忠,中国金融出版社,2008年443会计学1、刘威主编,《会计学》第二版,同济大学出版社,2008年;2、Lee H. Radebaugh,国际会计与跨国公司(International Accounting &Multinational Enterprises(英文影印版,第六版),机械工业出版社,2007年;3、CPA考试教材,《会计》,财政经济出版社,2010年;4、CPA考试教材,《财务管理》,财政经济出版社,2010年817经济学《新编西方经济学》,周平海,立信会计出版社,2007《西方经济学简明教程(第六版)》,尹伯成,上海人民出版社,2008818管理学概论《管理学概论》(第三版),尤建新、陈守明编,同济大学出版社,2007,《管理学--原理与方法》(第四版),周三多、陈传明、鲁明泓,复旦大学出版社,2008050环境科学与工程学院科目代码科目名称参考书目819普通化学《普通化学》(第1版),同济大学普通化学及无机化学教研室编,高等教育出版社,2004820环境科学与工程基础环境科学专业考生须完成A组考题和B组考题,环境工程专业考生须完成A组考题和C组考题。

数学分析-上册--第三版-华东师范大学数学系-编

数学分析-上册--第三版-华东师范大学数学系-编

数学分析 上册 第三版 华东师范大学数学系 编部分习题参考解答P.4 习题1.设a 为有理数,x 为无理数,证明:(1)a + x 是无理数; (2)当0≠a 时,ax 是无理数。

证明 (1)(反证)假设a + x 是有理数,则由有理数对减法的封闭性,知 x = a +x – a 是有理数。

这与题设“x 为无理数”矛盾,故a + x 是无理数。

(2)假设ax 是有理数,于是a ax x =是有理数,这与题设“x 为无理数”矛盾,故ax 是无理数。

3.设R b a ∈,,证明:若对任何正数ε有ε<-||b a ,则 a = b 。

证明 由题设,对任何正数ε有0||+<-εb a ,再由教材P.3 例2,可得0||≤-b a ,于是0||=-b a ,从而 a = b 。

另证 (反证)假设0||>-b a ,由实数的稠密性,存在 r 使得0||>>-r b a 。

这与题设“对任何正数ε有ε<-||b a ”矛盾,于是0||=-b a ,从而 a = b 。

5.证明:对任何R x ∈有(1)1|2||1|≥-+-x x ; (2)2|3||2||1|≥-+-+-x x x证明 (1)|2||1||)2()1(|1-+-≤-+-=x x x x(2)因为|2||1||1||)3(2||3|2-+-≤-=--≤--x x x x x ,所以2|3||2||1|≥-+-+-x x x6.设+∈R c b a ,,证明||||2222c b c a b a -≤+-+证明 建立坐标系如图,在三角形OAC 中,OA 的长度是22b a +,OC 的长度是22c a +,AC 的长度为||c b -。

因为三角形两边的差大于第三边,所以有||||2222c b c a b a -≤+-+7.设 b a b x ≠>>,0,0,证明x b x a ++介于1与ba 之间。

华东师范大学数学分析第8章习题答案

华东师范大学数学分析第8章习题答案

华东师范⼤学数学分析第8章习题答案第⼋章⼀:不定积分概念与基本积分公式(教材上册P181) 1. 验证下列(1)、(2)等式并与(3)、(4)两试相⽐照: (1)'()()f x dx f x c =+?; (2) ()()df x f x c =+?; (3) [()]'()f x dx f x =?; (4) ()()()d f x d x f x dx =?;解: (1)'0(())''()'()'()()c f x c f x c f x f x dx f x c=∴+=+=∴=+? 与(3)相⽐(1)试求不定积分运算,(2)是求导运算,(1) (3)互为逆运算,不定积分相差⼀个常数但仍为原不定积分,该常数⽤c 表⽰,称为积分常数.(2)()'()()'()()df x f x dxdf x f x dx f x c===+??与(4)相⽐: (2)是先求导再积分,因此包含了⼀个积分常数,(4)是先积分再求导,因此右侧不含积分常数.2. 求⼀曲线y=f (x),使得在曲线上的每⼀点(x,y)处的切线斜率为2x,且通过点(2,5). 解:222dy xdxy dy xdx x c====+??将(x,y)=(2,5)代⼊得: 5=22+cC=1该曲线为21y x =+3. 验证2sgn 2x y x =是|x|在(,)+∞-∞上的⼀个原函数. 解:x>0时,y ’=2()'||2x x x ==x<0时,2'()'||2x y x x =-=-=x=0时,22000sgn 022'lim lim lim 002x x x x x x x y x x ++++→→→-====- 2200sgn 02'lim lim()0||02x x x x x y x x --→→-==-==- 因此'''0||y y y x +-====综上得2'(sgn )'||,(,)2x y x x x ==?∈+∞-∞2sgn 2x y x =是|x|在(,)+∞-∞上的⼀个原函数.4. 据理说明为什么每⼀个含有第⼀类间断点的函数都没有原函数?解: 设0x 是 f (x)的第⼀类间断点,且 f (x)在0()U x 上有原函数 F (x),则0'()(),()F x f x x U x =∈.从⽽由导数极限定理得00lim ()lim '()'()()x x x x f x F x F x f x +++→→=== 同理 000lim ()'()()x x f x F x f x -→==.可见0()f x x 点连续,推出⽭盾.⼆: 换元积分法与部分积分法(教材上册P188) 1. 应⽤换元积分法求下列积分 (1) cos(34)x dx +?; (2) 22xxe dx ?;(3) 21dx x +?; (4) (1)n x dx +?;(5)dx ?; (6) 232x dx +?;(7);(8)(9)2sin x x dx ?; (10) 2sin (2)4dxxx +?;(11) 1cos dx x +?; (12) 1sin dx x+?;(13)csc xdx ?;(14);(15)44xdx x +?; (16)ln dx x x ?;(17) 453(1)x dx x +?; (18) 382x dx x -?;(19)(1)dxx x +?; (20) cot xdx ?; (21) 5cos xdx ?; (22)sin cos dxx x ?;(23)x xdx e e -+?; (24) 22338x dx x x --+?; (25) 252(1)x dx x ++?;(26) (a>0);(27) 223/2(0)()dxa x a >+?;(28) 5;(29)(30).解: (1)34cos(34)cos 3t x t x dx d =++=11sin sin(34)33t c x c =+=++ (2) 22112222()'()22t x x t txe dx e d ==??112211()()()22224t t t t t ed e dt ==?? 221144t x e c e c =+=+ (3)21111ln ||ln |21|21222t x dx t d t c x c x t =+==+=+++??(4)①当1n ≠-时,111(1)(1)11n n t x nnt x x dx t dt c c n n ++=+++== +=+++?? ②当1n =-时,(1)ln |1|n x dx x c +=++?(5)dx =?c =+ (6)232323231212122222ln22ln 22ln2t x x t x x tt dx d c c c ++=++==+=+=+?(7)332222222()(83)3399t t td t dt t c x c -=-=-+=--+?(8)322/31333()(75)551010t t d tdt t c x c t -=-=-+=--+? (9)211112222211sin sin sin sin 22t x x x dx t tdt t t t dt tdt =-===211cos cos 22t c x c =-+=-+ (10)2422111cot cot(2)224sin (2)sin 42t x dxt c x c x t x tdππ=+==-+=-+++?? (11)222(2)12sec tan tan()1cos 1cos 22cos 2t x dx d t x dt tdt t c c x t t =====+=+++ (12) 22 1sin (sec sec tan )tan sec 1sin dx xdx x x x dx x x c x cos x-==-=-++ (13)2111csc sin sin cos tan cos2222xdx dx dx x x x x x ===?α2ln |tan |2tan 2x d x c x ==+? (14)21(1)2x c =--=(15)22242111()arctan()442421()2x x x dx d c x x ==+++??(16)ln 11ln ||ln |ln |ln t x t t dx de dt t c x c x x e t t====+=+ (17)4555253535311111(1)(1)(1)5(1)5(1)10x dx dx d x x c x x x -==--=-++--(18)4344888111|242816112x dx dx d c x x x ===-+----(19)11()ln ||ln |1|ln ||(1)11dx xdx x x c c x x x x x=-=-++=++++?? (20)cos cot ln ||ln |sin |sin xxdx dx t c x c x ==+=+??(21)52224cos (1sin )sin (12sin sin )sin xdx x d x x x d x =-=-+?sin 2sin sin 53x x x c =-++ (22)2cos tan ln |tan |sin cos sin cos tan dx xdx d x x c x x x x x ===+ (23)22arctan 1()1()x xx x x x x dx e de dx e c e e e e -===++++ (24)222223(38)ln(38)3838x d x x dx x x c x x x x --+==-++-+-+?? (25)2221533232(1)223123()(1)t x x t t t dx dt dt dt x t t t t t =++-+-+===-++ 222323 ln ||ln |1|(1)212t t c x x c t x --=+-+=++-+++(26)1()ln |x t ax t c a====+?1ln |ln |x c x c a =+=+(27)令tan x a θ=,sec 22t a tdt ππ-<<223/23322s e c 11c o t s i n ()s e c d xa t d t t d t tx a a t a a ===++??c =+ (28)55sin 42sin sin (cos 2cos 1)cos x d d cos θθθθθθθ===--+??35322121cos cos cos (1)535c xc θθθ=-+-+=--(29)32256642226666111t t t t dt t dt t dt t dt t t t ===-+--- 6 42266661tt t dt t dt t dt dt dt t =---+-?75366126ln ||751t t t t t c t+=----++- 165116661263ln ||751x x x x x c x +=----++- (30)1121t t tdt t -→=+?222(2)44ln |1|1t t dt t t tc t =-+=-++++?14ln |1|x c =+-+ 4ln |1|'x c =-+ 2. 应⽤分部积分法求下列不定积分 (1) arcsin xdx ?; (2) ln xdx ?;(3) 2cos x xdx ?; (4)3ln xdx x ?;(5) 2(ln )x dx ?; (6)tan xarc xdx ?;(7) 1[ln(ln )]ln x dx x+?;(8) 2(arcsin )x dx ? (9)3secxdx ?; (10)(0)a >.解 (1)arcsin arcsin arcsin arcsinxdx x x xd x x x =-=-122arcsin (1)x x x c =+++ (2)1ln ln ln ln ln xdx x x xd x x x xdx x x x c x=-=-=-+(3)222cos sin 2sin sin 2cos x xdx x x x xdx x x xd x =-=+?2sin 2cos 2cos x x x x xdx =+-?2sin 2cos 2sin x x x x x c =+-+(4)2223ln 11ln [ln (ln )]22x dx xdx x x x d x x ---=-=-- 222ln 11(ln 1)244x c x c x x x=--+=-++(5)2221(ln )(ln )2ln (ln )2ln x dx x x x x dx x x xdx x=-=-(参考(2)结果)2(ln )2ln 2x x x x x c =-++(6)2222111tan tan arctan 2221x xarc xdx arc xdx x x dx x ==-+ 221111arctan 2221x x dx dx x =-++?? 2111arctan arctan 222x x x x c =-++(7)11111[ln(ln )]ln(ln )ln(ln )ln ln ln ln x dx x dx dx x x x dx dx x x x x x +=+=-+ ln(ln )x x c =+ (8)12222(arcsin )(arcsin)2arcsin (1)x dx x x x x dx -=--??12222(sin )arcsin (1)(1)x arx x x x d x -=+--?1222(arcsin )2arcsin (1)x x xd x =+-?1222(arcsin )2(1)arcsin 2x x x x dx =+--?1222(arcsin )2(1)arcsin 2x x x x x c =+--+(9) 令3sec I xdx =?s e c t a ns e ct a nt a n s e c I x d x x x x x x d x==-?23sec tan (1cos )sec sec tan sec x x x xdx x x I xdx =--=-+??11sec tan sec 22I x x xdx =+?1(sec tan ln |sec tan |)2x x x x c =+++(10)11222222222(0)()2()I a x x a xdx x a x -=>=±=+-1122222222()()()x x x a I ax x a I a a =±-±=±-±则122222111()()(ln ||)222x I x x a a a x c a =±±=+ 3. 求下列不定积分(1)[()]()'(1)f x f x dx αα≠?; (2)2'()1[()]f x dx f x +?;(3)'()()f x dx f x ?; (4)()'()f x e f x dx ?. 解: (1)11[()]()'[()]()[()]1f x f x dx f x df x f x c αααα+==++?(2)122'()1()arctan[()](arccot[()])1[()]1[()]f x dx df x f x c f x c f x f x ==+=-+++??(3)'()1()ln |()|()()f x dx df x f x c f x f x ==+?? (4)()()()'()()f x f x f x ef x dx e df x e c ==+?三. 有理函数和可化为有理函数的不定积分(教材上册P198) 1. 求下列不定积分(1)31x dx x -?; (2)22712x dx x x --+?;(3)31dx x +?; (4)41dxx +?;(5)22(1)(1)dx x x -+?; (6)222(221)x dx x x -++?;解: (1)3321111111x x x x x x x -+==+++--- 3232111(1)ln |1|1132x dx x x dx x x x x c x x =+++=+++-+--?? (2)2223111712(3)(4)(3)(4)4(3)(4)x x x x x x x x x x x x ---+===+-+-------22211(4)7124712x dx d x dx x x x x x -=-+-+--+211(4)2(27)4(27)d x d x x x =-+---??2ln |4|ln |3|x x c =---+ (3)设321111A Bx Cx x x x +=+++-+ 则21(1)()(1)A x x Bx C x =-++++ 2()()A B x B C A x A C =+++-++, 则⽐较两端系数,得1 21,,333B C A =-== 321121311dx x dx x x x x -??=-++-+221111(1)31311d x d d x =+-+++?221(1)ln 61x c x x +=+-+(4)22422221111()11()21x d x x x x dx dx x x x x x x -+-+===++-+-+11x c -=+2224222211111||1()2x x xdx dx c x x x x x---===++++-则234441111112121x x dx dx dx x x x +-=-+++|c =++ (5)设1122222221(1)(1)11(1)B xC B x C A x x x x x ++=++-+-++ 则22211221(1)()(1)(1)()(1)A x B x C x x B x C x =+++-+++-432111112121212()()(2)()()A B x C B x AC B B x C C B B x A C C=++-+-++++--+-- ⽐较两边系数得到12211111,,,,44422A B C B C ==-=-=-=- 22222111111(1)(1)(1)(1)418141dx d x d x dx x x x x x =--+--+-++ 222221111(1)4(1)2(1) d x dx x x -+-++?? 2222111(1)2(1)21x dx dx x x x =++++?? 222111ln |1|ln(1)arctan (1)(1)482dx x x x x x ∴=--+--+?211(1)4x -++ 211(1)4x x c --++。

“数学分析”精品书籍推荐

“数学分析”精品书籍推荐

书里面有一些提高性的内容,可以看看。
4《数学分析》(第3版) 欧阳光中,朱学炎,金福临,陈传璋著
普通高等教育“十一五”国家级规划教材。不少经济类工科类学校也用这一本书。里面个别地方讲的比较难懂,据说是用物理的观点写的,而且有的地方确实如果不听老师讲,你不知道它在说什么。虽然如此,许多大学都还是把它作为教材或研究生入学考试的指定用书。可以说,它是一本优点与缺点一样突出的老教科书。
其中前三卷(册)属于数学分析的所有内容,第四卷(册)主要介绍代数矩阵论的基本理论及其应用。
国外经典教材有:
9《微积分学教程》(共三卷),《数学分析原理》(共两卷) 菲赫金哥尔茨著
不用多说,几乎每个对数学稍微了解一些的人都知道它的大名。书中很少涉及现在流行的集合论的观点,但对初学者而言毫无影响,甚至使一些概念更清晰了。书的内容也相当的翔实,每本书很厚(因此也很贵,记得好像每本五十多RMB),字号又不大。由于我们从小是学习欧美符号系统的,不习惯苏联的一套符号系统,看这本书还是很麻烦,并且还很贵,个人建议作为参考书来使用。其实连作者本人(莫斯科大学的教授,门下弟子无数,包括后来得诺贝尔经济学奖的著名数学家Kantorovitch)都承认不太合适作为教材,为此他才给出了适合做教材的后一套书,这是一个精简的版本(有所补充的是在书的最后给出了一个后续课程的简介)。
“数学分析”精品书籍推荐
上传时间 2010-12-12 作者:杜爽杰 阅读次数:578
--------------------------------------------------------------------------------
“数学分析”是数学或计算专业最重要的一门课,而且是今后数学专业大部分课程的基础,经常从一个知识点就能引申出今后的一门课,同时它也是初学时比较难的一门课。这里的“难”主要是指对数学分析思想和方法的不适应(高等数学上的方法与初等数学的方法有很大不同),其实随着学习的深入,适应了方法后,会感觉一点一点地容易起来,比如当大四考研复习再看时会感觉轻松许多。数学系的数学分析讲三个学期(各个院校应该一样吧),学的时间也够长的~

数学分析课本(华师大三版)-习题及答案02+03

数学分析课本(华师大三版)-习题及答案02+03
lim
5
lim x + 3
3 x→0 x + 4 x 2 + 3 1 (9) lim x cos x→0 x 1 1 (11) lim( ) − x →∞ 1 − x 1− x3
(13) lim
1+ x x →∞ 1 − x
2 x →∞
x − cos x x →∞ x 2 x − 2x + 3 (10) lim 2 x →∞ 3x + 4 x + 5 3x 5 − 6 x 3 + 3 (12) lim x →∞ x7 − 2 x +3 (14) lim x →∞ x − 2 lim
存在且相等. 10.若 x1 = a > 0,y1 = b > 0(a > b) x n +1 = 证明: lim x n = lim y n (提示:x n ≤ y n ) .
n→∞ n→∞
x n y n , y n +1 =
xn + yn . 2
x1 + x 2 +L + x n =a. n 12.设 {nx n } 非负有界,试证: lim x n = 0 .
lim lim
( x + x ) sin 2 x x →0 (tan x)3
1+ x −1 x →0 tan 2 x 2x − x lim+ x →0 tan x
sin x sin 2 ( x − 1) (6) lim x →π x − π x →1 x −1 16. 证明:若 lim a n = a ,则 lim a n = a ,逆命题是否成立?
n →∞ n →∞ n→∞ k n →∞
4.试证:若 lim x n = a ,且 x n ≥ 0 ,k 为任意一个自然数,则 lim k x n = 5.应用夹逼性证明:
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学分析-上册--第三版-华东师范大学数学系-编数学分析 上册 第三版 华东师范大学数学系 编部分习题参考解答P.4 习题1.设a 为有理数,x 为无理数,证明: (1)a + x 是无理数; (2)当0≠a 时,ax 是无理数。

证明 (1)(反证)假设a + x 是有理数,则由有理数对减法的封闭性,知 x = a +x – a 是有理数。

这与题设“x 为无理数”矛盾,故a + x 是无理数。

(2)假设ax 是有理数,于是aax x =是有理数,这与题设“x 为无理数”矛盾,故ax 是无理数。

3.设R b a ∈,,证明:若对任何正数ε有ε<-||b a ,则 a = b 。

证明 由题设,对任何正数ε有0||+<-εb a ,1再由教材P.3 例2,可得0||≤-b a ,于是0||=-b a ,从而 a = b 。

另证 (反证)假设0||>-b a ,由实数的稠密性,存在 r 使得0||>>-r b a 。

这与题设“对任何正数ε有ε<-||b a ”矛盾,于是0||=-b a ,从而 a = b 。

5.证明:对任何R x ∈有(1)1|2||1|≥-+-x x ; (2)2|3||2||1|≥-+-+-x x x 证明 (1)|2||1||)2()1(|1-+-≤-+-=x x x x (2)因为|2||1||1||)3(2||3|2-+-≤-=--≤--x x x x x ,所以2|3||2||1|≥-+-+-x x x 6.设+∈R c b a ,,证明||||2222c b c a b a -≤+-+证明 建立坐标系如图,在三角形OAC 中,OA的长度是22ba +,OC 的长度是22c a +,acb),(b a A ),(c a C xyOn 有公约数 p 。

这与“m 、n 互素”矛盾。

所以p是无理数。

P.9 习题2.设S 为非空数集,试对下列概念给出定义:(1)S 无上界; 若M ∀,Sx∈∃0,使得Mx>0,则称S 无上界。

(请与S 有上界的定义相比较:若M ∃,使得S x ∈∀,有M x ≤,则称S 有上界)(2)S 无界。

若0>∀M ,Sx∈∃0,使得Mx>||0,则称S 无界。

(请与S 有界的定义相比较:若0>∃M ,使得S x ∈∀,有M x ≤||,则称S 有界)3.试证明数集},2|{2R x xy y S ∈-==有上界而无下界。

1证明 Sx ∈∀,有222≤-=xy ,故2是S 的一个上界。

而对0>∀M ,取Mx+=30,SM x y∈--=-=12200,但My -<0。

故数集S 无下界。

4.求下列数集的上、下确界,并依定义加以验证:(1)},2|{2R x x x S ∈<=解 2sup =S ,2inf -=S 。

下面依定义加以验证2sup =S (2inf -=S 可类似进行)。

Sx ∈∀,有22<<-x ,即2是S 的一个上界,2-是S 的一个下界。

2<∀α,若2-≤α,则Sx∈∀0,都有α>0x;若22<<-α,则由实数的稠密性,必有实数 r ,使得22<<<-r α,即S r ∈,α不是上界,所以22sup =S 。

(2)},!|{+∈==N n n x x S解 S 无上界,故无上确界,非正常上确界为+∞=S sup 。

1inf =S 。

Sx ∈∀,有1!≥=n x ,即 1 是S 的一个下界; 1>∀β,因为 S ∈=!11,即β不是S 的下界。

所以1inf =S 。

(3)})1,0(|{内的无理数为x x S =解 仿照教材P .6例2的方法,可以验证:1sup =S 。

inf =S7.设A 、B 皆为非空有界数集,定义数集},,|{B y A x y x z z B A ∈∈+==+证明:(1)B A B A sup sup )sup(+=+; (2)B A B A inf inf )inf(+=+证明 (1)因为A 、B 皆为非空有界数集,所以A sup 和B sup 都存在。

3BA z +∈∀,由定义分别存在B y A x ∈∈,,使得yx z +=。

由于A x sup ≤,B y sup ≤,故B A y x z sup sup +≤+=,即B A sup sup +是数集B A +的一个上界。

BA sup sup +<∀α,(要证α不是数集B A +的上界),AB sup sup <-α,由上确界A sup 的定义,知存在Ax∈0,使得Bxsup 0->α。

于是Bxsup 0<-α,再由上确界B sup 的定义,知存在By ∈0,使得00x y->α。

从而α>+=000y x z,且BA z+∈0。

因此B A sup sup +是数集B A +的上确界,即BA B A sup sup )sup(+=+另证BA z +∈∀,由定义分别存在B y A x ∈∈,,使得y x z +=。

由于A x sup ≤,B y sup ≤,故B A y x z sup sup +≤+=,于是BA B A sup sup )sup(+≤+。

①由上确界的定义,0>∀ε,Ax∈∃0,使得42sup 0ε->A x ,By ∈∃0,使得2sup 0ε->B y ,从而ε-+>+≥+B A y x B A sup sup )sup(00,由教材P.3 例2,可得 BA B A sup sup )sup(+≥+ ②由①、②,可得BA B A sup sup )sup(+=+类似地可证明:B A B A inf inf )inf(+=+P.15 习题 9.试作函数)arcsin(sin x y =的图象解)arcsin(sin x y =是以2π为周期,定义域为),(∞+-∞,值域为]2,2[ππ- 的分段线性函数,其图象如图。

11.试问||x y =是初等函数吗? 解 因为2||x x y ==,可看成是两个初等函数uy =与2x u =的复合,所以||x y =是初等函数。

12.证明关于函数[]x y =的如下不等式:2π2π2π-2π-xπy5(1)当0>x 时,111≤⎥⎦⎤⎢⎣⎡<-x x x (2)当0<x 时,xx x -<⎥⎦⎤⎢⎣⎡≤111证明 (1)因为1111+⎥⎦⎤⎢⎣⎡<≤⎥⎦⎤⎢⎣⎡x x x ,所以当0>x 时,有x x x x x +⎥⎦⎤⎢⎣⎡<≤⎥⎦⎤⎢⎣⎡111,从而有111≤⎥⎦⎤⎢⎣⎡<-x x x 。

(2)当0<x 时,在不等式1111+⎥⎦⎤⎢⎣⎡<≤⎥⎦⎤⎢⎣⎡x x x 中同时乘以x ,可得⎥⎦⎤⎢⎣⎡≤<+⎥⎦⎤⎢⎣⎡x x x x x 111,从而得到所需要的不等式x x x -<⎥⎦⎤⎢⎣⎡≤111。

P.20 习题1.证明1)(2+=x x x f 是R 上的有界函数。

证明 因为对R 中的任何实数x 有21212=≤+x x x x)||21(2x x ≥+所以 f 在R 上有界。

2.(1)叙述无界函数的定义;(2)证明21)(x x f =为(0,1)上的无界函数;(3)举出函数 f 的例子,使 f 为闭区间[0,1] 上的无界函数。

解 (1)设函数D x x f ∈)(,若对任何0>M ,都存在D x ∈0,使得M x f >|)(|0,则称 f 是D 上的无界函数。

(2)分析:0>∀M ,要找)1,0(0∈x,使得M x >201。

为此只需M x 10<。

证明0>∀M ,取110+=M x ,则)1,0(0∈x ,且M M x >+=1120,所以f 为区间(0,1)上的无界函数。

(3)函数⎪⎩⎪⎨⎧=≤<=00101)(x x x x f 是闭区间 [0,1] 上的无界函数。

10.讨论狄利克雷函数⎩⎨⎧=为无理数当为有理数当x ,x x D 0,1)(,的有界性,单调性与周期性。

解函数)(x D是有界函数:1|)(|≤D。

不是单x调函数。

(xD是周期函数,任何一个正有理数都是它)的周期,故它没有最小周期。

证明如下:设r是任一正有理数。

若x是有理数,则r x±是有理数,于是)(xD==±;若x是无理数,则r x±是无理r1)(xD数,于是)(D=x=±。

(xr)D任何无理数都不是)(x D的周期。

相关文档
最新文档