脉冲波形产生与变换
数字电子技术10脉冲波形的产生与变换资料
vR
vO2
vO1
vo1
t1
t
所以,一旦 vR = Vth ,立即 0 回到稳态:vO2= 0, vO1=1。 vR
vO1
vO2
Vth
0
t
t
G1 ≥1
C
1 G2 vR
R
VDD
vo2
vI
0
t
21
vO1 G1 ≥1
C
vO2 1 G2 vR
R VDD
vi
vo 1
vR
0
t1
t
vI
0
t
t tW
2. 主要参数计算:
常用的整形电路有单稳态触发器和施 密特触发器 。
3
图10.1.1 描述矩形脉冲特性的主要参数
1、脉冲周期T; 2、脉冲幅度Vm 3、脉冲宽度tw 4、上升时间tr
5、下降时间tf
6、占空比q q = tw / T
4
10. 2 施密特触发器 施密特触发器(Schmitt Trigger)的特点:
(1)属于电平触发,当输入信号达到一定电压值时,输 出电压会发生突变,输入信号增加和减少时,电路有不 同的阈值电平。 (2)在电路状态转换时,通过电路内部的正反馈过程, 使输出电压波形的边沿变得很陡。 VO VOH
1
G2
vI
vO1
vR
vR VDD
vO1 = 0 ,vO2 = 1, 同时: +5V
R4
vI
电容C应 该充电
vo2
vR
0
T4 T5
t
vo 1
C
R
VDD
t 只要 vR < Vth ,仍 然维持暂稳态。
0
数字电子技术-脉冲波形的产生与变换
3
锯齿波变换的应用
在数字电子技术中,锯齿波的变换常用于产生矩 形波等脉冲波形,这些波形在信号处理、测量和 控制等领域有广泛的应用。
04
脉冲波形产生与变换的方法
数字方法
数字方法是指通过数字电路和数字信号处理技术来产生 和变换脉冲波形。
数字方法可以通过编程实现各种不同的脉冲波形,如矩 形波、三角波、正弦波等。
数字电子技术-脉冲波形 的产生与变换
• 引言 • 脉冲波形的产生 • 脉冲波形的变换 • 脉冲波形产生与变换的方法 • 脉冲波形产生与变换的实际应用 • 结论
01
引言
主题简介
01
脉冲波形是指具有特定形状、幅 度、宽度和重复频率的波形,广 泛应用于数字电子技术中。
02
脉冲波形的产生与变换是数字电 子技术中的重要内容,涉及到信 号处理、通信、控制等多个领域 。
光纤通信
在光纤通信中,脉冲波形产生与变换技术用于生成高速光脉冲,实现大容量、高速的光信号传输。通 过调制技术,将数字信号加载到光脉冲上,提高通信系统的传输效率和可靠性。
在测量技术中的应用
时间测量
利用脉冲波形产生与变换技术,可以生成精确的时间间隔和频率,用于时间测量和计时 应用。例如,高精度计数器和频率计等测量仪器利用脉冲波形产生与变换技术实现高精
数字方法具有精度高、稳定性好、易于实现复杂波形等 优点。
数字方法还可以实现脉冲波形的调制和解调,广泛应用 于通信、雷达、测控等领域。
模拟方法
01
模拟方法是指通过模拟 电路和模拟信号处理技 术来产生和变换脉冲波 形。
02
模拟方法具有简单、直 观、易于实现等优点。
03
模拟方法可以通过简单 的RC电路、LC电路等实 现矩形波、锯齿波等基 本脉冲波形。
脉冲波形变换和产生
可重复触发型电—路—在暂稳态中仍然可以接受触发信号, 每触发一次,电路暂稳态会继续保持tW。
tW
tW
不被再次触发 脉冲波形变换和产生
tW
tW
被再次触发
1. 不可重复触发的集成单稳态触发器 74121 Rext
B
G1
A1
&
A2
G4 &
vO1
vI2 VTH
vO2
tW=RC ln
0 ‒ 3.6 0 ‒ 1.4
≈ 0.96 RC
脉冲波形变换和产生
vO1
vO2
vI
G1
1 G2
vO1
vI2
R
vI
亦有 tre= (3~5)RC
vI2 VTH
(2)触发脉冲的间隔(周期) vO2
不得小与 tw+tre
fMAXT1
tW
1 tre
脉冲波形变换和产生
TmintWtre
经过(3~5)RC时间, 电容已经放电完毕
即
tre=(3~5)RC
vI 的最大工作频率:
fMAXTm 1intW1tre脉冲波形变换和产生
或非门组成的微分性单稳态触发器
vI
vO1
vO2
G1 ≥1
1 G2
vO1
C
vI2
vI
VDD
vI2
若输入脉冲过宽,vo2输出边沿变缓 vO2 可在输入端加微分电路
a
G2 &
Cext10 Rext/Cext11 Rint9
G5
G6
& ≥1 &
Rint G7 1
脉冲波形产生与变换电路(课件)
2
矩形脉冲波形的主要参数
图6.1.2 矩形脉冲波形的主要特征参数
3
主要参数
六个特征参数定义: ①脉冲周期 T:周期性脉冲序列中,两个相邻脉冲 出现的时间间隔。 ②脉冲幅值Um :脉冲信号的最大变化幅值。 ③占空比D :脉冲信号的正脉冲宽度与脉冲周期的 比值,即 D=tW / T 。 ④脉冲宽度 tW :从脉冲波形上升沿的 0.5Um 到下降 沿的 0.5Um所需的时间。 ⑤上升时间tr:脉冲波形由0.1Um上升到0.9Um所 需的时间。 ⑥下降时间tf:脉冲波形由0.9Um下降到0.1Um所需 的时间。
4
6.2 单稳态触发器
特点: ①有一个稳态和一个暂稳态 ②在外界触发信号作用下,能从稳态→暂稳态 ,维持一段时间后自动返回稳态 ③暂稳态维持的时间长短取决于电路内部参数 单稳态触发器的暂稳态通常都由RC电路的充放电 过程来维持。按电路中决定暂态时间的电路连接形式 不同,单稳态触发器可分为积分型和微分型两种,如 图6.2.1、6.2.5所示。
41
随着充电过程的进行,电容电压逐渐升高, 因此uI也逐渐增大。一旦uI 达到非门G1的阈值 电压UTH,多谐振荡器必将发生如下正反馈过 程:
这一正反馈过程促使G1瞬间导通、G2瞬间截止,可
得uO1 =UOL, uO =UOH。该状态被定义为第二暂稳
态。
42
②第二暂稳态自动翻转至第一暂稳态
当多谐振荡器进入第二暂稳态的瞬间,电路输
其中,74121的电路符号如图。
14
图6.2.10 集成单稳态触发器的两种工作波形
15
图6.2.12 集成单稳态触发器74121 的外部元件连接方法 (a)使用外接电阻Rext 且采用下降沿触发 (b)使用内部电 阻Rint 且采用上升沿触发
第七章脉冲波形的产生和变换.
»>第三节单稳态电路多谐振荡器数字电路或系统中,需要各种波形,例如时钟波形, 定时信号等等。
通过脉冲信号产生电路或通过变换 电路对已有的信号进行变换,来获取所需要的波形。
____________________________ ________ ________________________ )■»第一节 槪述第二节555定时电路■A 第四节 施密特电路M7+ *冲汶形eft 产*眉夏换第7* |»冲Mt 形皑产*鸟夏换7.1概述脉冲波形产生机理:儈仃怡柱原件C 或L 的电路存在侑态过程•即冇充放电现球, 故脉冲波形的产生对以通过悄件电路的允放电形成・川控制幵关位S 及时间常数RC 的 方法即町衍到不同的脉冲波形。
第7* |»冲Mt 形皑产*鸟夏换以U R 为输出,当RCv"(开关转换时间)时:o ②微分电路 (窄脉冲)Usi—皿dt+ *冲豪形的产*鸟夏换可ra三耍索法來描述一阶问题,从而获得电压或电流随时间变化的方程,该方程是脉冲波形计算的重耍依据。
X(/)= ;^8)+[ ?^(r)— X(8)吹/ /时间常数趋向值匕式町转换成:,讪TX0)X(oo)-X(z)+ *冲豪形的产*鸟夏换3i脉冲产生电路组成应有两大部分:惰性元件和开关开关用来破坏稳态产生暂态。
开关可用不同的电子器件来完成,如运算放大器晶体管或者场效应管。
目前用的最多的是555定时电路。
*冲豪形的产*眉夏换721 555定时器的组成与功能越 第7* Mt 冲豪形的产*眉夏换 孑徉沒妬!「 X I O I A N UNIViR»ITV比较器G 的输入端》6(接引脚6)称为測值输入埔.于册上用TH 标注,比较器G 的输入端4(接W 脚2)称触发输入端,于册I:川TR 标注。
5和G 的参再屯压(屯压叱较的基准)3n 和山电源—经三个5kn 的电川分尿给也 '勺控制电斥输入9I做&悬讪5 =評"匕严扌%;rrt/co 外接固定电丿心 则U 剜二Um ,f7和二丄i/g • R D 为界步置0端,只翌2rt7?D 竭加入低电平.则菇木RS 触发器就宙0,平时R D 处丁侖电平。
202X年数电-07-脉冲波形的变换与产生
※ 11
1 vO 1
vO
vI
0
G1 ≥1
00
≥1 G2
vO1
- + vI2Vth
vI
VDD
vI2
vO由1变0vO1=1(注意(zhù yì):
∵此时vI的正脉冲已撤消)
VTH
VDD+VTH VDD+Δ+
电容电压不能突变(tūbiàn)vC=Vth
vO
vI2上升到VDD+Vth
暂态过程结束
v如果G2是CMOS门,由于保护二极管的钳位作用 vI2只能(zhī nénɡ)上升到VDD+Δ+
预备知识:
TTL与非门
1、门坎(ménkǎn)电平(阈值电压):VTH
TTL与非门或反相器的电压传输(chuán shū)特性为:
输出低电平(逻辑0) ——与非门开通 输出高电平(逻辑1) ——与非门关闭
开门电平VON:使与非门开通的输入高电平的最小值。 关门电平VOFF:使与非门关闭的输入低电平的最大值。
(4)用TTL与非门组成微分型单稳态触发器,考虑到输入(shūrù)电流,
则应R <Roff,而Rd >Ron。CMOS门组成的单稳态触发器中R、
Rd 不受此限制。
第十七页,共九十二页。
※ 16
二、 积分(jīfēn)型单稳态触发器
两个与非门+RC积分电路 工作(gōngzuò)原理:
1 vO1 R
输出宽脉冲。
第十四页,共九十二页。
VDD+VTH VDD+Δ+
※ 13
3、主要参数计算(jìsuàn):
vO
vO
1
பைடு நூலகம்
脉冲波形的产生与变换
脉冲波形的产生与变换脉冲信号是数字电路中最常用的工作信号。
脉冲信号的获得经常采用两种方法:一是利用振荡电路 直接产生所需的矩形脉冲。
这一类电路称为多谐振荡电路或多谐振荡器;二是利用整形电路,将已有的脉冲信号变换为所需要的矩形脉冲。
这一类电路包括单稳态触发器和施密特触发器。
这些脉冲单元电路可以由集成逻辑门构成,也可以用集成定时器构成。
下面先来介绍由集成门构成的脉冲信号产生和整形电路。
多谐振荡器自激多谐振荡器是在接通电源以后,不需外加输入信号,就能自动地产生矩形脉冲波。
由于矩形波中除基波外,还含有丰富的高次谐波,所以习惯上又把矩形波振荡器叫做多谐振荡器。
多谐振荡器通常由门电路和基本的RC 电路组成。
多谐振荡器一旦振荡起来后,电路没有稳态,只有两个暂稳态,它们在作交替变化,输出矩形波脉冲信号,因此它又被称作无稳态电路。
9.1.1 门电路组成的多谐振荡器多谐振荡器常由TTL 门电路和CMOS 门电路组成。
由于TTL 门电路的速度比CMOS 门电路的速度快, 故TTL 门电路适用于构成频率较高的多谐振荡器,而CMOS 门电路适用于构成频率较低的多谐振荡器。
(1)由TTL 门电路组成的多谐振荡器由TTL 门电路组成的多谐振荡器有两种形式:一是由奇数个非门组成的简单环形多谐振荡器;二是由非门和RC 延迟电路组成的改进环形多谐振荡器。
① 简单环形多谐振荡器(a) (b)uo图9-1 由非门构成的简单环形多谐振荡器把奇数个非门首尾相接成环状,就组成了简单环形多谐振荡器。
图9-1(a)为由三个非门构成的多谐振荡器。
若uo的某个随机状态为高电平,经过三级倒相后,uo跳转为低电平,考虑到传输门电路的平均延迟时间tpd,uo输出信号的周期为6tpd。
图9-1(b)为各点波形图。
简单环形多谐振荡器的振荡周期取决于tpd,此值较小且不可调,所以,产生的脉冲信号频率较高且无法控制,因而没有实用价值。
改进方法是通过附加一个RC延迟电路,不仅可以降低振荡频率,并能通过参数 R、C控制振荡频率。
脉冲 波形的产生和变换
第一节佛教
2.佛教的基本教义 (1)四谛说 四谛是佛教各派共同承认的
基础教义。所谓“谛”,有“真理”或“ 实在”,的意思,是印度哲学通用的概念 。“四谛”就是佛教中的四条真理,即苦 谛、集谛、灭谛和道谛。由于这四条是神 圣的真理,所以“四谛”又称为“四圣谛 ”。其核心是宣扬整个世界和全部人生为 无边之苦海。四谛又可分为两部分,苦、 集二谛说明人生的本质及其形成的原因, 灭、道二谛指明人生解脱的归宿和上解一页脱下一之页 返回
部派佛教时期(约前4世纪中叶一1世纪中 叶)公元前4世纪至公元1世纪,即释迎牟 尼去世后的100年到400年间,佛教教团 出现了分裂。最初分为尊崇传统、保守旧 规的上座部和较为进取、强调改革上和一页发下一展页 返回
第一节佛教
大乘佛教时期(约1世纪中叶7世纪)大约在 公元1世纪左右,佛教发生了大的分化, 分出大乘佛教和小乘佛教。从此,佛教发 展进入了一个新的阶段。“乘”,是“承 载”或“道路”的意思,大乘是大道,小 乘即是小道。小乘和大乘两派,对佛教教 义的解释和理解有分歧。小乘保持原来的 教义,以释迎牟尼为教主,以《阿含经》 为主要经典。大乘则对原有的教义有所修 正、有所发展,认为三世十方有无数佛, 并以《般若经》、《维摩经》、《法华经
藏传佛教主要是印度密教与藏区本教融合 形成的具有西藏地方色彩的佛教,俗称喇 嘛教。流传于中国的藏、蒙古、裕固、纳 西等民族地区,以及不丹、锡金、尼泊尔 、蒙古和俄罗斯的布里亚特等国家和地区 。它的经典属于藏语,故亦称藏语上系一页佛下一教页 返回
第一节佛教
3.佛教在中国的传播 佛教自印度传入中国以后,经过流传发展
波形的分析及其应用。 4.了解555定时器内部结构框图、基本原理及典型应用。
返回
第一节 概述
数电8脉冲波形的变换与产生
通过改变振荡器的频率,可以获得不 同频率的8脉冲波形。
利用数字电路中的定时器,可以产生 具有特定频率的8脉冲波形。
倍频器和分频器
利用数字电路中的倍频器和分频器, 可以将输入的8脉冲波形进行倍频或 分频,从而得到不同频率的输出。
8脉冲波形的相位变换
相位延迟
通过在数字电路中添加相位延迟器,可以改 变8脉冲波形的相位。
01
03
程序设计
编写程序以控制单片机产生8脉冲波形, 包括定时器配置、I/O端口控制等。
波形输出
通过单片机的I/O端口输出8脉冲波形。
05
04
编译与下载
将程序编译成可在单片机上运行的二 进制文件,并通过适当的下载工具将 程序下载到单片机中。
04 数电8脉冲波形的变换
8脉冲波形的频率变换
频率变换
定时器
波形输出
将设计的数字电路连接至 适当的输出设备,如LED 灯、数码管等,以显示8 脉冲波形。
基于FPGA的8脉冲波形产生
FPGA芯片选择
选择具有足够逻辑资源、I/O端口和时 钟资源的FPGA芯片。
编译与配置
将设计好的程序编译成可在FPGA上 运行的配置文件,并通过适当的配置 接口将配置文件下载到FPGA芯片中。
移相器
利用数字电路中的移相器,可以将输入的8脉冲波 形进行移相,从而得到不同相位的输出。
触发器
利用数字电路中的触发器,可以产生具有特 定相位的8脉冲波形。
8脉冲波形的幅度变换
幅度调节器
通过在数字电路中添加幅度调 节器,可以改变8脉冲波形的
幅度。
电压比较器
利用数字电路中的电压比较器, 可以将输入的8脉冲波形进行 幅度比较,从而得到不同幅度
脉冲波形的产生和变换
• 7. 1 多谐振荡器 • 7. 2 单稳态触发器 • 7. 3 施密特触发器 • 7. 4 555 定时器及其应用
返回
7. 1 多谐振荡器
• 多谐振荡器可以产生连续的、周期性的脉冲波形。它是一种自激振荡 电路, 直接产生矩形脉冲波形; 工作时不需要外来触发信号激励。多 谐振荡器有两个暂稳态, 没有稳态, 工作过程中在两个暂稳态之间按照 一定的周期周而复始地依次翻转, 从而产生连续的、周期性的脉冲波 形, 因此也称为无稳态电路。
上一页 下一页 返回
7. 1 多谐振荡器
• 当频率等于fS 时, 石英晶体的电抗为0,而当频率偏离fS 时, 石英晶体的 电抗急剧增大, 因此, 在串联谐振电路中, 只有频率为fS的信号最容易 通过, 而其他频率的信号均会被晶体所衰减。振荡频率只取决于固有 频率fS,而与RC 无关。
• fP 是石英晶体的并联谐振频率。石英晶体的串联谐振频率fS 和并联谐 振频率fP 仅仅取决于石英晶体的几何尺寸, 通过加工成不同尺寸的晶 片, 即可得到不同频率的石英晶体, 并且串联谐振频率fS 和并联谐振频 率fP 的值非常接近。用石英晶体组成的多谐振荡器分为串联型和并 联型两种形式。为了改善输出波形的前沿、后沿和提高负载能力, 一 般在石英晶体振荡器的输出端加一级反相器。
下一页 返回
7. 2 单稳态触发器
• (1) 稳定的状态。 • 当输入电压uI 为低电平时, 由于G2 输入通过电阻R 接VDD, 因此, G2
输出低电平UOL≈0, G1 输入全0, 输出uO1 为高电平时UOH≈VDD。这时, 电容C 上的电压UC≈0。电路处于UO1 为高电平VDD、uO2 为低电平0 的稳定状态。 • (2) 触发进入暂稳态。 • 当输入uI 为低电平正跃到大于G1 的阈值电压Uth 时, 使G1 输出电压 uO1 产生负跃变,由于电容C 两端的电压不能突变, G2 的输入电压uA 产生负跃变, 这又促使G2 的输出电压uO2 产生正跃变, 它再反馈到G1 的输入端, 于是, 电路产生如下正反馈过程: • uI↑→uO1↓→uA↓→uO2↑→uI↑
第8章 脉冲波形的产生与变换(5)
5 6 2 7
VC C 8 R
+ -
RD 4 A1 A2 T R Q S Q 3
管脚图
电 放 阈 电控 源 电 值 压制
VCC
8
R
R 1
+
v’O vI1
7
6
vIC
5
4
电源电压范围: 4.5V ~ 18V
555
1
2 3
GND vI2
Uo
RD
地 触 输 复 发 出 位
7
第八章 脉冲波形的产生与变换
二、 555定时器的应用 555定时器应用广泛,可以做
多谐振荡器: 简易电子琴电路 首先说明如何用555 定时器构成多谐振荡器:
u
VCC R1 R2
C
v’O 4 8 7 vI1 555 3 uo vI2 6
2 1 5 C
2VCC /3 VCC /3
0
t
uo
0
u
C
t
输出波形
12
第八章 脉冲波形的产生与变换
u
VCC
C
R1 R2
v’O 4 8 7 uo vI1 555 3 vI2 6
u
VCC
C
R1 R2
v’O 4 8 7 uo vI1 555 3 vI2 6
2 1 5 C
2VCC /3 VCC /3
0
t
u
o
u
C
如何改变方波的占空比?
0
t T1 T2
改变充放电回路的时间常数即可。 充电时间常数:(R1+R2)C 放电时间常数:R2C
14
第八章 脉冲波形的产生与变换
简易电子琴就是通过改变R2 的阻值来改变 输出方波的周期 , 使外接的喇叭发出不同的音 调。 VCC
中波理论之脉冲波形产生与变换
VT+
0
VT-
0
t
VTt
vO
vO
0
t
0
t
3. 用于脉冲鉴幅
vI
1
VT+
vI
vO
0
VT-
t
vO
0
t
4. 用于产生多谐振荡器
vI
R
VT+
VT_
1
vI
vo
0
t
vo
C
VOH
T2
T1
VOL
0
t
T T1 T2
RC ln VDD VT RC ln VT+ RC ln(VDD VT VT+ )
VDD VT
vth
tw
t
t
vO1 10
1 vO2
1
1
1
t
1
1
0 vR
1vI
vc R
t bv)I外加触vo1发信号vv后RDD,电v路O2进
入暂稳态
t c)电v容R 放电,vO2电 路由v暂O1 稳态
自动返回到稳态
t
主要参数的计算
(1) 输出脉冲宽度tw
t
R(t)=VR()+[VR(0+)-VR()] e
`
R(0+) = 0
R() =VDD
tw
RC ln=RVCDD VDD Vth
tw≈0.7RC
vI
vvDOD1
vDD+vvvDRDth
tpi vth
t t
t
(2) 恢复时间tre tre 3d
vO2
(3) 最高工作频率 fmax
f max
数字电子技术第7章脉冲波形的产生与变换简明教程PPT课件
v I' vO1 vO __________________ |
于是电路的状态迅速转换为 vO VOH VDD 。
' 由此可知,输入信号 v I 上升的过程中电路的状态发生转换是在 vI VTH 时,把此 时对应的输入电压值称为上限阈值电压,用 VT 表示。
1
使 v O1 迅速跳变为低电平。由于电容上的电压不能跃变,所以v I2 也同时跳变到低电平,并 使 vO 跳变为高电平,电路进入暂稳态。这时即使 vd 回到低电平, vO 的高电平仍将维持。 与此同时,电容C开始充电。
③暂稳态维持一段时间后自行回到稳态。随着充电过程的进行, v I2 逐渐上升,当上升到 略高于 VTH 时,又引发另外一个正反馈过程
根据以上分析,电路中各点电压波形如图所示。
(3) 主要参数计算
输出脉冲的宽度:
t W RC ln VDD 0 RC ln 2 0.69RC VDD VTH
输出脉冲的幅度:
Vm VOH VOL VDD
微分型单稳态触发器可以用窄脉冲触发。在 v I 的脉冲宽度大于输出脉冲宽度的情况 下,电路仍能正常工作,但是输出脉冲的下降沿较差。
根据以上分析,电路中各点电压的波形如图所示。
(3) 主要参数计算
输出脉冲的宽度:
t W ( R RO )C ln
VOH VOL VTH VOL
式中RO 为反相器 G 1 输出为低电平时的输出电阻。
输出脉冲的幅度:
Vm VOH VOL
积分型单稳态触发器的优点是抗干扰能力较强。它的缺点是输出波形的边沿比较差。 此外,积分型单稳态触发器必须在触发脉冲的宽度大于输出脉冲的宽度时才能正常工作。
脉冲波形产生与变换
随着技术的不断发展,对高速脉冲波形的 处理能力要求也越来越高,需要开发更高 效、高速的信号处理方法。
波形转换效率
波形产生与变换的集成化
在将一种脉冲波形转换为另一种脉冲波形 时,需要提高转换效率,以减少能量损失 和信号失真。
为了实现更小体积、更低成本的应用,需 要将脉冲波形产生与变换集成在一个小型 化、便携式的设备中。
脉冲波形的应用领域
01
02
03
04
通信
脉冲波形在数字通信中用于传 输数据,如脉冲编码调制 (PCM)和脉冲位置调制 (PPM)。
测量
利用脉冲波形进行时间、速度 、距离等物理量的测量,如雷
达测速仪和激光测距仪。
控制
脉冲波形用于控制各种电子设 备和系统,如电机驱动、开关
电源和自动控制系统。
医学成像
超声成像和核磁共振成像等医 学成像技术中,脉冲波形用于
缩小脉冲
通过减小脉冲的幅度,使其在幅度上 得到缩小。
脉冲的平移与翻转
平移脉冲
通过改变脉冲的时间位置,使其在时 间上得到平移。
翻转脉冲
通过改变脉冲的极性,使其在波形上 得到翻转。
脉冲的调制与解调
调制脉冲
通过将一个信号(如音频信号或视频信号)附加到脉冲上,使其在频率、相位或幅度上得到调制。
解调脉冲
通过将调制信号分离出来,还原出原始信号。
三角脉冲的幅度和频率可以通过调节电子元件的参数进行调 节,以满足不同的应用需求。
锯齿波的产生
锯齿波是一种特殊的脉冲波形,其特点是幅值从零线性增 加到最大值,然后又线性减小到零。与三角脉冲不同的是 ,锯齿波的上升沿和下降沿不光滑,呈现出锯齿状。
锯齿波可以通过模拟电路或数字电路等电子元件产生。锯 齿波的幅度和频率可以通过调节电子元件的参数进行调节 ,以满足不同的应用需求。
脉冲波形的产生与变换
02
脉冲波形的产生
矩形脉冲的产生
矩形脉冲:通过将电压快速地加到高 电平然后减到低电平,再重复这个过 程,可以产生矩形脉冲。
矩形脉冲的宽度和高度可以通过改变 电压的上升和下降速度以及高低电平 的电压值来调整。
三角脉冲的产生
三角脉冲:三角脉冲可以通过比较器电路产生,当输入信号大于某个阈值时,比 较器输出高电平,否则输出低电平。
脉冲波形产生与变换技术的实际应用
为了更好地发挥脉冲波形产生与变换技术的优势,未来研究可以加强该技术在各领域的实 际应用研究。通过与产业界的合作,推动脉冲波形产生与变换技术的成果转化,为经济发 展和产业升级提供技术支持。
感谢您的观看
THANKS
压力传感器
通过检测压力变化产生的 脉冲波形,实现对压力的 测量。
温度传感器
利用热敏元件产生的脉冲 波形,实现对温度的测量。
在医学领域的应用
超声成像
利用超声波产生的脉冲波形,通 过接收反射回的脉冲信号进行成
像。
核磁共振成像
通过施加脉冲磁场和射频脉冲, 获取组织中的氢原子核磁矩信息,
重建图像。
脉冲激光治疗
目的和意义
随着科技的发展,脉冲波形在各个领 域的应用越来越广泛,对脉冲波形产 生与变换的研究具有重要的实际意义。
此外,脉冲波形的产生与变换也是信 号处理领域的重要研究方向之一,对 于推动相关领域的发展具有重要意义。
研究脉冲波形的产生与变换,有助于 深入了解信号的特性和传播规律,为 信号处理、通信系统设计等领域提供 理论支持和技术指导。
够将输入的脉冲波形进行变换,得到所需的输出波形。实验结果表明,
该算法具有快速、准确和稳定的特点。
03
脉冲波形在各领域的应用
8__脉冲波形的变换与产生解析
开 关 电 路
24
8.4 555定时器及其应用
8.4.1 555定时器 8.4.2 用555定时器组成施密特触发器
8.4.3 8.4.4
用555定时器组成单稳态触发器 用555定时器组成多谐振荡器
25
8.4.1
555定时器
555定时器是美国Signetics公司1972年研制的用于取代机 械式定时器的中规模集成电路,因输入端设计有三个5kΩ的电 阻而得名。此电路后来竟风靡世界。 555定时器可以说是模拟电路与数字电路结合的典范。 它成本低,性能可靠,只需外接少量的阻容元件,就可以实现 多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换 电路。它也常作为定时器广泛应用于仪器仪表、家用电器、电 子测量及自动控制等方面。广泛用于信号的产生、变换、控制 与检测。 555的具体应用: (1)构成施密特触发器,用于TTL系统的接口,整形电路或脉 冲鉴幅等; (2)构成单稳态触发器,用于定时、延时、整形及一些定时 开关中; (3)构成多谐振荡器,组成信号产生电路。
6
2.单稳态触发器的分类:
不可重复触发单稳态触发器
工作特点划分
可重复触发单稳态触发器
7
• 不可重复触发单稳态触发器:电路一旦被触发进 入暂稳态后,再加入触发脉冲则无效,必须在暂 稳态结束后才接受下一个触发脉冲,重新进入暂 稳态。电路的输出脉宽不受其影响。 • 可重复触发单稳态触发器:电路在被触发进入暂 稳态后,若再次加入触发脉冲则这些触发脉冲有 效,电路将重新被触发,使输出脉冲再继续维持 tw宽度 ,如后面的图所示,故输出脉冲宽度将为
t + t W。电路的输出脉宽可根据触发脉冲的输
入情况的不同而改变。
8
没有被重复触发
数字电子技术教学课件-第06章 脉冲波形的产生与变换
24
2. 脉冲整形
在数字系统中,矩形脉冲经传输后往往发生波 形畸变,或者边沿产生振荡等。通过施密特触发器 整形,可波 畸以形 变获得比较理想的矩形脉冲波形边 振。沿 荡
图6-12 脉冲整形
03.04.2021
25
3.脉冲鉴幅 将一系列幅度各异的脉冲信号加到施密特触发
器的输入端,只有那些幅度大于UT+的脉冲才会在输 出端产生输出信号。可见,施密特触发器具有脉冲
当uI上升,使得uI1 =UTH时,电路会产生如下正 反馈过程:
03.04.2021
17
电 路 会 迅 速 转 换 为 G1 导 通 、 G2 截 止 , 输 出 为 UOH,即uO=VDD的状态(第二稳态)。此时的uI值 称为施密特触发器的上限触发转换电平UT+。显然, uI继续上升,电路的状态不会改变。
特点: ⑴电路有两种稳定状态。两种稳定状态的维持 和转换完全取决于外加触发信号。触发方式:电平 触发。 ⑵电压传输特性特殊,电路有两个转换电平 (上限触发转换电平UT+和下限触发转换电平UT-)。 ⑶状态翻转时有正反馈过程,从而输出边沿陡 峭的矩形脉冲。
03.04.2021
14
6.2.1 用集成门电路构成的施密特触发器
42
2. 脉冲定时
单稳态触发器能够产生一定宽度tw的矩形脉冲, 利用这个脉冲去控制某一电路,则可使它在tw时间 内动作(或者不动作)。
03.04.2021
图6-19 脉冲定时
43
6.4 多谐振荡器 6.4.3 石英晶体振荡器
03.04.2021
3. 对输入触发脉冲宽度的要求
在使用微分型单稳态触发器时,输入触发脉冲uI的 宽度tw1应小于输出脉冲的宽度tw,即tw1<tw,否则电 路不能正常工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 脉冲波形的产生与变换
输出矩形的频率f=1/T。显然,改变R1、R2和C值即可改变 振荡频率。我们也可通过改变5脚电压U5来改变比较器A、 B的参考电压, 而达到改变振荡频率的目的。
在实际中常常需要调节T1和T2。这样就引进了占空比 的概念:
D T1 R1R2 T1T2 R12R2
第七章 脉冲波形的产生与变换
uO 2 5 F
8
第七章 脉冲波形的产生与变换
7.5 施 密 特 电 路
7.5.1 电路组成
uI
uI
48 6
2 A3
UDD 23UDD
13UDD
uO
0
UTH UTL
7
uO
51
uO t
0
t
0
UTL
UTH uI
(a)
(b)
(c)
图 7 – 10 施密特电路
第七章 脉冲波形的产生与变换
7.5.2 工作原理
0 U
DD
RC
由于比较器A、B的存在,uC不可能充至UDD。当uC充
至大于
1 3
U
DD
,但小于
2 3 U DD
时,UA=UB均为低电平,
RS触发器处于保持态,即Q=1, Q 0 ,电路仍处于uO=高
电平,放电管仍处于截止,电容继续充电。当
uC
2 3 U DD
时,UA=1,UB=0,则Q=0,Q=1,uO=0,放电管导通,
由于接通电源前,电容器两端电压uC=0,电源刚接 通时UB=1,UA=0,因而Q=1,Q=0,经输出缓冲级后uO 为高电平,放电管V处于截止。电源电压通过R1、R2对C 充电, 其暂态过程为
u u
C C
( (
0) )
0 U
DD
充 ( R1 R 2 )C
第七章 脉冲波形的产生与变换
由于比较器A、B的存在,电容C不可能充至UDD。过程
TT1T2
第七章 脉冲波形的产生与变换
而T1和T2分别为
T1
R1
R 2 C 1 n U DD
U DD
1 3
U
DD
2 3
U
DD
R 1 R 2 C 1n 2
T2
R2C 1n
0 0
2U 3 1U 3
DD DD
R2C 1n 2
T ( R1 2 R 2 ) C 1n 2 0.7 ( R1 2 R 2 )C
电容通过放电管很快放电,进入恢复期。由于外界触发脉
冲加进来,电路uO由低电平变为高电平到再次变为低电平 这段时间就是暂稳态时间,其暂稳态时间TW计算如下:
第七章 脉冲波形的产生与变换
TW
RC 1n
uC () uC (0 ) uC ( ) uC (TW )
RC
1n
U DD U DD
0
2 3
U
DD
R1 RP
R2 VD2
C
48 7
VD1
3
2
65 1 0.01F
UDD uO
图 7 – 8 占空比可调振荡器
第七章 脉冲波形的产生与变换
改变P但不改变R1+R2值。所以该电路振荡周期为
T (充 放 ) 1 n 2 (R 1 R 2 ) C 0 .7
占空比D为
D T1 R1R2 T1T2 R1R2
UDD
1 uO uI
1 3
UDD
0.01 F
uI
1 3
UDD
C
△
∞
+
UB
B
-
≥1 Q
2 3
UDD
uC
UDD
V
TW
uO
(a)
(b)
图 7 - 3 CC7555构成的单稳态电路
第七章 脉冲波形的产生与变换
7.3.2 工作原理
静止期:触发信号uI处于高电平,电路处于稳态,根 据555工作原理知道uO为低电平,放电管V导通,定时电 容C两端电压uC=0。
u
C
(
0
)
2U 3
DD
u
C
(
)
0
放 ( R 1 R 2 ) C
第七章 脉冲波形的产生与变换
由于比较器A、B的存在,电容器不可能放电至0。当电 容放电, 13UDDuC23UDD时,UA=UB=0,RS触发器处于 维持状态, 输出也不变;但当C继续放电, uC 13UDD 时, UB=1,UA=0, 这时Q=1, Q=0,输出uO为高电平,放电管 截止,UDD再次对电容充电。如此反复,可输出矩形波 形。该电路的振荡周期计算如下:
时,A端
时,A输出为
低电平, 即逻辑“0”。B的输入端为引脚2低触发端,当
U2
1U 3
DD时,B输出为低电平,即逻辑“0”;当U2
13UDD
时,B输出为高电平,即逻辑“1”。A、B的输出直接控
制基本RS触发器的动作。
第七章 脉冲波形的产生与变换
3. 基本RS触发器 RS触发器由两个或非门组成,它的状态由两个 比较器输出控制,根据基本RS触发器的工作原理, 就可以决定触发器输出端的状态。
7.2.2 工作原理及特点
表 7 – 1 555定时器功能表
第七章 脉冲波形的产生与变换
CC7555定时器电路具有静态电流较小(80μA左右), 输入阻抗极高(输入电流仅为0.1μA左右),电源电压范围 较宽(在3~18 V内均正常工作)等特点。其最大功耗为 300mW。 和所有CMOS集成电路一样,在使用时,输入 电压uI应确保在安全范围之内,即满足下式条件:
第七章 脉冲波形的产生与变换
脉冲波形产生与变换
第七章 脉冲波形的产生与变换
7.1 概 述
S ①
C
+ ②
R uO
- (a)
S ①
R +
②
C uO
RC<<TS
-
RC<<TS
(b)
图 7 – 1 RC暂态电路波形
RC>>TS
第七章 脉冲波形的产生与变换
第七章 脉冲波形的产生与变换
第七章 脉冲波形的产生与变换
工作期:外界触发信号uI加进来,要求为负脉冲且
低电平应小于
1 3 U DD
,比较器输出UB为高电平,UA为低
电平, 使uO为高电平,且放电管截止,电源UDD通过定
时电阻R对定时电容充电,这是一个暂态问题,只要写出
三要素即可。 三要素如下:
第七章 脉冲波形的产生与变换
u u
C C
( (
0) )
2. 整形 通过整形可以将一个不规则的矩形波转换为规则的 矩形波。 其应用波形图如图 7 - 11(a)所示。
第七章 脉冲波形的产生与变换
uI
2 3
UDD
1 3
UDD
uI
2 3
UDD
1 3
UDD
O
t
O
t
uO
uO
O (a)
t
O
t (b)
图 7 – 11 施密特电路应用二例波形图
第七章 脉冲波形的产生与变换
USS-0.5V≤uI≤UDD+0.5V 555定时电路除了CMOS型之外,还有TTL型,如 5G555(NE555)。它的工作原理与CC7555没有本质区别, 但其驱动电流可达 200 mA。
第七章 脉冲波形的产生与变换
7.3 单 稳 态 电 路
7.3.1 电路组成
1
R
△
∞
+
UA
A
-
≥1 Q
≥1 1
3. 幅值选择
对于输入是一些随机的脉冲,可以通过施密特 电路将幅值大于某值的输入脉冲检测出来。 其应 用波形图
UDD uI
84
Re
Rb2
7
uI
2
6
V
uC
3 uO
uC
15
C
Rb1
0.01F
uO
(a)
(b)
图 7 – 5 线性锯齿波电路
uC
1 C
0tiCdtC I0t
第七章 脉冲波形的产生与变换
7.4 多 谐 振 荡 器
0.9 Um
tr
tf
0.5 Um
Um
0.1 Um TW
T
图 7 – 6 描述矩形脉冲特性的指标
升时,引起电路状态改变,由高电平变为低电平的输入电压
为
;当uUI下TH 降32时UD,D 引起电路状态变化,由低电平变
为高电平的输入电压为
。 这U二TL 者13之UD差D 称为回差
电压,即
U TU TH UTL
第七章 脉冲波形的产生与变换
7.5.3 主要应用
1. 通过波形变换可以将非矩形波变换为矩形波。
第七章 脉冲波形的产生与变换
7.4.1 电路组成
R1 R2
1
≥1 1
△
∞
+
UA
A
-
≥1 Q
△
∞
+
UB
B
-
≥1 Q
UDD
1 uO
uC
2 3
UDD
1 3
UDD
0 uO
UDD
0
0
t
V uC C
(a)
T1
T2
0
t
(b)
图 7 – 7 自由多谐振荡器电路及工作波形
第七章 脉冲波形的产生与变换
7.4.2 工作原理
–
△
第七章 脉冲波形的产生与变换
UD D
R1A
48
7
R2A
A 3 uO1
6
2
51
0.01 F
R1B