4-3拉普拉斯变换解微分方程
拉普拉斯变换方法解分数阶微分方程
拉普拉斯变换方法解分数阶微分方程分数阶微积分是一种新兴领域,在近年来得到了越来越多的关注。
它是传统微积分的扩展,将传统的整数阶导数引入了非整数的情况。
在工程、物理、生物学等很多研究领域中,分数阶微积分有着广泛的应用。
因此解决分数阶微分方程成为了重要的课题之一。
本文将从拉普拉斯变换的角度出发,介绍使用该方法解决分数阶微分方程的基本思路和方法。
一、分数阶微分方程简介分数阶微分方程是指微分方程中包含分数阶导数的一类微分方程。
分数阶导数可以描述在非连续介质中的扩散、渐近行为以及超弹性函数等现象。
分数阶微分方程的形式一般为:$$ \begin{aligned} D^{\alpha}y(t)&=f(t)\\y(0)&=y_0,\ D^{\beta}y(t)|_{t=0}=y_1,\\beta\in[0,\alpha) \end{aligned} $$其中,$D^{\alpha}y(t)$为分数阶导数,$f(t)$为已知函数。
$y(0),\ D^{\beta}y(t)|_{t=0}$是初始条件,$y_0,y_1$为已知初值。
一般情况下,分数阶微分方程无法通过传统的解析方法求解,因此需要采用不同的数值方法和函数变换方法。
下文将介绍使用拉普拉斯变换来解决分数阶微分方程的方法。
二、拉普拉斯变换方法简介拉普拉斯变换方法是一种常用的函数变换方法,它将一个函数在实线上的时间域(t域)转化为复平面上的复变量域(s域)上的函数。
它的核心是拉普拉斯积分:$$ F(s)=\int_0^{\infty}f(t)e^{-st}dt,\s=x+jy\in R $$其中,$f(t)$为实函数,$e^{-st}$为复指数函数,$x,y$为实数。
当$y<0$时,$F(s)$是收敛的;当$y>0$时,$F(s)$是发散的。
通过拉普拉斯变换,可以将微分和积分转化为代数运算,进而可以更方便地解决微分方程等问题。
下面将介绍具体的解决分数阶微分方程的过程。
常微分方程-拉氏变换法求解常微分方程
03 拉普拉斯变换的逆变换
定义与性质
定义
逆变换是拉普拉斯变换的逆过程,将 拉普拉斯变换后的函数还原为原函数。
性质
逆变换具有线性性、时移性、微分性、 积分性和相似性等性质,这些性质在 求解常微分方程时具有重要作用。
逆变换的求解方法
表格法
通过查表或计算公式,将拉普拉 斯变换后的函数还原为原函数。 这种方法适用于已知拉普拉斯变 换函数的简单情况。
幂级数法
通过幂级数展开,将拉普拉斯变 换后的函数展开为无穷级数,然 后逐项积分得到原函数。这种方 法适用于较为复杂的拉普拉斯变 换函数。
积分法
通过积分运算,将拉普拉斯变换 后的函数进行积分,得到原函数。 这种方法需要熟练掌握积分运算 和拉普拉斯变换的性质。
04 拉普拉斯变换法的优缺点
优点
高效性
对于一些复杂或难以直接求 解的常微分方程,拉普拉斯 变换法能够提供一种简洁、 高效的求解方法。
普适性
拉普拉斯变换法适用于各种 类型的初值问题,具有广泛 的适用性。
易于计算
拉普拉斯变换的逆变换相对 容易计算,使得求解过程相 对简单。
可处理多变量问题
通过引入偏导数,拉普拉斯 变换法可以处理多变量微分 方程,这是其他方法难以做 到的。
缺点
不易理解物理意义
拉普拉斯变换将原始的微分方程转换为复 平面上的函数,这使得初学者不易理解其
性质
拉普拉斯变换具有线性性、时移性、 微分性、积分性和复共轭性等性质, 这些性质使得求解常微分方程变得更 为简便。
拉普拉斯变换的应用
求解常微分方程
通过拉普拉斯变换,可以将常微分方程转化为代数方程,从而简化求 解过程。
系统分析
在控制工程和信号处理等领域,拉普拉斯变换被广泛应用于系统分析 和系统设计。
拉普拉斯变换 微分方程
拉普拉斯变换与微分方程引言微分方程是数学中重要的一门学科,广泛应用于物理学、工程学等领域。
而拉普拉斯变换则是一种常用于解微分方程的工具,它能够将微分方程转化为代数方程,更便于求解。
本文将深入探讨拉普拉斯变换与微分方程的关系,以及如何利用拉普拉斯变换解微分方程。
拉普拉斯变换的定义拉普拉斯变换是一种由法国数学家拉普拉斯在19世纪提出的数学工具,用于将一个函数或信号在时间域上的表达转换为在复平面上的表达。
对于一个定义在半无穷区间上的函数f(t),它的拉普拉斯变换被定义为:+∞F(s)=∫e−stf(t)dt0−其中,s是复平面上的复变量,常被称为拉普拉斯变换变量。
拉普拉斯变换的性质拉普拉斯变换具有许多有用的性质,这些性质为解微分方程提供了便利。
以下是一些常见的拉普拉斯变换性质:线性性质如果f(t)和g(t)的拉普拉斯变换分别为F(s)和G(s),那么对于任意的实数a和b,af(t) + bg(t)的拉普拉斯变换为aF(s) + bG(s)。
平移性质如果f(t)的拉普拉斯变换为F(s),那么e^(-at)f(t)的拉普拉斯变换为F(s + a),其中a为正实数。
初值定理如果f(t)是一个连续函数,且存在极限lim(t->0) f(t) = L,那么L就是f(t)在t=0的初值,在拉普拉斯变换中,F(s) = L/s。
终值定理如果f(t)是一个连续函数,且存在极限lim(t->∞) f(t) = L,那么L就是f(t)在t趋向于无穷时的终值,在拉普拉斯变换中,lim(s->0) sF(s) = L。
拉普拉斯变换与微分方程的关系微分方程是描述自然现象中变化的数学方程,可以分为常微分方程和偏微分方程。
拉普拉斯变换可以通过转化微分方程为代数方程,从而更容易求解。
普通微分方程的解法对于给定的普通微分方程,我们可以通过Laplace变换将其转换为一个代数方程来求解。
具体的步骤如下:1.对于已知的微分方程,我们首先对方程的两边取拉普拉斯变换。
用拉普拉斯变换方法解微分方程
2–5 用拉普拉斯变换方法解微分方程拉普拉斯变换方法是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查得相应的微分方程解。
这样就使方程求解问题大为简化。
拉普拉斯变换法的另一个优点是在求解微分方程时,可同时获得的瞬态分量和稳态分量两部分。
有关拉普拉斯变换(简称拉氏变换)的公式见附录一。
应用拉氏变换法得到的解是线性微分方程的全解。
用古典方法求解微分方程全解时需要利用初始条件来确定积分常数的值,这一过程比较麻烦。
而应用拉氏变换就可省去这一步。
因为初始条件已自动地包含在微分方程的拉氏变换式之中了。
而且,如果所有初始条件都为零,那么求取微分方程的拉氏变换式就更为方便,只要简单地用复变量s 来代替微分方程中的dt d ,2s 代替22dtd ,…就可得到。
应用拉氏变换法解微分方程的步骤如下:(1)对线性微分方程中每一项进行拉氏变换,使微分方程变为复变量s 的代数方程(称为变换方程)(2)求解变换方程,得出系统输出变量的象函数表达式。
(3)将输出的象函数表达式展开成部分分式(部分分式展开法参见附录二)。
(4)对部分分式进行拉氏反变换(可查拉氏变换表),即得微分方程的全解。
举例说明【例2-7】 设RC 网络如图2-24所示,在开关K 闭合之前,电容C 上有初始电压)0(c u 。
试求将开关瞬时闭合后,电容的端电压c u (网络输出)。
解 开关K 瞬时闭合,相当于网络有阶跃电压0)(u t u c =·)(1t 输入。
故网络微分方程为⎪⎩⎪⎨⎧=+=⎰idt C u u Ri u c c r 1 消去中间变量i ,得网络微分方程为)(t u u dt du RCr c c =+ (2-44)对上式进行拉氏变换,得变换方程 )()()0()(s U s U RCu s RCsU r c c c =+- 将输入阶跃电压的拉氏变换式su s U r 0)(=代入上式,并整理得电容端电压的拉氏变换式)0()1()1()(0c c u RCs RC RCs s u s U +++= 可见等式右边由两部分组成,一部分由输入所决定,另一部分由初始值决定。
如何通过拉普拉斯变换求解微分方程的特解
如何通过拉普拉斯变换求解微分方程的特解下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!引言微分方程在数学、物理和工程领域中有着广泛的应用。
拉斯变换解微分方程
拉斯变换解微分⽅程§2-3拉普拉斯变换及其应⽤时域的函数可以通过线性变换的⽅法在变换域中表⽰,变换域的表⽰有时更为简捷、⽅便。
例如控制理论中常⽤的拉普拉斯变换,简称拉⽒变换,就是其中的⼀种.⼀、拉⽒变换的定义已知时域函数,如果满⾜相应的收敛条件,可以定义其拉⽒变换为(2-45)式中,称为原函数,称为象函数,变量为复变量,表⽰为(2-46)因为是复⾃变量的函数,所以是复变函数。
有时,拉⽒变换还经常写为(2-47)拉⽒变换有其逆运算,称为拉⽒反变换,表⽰为(2-48)上式为复变函数积分,积分围线为由到的闭曲线。
⼆、常⽤信号的拉⽒变换系统分析中常⽤的时域信号有脉冲信号、阶跃信号、正弦信号等。
现复习⼀些基本时域信号拉⽒变换的求取。
(1)单位脉冲信号理想单位脉冲信号的数学表达式为(2-49) 且(2-50)所以(2-51) 说明:单位脉冲函数可以通过极限⽅法得到。
设单个⽅波脉冲如图2-13所⽰,脉冲的宽度为,脉冲的⾼度为,⾯积为1。
当保持⾯积不变,⽅波脉冲的宽度趋于⽆穷⼩时,⾼度趋于⽆穷⼤,单个⽅波脉冲演变成理想的单位脉冲函数。
在坐标图上经常将单位脉冲函数表⽰成单位⾼度的带有箭头的线段。
由单位脉冲函数的定义可知,其⾯积积分的上下限是从到的。
因此在求它的拉⽒变换时,拉⽒变换的积分下限也必须是。
由此,特别指明拉⽒变换定义式中的积分下限是,是有实际意义的。
所以,关于拉⽒变换的积分下限根据应⽤的实际情况有,,三种情况。
为不丢掉信号中位于处可能存在的脉冲函数,积分下限应该为。
(2)单位阶跃信号单位阶跃信号的数学表⽰为(2-52)⼜经常写为 (2-53)由拉⽒变换的定义式,求得拉⽒变换为(2-54)因为阶跃信号的导数在处有脉冲函数存在,所以单位阶跃信号的拉⽒变换,其积分下限规定为。
(3)单位斜坡信号单位斜坡信号的数学表⽰为(2-55)图2-15单位斜坡信号另外,为了表⽰信号的起始时刻,有时也经常写为 ( 2-56) 为了得到单位斜坡信号的拉⽒变换,利⽤分部积分公式得(2-57)(4)指数信号指数信号的数学表⽰为(2-58) 拉⽒变换为 (2-59)(5)正弦、余弦信号正弦、余弦信号的拉⽒变换可以利⽤指数信号的拉⽒变换求得。
常微分方程-拉氏变换法求解常微分方程
x (n1) 0
a1[s n1 X
(s)
sn2 x0
s n3 x0
x (n2) 0
]
an1[sX (s) x0 ] an X (s) F (s)
(sn a1sn1 an1s an ) X (s) F (s) B(s)
X (s) F(s) B(s) A(s)
x(t) L1[ X (s)] L1[ F (s) B(s)] A(s)
拉普拉斯变换法.. /Laplace Transform /
1
拉普拉斯变换 ..
含义:..
简称拉氏变换 .. 从实变量函数到复变量函数间的一种函数变换
用途与优点
对一个实变量函数作拉氏变换, 并在复数域中进行运算, 再将运算结果作拉普拉斯反变换 来求得实数域中的相应结 果,往往比直接在实数域计算容易得多。
s2
s 1
19
例 7 求 x 3x 3x x 1 满足初始条件
0
L[x(t)] sX (s) x0
L[x(n) (t)]
sn
X
(s)
sn1x0
s n2 x0
sx0(n2)
x (n1) 0
17
x(n) a1x(n1) an1x an x f (t)
给(4.32)两端施行Laplace Transform
sn
X
(s)
s n1 x0
sn2 x0
sx0(n2)
应用:
求解线性微分方程 在经典控制理论中,对控制系统的分析和综合…
2
拉普拉斯变换法用于求解常微分方程的基本思路: ..
对常微分方程进行拉氏变换法, 得代数方程,求解 再反变换获取原方程的解 ..
问题: 1. 什么是拉氏变换 2. 拉氏变换的基本性质 3. 什么是拉氏逆变换 4. 如何用拉氏变换求解微分方程….
拉普拉斯求解微分方程
拉普拉斯求解微分方程拉普拉斯变换是一种非常重要的数学工具,广泛应用于工程和科学领域。
在微分方程的求解中,拉普拉斯变换可以将微分方程转化为代数方程,从而简化求解过程。
本文将以拉普拉斯求解微分方程为主题,介绍拉普拉斯变换的原理和应用。
一、拉普拉斯变换的原理拉普拉斯变换是一种从时域到频域的变换方法,可以将一个函数从时域转化为复数域。
对于一个函数f(t),其拉普拉斯变换定义为:F(s) = L[f(t)] = ∫[0,∞] e^(-st) f(t) dt其中,s是复变量,t是时间变量,e^(-st)是拉普拉斯变换中的核函数。
通过拉普拉斯变换,我们可以将一个函数从时域转化为频域,从而可以更方便地进行分析和求解。
二、拉普拉斯变换的应用1. 求解微分方程拉普拉斯变换在求解微分方程时非常有用。
通过将微分方程转化为代数方程,可以简化求解过程。
例如,考虑一个线性常系数微分方程:a_n y^(n) + a_(n-1) y^(n-1) + ... + a_1 y' + a_0 y = f(t)其中,y是未知函数,f(t)是已知函数,a_n, a_(n-1), ..., a_1, a_0是常数。
我们可以对方程两边同时进行拉普拉斯变换,得到:a_n [s^n Y(s) - s^(n-1) y(0) - s^(n-2) y'(0) - ... - y^(n-1)(0)] + a_(n-1) [s^(n-1) Y(s) - s^(n-2) y(0) - ... - y^(n-2)(0)] + ... + a_1 [s Y(s) - y(0)] + a_0 Y(s) = F(s)其中,Y(s)是y(t)的拉普拉斯变换,y(0), y'(0), ..., y^(n-1)(0)是y(t)在t=0时的初始条件,F(s)是f(t)的拉普拉斯变换。
通过求解上述代数方程,可以得到Y(s),然后再进行拉普拉斯逆变换,即可得到y(t)的解。
常微分方程拉氏变换法求解常微分方程课件
求解得到的代数方程,得到$F(s)$的表达式。
解出常微分方程的解
要点一
反变换求解
通过反拉氏变换将$F(s)$还原为$f(t)$,从而得到常微分方 程的解。
要点二
验证解的正确性
将得到的解代入原常微分方程进行验证,确保解的正确性。
06
总结与展望
总结
拉氏变换法的优势
拉氏变换法在求解常微分方程时 具有明显的优势,它可以将复杂 的微分方程转化为代数方程,大 大简化了求解过程。
通过逐一求解一阶常微分方程,拉氏变换法可以应用于高阶微分方程的求解。
拉氏变换法的缺点
计算量大
在应用拉氏变换法求解常微分方程时,需要进行复 杂的积分和代数运算,计算量较大。
对初值条件敏感
对于某些常微分方程,初值条件的微小变化可能导 致拉氏变换法的失效。
不易理解
拉氏变换法的概念较为抽象,不易被初学者理解。
与其他方法的结合
可以考虑将拉氏变换法与其他数值方法或解析方法结合,以更有效 地求解各种类型的微分方程。
实际应用价值
随着科学技术的不断发展,常微分方程在各个领域的应用越来越广 泛,因此拉氏变换法在实际应用中也将发挥更大的作用。
感谢观 看
THANKS
信号处理中,拉氏变换法可以用于分析信号的滤波、调制 和解调等过程,优化信号处理效果。
04
拉氏变换法的优缺点
拉氏变换法的优点
求解过程简化
拉氏变换法可以将复杂的常微分方程转化为简 单的代数方程,从而简化了求解过程。
适用于多种初值条件
拉氏变换法可以处理多种初值条件,使得该方 法具有更广泛的适用性。
可应用于高阶微分方程
拉氏变换法求解一阶常微分方程
拉普拉斯变换在求解微分方程中的应用总结归纳
精心整理目录引言 (1)1 拉普拉斯变换以及性质 (1)1.1拉普拉斯变换的定义 (1)1.2拉普拉斯变换的性质 (1)2 用拉普拉斯变换求解微分方程的一般步骤 (3)3 拉普拉斯变换在求解常微分方程中的应用 (3)3.1初值问题与边值问题 (3)3.2常系数与变系数常微分方程 (4)3.3含 函数的常微分方程 (5)3.4常微分方程组 (6)3.5拉普拉斯变换在求解非齐次微分方程特解中的应用 (6)3.6拉普拉斯变换在求解高阶微分方程中的推广 (9)4 拉普拉斯变换在求解偏微分方程中的应用 (10)4.1齐次与非齐次偏微分方程 (10)4.2有界与无界问题 (11)5 综合比较,归纳总结 (14)结束语 (15)参考文献 (15)英文摘要 (21)致谢 (16)拉普拉斯变换在求解微分方程中的应用物理系0801班学生岳艳林指导老师韩新华摘 要:拉普拉斯变换在求解微分方程中有非常重要的作用,本文首先介绍拉普拉斯变换的定义及性质;其次给出拉普拉斯变换求解微分方程的一般步骤;然后重点举例拉普拉斯变换在求解常微分方程(初值问题与边值问题、常系数与变系数常微分方程、含δ函数的常微分方程、常微分方程组、拉普拉斯变换在求解微分方程特解中的应用、拉普拉斯变换在求解高阶微分方程的推广)与典型偏微分方程(齐次与非齐次偏微分方程、有界与无界问题)中的应用举例;最后综合比较、归纳总结拉普拉斯变换在求解微分方程中的优势以及局限性。
关键词:拉普拉斯变换;拉普拉斯逆变换;常微分方程;偏微分方程;特解 引言傅里叶变换和拉普拉斯变换是常用的积分变换,但对函数进行傅里叶变换时必须满足狄里希利和在+∞<<∞-t 内绝对可积,但是在物理、无线电技术等实际应用中,许多以时间t 为自变量的函数通常在0t <时不需要考虑或者没有意义,像这样的函数不能取傅里叶变换。
为避免上述两个缺点,将函数进行适当改造,便产生了拉普拉斯变换[1]。
拉普拉斯变换求解微分方程
拉普拉斯变换求解微分方程拉普拉斯变换可以把微分方程转化为代数方程。
由于现在是在利用拉氏变换求解微分方程,所以我们暂时不关注拉普拉斯变换中比较细节的方面。
利用拉氏变换解微分方程的基本方法就是把以 t 为变量的函数变换到以 s 为变量的代数函数,而这个过程会把微分项转换为代数式,这样我们就可以求解不含微分项的方程了。
最后再利用拉普拉斯逆变换,把关于 s 的函数变换回关于 t 的函数,就完成了微分方程的求解。
不过我们要先有几样趁手的工具——常用函数的拉普拉斯变化对以及微分的拉普拉斯变换:L[f(t)]=F(s) 表示对 f(t) 进行拉普拉斯变换的结果是 F(s) ,反之, L−1[F(s)]=f(t)表示的是对 F(s) 进行拉普拉斯逆变换得到了函数 f(t) .常用函数的拉普拉斯变换(对应的逆变换也成立):L[1]=1sL[tm]=m!sm+1L[eat]=1s−aL[cosat]=ss2+a2L[sinat]=as2+a2L[eatf(t)]=F(s−a)拉普拉斯变换是具有线性性质的,也就是说, L[αf(t)+βg(t)]=αL[f(t)]+βL[g(t)] . 逆变换也具有线性性质。
对公式两侧同时进行拉普拉斯逆变换就可以得到逆变换的公式,比如第一个式子: L−1[L[1]]=L−1[1s] ,整理一下就能得到 L−1[1s]=1 .微分的拉普拉斯变换(需要知道原函数已经各阶导数在0处的值):L[f(n)(t)]=snF(s)−sn−1f(0)−sn−2f′(0)−...−s0f(n−1)(0)式中的 F(s) 是一个未知的函数,是需要我们解出来的。
百闻不如一见,来看例题。
先来一个简单的例题。
例1:求解微分方程 yt′=t,y(0)=1解:第一步,对方程两侧同时进行拉普拉斯变换,即 L[yt′]=L[t] 得到 sY(s)−y(0)=1s2 .第二步,带入初值 y(0)=1 ,得到 sY(s)−1=1s2 .第三步,求解 Y(s) .这时候我们把第二步得到的式子看成一个普通的代数式就可以,很容易解得 Y(s)=1s3+1s 。
用拉普拉斯变换求解微分方程的过程
用拉普拉斯变换求解微分方程的过程引言:微分方程是数学中一类重要的方程,它描述了自然界和工程中许多现象的变化规律。
求解微分方程是数学中的一个重要问题,有许多不同的方法可以解决,其中之一就是使用拉普拉斯变换。
本文将介绍使用拉普拉斯变换求解微分方程的过程。
第一部分:拉普拉斯变换的概念和基本性质在介绍求解微分方程的具体过程之前,首先需要了解拉普拉斯变换的概念和基本性质。
拉普拉斯变换是一种重要的数学工具,它可以将一个函数转换为一个复变量函数。
它的定义如下:L{f(t)} = F(s) = ∫[0,∞] f(t)e^(-st) dt其中,f(t)是输入函数,F(s)是拉普拉斯变换后的函数,s是复变量。
第二部分:拉普拉斯变换的性质和定理拉普拉斯变换具有很多重要的性质和定理,这些性质和定理可以简化求解微分方程的过程。
其中一些重要的性质和定理包括:- 线性性质:L{af(t) + bg(t)} = aF(s) + bG(s)- 积分性质:L{∫[0,t] f(u) du} = 1/s F(s)- 初值定理:L{f'(t)} = sF(s) - f(0)- 终值定理:lim_(t→∞) f(t) = lim_(s→0) sF(s)通过这些性质和定理,可以将微分方程转化为一个代数方程,从而更容易求解。
第三部分:拉普拉斯变换求解微分方程的具体步骤1. 对于给定的微分方程,首先将方程两边取拉普拉斯变换。
2. 根据拉普拉斯变换的性质和定理,将微分方程转化为一个代数方程。
3. 解代数方程得到拉普拉斯变换后的函数。
4. 根据拉普拉斯变换的反变换,将代数方程的解转化为原始函数的解。
5. 检验解是否满足原始微分方程,并根据初值条件确定特定的解。
第四部分:举例说明为了更好地理解使用拉普拉斯变换求解微分方程的过程,下面举一个例子进行说明。
例子:求解微分方程y''(t) + 3y'(t) + 2y(t) = 0,y(0) = 1,y'(0) = 0。
用拉普拉斯变换求解微分方程的过程
用拉普拉斯变换求解微分方程的过程拉普拉斯变换是一种将时间域函数转换为复频率域函数的方法,它在求解微分方程中有着广泛的应用。
下面将介绍用拉普拉斯变换求解微分方程的过程。
首先,我们需要将微分方程转换为代数方程。
假设我们要求解的微分方程为:y''(t) + 2y'(t) + 5y(t) = f(t)其中,y(t)为未知函数,f(t)为已知函数。
我们可以将该微分方程转换为拉普拉斯域中的代数方程:(s^2 Y(s) - s y(0) - y'(0)) + 2(s Y(s) - y(0)) + 5Y(s) = F(s)其中,Y(s)为y(t)的拉普拉斯变换,y(0)和y'(0)分别为y(t)在t=0时的初值和初导数,F(s)为f(t)的拉普拉斯变换。
接下来,我们需要解出Y(s)。
将上式变形可得:Y(s) = (s y(0) + y'(0) + F(s)) / (s^2 + 2s + 5)这样,我们就得到了y(t)的拉普拉斯逆变换:y(t) = L^-1{Y(s)} = L^-1{(s y(0) + y'(0) + F(s)) / (s^2 + 2s + 5)}其中,L^-1表示拉普拉斯逆变换。
最后,我们需要求出y(t)的具体表达式。
这可以通过分解分母的根来实现。
我们可以将分母的根表示为:s^2 + 2s + 5 = (s + 1)^2 + 4因此,我们可以将Y(s)表示为:Y(s) = (s y(0) + y'(0) + F(s)) / [(s + 1)^2 + 4]接下来,我们需要求出Y(s)的部分分式分解。
假设分解结果为:Y(s) = A / (s + 1) + B / (s + 1)^2 + C / (s^2 + 4)将Y(s)代入上式,可以得到:A = lim(s->-1) [(s + 1) Y(s)] = lim(s->-1) [(s + 1) (s y(0) + y'(0) +F(s)) / [(s + 1)^2 + 4]] = y(0) + lim(s->-1) [F(s) / (s + 1)]B = lim(s->-1) [d/ds((s + 1)^2 Y(s))] = lim(s->-1) [d/ds((s + 1)^2 (s y(0) + y'(0) + F(s)) / [(s + 1)^2 + 4])] = y'(0) + lim(s->-1) [(s + 1) F(s) / [(s + 1)^2 + 4]]C = lim(s->0) [s^2 Y(s)] = lim(s->0) [s^2 (s y(0) + y'(0) + F(s)) / [(s + 1)^2 + 4]] = lim(s->0) [s F(s) / [(s + 1)^2 + 4]]最终,我们可以得到y(t)的表达式:y(t) = (y(0) + lim(s->-1) [F(s) / (s + 1)]) e^(-t) + (y'(0) + lim(s->-1) [(s + 1) F(s) / [(s + 1)^2 + 4]]) t e^(-t) + lim(s->0) [s F(s) / [(s + 1)^2 + 4]] sin(2t)其中,e^(-t)和sin(2t)是拉普拉斯逆变换的结果。
拉普拉斯变换求解微分方程及微分方程组
1
2s (s)+2-, gzY(s)-I一 (s)+y(s)=·-i二
L
‘+ l
求 解 得
数 s=[5+jco,积分 F(s)= f(t)e一 在复平面 s的的某一域内收
X(s)=Y(s)=.击 ,取拉普拉斯逆变换得到微分方程的解
敛,则称 F(s)为 f it)的拉普拉斯变 换,记作:F(s)=L[ t)]。通过 为 x(t)=y(t)一sint.
(1)求 解 微 分 方 程 X”(c)一2x’(t)+2x(t)=2e cost,x(O)-x (0)=0
(2)求 解 微 分 方 程 组
解:令 x(s)=L[x(t)】,在微分方程两边同时取拉普拉斯变
I (r)+ )+xCt)+ (f)=O, (0)=j,(O)=0 【2x (O— (f)一 ( )+y(f)=sint,x (o)=Y (0)=一1
换,并结合初始条件,得s2x(s)一2sx(s)+2X(s)= l 二 解此方
求解上述 的微分方程及微分方程 组,如果继续把微分方 程得求x(s)=r ‰求拉氏逆变化,得x )= 2一(s1-):+1)1]2j]
程 的阶数提高或者把微分方程的个数增多,在高等数学知识 et 两zs m] te’ 两1】 te'sint.
更加的快捷和 方便 ,本 文将运用拉普拉斯变换 的先行性质 与微分性质进行 结合 ,从而达到求解的 目的。
关键词 解微分方程 微分 方程 的解 拉普拉斯变换
中 图分 类 号 :O175.14
文 献标 识 码 :A
1问题 的提 出
计 算 。
(1)求 解 微 分 方 程 (f)一2 +2x(f)=2e cost, (o)= (o)=0
拉普拉斯变换在微分方程中的应讲解
指导老师:常莉红拉普拉斯变换在微分方程中的应用王彦朋(宝鸡文理学院 数学系,陕西 宝鸡 721013)摘 要: 利用了拉普拉斯变换及其它的性质,讨论了它在线性时不变系统的时域响应和电路分析中的应用.关键词:拉普拉斯变换;微分方程;电路分析随着计算机的飞速发展,系统分析和设计的方法发生了革命性的变化.原来用传统的模拟系统来进行的许多工作,现在都可能用数字的方法来完成.因此,数字电路、离散系统的分析方法就更显得很重要了.其中,拉普拉斯变换是分析这类系统极为有效的方法,从而给学习使用者在应用上带来很大的方便.1 拉普拉斯变换的定义定义[]1:设函数()f t 是定义在[]0∞,+上的实值函数,如果对于复参数s j βω=+,积分()()0e d st F sf t t +∞-=⎰在复平面s 的某一域内收敛,则称()F s 为()f t 的拉普拉斯变换(简称拉氏变换),记为()()F s L f t =⎡⎤⎣⎦;相应地,称()f t 为()F s 的拉普拉斯逆变换(简称拉氏逆变换),记为()()1f t L F s -=⎡⎤⎣⎦.有时我们也称()f t 与()F s 分别为象原函数和象函数.2 拉氏变换存在定理若函数()f t 满足下列条件:(1)在0t ≥的任何有限区间上分段连续;(2)当t →+∞时,()f t 具有有限的增长性,即存在常数0M >及0c ≥,使得()e ct f t M ≤ ()0t ≤<+∞(其中c 称为()f t 的增长指数).则象函数()F s 在半平面Re s c >上一定存在,且是解析的.3 拉普拉斯变换的性质(1) 线性性质:若()()()()1122,,L f t F s L f t F s ==⎡⎤⎡⎤⎣⎦⎣⎦ 12,a a 为任意常数,则有()()()()11221122L a f t a f t a F s a F s +=+⎡⎤⎣⎦.(2) 微分性质:若()[](),s F t f L =则()()()d 0d L f t sF s f t -⎡⎤=-⎢⎥⎣⎦.(3) 积分性质:若()[](),s F t f L =则()()01t L f t dt F s s⎡⎤=⎢⎥⎣⎦⎰.(4) 位移性质:若()[](),s F t f L =则()()e atL f t F s a -⎡⎤=+⎣⎦.(5) 延迟性质:若()[](),s F t f L =则当00t >时,有()()()000e st L f t t u t t F s ---=⎡⎤⎣⎦. (6) 卷积性质:若()()()()1122,,L f t F s L f t F s ==⎡⎤⎡⎤⎣⎦⎣⎦则有()()()()1212L f t f t F s F s *=⎡⎤⎣⎦.(7) 初值定理与终值定理:①初值定理: 若()[](),s F t f L =且()s sF s ∞→lim 存在,则()()0lim lim ,s t f t sF s +→∞→=或()()0lim s f sF s +→∞=. ②终值定理: 若()[](),s F t f L =且()s sF s ∞→lim 存在,则()()0lim lim ,t s f t sF s →∞→=或()()0lim s f sF s →∞=.4 拉普拉斯变换的应用4.1 利用拉普拉斯变换方法解线性微分方程这是拉普拉斯变换的一个最基本的应用.含有未知数()t f 及其各阶导数的方程称为微分方程.如果()t f 及其各阶导数都是一次的,则称之为线性微分方程.例 解微分方程()()()()()22d d 22e ,00,0 1.d d tf t f t f t f f t t-'-+=== 解 方程两端同时进行拉氏变换,得()()()211221s F s sF s F s s --+=+ 整理得()()()()()()22221117151551221111s s F s s s s s s s +-==-+++-+-+-+ ()s F 的反拉普拉斯变换就是原方程的解,即()()1117e e cos sin 555t t f t L F s t t --⎛⎫==+-+⎡⎤ ⎪⎣⎦⎝⎭. 从以上分析可知,所谓用拉普拉斯变换解决问题的方法,实质上就是把时间域里的问题变换到s 域去求解,最后通过反变换再返回时间域.上述拉普拉斯变换中的复数s (或s 域)常常称为复频率(或复频域). 4.2 利用拉普拉斯变换求解线性系统的响应这里讨论的范围,只限于线性系统.所谓系统,是用来处理各种输入信号的装置,这种处理可以用硬件来实现,如由各种电器元件组成的电路网络,机械元件组成的运动系统,都称为系统.这些系统的规律也可以用某中数学方法来描述,如电路方程,微分方程,硬件系统的传递函数(网络函数)等.这时,我们也称这些数学表达方式为系统.也就是说,系统也可以是指从实际物理元件组合中抽出来的数学规律.系统可以用软件表示,因为只要把这些规律掌握了,对实际系统的特性也就能充分地了解了.关于信号,在电路网络中就是指电压和电流.一般通指系统中一些变量和机械系统的位置、速度、压力和流量等等.设一个系统,在输入信号为()t f 1和()t f 2时的输出信号为()t y 1和()t y 2,若输入信号为()()t bf t af 21+时,其输出信号为()()t by t ay 21+(b a ,为常数),则这个系统为线性系统.如果系统的参数(如电阻、电容值等)是不随时间改变的,则称该系统为线性定常系统或线性时不变系统.利用拉普拉斯变换求线性系统的响应是其重要的应用之一.下面通过举例说明高阶微分方程的复频域解与状态方程的复频域解.4.2.1 高阶微分方程的复频域解对于线性系统,将微分方程的全解分解为零输入响应和零状态响应.其中,零输入响应是指没有外加激励信号的作用,仅由系统的储能元件的初始储能所引起的响应,用()zi r t 表示. 零状态响应是指系统初始条件为零(即系统中储能元件的初始储能为零)时,由外加激励信号()e t 产生的响应,用()zs r t 表示.系统的完全响应是零输入响应与零状态响应的和[]2,即()()()zi zs r t r t r t =+.例 系统的方程为()()()()()22d d d322,d d d r t r t r t e t e t t t t++=+()()()().00,10,='==---r r t u e t e t 求零状态响应、零输入响应和完全响应.解 由于()()e t e t u t -=是因果信号,且(),11+=s s E 用拉普拉斯变换求解. 设()(),s R t r ↔则()()()()10-=-↔'-s sR r s sR t r ()()()()()s s R s r sr s R s t r -='--↔''--2200系统方程两边同时进行拉普拉斯变换,有()()()()()231221s R s s sR s R s s E s -+-+=+⎡⎤⎣⎦求得()()()233122+++++=s s s s E s s R ()()233231222+++++++=s s s s s s E s ()()s R s R zi zs +=零状态响应的拉氏变换为()()s E s s s s R zs 23122+++=()()211121s s s s +=⋅+++ ()2313112+-++++-=s s s 则零状态响应为()()()2e 3e 3e t t t zs r t t u t ---=-+-零输入响应的拉氏变换为()21122332+-++=+++=s s s s s s R zi 则零输入响应为()()()22e e t t zi r t u t --=-完全响应的拉氏变换为()()()2222131543232121s s R s E s s s s s s s s ++--=⋅+=+++++++++ 完全响应为()()()()()2e 5e 4e t t t zi zs r t r t r t t u t ---=+=-+-通过上述例题分析可知:利用拉普拉斯变换求系统响应,需首先将描述系统输入输出关系的高阶微分方程逐项进行拉普拉斯变换,得到复频域的代数方程,求出代数方程的解答后,经过反变换即可得到时域解.4.2.2 状态方程的复频域解法 线性系统的状态方程的标准形式为()()()d d t A t B t tλλ=+ (1) 系统的输出方程为()()()y t C t D t λ=+(2) 式中,,,,A B C D 为系数矩阵;,y x λ,分别为状态变量、输出变量和系统的输入变量.对状态方程式()1两边作拉普拉斯变换,得()()()()0s s A s BX s λ-Λ-=Λ+式中,()()()();s L t X s L x t λΛ==⎡⎤⎡⎤⎣⎦⎣⎦上式经整理得()()()()()110s sI A sI A BX s λ---Λ=-+- (3)对输出方程式()2作拉普拉斯变换,将式()3代入其中,得()()()Y s C s DX s =Λ+()()()()110C sI A C sI A B D X s λ---⎡⎤=-+-+⎣⎦()()zi zs Y s Y s =+ (4)其中,()()10zi Y C sI A λ--=-为系统的零输入响应;()()1zs Y C sI A B D X s -⎡⎤=-+⎣⎦为系统的零状态响应.式()()34与式经拉氏反变换后,得到时域形式的解()()()()(){}1110t L sI A sI A BX s λλ----⎡⎤⎡⎤=-+-⎣⎦⎣⎦(5) ()()()()(){}1110y t L C sI A C sI A B D X s λ----⎡⎤=-+-+⎣⎦(6)比较式()5与状态方程的时域解,即()()()()0e 0e d tA t At t Bx τλλττ---=+⎰可见,状态转移矩阵()()111adj e At sI A L sI A L sI A ---⎡⎤-⎡⎤=-=⎢⎥⎣⎦-⎣⎦(7) 式中,()adj sI A -是()sI A -的伴随矩阵;sI A -是()sI A -的特征多项式.利用式()7可以较方便地计算出e ,At 从而可以求出系统的零输入响应与零状态响应.例 已知状态方程和输出方程中的各矩阵分别为,1021⎥⎦⎤⎢⎣⎡-=A 01,10B ⎡⎤=⎢⎥⎣⎦ ,1011⎥⎦⎤⎢⎣⎡-=C ,0101⎥⎦⎤⎢⎣⎡=D 输入矢量为()(),⎥⎦⎤⎢⎣⎡t t u δ初始状态为()(),01001211⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--λλ求输出().t y解 首先求e At 的拉普拉斯变换.由式()7有()1112e 01Ats L sI A s ----⎡⎤⎡⎤=-=⎢⎥⎣⎦+⎣⎦()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡--++-=110121110211112s s s s s s s 由()()()---=01λA sI C s Y zi 得系统零输入响应的复频域解,即()⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--⎥⎦⎤⎢⎣⎡-=01101110121110112z s s s s s Y i 系统零状态响应的复频域解()()1zs Y C sI A B D X s -⎡⎤=-+⎣⎦2121110110110111010101s s s s ⎧⎫⎡⎤⎡⎤⎪⎪⎢⎥⎡⎤⎡⎤⎡⎤⎪⎪--⎢⎥=+⎢⎥⎨⎬⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎢⎥⎪⎪⎣⎦⎢⎥⎪⎪+⎣⎦⎩⎭⎥⎥⎦⎤⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--=1101111s s s s s s⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-=1112s s因此得系统全响应的时域解为()()()11zi zs y t L Y s L Y s --=+⎡⎤⎡⎤⎣⎦⎣⎦e 2e 3e 0e e t t t t t --⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()0≥t由上例可见,矩阵A 的特征值决定了系统的自由响度.实际上它们就是系统的固有频率,因此可根据A 的特征值来判断系统的特性.4.3 拉普拉斯变换在电路分析中的应用4.3.1 关于线性动态电路的s 域分析法动态电路的s 域分析法,是指应用拉普拉斯变换的电路模型法.其关键在于正确作出动态电路的s 域模型.作电路的s 域模型和进行s 域分析.应明确如下几点.1. s 域中的电压和电流在s 域模型中,时域电源激励函数变换为象函数,各支路电压用象函数表示.通常时域激励函数由查拉氏变换表得出它的象函数.电路中的电压和电流用它的象函数表示,如()()s U t u →,()()s I t i →,()()c c u t U s →,()()L L i t I s →等.2.R ,L ,C 元件的s 域形式及其s 模型 (1)电阻元件R 的s 域形式为()()U s RI s =,或()()s GU s I =s 域模型如图1()a ,()b 所示.(2)电感元件L 的s 域形式为()()()0L L L U s sLI s Li -=- 或()()()01L L L i I s U s sL s-=+ s 域模型如图2()a ,()b 所示.其中sL 称为复频域感抗,1sL称为复频域感纳.()-0L Li 是由电感元件初始状态产生的附加电压源复频域电压,与()s I L 为非关联参考方向;()0L i s -是由电感元件初始状态产生的附加电流源电流,与1sL中电流参考方向相同.(3)电容元件C 的s 域形式为()()01c c c u U I s sC s-=+ 或()()()0c c c I s sCU s Cu -=-其中,sC 1称为复频域容纳,()0c u s-是由电容元件初始状态产生的附加电压源复频域电压,与()s U c 参考方向一致,()-0c Cu 是由电容元件初始状态产生的附加电流源电流,与()s U c 为非关联参考方向.由于R ,L ,C 元件阻抗和导纳两种s 域模型,故一个时域动态电路便可以作出两种s 域模型.电路分析时宜采用哪一种s 域模型呢?应视电路的结构而定.一般而言,串联电路宜采用阻抗s 域模型,并联电路则宜采导纳抗s 域模型. 3.基尔霍夫定律的s 域形式[]3基尔霍夫定律包括基尔霍夫电流定律(KCL )和电压定律(KVL ). (1)KCL :在s 域中沿任一节点处各支路电流象函数的代数和为零,即()0I s =∑.(2)KVL :在s 域中沿任一闭合回路各支路电压象函数的代数和为零,即()0U s =∑.4. s 域阻抗与s 域导纳(1)零状态RLC 串联电路的s 域阻抗()s Z ,是各元件阻抗之和,即()1Z s R sL sC=++(2)零状态RLC 并联电路的s 域导纳()s Y ,是各元件导纳之和,即()1Y s G sC sL=++ (3)s 域阻抗与s 域导纳,是互为倒数的关系,即()()1Z s Y s =,或()()1Y s Z s =(4)s 域阻抗()s Z 与s 域导纳()s Y 两端电压和通过电流象函数()s U ,()s I 符合欧姆定律,称为欧姆定律的s 域形式,即()()()s I s Z s U =或()()()s U s Y s I =下面举例来说明线性动态电路的s 域分析法.例 应用s 域分析法求一般二阶电路的阶跃响应,如图-4()a 所示电路,求阶跃响应()u t 和()i t .图4.3.1-4解 (解题思路)本题是一般直流二阶电路求阶跃响应,即零状态响应.作s 域模型中没有附加电源.s 域分析计算的步骤是,首先做出时域电路的s 域模型,然后应用节点分析法求解出待求量的象函数,并将其展开为部分分式,最后反变换为时域响应.(解题方法)(1)作出时域电路的s 域模型如图4()b 所示.其电压源的象函数是,10s复频域感抗(),s s Z L =复频域容抗()1C Z s s=.(2)求电压(),t u 应用节点分析法,列出节点方程为()110111+=⎪⎭⎫⎝⎛+++s s s U s s 化简整理得()()()()j s j s s s s s s U ++-+=++=111022102js k j s k s k +++-++=11321 计算待定常数()522100201=++=•===s s s s s U s k()()()45251101112-<-=++=•-+=+-=+-=js j s j s s s U j s k 452523-<-==k k 进行拉氏变换得出()()()()15cos 45t u t L U s t t V ε--⎡⎤==-⋅⎡⎤⎣⎦⎢⎥⎣⎦(3)求()t i电路的s 域阻抗为 ()()111+++=s s s Z 故 ()()()()()22110111102+++=+++==s s s s s s s s Z S U s I S ()()()j s j s s s ++-++=11110js k j s k s k +++-++=11321计算待定常数()()5221100201=+++=•===s s s s s s I s k()()()()2111011451s js js k s j I s s s j =-+=-++=+-•==<-++3245k k ==<- ()5I s s =-⎢⎥⎢⎥⎣⎦进行反拉氏变换得出()()()()15cos 45t i t L I s t t A ε--⎡⎤==-⋅⎡⎤⎣⎦⎢⎥⎣⎦本文通过讨论了拉普拉斯变换在线性时不变系统的时域响应,对复频域求解代数方程,得出待求响应量的复频域函数,最后经拉氏反变换为所求解的时域响应.这种变换分析方法,其实质就是时域问题变换为复频域来求解,使分析计算易于进行.应用拉普拉斯变换分析动态电路,把时域电路直接变换为复频域电路,即s 域模型.根据s 域模型进行分析计算,得出响应量的s 域形式,最后反变换为时域响应.这种分析方法易于对任意函数激励的动态电路进行分析计算,是一种具有广泛意义的分析方法. 除了以上所述内容之外,拉普拉斯变换还有许多应用,例如数学上还可以用来解一类积分方程,偏微分方程等等.致谢:本文在撰写过程中得到常莉红老师的悉心指导,在此表示衷心的感谢!参考文献:[1] 华中理工大学数学系编著.复变函数与积分变换[M ].北京:高等教育出版社1997:210-211.[2] 姜建国,曹建中,高玉明编著.信号与系统分析基础(第二版)[M ].北京:清华大学出版社,2006:27-28.[3] 马金龙,胡建萍,王苑苹编著.信号与系统[M ].北京:科学出版社,2006:222-223.Laplace transform and Its Application in the differentialequationsWANG Yan-peng(Department of Mathematics, Baoji University of Arts and Sciences, Baoji 721013, Shaanxi,China)Abstract: Laplace transform and other application are utilized in the article,and then it is discussed to a linear not change the domain of the system and circuit analysis.Key words: Laplace transform; Differential equation;Circuit analysis宝鸡文理学院本科毕业论文任务书注:课题性质分为①理论型②实践应用型。
拉普拉斯变换解微分方程组
拉普拉斯变换是一种数学变换方法,常用于解决微分方程问题。
对于线性常系数微分方程组,可以通过拉普拉斯变换转换为代数方程组来求解。
以下是一般的步骤:
1. 将微分方程组转换为代数方程组:将微分方程组中的导数项用拉普拉斯变量s表示,并将初始条件用初始值的拉普拉斯变换形式表示。
2. 对每个方程进行拉普拉斯变换:对于每个方程,将其变换为代数方程,即将微分方程的左侧利用拉普拉斯变换表中的公式进行变换,右侧保持原样。
3. 构建代数方程组:将每个方程的变换结果组合成一个代数方程组。
4. 求解代数方程组:对代数方程组进行求解,可以使用代数方法,如消元法、矩阵运算等。
5. 对结果进行逆变换:得到代数方程组的解后,将其进行逆变换,即将解的拉普拉斯变换表达式转换为时间域的解。
需要注意的是,拉普拉斯变换解微分方程组的基本思路是将
微分方程转化为代数方程,将微分方程的复杂计算转化为代数方程的简单计算。
具体的计算步骤和方法会根据每个具体的微分方程组而有所不同。
因此,在具体求解时,建议参考相关的数学教材或专业文献,或者使用数学软件来辅助计算。
拉普拉斯变换讲解
拉普拉斯变换拉普拉斯(Laplace)变换是分析和求解常系数线性微分方程的一种简便的方法,而且在自动控制系统的分析和综合中也起着重要的作用.本章将扼要地介绍拉普拉斯变换(以下简称拉氏变换)的基本概念、主要性质、逆变换以及它在解常系数线性微分方程中的应用.1拉氏变换的基本概念在代数中,直接计算是很复杂的,而引用对数后,可先把上式变换为,然后通过查常用对数表和反对数表,就可算得原来要求的数.这是一种把复杂运算转化为简单运算的做法,而拉氏变换则是另一种化繁为简的做法.1.1 拉氏变换的基本概念定义 设函数当时有定义,若广义积分在的某一区域内收敛,则此积分就确定了一个参量为的函数,记作,即(7-1)称(1-1)式为函数的拉氏变换式,用记号表示.函数称为的拉氏变换(Laplace) (或称为的象函数).函数称为的拉氏逆变换(或称为象原函数),记作,即.关于拉氏变换的定义,在这里做两点说明:(1) 在定义中,只要求在时有定义.为了研究拉氏变换性质的方便,以后总假定在时,.(2)在较为深入的讨论中,拉氏变换式中的参数是在复数范围内取值.为了方便起见,本章我们把作为实数来讨论,这并不影响对拉氏变换性质的研究和应用.(3)拉氏变换是将给定的函数通过广义积分转换成一个新的函数,它是一种积分变换.一般来说,在科学技术中遇到的函数,它的拉氏变换总是存在的.例7-1 求一次函数(为常数)的拉氏变换.解.1.2 单位脉冲函数及其拉氏变换在研究线性电路在脉冲电动势作用后所产生的电流时,要涉及到我们要介绍的脉冲函数,在原来电流为零的电路中,某一瞬时(设为)进入一单位电量的脉冲,现要确定电路上的电流,以表示上述电路中的电量,则由于电流强度是电量对时间的变化率,即328.957812028.6⨯⨯=N 53)164.1(⨯164.1lg 53)20lg 28.9lg 5781(lg 3128.6lg lg ++-+=N N )(t f 0≥t dte tf pt ⎰∞+-0)(P P )(P F dte tf P F pt ⎰∞+-=)()()(t f )()]([P F t f L =)(P F )(t f )(t f )(t f )(P F )(P F )()]([1t f P F L =-)]([)(1P F L t f -=)(t f 0≥t 0<t 0)(=t f P P at t f =)(a t ,0≥⎰⎰⎰∞+-∞+-∞+-∞+-+-=-==00][)(][dte pa e p at etd pa dt ateat L pt pt ptpt2020][0p a e p a dt e papt pt =-=+=∞+-∞+-⎰)0(>p 0=t )(t i )(t Q ⎩⎨⎧=≠=.0,1,0,0)(t t t Q,所以,当时,;当时,.上式说明,在通常意义下的函数类中找不到一个函数能够用来表示上述电路的电流强度.为此,引进一个新的函数,这个函数称为狄拉克函数.定义设,当0时,的极限称为狄拉克(Dirac )函数,简称为函数.当时,的值为;当时,的值为无穷大,即.和的图形如图7-1和图7-2所示.显然,对任何,有,所以.工程技术中,常将函数称为单位脉冲函数,有些工程书上,将函数用一个长度等于的有向线段来表示(如图7-2所示),这个线段的长度表示函数的积分,叫做函数的强度.例1-2 求的拉氏变换.解 根据拉氏变换的定义,有,即.例1-3 求单位阶梯函数的拉氏变换.解,.t t Q t t Q dt t dQ t i t ∆∆∆)()(lim )()(0-+==→0≠t 0)(=t i 0=t ∞=-=-+=→→)1(lim )0()0(lim)0(00t t Q t Q i t t ∆∆∆∆∆⎪⎩⎪⎨⎧>≤≤<=εεεδεt t t t ,,,00100)(ε→)(t εδ)(lim )(0t t εεδδ→=-δ0≠t )(t δ00=t )(t δ⎩⎨⎧=∞≠=0,0,0)(t t t δ)(t εδ)(t δ0>ε11)(0==⎰⎰∞+∞-dt dt t εεεδ1)(=⎰∞+∞-dt t δ-δ-δ1-δ-δ)(t δdte dt edt edt et t L pt ptptpt-→∞+-→-→∞+-⎰⎰⎰⎰=⋅+==εεεεεεεεδδ01lim0lim)1lim()()]([11lim 1)()1(lim 11lim 1][1lim 00000==''-=-=-=-→-→-→-→εεεεεεεεεεεp p p pt pe p e p e p p e 1)]([=t L δ⎩⎨⎧≥<=0,10,0)(t t t u p e p dt e dt et u t u L pt pt pt1]1[1)()]([00=-=⋅==∞+-∞+-∞+-⎰⎰)0(>p例1-4求指数函数(为常数)的拉氏变换. 解 ,即.类似可得;.习题1–1求1-4题中函数的拉氏变换1..2..3.4.是常数).1.2 拉氏变换的性质拉氏变换有以下几个主要性质,利用这些性质,可以求一些较为复杂的函数的拉氏变换. 性质1 (线性性质) 若 ,是常数,且,,则. (7-2)证明.例7-5 求下列函数的拉氏变换:(1); (2).解(1).(2). 性质2(平移性质) 若,则(为常数). (7-3)证明.位移性质表明:象原函数乘以等于其象函数左右平移个单位.ate tf =)(a dt e dt e e e L t a p ptat at ⎰⎰∞+--∞+-=⋅=0)(0][)(1a p a p >-=)(1][a p a p e L at >-=)0(][sin 22>+=p p t L ωωω)0(][cos 22>+=p p pt L ωωte tf 4)(-=2)(t t f =atte t f =)(ϕωϕω,()sin()(+=t t f 1a 2a )()]([11p F t f L =)()]([22p F t f L =)]([)]([)]()([22112211t f L a t f L a t f a t f a L +=+)()(2211p F a P F a +=dte tf a dt et f a dt et f a t f a t f a t f a L pt ptpt-∞+-∞+-∞+⎰⎰⎰+=+=+)()()]()([)]()([02211221102211)()()]([)]([22112211p F a p F a t f L a t f L a +=+=)1(1)(at e a t f --=t t t f cos sin )(=)(1}11{1]}[]1[{1]1[1)]1(1[a p p a p p a e L L a e L a e a L at at at +=+-=-=-=----412221]2sin 21[]cos [sin 222+=+⋅==p p t L t t L )()]([p F t f L =)()]([a p F t f e L at -=a ⎰⎰∞+--∞+--===)(0)()()()]([a p F dt e t f dt et f e t f e L t a p ptat atat e a例1-6 求 ,和. 解 因为,,,由位移性质即得性质3(滞后性质) 若,则. (7-4)证明=,在拉氏变换的定义说明中已指出,当时,.因此,对于函数,当(即)时,,所以上式右端的第一个积分为,对于第二个积分,令,则滞后性质指出:象函数乘以等于其象原函数的图形沿轴向右平移个单位(如图1-3所示).由于函数是当时才有非零数值.故与相比,在时间上滞后了一个值,正是这个道理,我们才称它为滞后性质.在实际应用中,为了突出“滞后”这一特点,常在这个函数上再乘,所以滞后性质也表示为.例1-7 求.解 因为,由滞后性质得. 例1-8 求.解 因为,所以.例1-9 求下列函数的拉氏变换:(1) (2)解 (1)由图7-4容易看出,当时,的值是在的基础上加上了(),][at te L ]sin [t e L atω-]cos [t e L at ω-21][p t L =22][sin ωωω+=p t L 22][cos ωω+=p p t L 。
拉普拉斯变换微分定理三阶推导
拉普拉斯变换微分定理三阶推导拉普拉斯变换微分定理是微分和拉普拉斯变换之间的一个重要关系。
它可以帮助我们将微分方程转换为代数方程,从而简化问题的求解。
在本文中,我将深入探讨拉普拉斯变换微分定理的三阶推导,并分享我的观点和理解。
让我们回顾一下拉普拉斯变换的基本定义和性质。
拉普拉斯变换是一种将一个函数从时间域转换到复频率域的方法。
对于一个函数f(t)在t≥0的定义域上,它的拉普拉斯变换可以表示为:F(s) = L[f(t)] = ∫ (0 to ∞) e^(-st) f(t) dt其中,s是一个复变量,被称为拉普拉斯变换域中的复频率。
函数F(s)是f(t)的拉普拉斯变换。
接下来,让我们来推导拉普拉斯变换微分定理的三阶形式。
我们从拉普拉斯变换的基本定义开始:L[f'(t)] = sF(s) - f(0)这是拉普拉斯变换微分定理的一阶形式。
它告诉我们,对于一个函数f(t)的导数f'(t),它的拉普拉斯变换等于s乘以f(t)的拉普拉斯变换减去f(t)在t=0时刻的值。
现在,让我们将这个一阶形式应用到函数的二阶导数上。
假设我们有一个函数f(t),它的二阶导数表示为f''(t)。
我们可以首先求出f'(t)的拉普拉斯变换,然后再对结果应用一阶形式的拉普拉斯变换微分定理。
根据一阶形式的定理,f'(t)的拉普拉斯变换为:L[f''(t)] = sF'(s) - f'(0)现在,让我们对这个结果应用一阶形式的拉普拉斯变换微分定理。
我们需要求出F'(s)的拉普拉斯变换,然后再对结果应用一阶形式的定理。
我们可以使用一阶形式的定理来计算F(s)的导数:F'(s) = L[f'(t)] = sF(s) - f(0)将这个结果代入到L[f''(t)]的表达式中,我们得到:L[f''(t)] = [s(sF(s) - f(0))] - f'(0)进一步整理,我们可以得到拉普拉斯变换微分定理的二阶形式:L[f''(t)] = s^2F(s) - sf(0) - f'(0)现在,我们已经推导出了拉普拉斯变换微分定理的二阶形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
變換解微分方程 題過程:
分方程
題 02///=--y y y …..(*)
0)0(,1)0(/==y y 式等號兩邊做拉普拉斯變換
L
{=--}2///y y y L }0{ 性性質,得
L {}//y - L
{}/y -2 L {0}=y 2L {)}(t y -s y sy --)0()0(/L 2)0()}({-+f t y L 0)}({=t y
始條件,得L )}({t y 之代數方程
2s L )}({t y s -L 2)}({-t y L 1)}({-=s t y --------- (a)
數方程(a),得
簡
單
L 1-L ODE
L {})()(s t y 之代數方程或低階ODE
)(t y L {})()(s t y
L )}({t y 21
2---=s s s
上式兩邊做反拉普拉斯變換,得
=) L -1 {L {)(t y }}= L -1 ⎭⎬⎫⎩⎨⎧---212s s s
⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-11322131s s 及L {}
at e = a s -1 , 解為
=)t 31 L -1 ⎭⎬⎫⎩⎨⎧-21s + 32 L -1 ⎭⎬⎫⎩⎨⎧+11s
31=
+t e 2 32 t e - 題t y y 2sin //=+ , …..(**)
1)0(,2)0(/==y y
*)式等號兩邊做拉普拉斯變換
L {}
=+y y // L {}t 2sin 換的微分性質以及L 22}{sin a s a at +=
,得 L
{}y +--)0()0(/y sy L 42
}{2+=s y 入初始條件,得L )}({t y 之代數方程
)1+L {}y 42122+=--s s
--------- (b) 代數方程(b),得
{}y ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+++=+++++=4132113512)4)(1(6822222223s s s s s s s s s
在上式兩邊做反拉普拉斯變換,得初始值問題的解為
t t t 2sin 31sin 35cos 2-+ (由 L 22}{sin a s a at +=
,L 22}{cos a s s at += )
問題0)4(=-y y , …..(***)
0)0(,0)0(,1)0(,0)0(//////====y y y y
***)式等號兩邊做拉普拉斯變換
L
}{)4(y - L =)(y L 0)0(= 用拉普拉斯變換的微分性質,得
4s L -----)0()0()0()0(}{//////23y sy y s y s y L 0}{=y
入初始條件,得L )}({t y 之代數方程
)1(4-s L 0}{2=-s y --------- (c)
數方程(c),得
1211211}2242
++-=-=s s s s y
上式兩邊做反拉普拉斯變換,得初始值問題的解為
11)sinh sin 22t t t =+
(由L 22}{sin a s a at += 以及L )}{sinh 22a s a at -= m 方法的好處在於能直接解出答案而不必去猜特別解及求微分方程的一般解 連續, |)(t f | at Ke ≤, M t ≥∀, K ,a , M 為常數, 則
N n s F t f n ∈∀=),()}()(, …..(D)
)(dt t f t
歸納法)
時,
⎰∞-0)(dt t f e ds d st = =-⎰∞-0)()(dt t f t e st L )}(){(t f t -, 成立。
=k 時,(D)式成立 即 =)()(s L k L
)}(){(t f t k -成立 證n=k+1時,(D)式成立。
=)()()(s F
k /) = ⎰∞--0)()(dt t f t e ds d st ⎰∞---0)()()(dt t f t e t k st = L )}(){(1t f t k +-,
成立。
線性微分方程
0)(22///2=-++y p t ty y t , 方程(Bessel ’s equation of order p), (p 0≥) essel 方程
02/=+y t , t > 0…..(B)
以t ,
0///=++ty y ty
式等號兩邊做拉普拉斯變換,得
L {//ty }+ L {/y }+ L {ty }= 0
用上一個定理,得
ds d -
L }{//y + L }{/y 0)(/=-s F 用拉普拉斯變換的微分性質,得 ()()0)()0()()0()0()(//2=--+---s F y s sF y sy s F s ds d
代入初始條件,得可分離方程 (
)0)()(1/2=++s sF s F s 解上式,得
212)
1()(-+=s c s F 由二項式定理,上式可改寫
212)11()(-+=s s c s k k k s
C s c )1(2021∑∞=-= 12022)!2()!(2)1(+∞=∑-=k k k k
s k k c
⎪⎪⎪⎪⎪⎪⎭⎫--=⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛--⎪⎭⎫)!!2...6.4.22)12...(5.3.1)1(!)1(21...12121k k k k k k
邊做反拉普拉斯變換,由L 1!}{+=
n n s n t ,及取c =1,得0階之Bessel 方程之一解 =)L 1-=)}({s F ≡-∑∞=k k k t k 2022)!(2)
1(
)(0t J
一類的0階之Bessel 函數
he first kind of order 0)。
為
∑∞=+-+=122
210)!(2)1(ln )(n n n n n t n H t t J ,
n H n 1...2111+++=
會介紹解)(2t y 如何求得)
方程之一般解為)()()(2211t y c t y c t y += ⎥⎥⎦⎤-+++-≡∑∞=+12221021)!(2)1()()2ln )
(2
)()2ln (2
n n n n n n t H t J t r t y t y r ππ
階之Bessel 函數
he second kind of order 0),
=lim n →∞()57722.02ln ≅-n H
之一般解亦可表為
)(
)(
)(0
2
1
t
Y
c
t
J
c
t
y+
=。