示波器测信号的周期和频率实验报告
示波器测信号的周期和频率实验报告
示波器的使用1、了解通用双通道示波器的结构和工作原理,熟悉各个旋钮的作用和使用方法。
2、掌握用示波器观察波形、测量电压和频率的方法;了解用示波器测量相位差的方法。
3、掌握观察李萨如图形的方法,并能用李萨如图形测量未知正弦信号的频率;能用示波器观察“拍”现象。
1、通用双通道示波器的结构,面板旋钮的作用和使用方法;2、通用双通道示波器的工作原理,李萨如图形测量未知正弦信号频率的原理,观察“拍”现象的原理。
一、前言示波器是利用电子束的电偏转来观察电压波形的一种常用电子仪器,主要用于观察电信号随时间变化的波形,定量测量波形的幅度、周期、频率、相位等参数。
一般的电学量(如电流、电功率、阻抗等)和可转化为电学量的非电学量(如温度、位移、速度、压力、光强、磁场、频率)以及它们随时间变化的规律都可以用示波器来观测。
由于电子的惯性很小,电子射线示波器一般可在很高的频率范围内工作。
采用高增益放大器的示波器可以观察微弱的信号;具有多通道的示波器,则可以同时观察几个信号,并比较它们之间的相应关系(如时间差或相位差),是目前科学实验、科研生产常用的电子仪器。
二、实验仪器通用双通道示波器,函数信号发生器、同轴电缆等。
三、实验原理1、仪器工作原理(1)通用双通道示波器的介绍主要结构:示波管、电子放大系统、扫描触发系统、电源工作原理: (a )示波管示波管是呈喇叭形的玻璃泡,被抽成高真空,内部装有电子枪和两对相互垂直的偏转板,喇叭口的球面内壁上涂有荧光物质,构成荧光屏。
下图是示波管的构造图。
电子枪由灯丝F 、阴极K 、栅极G 以及一组阳极A 所组成。
灯丝通电后炽热,使阴极发热而发射电子。
由于阳极电位高于阴极,所以电子被阳极电压加速。
当高速电子撞击在荧光屏上会使荧光物质发光,在屏上就能看到一个亮点。
改变阳极组电位分布,可以使不同发射方向的电子恰好会聚在荧光屏某一点上,这种调节称为聚焦。
栅极G 电位较阴极K 为低,改变G 电位的高低,可以控制电子枪发射电子流的密度,甚至完全不使电子通过,这称为辉度调节,实际上就是调节荧光屏上亮点的亮暗。
实验报告
第一部分一、示波器的功能一、示波器的功能1、可以测量直流信号、交流信号的电压幅度2、可以测量交流信号的周期,并以此换算出交流信号的频率。
3、可显示交流信号的波形。
4、可以用两个通道分别进行信号测量。
5、可以在屏幕上同时显示两个信号的波形,即双踪测量功能。
此功能能够测量两个信号之间的相位差,和波形之间形状的差别。
二、示波器面板旋钮的功能1、扫描速度旋钮,可以改变示波器扫描线从左向右移动的速度。
2、电压选择旋钮,可以改变输入电压使扫描线在示波器屏幕Y轴方向的偏转幅度。
3、上下调整旋钮、左右调整旋钮,可以改变扫描线在屏幕中上下左右两个方向的位置。
4、电压标准旋钮向顺时针方向达到最大值的状态为标准状态。
其它位置为非标准状态。
5、扫描速度标准旋钮向顺时针方向达到最大值的状态为标准状态。
其他位置为非标准状态。
6、为同步旋钮,它能使示波器的波形稳定下来。
7、功能选择键为CH1通道选择、CH2通道选择、双踪功能选择。
8、功能选择键为CH1信号同步、CH2信号同步。
9、为测量功能选择开关,能使测量处与交流DC、直流AC、和接地GHD三种状态。
当处于直流DC状态时,无论是直流还是交流信号都能够进行测量。
当处于交流AC状态时,示波器测量接口的内部被串上的一个电容,此时信号中的直流成分被电容阻隔,而交流成分却可以通过电容而被测量。
当处于接地状态的时,示波器的测量接口在示波器内部与地短路,此时外部信号不能进入示波器。
10、为亮度调整旋钮,可以调整图像的亮度。
11、为聚焦调整旋钮,可以使图像变得精细。
三、示波器对被测电压进行读数的方法1、测量电压的读数示波器扫描线在Y轴方向偏离一个方格,被测量的电压值就等于电压选择旋钮所指示的电压。
信号电压使示波器扫描线在Y轴方向偏离的格数乘以电压选择旋钮所指示的电压,就等于这个信号的电压值。
2、测量交流电压的周期示波器扫描线在X轴方向每移动一个方格,所经过的时间就等于扫描速度旋钮所指示的时间。
频率测量及其误差分析实验报告
比较示波器测频和频率计测频的特点; 答:示波器:工作频率范围宽, 适应于测试快速脉冲信号,但是适合测量频率 100Hz—10MHz 左右。 虚拟频率计:测量精度相比于示波器高一点,适合测量的频率宽于示波器要求测量的频率。 八.注意事项 1 实验前要充分预习,熟悉有关测量误差、示波器和频率计的知识; 2 实验开始前先打开仪器电源预热,中途一般不要关闭电源。 九、实验心得: 1、实验室用的通用计数器具有测量频率和测量周期两种测量方式。 2、使用虚拟仪器测量频率时,我们组出现了波形一直在跳动的情况。为此,我们通过调节 参数,改变测量方式等渠道,终于在老师的指导下发现其根本原因在于电源不准确。 3、使用虚拟仪器测量频率时,采样速率的选取取决于根据我们所要测量的频率。理论上应 该是我们所要测量频率的 2 倍。实际上我们一般要选取 5 倍以上,这里我们选取 10 倍被测频率。 4、万用表是三种测量方式里面误差最大的测量方式,因此我们要测量频率时最好不用其测 量。 5、如果出发点是研究某个信号的特性,最好选取一个比较适中的频率,不要太大,也不能 太小,这样才能提高准确度。
显示 方式
类 型、
输入耦合 CH1
合方式 CH1 触发极性
交流 正极性
垂直刻度 系数(粗)
触发耦合
垂直刻度 系数(细) 交流耦合
水平刻度系数 100ms
周期读数 (格或 cm) 5.04 格/504ms
测得频率 1.98
频率测量 相对误差
1.0%
1
100Hz 1kHz 50kHz 500KHz 100MHz
4
2.5ms 250ms 5.00us 500ms 100us
示波器实验报告结论
示波器实验报告结论示波器实验报告结论篇一:示波器的原理与使用实验报告大连理工大学大学物理实验报告院(系)材料学院专业材料物理班级0705 姓名童凌炜学号 201X67025 实验台号实验时间201X 年 11月 18 日,第13周,星期二第 5-6 节实验名称示波器的原理与使用教师评语实验目的与要求:(1)了解示波器的工作原理(2)学习使用示波器观察各种信号波形(3)用示波器测量信号的电压、频率和相位差主要仪器设备: YB4320G 双踪示波器,EE1641B型函数信号发生器实验原理和内容:1. 示波器基本结构示波器主要由示波管、放大和衰减系统、触发扫描系统和电源四部分组成,其中示波管是核心部分。
示波管的基本结构如下图所示,主要由电子枪、偏转系统和荧光屏三个部分组成,由外部玻璃外壳密封在真空环境中。
电子枪的作用是释放并加速电子束。
其中第一阳极称为聚焦阳极,第二阳极称为加速阳极。
通过调节两者的共同作用,可以使电子束打到荧光屏上产生明亮清晰的圆点。
偏转系统由X、Y两对偏转板组成,通过在板上加电压来使电子束偏转,从而对应地改变屏上亮点的位置。
荧光屏上涂有荧光粉,电子打上去时能够发光形成光斑。
不同荧光粉的发光颜色与余辉时间都不同。
放大和衰减系统用于对不同大小的输入信号进行适当的缩放,使其幅度适合于观测。
扫描系统的作用是产生锯齿波扫描电压(如左上图所示),使电子束在其作用下匀速地在荧光屏周期性地自左向右运动,这一过程称为扫描。
扫描开始的时间由触发系统控制。
2. 示波器的显示波形的原理如果只在竖直偏转板加上交变电压而X偏转板上五点也是,电子束在竖直方向上来回运动而形成一条亮线,如左图所示:如果在Y偏转板和X偏转板上同时分别加载正弦电压和锯齿波电压,电子受水平竖直两个方向的合理作用下,进行正弦震荡和水平扫描的合成运动,在两电压周期相等时,荧光屏上能够显示出完整周期的正弦电压波形,显像原理如右图所示:3. 扫描同步为了完整地显示外界输入信号的周期波形,需要调节扫描周期使其与外界信号周期相同或成合适的关系。
示波器的使用实验报告
示波器的使用实验报告各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢篇一:大学物理实验报告(示波器)??00A9示波器的使用实验简介示波器是用来显示被观测信号的波形的电子测量仪器,与其他测量仪器相比,示波器具有以下优点:能够显示出被测信号的波形;对被测系统的影响小;具有较高的灵敏度;动态范围大,过载能力强;容易组成综合测试仪器,从而扩大使用范围;可以描绘出任何两个周期量的函数关系曲线。
从而把原来非常抽象的、看不见的电变化过程转换成在屏幕上看得见的真实图像。
在电子测量与测试仪器中,示波器的使用范围非常广泛,它可以表征的所有参数,如电压、电流、时间、频率和相位差等。
若配以适当的传感器,还可以对温度、压力、密度、距离、声、光、冲击等非电量进行测量。
正确使用示波器是进行电子测量的前提。
第一台示波器由一只示波管,一个电源和一个简单的扫描电路组成。
发展到今天已经由通用示波器到取样示波器、记忆示波器、数字示波器、逻辑示波器、智能化示波器等近十大系列,示波器广泛应用在工业、科研、国防等很多领域中。
Karl Ferdinand Braun生平简介1909年的诺贝尔物理奖得主Karl Ferdinand Braun于1897年发明世界上第一台阴极射线管示波器,至今许多德国人仍称CRT为布朗管(Braun Tube)。
实验目的2、学习用示波器观察电信号的波形和测量电压、周期及频率值。
3、通过观察李沙如图形,学会一种测量正弦波信号频率的方法。
图8-1 Karl Ferdinand Braun1、了解示波器的结构和工作原理,熟悉示波器和信号发生器的基本使用方法。
实验仪器VD4322B型双踪示波器、EM1643型信号发生器、连接线及小喇叭等?1051、电源开关2、电源指示灯3、聚焦旋钮4、亮度调节旋钮5、Y1(X)信号输入口6、Y2信号输入口7、8、9 86图8-2 VD4322型双踪示波器板面图入耦合开关(AC-GND-DC)9、10、垂直偏转因数选择开关(V/格)11、Y1位移旋钮12、Y2位移旋钮13、工作方式选择开关(Y1、Y2、交替、断续)14、扫描速度(时间/格)选择开关15、扫描微调控制旋钮16、水平位移旋钮17、电平调节旋钮实验原理一、示波器的结构及简单工作原理示波器一般由5个部分组成,如图8-3所示:(1)示波管;(2)信号放大器和衰减器(3)扫描发生器;(4)触发同步电路;(5)电源。
系统频率测试实验报告(3篇)
第1篇一、实验目的1. 了解系统频率特性的基本概念和测试方法。
2. 掌握使用示波器、频谱分析仪等设备进行系统频率测试的操作技巧。
3. 分析测试结果,确定系统的主要频率成分和频率响应特性。
二、实验原理系统频率特性是指系统对正弦输入信号的响应,通常用幅频特性(A(f))和相频特性(φ(f))来描述。
幅频特性表示系统输出信号幅度与输入信号幅度之比,相频特性表示系统输出信号相位与输入信号相位之差。
频率测试实验通常包括以下步骤:1. 使用正弦信号发生器产生正弦输入信号;2. 将输入信号输入被测系统,并测量输出信号;3. 使用示波器或频谱分析仪观察和分析输出信号的频率特性。
三、实验设备1. 正弦信号发生器2. 示波器3. 频谱分析仪4. 被测系统(如放大器、滤波器等)5. 连接线四、实验步骤1. 准备实验设备,将正弦信号发生器输出端与被测系统输入端相连;2. 打开正弦信号发生器,设置合适的频率和幅度;3. 使用示波器观察输入信号和输出信号的波形,确保信号正常传输;4. 使用频谱分析仪分析输出信号的频率特性,记录幅频特性和相频特性;5. 改变输入信号的频率,重复步骤4,得到一系列频率特性曲线;6. 分析频率特性曲线,确定系统的主要频率成分和频率响应特性。
五、实验结果与分析1. 幅频特性曲线:观察幅频特性曲线,可以发现系统存在一定频率范围内的增益峰值和谷值。
这些峰值和谷值可能对应系统中的谐振频率或截止频率。
通过分析峰值和谷值的位置,可以了解系统的带宽和选择性。
2. 相频特性曲线:观察相频特性曲线,可以发现系统在不同频率下存在相位滞后或超前。
相位滞后表示系统对输入信号的相位延迟,相位超前表示系统对输入信号的相位提前。
通过分析相位特性,可以了解系统的相位稳定性。
六、实验总结1. 通过本次实验,我们掌握了系统频率特性的基本概念和测试方法。
2. 使用示波器和频谱分析仪等设备,我们成功地分析了被测系统的频率特性。
3. 通过分析频率特性曲线,我们了解了系统的主要频率成分和频率响应特性。
大学物理实验示波器实验报告
了解信号发生器的功能和 使用方法。
注意示波器的探头选择和 使用方法,避免损坏设备 或影响测量结果。
02
示波器操作指南
示波器面板功能介绍
显示屏幕
用于显示波形图像,可调整屏幕亮度、 对比度等参数。
垂直控制
包括通道选择、垂直位移、垂直灵敏度 等调节旋钮,用于调整波形的垂直显示 位置及幅度。
水平控制
包括时基选择、水平位移等调节旋钮, 用于调整波形的水平显示宽度及位置。
改进建议提
仪器校准
定期对示波器进行校准和维护,确 保其精度和稳定性。
环境控制
在实验过程中,尽量控制环境因素 对实验结果的影响,如保持恒温、 恒湿等。
操作规范
提高操作人员的熟练程度和规范性, 减少操作误差的产生。
实验方案优化
根据实验结果和讨论,对实验方案 进行优化和改进,提高实验的准确 性和可靠性。
触发控制
包括触发源选择、触发方式选择、触发 电平等调节旋钮,用于设置触发条件, 确保波形稳定显示。
信号发生器使用方法
频率设置
通过调节频率旋钮或按键,设置所需信
号频率。
波形选择
根据需要选择正弦波、方波、三角波等 不同波形。
幅度设置
通过调节幅度旋钮或按键,设置所需信 号幅度。
输出连接
将信号发生器输出端与示波器输入端正 确连接,确保信号正常传输。
解决方案
根据排查结果采取相应的 解决方案,如更换损坏的 部件、调整设置参数等, 以确保实验顺利进行。
04
实验数据分析与讨论
数据处理过程展示
数据采集
详细记录了示波器的各项参数,包括 电压、频率、相位等,确保数据的准 确性和完整性。
图表绘制
根据处理后的数据,绘制了相应的图 表,如波形图、相位图等,以便更直 观地展示数据特征。
大学物理实验——示波器的使用实验报告
实验3.11示波器的原理与使用实验者姓名:XXX同组者姓名:XXX实验日期:20XX.X.X一、实验目的1、了解示波器的基本结构和工作原理。
2、利用示波器观察测量正弦波、方波、锯齿波的振幅、频率。
3、观察电子束垂直正弦振动合成的轨迹(李萨如图形)并测定正弦振动频率比。
二、实验仪器通用AOS1022C 型数字存储示波器,TFG1900A 型函数信号发生器。
三、实验原理示波器是利用示波管内电子束在电场或磁场中的偏转,显示电压信号随时间变化波形的一种电子观测仪器。
在各行各业与各个研究领域都有着广泛的应用。
其基本结构与工作原理如下1、示波器的基本结构与显示波形的基本原理示波器种类很多,基本都包括几个组成部分:示波管(CRT)、竖直信号放大器(Y 放大)、水平信号放大器(X 放大)、扫描信号发生器、触发同步系统和直流电源等。
示波管是示波器的核心部件,如图1所示。
可细分为电子枪、偏转系统和荧光屏三部分,均密封在抽成高真空的玻璃外壳内。
1)电子枪电子枪包括灯丝,阴极,控制栅极,第一阳极,第二阳极五部分。
阴极被灯丝加热后,可沿轴向发射电子。
并在荧光屏上显现一个清晰的小圆点。
2)偏转系统偏转系统由两对互相垂直的金属偏转板X 和Y 组成,分别控制电子束在水平方向和竖直方向的偏转。
从电子枪射出的电子束若不受横向电场的作用,将沿轴线前进并在荧光屏的中心呈现静止的光点。
若受到横向电场的作用,电子束的运动方向就会偏离轴线,屏上光点的位置就会移动。
X 偏转板之间的横向电场用来控制光点在水平方向的位移,Y 偏转板用来控制光点在竖直方向的位移。
如果两对偏转板都加上电场,则光点在二者的共同控制下,将在荧光屏平面二维方向上发生位移。
3)荧光屏F 灯丝,K 阴极,G 控制栅极,A 1、A 2第一、第二阳极,Y 、X 竖直、水平偏转板图1示波管结构简图荧光屏上涂有荧光粉,它的作用是将电子束轰击点的轨迹显示出来以供观测。
4)显示波形的原理在竖直偏转板上加一交变正弦电压,可看到一条竖直的亮线,如图3所示。
常用信号测量实验报告(3篇)
第1篇一、实验目的1. 熟悉常用信号测量仪器的操作方法。
2. 掌握信号的时域和频域分析方法。
3. 学会运用信号处理方法对实际信号进行分析。
二、实验原理信号测量实验主要包括信号的时域测量、频域测量以及信号处理方法。
时域测量是指对信号的幅度、周期、相位等参数进行测量;频域测量是指将信号分解为不同频率成分,分析各频率成分的幅度和相位;信号处理方法包括滤波、放大、调制、解调等。
三、实验仪器与设备1. 示波器:用于观察信号的波形、幅度、周期、相位等参数。
2. 频率计:用于测量信号的频率和周期。
3. 信号发生器:用于产生标准信号,如正弦波、方波、三角波等。
4. 滤波器:用于对信号进行滤波处理。
5. 放大器:用于对信号进行放大处理。
6. 调制器和解调器:用于对信号进行调制和解调处理。
四、实验内容与步骤1. 时域测量(1)打开示波器,调整波形显示,观察标准信号的波形。
(2)测量信号的幅度、周期、相位等参数。
(3)观察不同信号(如正弦波、方波、三角波)的波形特点。
2. 频域测量(1)打开频率计,调整频率显示,测量信号的频率和周期。
(2)使用信号发生器产生标准信号,如正弦波,通过频谱分析仪分析其频谱。
(3)观察不同信号的频谱特点。
3. 信号处理方法(1)滤波处理:使用滤波器对信号进行滤波处理,观察滤波前后信号的变化。
(2)放大处理:使用放大器对信号进行放大处理,观察放大前后信号的变化。
(3)调制和解调处理:使用调制器对信号进行调制,然后使用解调器进行解调,观察调制和解调前后信号的变化。
五、实验结果与分析1. 时域测量结果通过时域测量,我们得到了不同信号的波形、幅度、周期、相位等参数。
例如,正弦波具有平滑的波形,周期为正弦波周期的整数倍,相位为正弦波起始点的角度;方波具有方波形,周期为方波周期的整数倍,相位为方波起始点的角度;三角波具有三角波形,周期为三角波周期的整数倍,相位为三角波起始点的角度。
2. 频域测量结果通过频域测量,我们得到了不同信号的频谱。
大学物理实验示波器实验报告
示波器的使用【实验简介】示波器是用来显示被观测信号的波形的电子测量仪器,与其他测量仪器相比,示波器具有以下优点:能够显示出被测信号的波形;对被测系统的影响小;具有较高的灵敏度;动态范围大,过载能力强;容易组成综合测试仪器,从而扩大使用范围;可以描绘出任何两个周期量的函数关系曲线。
从而把原来非常抽象的、看不见的电变化过程转换成在屏幕上看得见的真实图像。
在电子测量与测试仪器中,示波器的使用范围非常广泛,它可以表征的所有参数,如电压、电流、时间、频率和相位差等。
若配以适当的传感器,还可以对温度、压力、密度、距离、声、光、冲击等非电量进行测量。
正确使用示波器是进行电子测量的前提。
第一台示波器由一只示波管,一个电源和一个简单的扫描电路组成。
发展到今天已经由通用示波器到取样示波器、记忆示波器、数字示波器、逻辑示波器、智能化示波器等近十大系列,示波器广泛应用在工业、科研、国防等很多领域中。
Karl Ferdinand Braun 生平简介1909年的诺贝尔物理奖得主Karl Ferdinand Braun 于1897年发明世界上第一台阴极射线管示波器,至今许多德国人仍称CRT 为布朗管(Braun Tube)。
【实验目的】1、 了解示波器的结构和工作原理,熟悉示波器和信号发生器的基本使用方法。
2、 学习用示波器观察电信号的波形和测量电压、周期及频率值。
3、 通过观察李沙如图形,学会一种测量正弦波信号频率的方法。
【实验仪器】VD4322B 型双踪示波器、EM1643型信号发生器、连接线及小喇叭等图8-2 VD4322图8-1 Karl Ferdinand Braun171 234569101112 13 1415161、电源开关2、电源指示灯3、聚焦旋钮4、亮度调节旋钮5、Y1(X)信号输入口6、Y2信号输入口7、8、入耦合开关(AC-GND-DC )9、10、垂直偏转因数选择开关(V/格)11、1Y 位移旋钮12、2Y 位移旋钮13、工作方式选择开关(1Y 、2Y 、交替、断续)14、扫描速度(时间/格)选择开关15、扫描微调控制旋钮16、水平位移旋钮17、电平调节旋钮【实验原理】一、示波器的结构及简单工作原理示波器一般由5个部分组成,如图8-3所示:(1)示波管;(2)信号放大器和衰减器(3)扫描发生器;(4)触发同步电路;(5)电源。
示波器实验报告
示波器实验报告示波器实验报告【实验题目】示波器的原理和使用【实验目的】1.了解示波器的基本机构和工作原理,掌握使用示波器和信号发生器的基本方法。
2.学会使用示波器观测电信号波形和电压副值以及频率。
3.学会使用示波器观察李萨如图并测频率。
【实验原理】1.示波器都包括几个基本组成部分:示波管(阴极射线管)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号电路(锯齿波发生器)、同步电路、电源等。
2.李萨如图形的原理:如果示波器的X和Y输入时频率相同或成简单整数比的两个正弦电压,则荧光屏上将呈现特殊的光点轨迹,这种轨迹图称为李萨如图形。
如果作一个限制光点x、y方向变化范围的假想方框,则图形与此框相切时,横边上的切点数nx与竖边上的切点数ny之比恰好等于Y与X输入的两正弦信号的频率之比,即fy:fx=nx:ny。
【实验仪器】示波器×1,信号发生器×2,信号线×2。
【实验内容】1.基础操作:了解示波器工作原理的基础上阅读所用机器的说明书,了解每个旋钮的作用。
其中最主要也是经常使用的旋钮为横向和纵向两个。
横向旋钮是控制扫描时间的旋钮,调节时表现为荧光屏上显示波形发生横向的压缩或展开;纵向旋钮是调节垂直放大电路的旋钮,调节时表现为荧光屏上显示波形发生纵向的展开或压缩,次旋钮为两个,分别控制示波器的两个输入信号。
明确操作步骤及注意事项后,接通示波器电源开关。
先找到扫描线并调至清晰。
2.观测李萨如图形:向CH1、CH2分别输入两个信号源的正弦波,“扫描时间”的“粗调”旋钮置于“__Y”方式(即使两路信号进行合成)。
调出不同比值的李萨如图形来,画出草图,并分析图形的特点与两个信号频率之间的关系。
绘出所观察到的各种频率比的李萨如图形。
设fx=1000Hz为约定真值,依次求出另一信号发生器的输出频率fy,并与该信号发生器读数值f′y进行比较,一一求出它们的相对误差。
【实验数据】【实验结果】【误差分析】1.两台信号发生器不协调。
示波器的原理与使用-实验报告(00001)
示波器的原理与使用-实验报告LT号进行适当的缩放,使其幅度适合于观测。
扫描系统的作用是产生锯齿波扫描电压(如左上图所示),使电子束在其作用下匀速地在荧光屏周期性地自左向右运动,这一过程称为扫描。
扫描开始的时间由触发系统控制。
1.示波器的显示波形的原理如果只在竖直偏转板加上交变电压而X偏转板上五点也是,电子束在竖直方向上来回运动而形成一条亮线,如左图所示:如果在Y偏转板和X偏转板上同时分别加载正弦电压和锯齿波电压,电子受水平竖直两个方向的合理作用下,进行正弦震荡和水平扫描的合成运动,在两电压周期相等时,荧光屏上能够显示出完整周期的正弦电压波形,显像原理如右图所示:2.扫描同步为了完整地显示外界输入信号的周期波形,需要调节扫描周期使其与外界信号周期相同或成合适的关系。
当某些因素改变致使周期发生变化时,使用扫描同步功能, 能够使扫描起点自动跟踪外界信号变化, 从而稳定地显示波形。
步骤与操作方法:1. 示波器测量信号的电压和频率对于一个稳定显示的正弦电压波形, 电压和频率可以由以下方法读出ha U p p ⨯=-,1)(-⨯=l b f其中a 为垂直偏转因数(电压偏转因数)(从示波器面板的衰减器开关上可以直接读出)单位为V/div 或mV/div ; h 为输入信号的峰-峰高度, 单位div ; b 为扫描时间系数, 从主扫描时间系数选择开关上可以直接读出, 单位s/div 、ms/div 或μs/div ; l 为输入信号的单个周期宽度, 单位div 。
(1) 打开电源开关并切换到DC 档, 拨动垂直工作方式开关,选择未知信号所在的通道。
(2) 通过调节“扫描时间系数选择开关”和“垂直偏转系数开关”, 以及它们对应的微调开关, 使未知信号图形的高度和波形个数便与测量。
同时在开关上读出计算所需的a 、b 值。
(3)调节“垂直位移”与“水平位移”旋钮,利用荧光屏上的刻度读取l、h值,并记录。
2.用示波器直接观察半波和全波整流波形(1)将实验室提供的未知信号分别接到整流电路的AB端,CD端送入示波器的CH1或CH2端。
大学物理实验示波器实验报告-示波器实验数据
⼤学物理实验⽰波器实验报告-⽰波器实验数据南昌⼤学物理实验报告课程名称:⼤学物理实验实验名称:数字⽰波器的使⽤学院:信息⼯程学院专业班级:测控技术仪器152班学⽣姓名:王家桢学号:5801215028实验地点:B211 座位号:14实验时间:第四周星期⼆下午⼀点开始【实验⽬的】1、了解⽰波器的结构和⼯作原理,熟悉⽰波器和信号发⽣器的基本使⽤⽅法。
2、学习⽤⽰波器观察电信号的波形和测量电压、周期及频率值。
3、通过观察李沙如图形,学会⼀种测量正弦波信号频率的⽅法。
【实验仪器】VD4322B 型双踪⽰波器、EM1643型信号发⽣器、连接线及⼩喇叭等图8-2 VD4322型双踪⽰波器板⾯图1、电源开关2、电源指⽰灯3、聚焦旋钮4、亮度调节旋钮5、Y1(X)信号输⼊⼝6、Y2信号输⼊⼝7、8、⼊耦合开关(AC-GND-DC )9、10、垂直偏转因数选择开关(V/格)11、1Y 位移旋钮12、2Y 位移旋钮13、⼯作⽅式选择开关(1Y 、2Y 、交替、断续)14、扫描速度(时间/格)选择开关15、扫描微调控制旋钮16、⽔平位移旋钮17、电平调节旋钮【实验原理】⼀、⽰波器的结构及简单⼯作原理⽰波器⼀般由5个部分组成,如图8-3所⽰:(1)⽰波管;(2)信号放⼤器和衰减器(3)扫描发⽣器;(4)触发同步电路;(5)电源。
下⾯分别加以简单说明。
171 234569101112 13 1415161、⽰波管⽰波管主要包括电⼦枪、偏转系统和荧光屏三部分,全都密封在玻璃外壳内,⾥⾯抽成⾼真空。
如图8-4所⽰,下⾯分别说明各部分的作⽤。
(1)荧光屏:它是⽰波器的显⽰部分,当加速聚焦后的电⼦打到荧光上时,屏上所涂的荧光物质就会发光,从⽽显⽰出电⼦束的位置。
当电⼦停⽌作⽤后,荧光剂的发光需经⼀定时间才会停⽌,称为余辉效应。
(2)电⼦枪:由灯丝H 、阴极K 、控制栅极G 、第⼀阳极A 1、第⼆阳极A 2五部分组成。
灯丝通电后加热阴极。
示波器的实验报告(共7篇)
篇一:电子示波器实验报告一、名称:电子示波器的使用二、目的:2.学会使用常用信号发生器;掌握用示波器观察电信号波形的方法。
3.学会用示波器测量电信号电压、周期和频率等电参量。
三、器材:2、ee1641b型函数信号发生器/计数器。
四、原理:1、示波器的基本结构:y输入外触发x输入 2、示波管(crt)结构简介:3、电子放大系统:竖直放大器、水平放大器(2)触发电路:形成触发信号。
#内触发方式时,触发信号由被测信号产生,满足同步要求。
#外触发方式时,触发信号由外部输入信号产生。
5、波形显示原理:只在竖直偏转板上加正弦电压的情形示波器显示正弦波原理只在水平偏转板上加一锯齿波电压的情形五、步骤:1、熟悉示波器的信号发声器面板各旋钮的作用,并将各开关置于指定位3、将信号发生器输出的频率为500hz和1000hz的正弦信号接入示波器,通过调整相应的灵敏度开关和扫描速度选择开关,使波形不超出屏幕范围,显示2~3个周期的波形。
4、将time/div顺时针旋到底至“x-y”位置,分别调节y1通道和y2六、记录:七、预习思考:1、示波器上观察到的正弦波形和李萨如图形实际上分别是哪两个波形的合成?答:正弦波形:是两组磁场使电子受力改变运动状态,然后将不同电子打到荧光屏上不同的位置而形成的;2、用示波器观察待测信号波形和用示波器观察李萨如图形时,示波器的工作方式有什么不同?3、当开启示波器的电源开关后,在屏上长时间不出现扫描线或点时,应如何调节各旋钮?八、操作后思考题1、如果y轴信号的频率?x比x轴信号的频率?y大很多,示波器上看到什么情形?相反又会看到什么情形?答:因为 ?y / ?x=nx / ny ,当?x /?y=1:1时,示波器上是一个圆柱,当?x /?y=2:1时,示波器上是一个横向的8,当?x /?y=3:1时,示波器上是三个横向的圆。
所以?y如果越大的话,横向圆的数量就越多。
篇二:示波器的原理与使用实验报告大连理工大学大学物理实验报告院(系)材料学院专业材料物理班级 0705 姓名童凌炜学号 200767025 实验台号实验时间 2008 年 11 月 18 日,第13周,星期二第 5-6 节实验名称示波器的原理与使用教师评语实验目的与要求:(1)了解示波器的工作原理(2)学习使用示波器观察各种信号波形(3)用示波器测量信号的电压、频率和相位差主要仪器设备:yb4320g 双踪示波器, ee1641b型函数信号发生器实验原理和内容: 1. 示波器基本结构电子枪的作用是释放并加速电子束。
示波器的原理与使用实验报告
示波器的原理与使用实验报告一、实验目的1、了解示波器的基本结构和工作原理。
2、掌握示波器的基本操作方法,能够正确调整示波器的各项参数。
3、学会使用示波器观察和测量各种电信号的波形、频率、幅度等参数。
二、实验仪器示波器、函数信号发生器、探头、直流电源等。
三、示波器的原理示波器是一种用于显示电信号波形的电子测量仪器。
它通过将电信号转换为可视化的图形,帮助我们直观地了解电信号的特征。
示波器的核心部件包括垂直放大器、水平扫描系统和示波管。
垂直放大器用于放大输入的电信号,使其能够在示波管上显示出明显的幅度。
水平扫描系统则产生一个与时间成正比的扫描电压,使电子束在水平方向上匀速移动,从而在示波管的屏幕上形成水平的时间轴。
示波管是示波器的显示部分,它由电子枪、偏转系统和荧光屏组成。
电子枪发射出电子束,经过偏转系统的作用,使电子束在荧光屏上产生亮点。
当输入的电信号经过垂直放大器和水平扫描系统的处理后,控制电子束的偏转,从而在荧光屏上显示出电信号的波形。
四、实验内容与步骤1、熟悉示波器的面板和操作按钮首先,观察示波器的面板,了解各个按钮和旋钮的功能。
包括垂直灵敏度调节旋钮、水平扫描速度调节旋钮、触发模式选择按钮、通道选择按钮等。
2、连接实验仪器将函数信号发生器的输出端通过探头连接到示波器的输入通道 1(CH1)上。
同时,将示波器的接地端与函数信号发生器的接地端连接。
3、调整示波器的参数(1)打开示波器和函数信号发生器的电源。
(2)选择通道 1(CH1),调整垂直灵敏度旋钮,使波形在屏幕上显示的幅度适中。
(3)调整水平扫描速度旋钮,使波形在屏幕上显示的周期数合适,便于观察。
4、观察正弦波信号(1)设置函数信号发生器输出一个正弦波信号,频率为 1kHz,幅度为 5V。
(2)在示波器上观察正弦波的波形,测量其峰峰值、周期和频率。
5、观察方波信号(1)改变函数信号发生器的输出为方波信号,频率为 500Hz,幅度为 3V。
示波器的使用实验报告
课程名称:大学物理实验(一)实验名称:示波器的使用图3 不加信号时显示图图6 触发扫描示意图李萨如图形原理:两个相互垂直的振动的合成X=A cos(ωt+φ) (1)图2 任意波形发生器四、实验内容与步骤、在用通道1或2观察频率为1KHz的正弦,方波、三角波波形型函数信号发生器的output线连接到示波器中的CH1orX或CH2orY或CH2,以及内部触发选择开关中的CH1或CH2;在示波器上显示出占满屏幕上80%范围一个完整图形。
将波形分别画在准备好的坐标绘图纸上记录示波器的扫描频率f x和扫描时间。
)将待测信号输入通道CH1或CH2;(2)按下AUTO按件,示波器将自动使波形显示达到最佳状态。
可调节垂直、水平档位,直至波形显示符合要求。
、自动测量信号的电压有效值按键,在屏的右侧可显示自动测量菜单;图1 扫描周期为0.1ms/div时频率为1kHz的正弦波图像图2 扫描周期为0.1ms/div时频率为1kHz的方波图像图3 扫描周期为0.1ms/div时频率为1kHz的三角波图像=1(kHz)=110×0.1×0.001此时扫描频率与信号频率相等,故当扫描频率等于信号频率时,示波器上正好显示一个周期的信号。
和正弦波形画在坐标纸上,并记录示波器扫描时间:1/2个) 0.05ms/div,扫描周期(2个) 0.2ms/div图4 扫描周期0.05ms/div时频率为1kHz的正弦波图像图5 扫描周期0.2ms/div时频率为1kHz的正弦波图像1 T1=110×0.05×0.001=2(kHz)1 T2=110×0.2×0.001=0.5(kHz)可见,当扫描频率是信号频率的两倍时,示波器只显示半个周期的信号;当扫描频率是信号频率的一半时,示波器显示两个周期的信号。
、画出频率比为1:1、2:1和1:2的李萨如图形(2V)并记录相应的信号频率::f x= 1 kHz ,(2:1)f x = 4 kHz ,(1:2个)f x= 1 kHz ,f y= 1 kHz f y = 2 kHz , f y = 2 kHz ,图6 频率比为1:1的李萨如图形图7 频率比为2:1的李萨如图形图8 频率比为1:2的李萨如图形可知当频率为f xf y=1时,李萨如图形与x轴的交点只有一个,与y轴的交点也只有一个,即可知当频率为f xf y=2时,李萨如图形与x轴的交点只有一个,与y轴的交点有两个,即可知当频率为f xf y =12时,李萨如图形与x轴的交点有四个,与y轴的交点只有两个,即2V)的有效电压:500mv/div,信号所占格数:4 div,11李萨如图形是由两个正交的简谐运动合成的,其中一个运动的频率是水平方向的频率,率是垂直方向的频率;当两个频率不相等时,李萨如图形会发生变化,运动的相位差会不断变化,导致合成的李萨如图形的形态也会不断变化,从而在屏幕上呈现出旋转的效果。
数字示波器实验报告
数字示波器实验报告数字示波器实验报告引言:数字示波器是一种用于测量和显示电信号波形的仪器。
它通过将电信号转换为数字信号,然后进行处理和显示,能够提供更加准确和清晰的波形图像。
本实验旨在通过使用数字示波器,探索其原理和应用,并对其性能进行评估。
一、实验背景和目的数字示波器是现代电子测量领域中不可或缺的仪器之一。
与传统的模拟示波器相比,数字示波器具有更高的精度、更大的带宽和更多的功能。
本实验的目的是通过实际操作数字示波器,了解其工作原理、功能和应用范围。
二、实验步骤和方法1. 连接电路:将信号源与数字示波器相连,确保电路连接正确并稳定。
2. 设置示波器参数:根据实验要求,设置示波器的触发模式、时间基准、电压范围等参数。
3. 测量信号波形:通过示波器的屏幕,观察并记录待测信号的波形特征,如振幅、频率、周期等。
4. 分析波形:根据测量结果,对信号波形进行分析和判断,如是否存在幅值失真、频率偏移等现象。
5. 记录实验数据:将实验过程中的关键数据和观察结果进行记录,以备后续分析和对比。
三、实验结果和讨论在实验过程中,我们使用数字示波器对不同信号进行了测量和分析。
通过观察示波器屏幕上的波形图像,我们可以清晰地看到信号的特征和变化。
1. 正弦波信号测量:我们首先对一个正弦波信号进行了测量。
通过示波器的屏幕,我们可以看到信号的周期、频率和振幅等参数。
与模拟示波器相比,数字示波器能够提供更加精确和清晰的波形图像,使我们能够更准确地分析和判断信号的特征。
2. 方波信号测量:接下来,我们对一个方波信号进行了测量。
方波信号具有快速上升和下降的边沿,数字示波器能够准确地捕捉到这些边沿,并显示在屏幕上。
通过观察示波器的波形图像,我们可以判断方波信号的频率和占空比等参数。
3. 脉冲信号测量:最后,我们对一个脉冲信号进行了测量。
脉冲信号具有短暂的高电平和低电平,数字示波器能够准确地显示这些变化。
通过观察示波器的波形图像,我们可以分析脉冲信号的上升时间、下降时间和脉宽等参数。
示波器的原理与使用实验报告
Vs / DIV DIV 0.5 5.1 2.55(ms) 0.00255(s) 1/ T 392.2Hz
(3)信号源显示频率 500.0Hz,电压 8.0V 时,
Vp p V / DIV DIV 1 5.3 5.3(V)
(1)信号源显示频率 300.0Hz,电压 5.0V 时,
Vp p V / DIV DIV 1 4.4 4.4(V)
Vm Vpp / 2 2.2V
T Ms / DIV DIV 0.5 6.7 3.35(ms) 0.00335(s) 1/ T 298.5Hz
(2)信号源显示频率 400.0Hz,电压 6.0V 时,
5.0
1
4.4
4.4
2.2
400.0
6.0
1
5.3
5.3
2.65
500.0
8.0
1
6.9
6.9
3.45
示波器测周期 ms/DIV DIV
周期/s
频率 /Hz
0 6.7 0.003350 298.5
5
0.5
5.1 0.002550 392.2
0.5
4.0 0.002000 500.0
大学物理实验报告
1:2 300.0 600.0
1:3 300.0 900.0
2:1 600.0 300.0
2:3 400.0 600.0
图形
Nx
2
2
2
4
4
Ny
2
4
6
2
6
Nx: Ny
1:1
1:2
1:3
2:1
2:3
3:1 600.0 200.0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
示波器的使用1、了解通用双通道示波器的结构和工作原理,熟悉各个旋钮的作用和使用方法。
2、掌握用示波器观察波形、测量电压和频率的方法;了解用示波器测量相位差的方法。
3、掌握观察李萨如图形的方法,并能用李萨如图形测量未知正弦信号的频率;能用示波器观察“拍”现象。
1、通用双通道示波器的结构,面板旋钮的作用和使用方法;2、通用双通道示波器的工作原理,李萨如图形测量未知正弦信号频率的原理,观察“拍”现象的原理。
一、前言示波器是利用电子束的电偏转来观察电压波形的一种常用电子仪器,主要用于观察电信号随时间变化的波形,定量测量波形的幅度、周期、频率、相位等参数。
一般的电学量(如电流、电功率、阻抗等)和可转化为电学量的非电学量(如温度、位移、速度、压力、光强、磁场、频率)以及它们随时间变化的规律都可以用示波器来观测。
由于电子的惯性很小,电子射线示波器一般可在很高的频率范围内工作。
采用高增益放大器的示波器可以观察微弱的信号;具有多通道的示波器,则可以同时观察几个信号,并比较它们之间的相应关系(如时间差或相位差),是目前科学实验、科研生产常用的电子仪器。
二、实验仪器通用双通道示波器,函数信号发生器、同轴电缆等。
三、实验原理1、仪器工作原理(1)通用双通道示波器的介绍主要结构:示波管、电子放大系统、扫描触发系统、电源工作原理: (a )示波管示波管是呈喇叭形的玻璃泡,被抽成高真空,内部装有电子枪和两对相互垂直的偏转板,喇叭口的球面内壁上涂有荧光物质,构成荧光屏。
下图是示波管的构造图。
电子枪由灯丝F 、阴极K 、栅极G 以及一组阳极A 所组成。
灯丝通电后炽热,使阴极发热而发射电子。
由于阳极电位高于阴极,所以电子被阳极电压加速。
当高速电子撞击在荧光屏上会使荧光物质发光,在屏上就能看到一个亮点。
改变阳极组电位分布,可以使不同发射方向的电子恰好会聚在荧光屏某一点上,这种调节称为聚焦。
栅极G 电位较阴极K 为低,改变G 电位的高低,可以控制电子枪发射电子流的密度,甚至完全不使电子通过,这称为辉度调节,实际上就是调节荧光屏上亮点的亮暗。
Y 偏转板是水平放置的两块电极。
当Y 偏转板上电压为零时,电子束正好射在荧光屏正中P 点。
如果Y 偏转板加上电压,则电子束受到电场力作用,运动方向发生上下偏移。
如果所加的电压不断发生变化,P 点的位置也随着在铅垂线上移动。
在屏上看到的是一条铅直的亮线。
荧光屏上亮点在铅直方向位移Y 和加在Y 偏转板的电压U Y 成正比。
X 偏转板是垂直放置的两块电极。
在X 偏转板加上一个变化的电压,那么,荧光屏上亮点在水平方向的位移X 也与加在X 偏转板的电压U X 成正比,于是在屏上看到Y 输入X 输入 外触发的则是一条水平的亮线。
(b )示波器显示波形的原理如果在Y 偏转板上加上一个随时间作正弦变化的电压t U U YM Y ωsin =,我们在荧光屏上仅看到一条铅直的亮线,而看不到正弦曲线。
只有同时在X 偏转板上加上一个与时间成正比的锯齿形电压t U U XM x ⋅=,才能在荧光屏上显示出信号电压U Y 和时间t 关系曲线,其原理如下图所示。
设在开始时刻a ,电压U Y 和U X 均为零,荧光屏上亮点在A 处,时间由a 到b ,在只有电压U Y 作用时,亮点沿铅直方向的位移为AB Y ,屏上亮点在B Y 处,而在同时加入U X 后,电子束既受U Y 作用向上偏转,同时又受U X 作用向右偏转(亮点水平位移为bB X ),因而亮点不在B Y 处,而在B 处。
随着时间的推移,以此类推,便可显示出正弦波形来。
所以,在荧光屏上看到的正弦曲线实际上是两个相互垂直的运动(t U U YM Y ωsin =和t U U xm x ⋅=)合成的轨迹。
由上可见,要想观测加在Y 偏转板上电压U Y 的变化规律,必须在X 偏转板上加上锯齿形电压,把U Y 产生的垂直亮线“展开”。
这个展开过程称为“扫描”,锯齿形电压又称为扫描电压。
上面讨论的波形因为U Y 和U X 的周期相同,荧光屏上显示出一个正弦波形,若频率,1,2,3......y x f Nf N ==则荧光屏上将出现一个,两个,三个……稳定的正弦波形。
只有当y f 为x f 的整数倍时,正弦波形才能在荧光屏上稳定。
为了在荧光屏上得到稳定不动的信号波形,一般采用被测信号来控制扫描电压的产生时刻,称为触发扫描。
只要被测信号达到某一个定值时,扫描电路才开始工作,产生一个锯齿波,将被测信号显示出来。
由于每次被测信号触发扫描电路工作的情况都是一样的,所以显示的波形也相同。
这样,在荧光屏上看到的波形就稳定不动了。
面板旋纽的作用:见双通道示波器使用说明书(略) (2)函数信号发生器简介输出信号的频率范围和电压范围:见函数信号发生器使用说明书(略) 面板旋纽的作用:见函数信号发生器说明书(略)2.测量原理1) 测量信号的电压和周期用示波器测量信号的电压,一般是测量其峰—峰值U pp ,即信号的波峰到波谷之间的电压值。
在选择适当的通道偏转因数和扫描时基因数后,只要从屏上读出峰—峰值对应的垂直距离Y (div)和一个周期对应的水平距离X (div),即可求出信号的电压和周期。
偏转因数⨯=Y U pp (1)扫描时基因数⨯=X T (2)正弦信号的有效值U eff 和峰—峰值U pp 的关系为pp eff U U 221=(3)有时,被测信号电压比较高,必须经过衰减后才能输入示波器的Y 通道。
衰减倍数用分贝数表示,其定义为010dB 20log U U= (4) 式中,U 0为未衰减时的信号电压值,U 为示波器测得的衰减后的电压值。
根据衰减的分贝数和示波器测得的值U ,就可得到被测信号的电压值。
2) 观察李萨如图形,测信号频率 设两个互相垂直的振动为)2cos(111ϕπ+=t f A x )2cos(222ϕπ+=t f A y式中,1f 、2f 为两振动的频率,1ϕ、2ϕ为两振动的初相。
当12f f =时合成振动的轨迹方程为)(sin )cos(21221221222212ϕϕϕϕ-=--+A A xy A y A x (5) (5)式是一个椭圆方程。
当210ϕϕ-=或π±时,椭圆退化为一条直线;当212ϕϕπ-=±时,合成轨迹为一正椭圆。
当f 1≠f 2时,合成振动的轨迹比较复杂,但当f 1与f 2成简单的整数比时,合成振动的轨迹为封闭的稳定几何图形,这些图形称为李萨如图形,如下图所示。
:x y n n1:1 1:2 1:3 2:3 3:4 李萨如图形x n1 1 123 y n12334从图形中,人们总结出如下规律:如果作一个限制光点在x ,y 方向运动的假想矩形框,则图形与此矩形框相切时,竖边上的切点数n y 与横边上的切点数n x 之比恰好等于两振动的频率之比,即::x y y x f f n n =或y y x x f n f n = (6) 因此,若已知其中一个信号的频率,从李萨如图形上数得切点数n x 和n y ,就可以求出另一待测信号的频率。
3) 观察“拍”现象两个同方向的谐振动合成时,若其频率1f 与2f 的差值远小于1f 、2f ,合成振动的振幅随时间缓慢的呈周期性变化,这种现象称为“拍”。
设两个同方向的简谐振动为)2cos(1111ϕπ+=t f A y )2cos(2222ϕπ+=t f A y选某一时刻两振动相位相同时作为计时起点,则21ϕϕϕ==,若两振动的振幅也相同(21A A A ==),则合成振动可以表示为])(cos[])(cos[2121221ϕππ++-=+=t f f t f f A y y y当f 1与f 2的差值远小于f 1、f 2时,合成振动的振幅()212cos A f f t π-⎡⎤⎣⎦随时间缓慢地呈周期性变化,这种现象称为拍,振幅变化的频率叫拍频123f f f -= (7) 下图所示为拍的形成的示意图,其中,t =0时,y 1与y 2的相位差为π。
如果信号频率f 1已知且连续可调,则通过改变f 1观察拍频的变化,可以判断出待测信号频率f 2是大于f 1还是小于f 1,然后根据测得的拍频f 3和(7)式就可求出待测信号的频率。
四、实验内容与步骤1、使用练习(1)开机准备:了解示波器面板上各功能键的作用,并把各个旋钮调到居中。
(2)打开电源开关,电源指示灯亮,稍等预热,屏上出现亮点。
分别调节亮度和聚焦旋钮,使光点亮度适中、清晰。
2、观察交流信号波形并画出波形图打开信号发生器电源开关,将其输出接CH1。
调节信号发生器频率为1kHz ,输出电压为4.0V ,输出衰减置20dB ,CH1通道偏转因数旋钮调为0.2V/格,扫描速率旋钮调为0.5ms/格,观察示波器上的波形;若波形不稳定,调节电平旋钮使之稳定;将扫描速率旋钮改为0.2ms/格,再观察示波器上的波形;画出观察到的波形图。
3、正弦信号电压与周期测量按观察交流信号波形的输出信号频率和电压调好信号发生器,CH1通道偏转因数置为50mV/格,选择合适的扫描速率值,使屏上刻度范围内出现完整波形,将实验数据记录入下表:4、观察李萨如图形,测量信号的频率(1)将待测信号输入CH1通道,使示波器显示出信号波形,并估算其频率大致值。
(2)将标准已知频率信号输入CH2通道,扫描速率旋钮置X-Y (逆时针到底),调节信号幅度或改变通道偏转因数,使图形不超出荧光屏视场。
(3)根据待测信号频率的粗测值,调节CH2通道信号的频率,使示波器屏上分别出现y x x y n n f f :: =1:1、1:2、2:3、3:4的李萨如图形。
描下李萨如图形,并在下表中记下相应的CH2通道信号的频率值y f 。
5、观察“拍”现象(选做)(1)将待测信号输入CH1通道,垂直方式选CH1,选择适当的偏转因数和扫描速率,使屏上出现合适的稳定的正弦波图形估算信号的大致频率。
(2)将可调标准信号源信号输入CH2通道,垂直方式选CH2,调节信号源,使其输出信号的频率和幅度与待测信号的大致相同。
(3)垂直方式选ADD ,通道2极性选NORM ,扫描速率调到合适值。
调可调标准信号源信号频率,使屏上出现稳定的“拍”波形。
记下此时一个“拍”波形的长度X 1、标准信号源频率f 1和扫描速率值。
缓慢改变标准信号源频率,得到另一稳定的“拍”波形,记下此时一个“拍”波形的长度X 2、标准信号源频率2f 和扫描速率值。
6、关闭电源,整理仪器。
五、数据表格及数据处理1、正弦信号电压与周期测量数据表表1 正弦信号电压与周期测量数据记录表信号发生器示波器频率(Hz)电压示数(V)偏转因数(V/格) Y(格) 扫描速率(s/格)X(格)z2、用李萨如图形测正弦信号频率表2 用李萨如图形测量正弦信号频率数据记录表n n1:1 1:2 2:3 3:4:x y李萨如图形nxnyf Hz(待测)()xf Hz()y3、用“拍”现象测正弦信号的频率表3 用“拍”现象测正弦信号的频率标准信号频率(H z)扫描速率(ms/格) 拍长度X(格)12六、注意事项1.双通道示波器使用说明书和函数信号发生器使用说明书在实验桌上资料夹内;2.测信号电压时,一定要将电压衰减旋纽的微调顺时针旋足(校正位置);测信号周期时,一定要将扫描速率旋纽的微调顺时针旋足(校正位置);3.不要频繁开关机,示波器上光点的亮度不可调得太强,也不能让亮点长时间停在荧光屏的一点上,如果暂时不用,把辉度降到最低即可。