八年级下册分式化简求值练习50题(精选)

合集下载

苏科版八年级下册 第10章 分式化简求值专项训练28道题(无答案)

苏科版八年级下册  第10章 分式化简求值专项训练28道题(无答案)

分式化简求值专项训练题(1)先化简,在求值:)(11b a a b b b a ++++,其中215,215-=+=b a .(2)已知3,5==+xy y x ,求yx x y +的值.(3)化简求值:)232(212++-÷-+-x x x x x ,其中2=x(4)先化简,再求值:⎪⎭⎫ ⎝⎛+---÷-+-11111222m m m m m m ,其中32-=m .(5)已知a a a =-+-2|1|,求1111+-+-+a a a a 的值.(6)13+=-b a 时,求)2(2a b ab a a ba --÷-.(7)10<<x ,化简4)1(4)1(22-+-+-x x x x .(8)a a a a a a a 11211222-+++---,其中311-=a ;(9)已知:321+=m ,求m m m m m m m -+---+-22212121的值;(10)先化简再求值: 其中, .21)44422(2+⨯+--+-x x x x x x13-=x(11)先化简,再求值:2222a a a b a ab b ⎛⎫- ⎪--+⎝⎭÷222a a a b a b ⎛⎫- ⎪+-⎝⎭+1,其中a=23,b = –3.(12)已知x 为整数,且222218339x x x x ++++--为整数,求所有符合条件的x 的值.(13)先化简,再求值:222442111a a a a a a -+-+÷--+,其中12a =+(14)已知2310x x -+=2212x x +-的值.(15)先化简,再求值:444)212(2+--÷---+x x x x x x x ,其中x 是不等式173>+x 的负整数解;(16)已知012=-+x x ,求]121)1()121[(22+---+÷--x x x x x x 的值.(17)在题目:“当1949=x 时,求代数式1122444222+-+-÷-+-xx x x x x x 的值”时,聪聪认为x 只要任取一个使原式有意义的值代入都有相同结果,你认为他说的有理吗?请说明理由.(18)先化简,再求值:⎪⎭⎫ ⎝⎛+---÷--11211222x x x x x x ,其中21=x(19)先化简,再求值:32444)1225(222+=++-÷+++-a a a a a a a ,其中(20)先化简,再求值:412)211(22-++÷+-x x x x ,其中3-=x(21)先化简,再求值:(x 2+4x -4)÷ x 2-4 x 2+2x,其中x =-1(22)先化简,再求值:1221214322+-+÷⎪⎭⎫ ⎝⎛---+x x x x x x ,其中x 是不等式组⎩⎨⎧<+>+15204x x 的整数解.(23)先化简,再求值:11121122++⎪⎪⎭⎫ ⎝⎛---+÷x x x x x x ,其中x 的值为方程152-=x x 的解.(24)先化简,再求值:2344(1)11x x x x x ++--÷++,其中x 是方程12025x x ---=的解。

最新八年级下册分式化简求值练习50题(精选)

最新八年级下册分式化简求值练习50题(精选)

分式的化简求值练习50题1、先化简,再求值:(1﹣)÷,其中12x =.2、先化简,再求值:2121(1)1a a a a++-+,其中1a =.3、先化简,再求值:22(1)2()11x x x x x+÷---,其中x =4、先化简,再求值:211(1)x x x -+÷,其中12x =5先化简,再求值22122()121x x x x x x x x ----÷+++,其中x 满足x 2﹣x ﹣1=0.6、先化简22144(1)11x x x x -+-÷--,然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.7、先化简,再求值:2222211221a a a a a a a a -+--÷+++,其中2a =a .8、先化简211111x x x x -÷-+-(),再从﹣1、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值.9、先化简,再求值:2(1)11x x x x +÷--,其中x =2.10、先化简,再求值:231839x x ---,其中3x =。

11、先化简242()222x x x x x++÷--,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算..12、先化简,再求值:21(2)1x x x x---,其中x =2.13、先化简,再求值:211()1211x x x x x x++÷--+-,其中x =14、先化简22()5525x x x x x x -÷---,然后从不等组23212x x --≤⎧⎨<⎩的解集中,选一个你认为符合题意的x 的值代入求值.15、先化简,再求值:62296422+-÷++-a a a a a ,其中5-=a .16、先化简,再求值:232()111x x xx x x--÷+--,其中x =.17、先化简。

分式化简求值55道练习题【范本模板】

分式化简求值55道练习题【范本模板】

1. 先化简,再求值:12112---x x ,其中x =-2. 2、先化简,再求值:,其中a=﹣1.3、先化简,再求值:,其中x=.4、先化简,再求值:,其中.5先化简,再求值,其中x 满足x 2﹣x ﹣1=0.6、化简:ba b a b a b 3a -++-- 7、先化简,再求值:,其中a=.8、先化简211111x x x x -÷-+-(),再从﹣1、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值.9、先化简,再求值:(+1)÷,其中x=2.10、先化简,再求值:错误! – 错误! ,其中x = 错误!–311、先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算..12、先化简,再求值:12-x x (x x 1-—2),其中x =2。

13、先化简,再求值:,其中.14、先化简22()5525x x x x x x -÷---,然后从不等组23212x x --≤⎧⎨<⎩的解集中,选取一个你认为符合题意的x 的值代入求值.15、先化简,再求值:62296422+-÷++-a a a a a ,其中5-=a .16、先化简,再求值:232()111x x x x x x --÷+--,其中3x = 17、先化简.再求值: 2222121111a a a a a a a +-+⋅---+,其中12a =-.18. 先化简,再求值:错误!÷错误!,其中x =-5.19. 先化简再计算:22121x x x x x x --⎛⎫÷- ⎪+⎝⎭,其中x 是一元二次方程2220x x --=的正数根.20 化简,求值: 111(11222+---÷-+-m m m m m m ) ,其中m =3. 21、(1)化简:÷. (2)化简:22a b ab b a (a b )a a ⎛⎫--÷-≠ ⎪⎝⎭22、先化简,再求值:,其中.23请你先化简分式2223691,x 1211x x x x x x x +++÷+--++再取恰的的值代入求值.24、先化简再求值()121112222+--++÷-+a a a a a a 其中a=3+1 25、化简,其中5-=a26.先化简,再求值:(错误!-2)÷错误!,其中x =错误!-4.27、 先化简,再求值:错误!÷错误!-错误!,其中x =2。

13 初二数学必考题 80道经典考题 分式的化简求值(原卷版)

13  初二数学必考题 80道经典考题 分式的化简求值(原卷版)

微 信:letaotao999666分式的化简求值1.先化简,再求值 22214()2442x x x x x x x x −−−−÷++++,从-2,-1,0中选取一个你喜欢的数作为x 的值2.先化简,再求值:22169(1)24a a a a −+−÷−−,其中a =﹣3. 3.先化简,再求值:2344111x x x x x −+⎛⎫−−÷ ⎪−−⎝⎭,其中4x =.4.先化简,再求值:222()111a aa a a ++÷+−−,其中,其中02(a =−. 5.先化简2443111m m m m m −+⎛⎫÷−− ⎪−−⎝⎭,然后在523(2)523m m m m −<+⎧⎪+⎨⎪⎩…的解集中选择一个合适的整数代入求值.6.计算:22321124−+⎛⎫−÷⎪+−⎝⎭a a a a ; 7.先化简,再求值:211122a a a −⎛⎫−÷⎪++⎝⎭,其中2000a =. 8.计算:2225111x x x x x ⎛⎫+−÷+− ⎪−−⎝⎭9.先化简,再求值:2692x x x −+−÷(x +2﹣52x −),其中x =12−.10.计算21()22a aa a a −+÷−− 11.先化简22221(1)121a a a a a a +−÷++−−+,然后a 在-1,1,2三个数中任选一个合适的数代入求值.12.计算:2454(1)11m m m m m +−−+÷++.13.先化简分式:2222221211x x x x xx x x x ⎛⎫+−−÷ ⎪−−++⎝⎭,然后在0,1,1−,2中选一个你认为合适的x 值,代入求值. 14.先化简,再求值:21(1)211aa a a ÷−+++,其中a =-2.15.先化简,再求值:222131111x x x x x x x ⎛⎫⎛⎫++−÷− ⎪ ⎪−−−⎝⎭⎝⎭,其中x 的值从不等式组23230x x −≤⎧⎨−<⎩的整数解中选取.16.如果2230m m +−=,求22442m m m m m+++÷的值.17.已知:269a a −+与|1|b −互为相反数.求代数式211122a a a a a a a a −⎛⎫−÷− ⎪+++⎝⎭的值.18.先化简再求值:22221(1)11x x x x x x −−÷−−−+,其中x 是不等式组10233x x x +>⎧⎪−⎨≤+⎪⎩的最大整数解.19.计算 22121121x x x x x x −−⎛⎫−+÷ ⎪+++⎝⎭20.已知a 2-6a +9与|b -1|互为相反数,求式子(1a b ++1a b −)÷2222a a ab b −+的值.21.先化简,再求值:2224124421x x xx x x x ⎛⎫−−−⋅⎪−+−+⎝⎭,其中5x =.22.计算22169122y y y y y ⎛⎫−+−÷⎪−−⎝⎭23.先化简,再求值:2232214()2442x x x x x x x x x +−−−÷−−+− , 其中x =324.先化简,再求值:2211()1121x x x x x x x +++÷−−−+,其中x =2.25.先化简,再求值:2111111x x x ⎛⎫−÷ ⎪+−⎝−⎭,其中12x =.26.先化简:2311144x x x x −⎛⎫+⋅ ⎪−−+⎝⎭,再从1,2,3中选取一个适当的数代入求值.27.先化简,再求值:2336m m m −−÷(1﹣12m −),其中m =4.微 信:letaotao99966628.先化简2344111a a a a a −+⎛⎫−+÷ ⎪++⎝⎭,然后从22a −<≤的范围内选择一个合适的整数作为a 的值代入求值29.计算:24816455x x x x x x +−+⎛⎫++÷ ⎪−−⎝⎭.30.化简:224114422a a a a a a ⎛⎫−+−÷⎪−+−+⎝⎭31.化简:2121122a a a a −+⎛⎫−÷ ⎪−⎝⎭,并选择一个你喜欢的a 值代入求值.32.计算 524223m m m m −⎛⎫++⋅⎪−−⎝⎭;33.计算22214244x x x x x x x x +−−⎛⎫−÷⎪−−+⎝⎭.34.先化简,再求值:2441(1)11x x x x x −++÷−−,其中x 是满足不等式组21323x x +>−⎧⎨+≤⎩的最小整数.35.先化简再求值:211122x x x −⎛⎫÷− ⎪++⎝⎭,其中13x =.36.已知210m m −−=,求23211m m m m m −⎛⎫⋅− ⎪−⎝⎭的值.37.先化简:352242a a a a −⎛⎫÷+− ⎪−−⎝⎭,再从1,2,3,4中选择一个合适的数作为a 的值代入求值.38.先化简:2221x x x x x÷−+,其中12x −剟,且x 是整数,再求值.39.先化简,再求值:(2241442a a a a−−−+−)÷222a a −,其中a =﹣1.40.先化简,再求值:526222m m m m −⎛⎫+−÷⎪−−⎝⎭,其中212m −⎛⎫= ⎪⎝⎭41.先化简,再求值:22424422x x x x x −⎛⎫−÷⎪−+−⎝⎭,其中2260x x +−=.42.先化简,再求值:2269111x x x x −+⎛⎫−÷⎪−−⎝⎭,请从0,1,2,3四个数中选取一个你喜欢的数x 代入求值.43.化简代数式22293211x x x x x x ⎛⎫−−÷+ ⎪+++⎝⎭,并求当7x =时此代数式的值.44.先化简22211326x x x x −+⎛⎫+÷⎪⎝⎭−−,然后从1、2、3中任选一个合适的x 的值,代入求值.45.先化简,再求值:293111x x x x x ⎛⎫++÷ ⎪−−−⎝⎭,其中2x =.46.先化简,再求值:211(1)422x x x x−+÷+−−,其中6x =.47.先化简,再求值:223211·1131x x x x x x −++⎛⎫÷+ ⎪−−−⎝⎭,其中x =2.48.先化简:2241193x x x −⎛⎫÷− ⎪−+⎝⎭,再从不等式237x −<的正整数解中选取一个使原式有意义的数代入求值.49.先化简,再求值:24512(1)()11a a a a a a−+−÷−−−−,其中a =﹣1.50.先化简,再求值(1﹣43a +)÷22219a a a −+−,其中a =﹣2.微 信:letaotao99966651.先化简,再求值:2111244a a a a −⎛⎫+÷ ⎪−−+⎝⎭,取一个你喜欢的数作为a 代入求值.52.先化简232(1)11x xx x x −+−÷−−,再从0≤x ≤4中选一个适合的整数代入求值.53.先化简,再求值:228161212224x x x x x x x −+⎛⎫÷−−− ⎪+++⎝⎭,其中1x =.54.先化简22111121x x x x −⎛⎫−÷ ⎪+++⎝⎭,再从22x −<≤中选一个合适的整数作为x 的值代入求值.55.先化简,再求值:(2﹣1xx −)•2144x x x −−+,请在﹣1,0,1,2中选一个数代入求值.56.先化简22211369x x x x −⎛⎫−÷ ⎪+++⎝⎭,然后从12x −≤<中选出一个合适的整数作为x 的值代入求值.57.先化简,再求值:224114422a a a a a a ⎛⎫−+−÷⎪−+−+⎝⎭,其中a =﹣1.58.先化简再求值:222914()2,6933x x x x x x x−+−÷−−+−−,其中x =4.59.先化简,再求值:235(2)22x x x x x −÷+−−−,其中x 2+3x ﹣5=0.60.先化简代数式2221(1)21a a a a a a −−÷+++,再选择一个合适的a 的值代入求值.61.先化简,再求值:2211224x x x ⎛⎫+÷ ⎪+−−⎝⎭,其中1x =−.62.先化简,再求值:(1﹣21x −)÷22691x x x −+−,并从1,2,3中选取一个合适的数作为x 的值代入求值.63.先化简,再求值:221y x x y x y ⎛⎫÷− ⎪−+⎝⎭,其中1x y =+.64.先化简,再求值:22244242a a a a a a+++⋅÷−,其中a =3.65.先化简,再求值:(11x +﹣1)÷22121x x x −++,其中x =2021.66.先化简,再求值:2221m mm m +++÷(111m m −+),其中m =﹣2.67.计算:22214244y yy y y y y y ⎛⎫+−−+÷ ⎪−−+⎝⎭.68.计算:2211121a a a a a a −+⎛⎫−÷⎪−−+⎝⎭.69.先化简,再求值:221112111x x x x x⎛⎫−−÷⎪−+−−⎝⎭,其中12x =;70.先化简,再求值:53222x x x x −⎛⎫+−÷⎪−−⎝⎭,其中3x =.71.化简:226116933m m m m m −⎛⎫÷+ ⎪−++−⎝⎭.72.先化简,再求值2211xyx y x y x y ⎛⎫+÷ ⎪−+−⎝⎭,其中2x =,2y =−.73.先化简代数式22111211a a a a a ⎛⎫++÷ ⎪−−+−⎝⎭,然后确定使原式有意义的a 的取值范围,再选取一个a 的值代入求值.74.先化简,再求值.微 信:letaotao9996662222121111+−+⋅−−−+a a a a a a a ,再从﹣1≤a ≤2的整数中选取一个你喜欢的a 的值代入求值.75.先化简,再求值.(x ﹣1﹣81x +)÷22231x x x+−−,其中x =﹣2.76.先化简,再求代数式2121211a a a a +⎛⎫÷+ ⎪−+−⎝⎭的值,其中(011a =+.77.先化简,再求值22222212a b a b a b ab ab ⎛⎫−+÷− ⎪+⎝⎭,其1a =−,2b =.78.先化简,再求值:31111a a a a a −−⎛⎫−÷⎪++⎝⎭,其中a =2.79.先化简,再求值:(1﹣11a +)÷21aa −,其中a =3.80.先化简22211121x x x x x x ⎛⎫−−+÷ ⎪+++⎝⎭,再从-1、0、1中选择合适的x 值代入求值. 81.化简并求值:22121111x x x x x −⎛⎫+÷ ⎪+−−⎝⎭,其中0x =. 82.先化简,再求值:231111x x x x −⎛⎫+÷ ⎪+−⎝⎭,x 是不等式组1120x x x −−⎧−>⎪⎨⎪>⎩的整数解. 83.先化简,再求值222214244a a a a a a +⎛⎫−÷ ⎪−−++⎝⎭;其中a 是满足12a −<≤的一个整数,择一个合适数,代入求值.84.先化简,再求值:22344111x x x x −+⎛⎫−÷⎪+−⎝⎭,其中3x =.85.先化简再求值:2643211x x x x x +⎛⎫+÷ ⎪−−−⎝⎭,其中2x =.86.先化简,再求值:222221412()x x x x x x x x−+−+÷−+,2x =.。

八年级下册分式化简求值练习50题(精选)

八年级下册分式化简求值练习50题(精选)

分式的化简求值练习50题1、先化简,再求值:(1﹣)÷,其中12x =.2、先化简,再求值:2121(1)1a a a a ++-+,其中21a =-.3、先化简,再求值:22(1)2()11x x x x x +¸---,其中2x =4、先化简,再求值、先化简,再求值::211(1)x x x -+¸,其中12x =5先化简,再求值22122()121x x x x x x x x ----¸+++,其中x 满足x 2﹣x ﹣1=01=0..6、先化简22144(1)11x x x x -+-¸--,然后从-然后从-22≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值代入求值. .7、先化简,再求值:2222211221a a a a a a a a -+--¸+++,其中22a =-a .8、先化简211111x x x x -¸-+-(),再从﹣,再从﹣11、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值.9、先化简,再求值:2(1)11x x x x +¸--,其中x =2=2..1010、先化简,再求值:、先化简,再求值:231839x x ---,其中103x =-。

1111、先化简、先化简242()222x x x x x ++¸--,再从2,﹣,﹣22,1,0,﹣,﹣11中选择一个合适的数进行计算..1212、先化简,再求值:、先化简,再求值:21(2)1x x x x ---,其中x =2.1313、先化简,再求值:、先化简,再求值:211()1211x x x x x x ++¸--+-,其中2x =.1414、先化简、先化简22()5525x x x x x x -¸---,然后从不等组23212x x --£ìí<î的解集中,选一个你认为符合题意的x 的值代入求值.的值代入求值.1515、先化简,再求值:、先化简,再求值:62296422+-¸++-a a a a a ,其中5-=a . 1616、先化简,再求值:、先化简,再求值:232()111x x x x x x --¸+--,其中32x =.1717、先化简。

八年级下册分式化简求值练习50题

八年级下册分式化简求值练习50题

分式的化简求值练习50题(1-缶)亠諾齐I,其中X2耳X),其中X1 X 1 X-,再从-1、0、1三个数中,选择一个你认为合适的数作为X19、先化简,再求值:1)壬,其中X=2.X 110、先化简,再求值: 光,其中X皿3。

1先化简, 再求值:2、先化简, 再求值:2川 1 、a 2a 1 甘由a1.3、先化简, 再求值:4、先化简, 再求值:(1丄)X—,其中X 1X 25先化简,再求值(2X 1 X 2 2X X 甘由-- ----- ) --- ----- ,其中X满足2x -X—6、先化简(1宀)代入求值. X2 4X 4X2 1,然后从一2< x< 2的范围内选取一个合适的整数作为X的值7、先化简,再求值:2a~2 ~a 2a豊OH1,其中a^2a.8先化简(丄X 1 的值代入求值.m宁,再从2,- 2, 1,0,- 1中选择一个合适的数进行计算.12、先化简,再求值:2),其中x=2. x 1 x13、先化简,再求值: (U JL,其中x 1 x 2x 1 x 114、先化简(亠丄x 5 5 意的x的值代入求值. 然后从不等组x2x21233的解集中,选一个你认为符合题15、先化简, 再求值:a2 4~2a 6a 9皂2,其中2a 616、先化简, 再求值: 汁其中x17、先化简。

再求值:2a 1 a2 a21—2a_1 -J—其中a2 5 /、丨Qa a a 118、先化简, 再求值:2- 1 、X 2x 1 甘由U (1 ---- ) 一2----- ,其中x= —5.x 2 x 4219.先化简再计算:辛」(x红」),其中x是一元二次方程X22x 2 0的正数根.x x x20、化简,求值:2m 2m 1 , d m 1、甘由匚2 (m 1) -- 其中m=V3 m 1 m 12 11先化简(代231、先化简,再求值:a 1无a2 1,其中a 血1 .221、已知x 、y 满足方程组x y 3,先将旦化简,再求值。

专题5.25 分式的化简与求值100题(巩固篇)八年级数学下册基础知识专项讲练(北师大版)

专题5.25 分式的化简与求值100题(巩固篇)八年级数学下册基础知识专项讲练(北师大版)

专题5.25分式的化简与求值100题(巩固篇)(专项练习)1.计算:(1)22421x x x --+;(2)222228224x x x x x ⎛⎫+--÷ ⎪--⎝⎭.2.先化简22211(1)11x x x x x x -+-÷-++-,然后从2-,1-,0,1选取一个合适的整数作为x 的值代入求值.3.先化简,再求值:2222144121426a a a a a a a ++⎛⎫-÷ ⎪--⎝⎭,其中34a =-.4.先化简,再求值:22111,211x x x x -⎛⎫÷- ⎪+++⎝⎭其中x 的值从22x -<<的整数解中选取.5.先化简,再求值:22226951222a ab b b a b a ab a b a ⎛⎫-+÷--- ⎪--⎝⎭,其中,a b 满足51a b a b +=⎧⎨-=⎩.6.先化简,再求值:22691(122a a a a a -+÷---,请从0、1、2、3中选一个适合的数作为a 的值代入求值.7.先化简,再求值:2169122x x x x -+⎛⎫-÷ ⎪--⎝⎭,其中5x =.8.先化简,再求值:111a a a b b a b -⎛⎫-+ ⎪-⎝⎭,其中3a =,13b =.9.化简(1)2223m n m n m n --+-;(2)2344111a a a a a ++⎛⎫-+÷ ⎪++⎝⎭10.求值:(1)已知3x y -=-,2xy =,求33222x y xy x y +-的值;(2)先化简532224a a a a -⎛⎫--÷ ⎪++⎝⎭,然后从2-,2,3-,3四个数中选取一个合适的数作为a 的值代入求值.11.化简:2241244a a a a a -⎛⎫+÷ ⎪--+⎝⎭,并在2-,0,2中选择一个合适的a 值代入求值.12.已知分式:221221211a a a a a a a a ---⎛⎫-÷ ⎪++++⎝⎭及一组数据﹣1,0,1.请先将已知分式化简,再从已知数据中选取一个合适的数代入a 并求值.13.(1)计算:()211422x x x ⎛⎫+⋅- ⎪-+⎝⎭(2)先化简,再求值:()()()22a b a b a b a +-+-,其中2a =,3b =-.14.(1)化简:()()13122121x x x x x x +⎛⎫÷-+- +-+-⎝⎭(2)化简并求值:233211x x x +---其中13x =-15.王老师在黑板上写了一道题目,计算:22221244x y x y x y x xy y ---÷+++.爱民同学做得最快,立刻拿给王老师看(如图),王老师看完摇了摇头,让爱民同学回去认真检查.请你仔细阅读爱民同学的计算过程,帮助爱民同学改正错误.(1)上述计算过程中,哪一步开始..出现错误?______;(用序号表示)(2)从①到②是否正确?________;(填“是”或“否”)若不正确,错误的原因是_______;(3)请你写出此题完整正确的解答过程.并求出当()1012023π,22x y -⎛⎫=+-= ⎪⎝⎭时的值.16.先化简,再求值:22244244x x x x x x -⎛⎫+÷ ⎪+--⎝⎭,其中从2-,0,1,2中选取一个合适的数作为x 的值代入求值.17.先化简,再求值:22341121a a a a a -⎛⎫-+÷ ⎪+++⎝⎭,其中a 在一组未排序的数据7、9、6、a 、8、5中,已知这组数据的极差是6.18.化简求值221312221x x x x x x -⎛⎫÷-+- ⎪+++⎝⎭,其中x 是绝对值不大于2的整数.19.先化简,再求代数式53222m m m m -⎛⎫+-÷ ⎪--⎝⎭的值,其中m 为满足04m <<的整数.20.先化简,再求值.221211221x x x x x x +÷+-+-+,请从不等式组52030x x -≥⎧⎨+>⎩的整数解中选择一个你喜欢的求值.21.先化简,再求值:23211236x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中4x =.22.先化简,再求值:2222339x x x x x x +⎛⎫+÷ ⎪---⎝⎭,其中2x =.23.先化简,再求值:222122244a a a a a -⎛⎫-÷ ⎪---⎝⎭,其中2a +.24.化简:2233393969x x x x x x -⎛⎫-÷ ⎪---+⎝⎭,然后从3-,1,3中选一个合适的值代入求解.25.先化简,再求代数式2211333x x x x x -⎛⎫÷+ ⎪-+-⎝⎭的值,其中4x =-.26.已知实数x 满足510x x -+=,求441x x +的值.27.先化简244224x x x x x -⎛⎫-÷ ---⎝⎭,再从2、3、4中选一个合适的数作为x 的值代入求值.28.先化简22221211x x x x x x x+÷-++++,然后选一个合适的x 值代入,求出代数式的值.29.化简:(1)2y x y x y y x -+--;(2)1211x x x -⎛⎫-÷ ⎪-⎝⎭.30.先化简,再求值:2395222x x x x x -⎛⎫÷+- ⎪--⎝⎭,其中13x =.31.已知代数式22381631a a a a a a ++⎛⎫+-÷ ⎪++⎝⎭.(1)化简已知代数式;(2)若a 满足410a a--=,求已知代数式的值.32.先化简,再求值:2291()333x x x x x---+ 其中13x =.33.先化简,再求值:22111m m m m +-⎛⎫-÷ ⎪⎝⎭,其中2m =.34.先化简,再求值:(1)先化简,再求值:22913321x x x x x x ⎛⎫-+÷ ⎪---+⎝⎭,其中x 满足2220250x x +-=.(2)先化简,再求值:24442244m m m m m m --⎛⎫--÷ ⎪--+⎝⎭,在2,3,4中选一个合适的数作为m 的值代入求值.35.化简求值:2222m n n nm n m n m -++--,其中2m =,3n =.36.先化简,再求值:2222422x y x y x xy y x y--÷+++,其中1x =,2y =.37.先化简,再求值:(1)224()2122a a a a a ---+ ,其中1a =;(2)26435()111x x x x ++÷---,其中2x =.38.先化简,再求值:2123121a a a a a -⎛⎫++⋅ ⎪--⎝⎭,其中3a =.39.先化简,再求值:2221121x x x x x x ⎛⎫--÷ ⎪+++⎝⎭,请你从22x -<<的整数解中选择—个你喜欢的x 的值代入并求值.40.先化简,再求值:2212111a a a a +⎛⎫-÷ ⎪---⎝⎭,其中1a =.41.先化简,后求值:22222212a a a a ab a ab b a b a b ⎛⎫⎛⎫-÷-+ ⎪ ⎪--++-⎝⎭⎝⎭,其中1a =,2b =.42.先化简,再求值:2443111x x x x x -+⎛⎫÷+- ⎪--⎝⎭,其中11(3)32x x -=-.43.先化简,再求值.(1)()()2211x x x x x --+-,其中12x =;(2)221112111x x x x x x x-+-÷⋅-+-+,其中12x =.44.先化简,再求值:2234221121x x x x x x ++⎛⎫-÷ ⎪---+⎝⎭,其中x 是不等式组40251x x +>⎧⎨+<⎩的整数解.45.化简求值,35222x x x x -⎛⎫÷-- ⎪--⎝⎭,请选择一个你喜欢的数代入求值.46.(1)计算:()()31121xx x x -+-+-;(2)先化简,再求值:2111442a a a a -⎛⎫÷+ -+-⎝⎭,请从1,2,3中选一个合适的数作为a 的值,代入求值.47.(1)计算:2322y x x y ⎛⎫⎛⎫-⨯- ⎪⎪⎝⎭⎝⎭(2)先化简:22111369a a a a a a ⎛⎫-+--÷ ⎪--+⎝⎭,然后从1-,0,1,3中选择一个合适的数作为a 的值代入求值.48.已知230x x --=,求分式2112x x x +-+-的值.49.计算:(1)()()()2412525x x x +-+-(2)22222233a b a ba a ab a b a bb +-⎛⎫⋅-÷ ⎪-+-⎝⎭50.计算:(1)()()1201911|7|20195π-⎛⎫---⨯-+- ⎪⎝⎭;(2)2221211x x x x x x x ++⎛⎫-÷ ⎪--⎝⎭.51.先化简,再求值:222111x x x x x ++---,其中x 满足不等式组1030x x -≥⎧⎨-<⎩,且x 为整数.52.先化简,再求值:2344111a a a a a -+⎛⎫--÷⎪++⎝⎭,请在-1、1、2三个数中选择一个合适的整数代入求值.53.先化简211111x x x x ⎛⎫+÷ ⎪+--⎝⎭;再从1-,0,1x 的值代入求值.54.先化简,再求值:22311244x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中2022x =.55.化简再求值:2221211x x x x x x +⎛⎫÷- ⎪-+-⎝⎭.其中2x =-.56.先化简,再求值:22212211211m m m m m m m m ++-⎛⎫+÷- ⎪--+-⎝⎭,其中m 满足22m -≤≤,取一个整数即可.57.已知2470m m --=,求代数式2241(1)39m m m m m --++÷+-的值.58.先化简2234244111x x x x x x +++⎛⎫-÷⎪--+⎝⎭,然后在22x -≤≤的范围内选择一个合适的整数作为x 的值代入求值.59.(1)按要求填空:小明计算22142x x x --+的过程如下:解:22142x x x --+()()21222x x x x =-+-+……第一步()()()()222222x x x x x x -=-+-+-……第二步()()2222x x x x --=+-……第三步()()222x x x -=+-……第四步12x =+①小明计算的第一步是___________(填“整式乘法”或“分解因式”);②计算过程的第___________步出现错误;③直接写出正确的结果是___________.(2)先化简,再求值:244422a a a a a a --⎛⎫÷-- ⎪-⎝⎭,其中2a =60.先化简,再求值:(1)()()()()22525424x x x x x +-+++-,其中x(2)21122a a a a a a a ⎛⎫+-+-÷++⎝⎭其中2a =.61.若0a >,12a M a +=+,23a N a +=+.(1)当5a =时,计算M 、N 的值;(2)猜想M 与N 的大小关系,并证明你的猜想.62.先化简,再求值:21(1)11aa a +÷--,其中3a =-.63.先化简2211211x xx x x --++++,然后从0,1,1-,2四个数中选取一个合适的数作为x 的值代入求值.64.先化简:2444122x x x x -+⎛⎫÷- ⎪++⎝⎭,然后从2,0,2-中选一个合适的数代入求值.65.先化简分式:211(1)1m m m---),然后在0,1,2中选一个你认为合适的x 的值,代入求值.66.先化简,后求值:2344111x x x x x -+⎛⎫--÷ ⎪--⎝⎭,然后在0,1,2三个数中选一个适合的数,代入求值.67.先化简,再求值:2221211a a a a a a +⎛⎫÷- ⎪-+-⎝⎭,并在32a -<<中选取一个使式子有意义的整数代入求值.68.先化简,再求代数式222112111a a a a a a a ⎛⎫-+÷+ -+--⎝⎭的值,其中0120232a -=+.69.先化简,再求值:2212124a a a a a a a--+÷-+-,其中3a =.70.先化简231122x x x -⎛⎫-+⎪++⎝⎭,再从1,0,2-中选一个使原式有意义的数代入并求值.71.计算:222222322a bb b a a ab b a b a b-+⎛⎫+÷ ⎪-+--⎝⎭72.计算:2244222xx x x x x -+⎛⎫-÷ ⎪+++⎝⎭.73.(1)计算:)2112-⎛⎫+- ⎪⎝⎭(2)化简:211(1211x x x ÷-+++74.计算(1)()()()2222-++-x y x y x y (2)22944333x x x x x x --+⎛⎫-+÷ ⎪++⎝⎭75.计算:212(1)11x xx x --÷++.76.化简求值:211(1)(11x x x -++-,其中12x -=.77.化简:23311x x x -+--.方方的解答如下:3(1)3(1)(1)(1)(1)x x x x x x +--+-+-原式=2(1)(1)(1)x x x -=+-=313(1)(1)x x x x +--+-21x =+方方的解答正确吗?如果不正确,请写出正确的解答过程.78.计算(1)2m n m nn m m n n m-++---(2)23651x x x x x+----79.计算:(1)111a a a +++(2)2211121a a a a a +⎛⎫-÷ ⎪+++⎝⎭80.(1)计算:()235423a a a a ⎡⎤⋅+÷⎢⎥⎣⎦;(2)计算:2223m nm n m n --+-81.老师所留的作业中有这样一个分式的计算题22511x x x +++-,甲、乙两位同学完成的过程分别如下:甲同学:22511x x x +++-=25(1)(1)(1)(1)x x x x x +++-+-第一步=25(1)(1)x x x +++-第二步=7(1)(1)x x x ++-第三步乙同学:22511x x x +++-=2(1)5(1)(1)(1)(1)x x x x x x -+++-+-第一步=225x x -++第二步=33x +第三步老师发现这两位同学的解答过程都有错误.(1)请你从甲、乙两位同学中,选择一位同学的解答过程,帮助他分析错因,并加以改正.我选择______同学的解答过程进行分析(填“甲”或“乙”).该同学的解答从第____步开始出现错误,错误的原因是_______;(2)请重新写出完成此题的正确解答过程:22511x x x +++-82.下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.22211(1)(1)12122(1)2(1)x x x x x x x x x x --+---=-+++++…第一步1112(1)x x x x --=-++…第二步2(1)12(1)2(1)x x x x --=-++…第三步2(1)(1)2(1)x x x ---=+…第四步2212(1)x x x ---=+…第五步322x x -=+…第六步任务一:填空:(1)以上化简步骤中,第一步进行的运算是_________.A .整式乘法B .因式分解(2)以上化简步骤中,第______步是进行分式的通分,通分的依据是_________.(3)第________步开始出现错误,这一步错误的原因:___________________.任务二:补充正确的解题过程,已知x 是满足x <x 的值代入求值;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议:______________.83.(1)已知1212x x ++-计算结果是(1)(2)mx x x +-,求常数m 的值;(2)已知32A B x x ++-计算结果是34(3)(2)x x x ++-,求常数A 、B 的值.84.先化简,再求值:224242442x x x x x x --⎛⎫÷-- ⎪+++⎝⎭,其中||2x ≤且x 为整数.85.先化简,再求值:22693339()x x x x x x x -+-+÷÷--,其中x 为不等式组40512(1)x x x +>⎧⎨+<-⎩的整数解.86.计算:(1)()()()2224a b a b a b +---(2)22221211x x x x x x x ⎛⎫-+-- ⎪-+-⎝⎭87.计算:(1)()()()224x y x y x y --+-(2)22442242x x x x x x -+-⎛⎫÷-- ⎪-+⎝⎭88.计算:(1)()()()22021032412π5-+⨯---+-;(2)2244311-+⎛⎫÷-+ ⎪++⎝⎭x x x x x x .89.先化简,再求值:222142442a a a a a a a a +--⎛⎫-÷ ⎪--+-⎝⎭,其中a 满足方程:2250a a --=.90.(1)先化简,再求值2799(1)x x x x x--+-÷,其中5x =-.(2)若114a b -=,求323a b a ab b-+-值.91.(1)计算:()202122022π32π-⎛⎫-+-+--- ⎪⎝⎭.(2)先化简,再求值:222569122x x x x x x --+⎛⎫-÷ ⎪--⎝⎭,然后选择一个你喜欢的数代入求值.92.先化简,再求值:2224393a a a a a a -+÷--+,其中a ,2,4为ABC 的三边长,且a 为整数.93.(1)先化简,再求值:24421x x x x -+⎛⎫÷- ⎪⎝⎭,其中4x =.(2)已知113x y -=,求分式2322x xy y x xy y+---的值.94.先化简,再求值(1)222142442a a a a a a a a ---⎛⎫-÷ ⎪++++⎝⎭,其中a 是满足33a a -=-的最大整数.(2)2311144x x x x x -⎛⎫--⋅ ⎪--+⎝⎭,其中3x =-95.计算:(1)()2332y y xy x x-÷⋅.(2)先化简:312224a a a a +⎛⎫++÷ ⎪--⎝⎭,再从12a -≤≤的整数中选取一个你喜欢的a 的值代入求值.96.计算:(1)21x y x y -+-.(2)21111m m m ⎛⎫-÷ ⎪++⎝⎭.97.先化简,再求值:2144111a a a a ++⎛⎫+÷ ⎪++⎝⎭,从2-,1-,1中选择合适的a 的值代入求值.98.化简:2121442x x x x x +÷-⎛⎫ ⎝+++⎭+,再从1,0,1-,2-中选一个喜欢的数求值.99.先化简22424422x x x x x x x ⎛⎫--+÷ ⎪-++-⎝⎭,从不等式组()3421213212x x x x ⎧-≤-⎪⎪⎨+⎪-<⎪⎩的整数解中,选取一个你最喜欢的x 的值代入求值.100.计算:(1)2221651565a a a a a a a a a --+⋅÷++++;(2)29(2)33666x x x x x x --+--+-.参考答案1.(1)22x x -(2)22x +【分析】(1)利用提公因式和平方差公式进行计算即可;(2)利用提公因式和平方差公式进行计算即可.解:(1)22421x x x--+()()()42111x x x x =-+-+()()()42111x x x x x --=+-()()2211x x x x +=+-22x x=-;(2)222228224x x x x x ⎛⎫+--÷ ⎪--⎝⎭()()22222228224x x x x x x x +-⎡⎤+=-÷⎢---⎣⎦()()()2222222244x x x x x x +-⎛⎫=⋅ ⎪⎝⎭-+-+()()()22222244x x x x x +-⋅-+=+22x +=.【点拨】本题考查了分式的混合运算,熟练运用分式运算法则和平方差公式是解题的关键.2.1x-;当2x =-时,原式12=【分析】原式括号中两项通分并利用异分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果,再根据分式有意义的条件,取2x =-代入求解即可.解:原式2(1)1[(1)](1)(1)1x x x x x x --=÷--+-+2(1)1[(1)](1)(1)1x x x x x x --=÷--+-+11(1)(1)11x x x x x x ----+=÷++211111x x x x x -+=⋅+--+211111x x x x x -+=⋅+--+1(1)x x x -=--1x=-,当=1x -,0,1时,原式没有意义;当2x =-时,原式12=.【点拨】本题主要考查了分式的化简求值以及分式有意义的条件,熟练掌握因式分解和分式的性质是解题的关键.3.321a a +,92【分析】根据分式混合运算,先化简,再将34a =-代入化简后的代数式求值即可得到答案.解:2222144121426a a a a a a a ++⎛⎫-÷ ⎪--⎝⎭()()222121212216a a a a a a ⎡⎤+=-÷⎢⎥--⎣⎦()()()22241622122121a a a a a a a ⎡⎤=-⨯⎢⎥--+⎣⎦()()22241622121a a a a a -=⨯-+22(21)(21)62(21)(21)a a a a a a +-=⨯-+321a a =+,当34a =-时,原式339432214⎛⎫⨯- ⎪⎝⎭==⎛⎫⨯-+ ⎪⎝⎭.【点拨】本题考查分式化简求值,熟练掌握分式混合运算法则化简是解决问题的关键.4.1x x--,当1x =时,原式0=.【分析】先根据分式的混合计算法则化简,然后根据分式有意义的条件结合不等式组选取合适的值代值计算即可.解:22111211x x x x -⎛⎫÷- ⎪+++⎝⎭()()()2111111x x x x x +-=--÷++()()()21111x x x x x +--=÷++()()()21111x x x x x +-+=-+1x x -=-∵22x -<<的整数解为1-,0,1,其中只有1能使得原分式有意义,∴当1x =时,原式0=.【点拨】本题主要考查了分式的化简求值,求不等式组的整数解,正确计算是解题的关键.5.23a b-+,29-【分析】先将所有分式的分子与分母因式分解,同时计算括号内的减法,再计算乘法,最后计算加减法化简,再解方程组求出a ,b 的值代入计算即可.解:原式()()()()223512222a b b a a b a b a ab a b -+--=÷---()()()()2321233a b a b a a b b a b a a--=⋅--+-()313a b a b a a -=--+23a b=-+,∵51a b a b +=⎧⎨-=⎩,∴32a b =⎧⎨=⎩,∴原式22233329a b =-=-=-++⨯.【点拨】此题考查了分式的混合运算及化简求值,解二元一次方程组,正确掌握各运算法则是解题的关键.6.3a a-,2-【分析】根据分式的混合运算法则把原式化简,根据分式有意义的条件确定a 的值,代入计算即可.解:原式2(3)21()(2)22a a a a a a --=÷----2(3)2·(2)3a a a a a --=--3a a-=,∵0a ≠,20a -≠,30a -≠,∴0a ≠、2、3,当1a =时,原式1321-==-.【点拨】本题考查的是分式的化简求值、分式有意义的条件,掌握分式的混合运算法则是解题的关键.7.11;32x -【分析】先对分式通分、因式分解、约分等化简,化成最简分式,后代入求值.解:2169122x x x x -+⎛⎫-÷ ⎪--⎝⎭=()2321233x x x x x --⨯=---,当5x =时,1113532x ==--.【点拨】本题考查了分式的化简求值,运用因式分解,通分,约分等技巧化简是解题的关键.8.a b,9【分析】先通分计算括号里的,再算乘除,最后算加减并化到最简,将字母值代入即可得到答案;解:原式111a a b a a a a b ab b b b--+-=⨯+==-当3a =,13b =时,原式3913==.【点拨】本题考查分式的化简求值,解题的关键是在化简时要化到最简及注意符号选取.9.(1)1m n -;(2)22a a -+.【分析】(1)根据异分母分式的减法化简即可;(2)根据分式的加减乘除混合运算化简即可.(1)解:()()222323m n m n m n m n m n m n m n ---=-+-++-()()()()()()23223m n m n m n m nm n m n m n m n -----+==+-+-()()1m n m n m n m n +==+--;(2)解:()()()22311344111112a a a a a a a a a a --++++⎛⎫-+÷=⋅ ⎪+++⎝⎭+()()()222222a a a a a +--==++.【点拨】本题考查分式的加减乘除混合运算,掌握分式的加减乘除混合运算法则正确化简是解题的关键.10.(1)18(2)26a +,当2a =时,原式10=;当3a =-时,原式0=【分析】(1)先进行因式分解,再代值计算即可;(2)先运算分式的运算法则,进行化简,再代值计算即可.(1)解:∵3x y -=-,2xy =,∴()233222x y xy x y xy x y =+--()223=⨯-18=;(2)解:原式()2224523a a a a +--=⋅+-()2293a a -=-26a =+;∵20,30a a +≠-≠,∴2,3a a ≠-≠,当2a =时,原式10=;当3a =-时,原式0=.【点拨】本题考查因式分解,分式的化简求值.熟练掌握因式分解的方法,以及分式的运算法则,是解题的关键.11.22a+,1【分析】原式括号中两项通分并利用同分母分式的加减法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值.解:原式22a a a-+=-•()()2(2)2222a a a a -=-+-•()()2(2)22a a a --+22a =+,当2a =-或2时,原式没有意义;当0a =时,原式220==+1.【点拨】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.12.21a a+,当1a =时,原式12=【分析】先根据分式的混合计算法则化简,然后根据分式有意义的条件确定a 的值,最后代值计算即可.解:221221211a a a a a a a a ---⎛⎫-÷ ⎪++++⎝⎭()()21211211a a a a a a a ⎡⎤--=-⋅⎢⎥+-+⎢+⎥⎣⎦()()22221221111a a a a a a a a a ⎡⎤--=-⋅⎢⎥-+++⎢⎥⎣⎦()2212111a a a a a -=+⋅-+21a a=+,∵分式要有意义,∴()10210a a a ⎧+≠⎨-≠⎩,∴0a ≠且1a ≠-且12a ≠,∴当1a =时,原式2111112a a ===++.【点拨】本题主要考查了分式的化简求值,正确计算是解题的关键.13.(1)2x ;(2)22ab b -,24-【分析】(1)先算括号里面,再算乘法即可;(2)先展开各项,再合并同类项,最后代入求值即可.解:(1)()211422x x x ⎛⎫+⋅- ⎪-+⎝⎭()()()()()()22222222x x x x x x x x ⎛⎫+-=+⋅-+ ⎪ ⎪-+-+⎝⎭()()()()22222x x x x x =⋅-+-+2x =;(2)()()()22a b a b a b a +-+-222222a ab ab b ab a =+--+-22ab b =-当2a =,3b =-时,原式()()222232324ab b =-=⨯--⨯-=-.【点拨】本题考查了分式的化简,整式的化简求值,熟记相关运算法则及运算顺序是解题的关键.14.(1)21x x -;(2)11x -,34-【分析】(1)根据分式的混合计算法则求解即可;(2)先约分,然后根据同分母分式减法化简,最后代值计算即可.解:(1)()()13122121x x x x x x +⎛⎫÷-+- ⎪+-+-⎝⎭()()2143121221x x x x x x x⎛⎫+-=÷+- ⎪+-++-⎝⎭()()214312121x x x x x x +-+=÷-+-+-()()21112121x x x x x x+-=÷-+-+-()()()()11112121x x x x x x x +-+=÷-+-+-()()()()12121111x x x x x x x ++=⋅-+-+--()21111x x =+--2111x x +-=-21x x =-;(2)233211x x x +---()()()312111x x x x +=-+--3211x x =---11x =-,当13x =-时,原式131413==---.【点拨】本题主要考查了分式的混合计算,分式的化简求值,正确计算是解题的关键.15.(1)①(2)否;错用去括号法则(3)25-【分析】(1)根据运算顺序,先算除法可知,第①步开始出现错误;(2)去括号时,出现错误;(3)按照分式的运算法则和运算顺序,进行计算,根据负整数指数幂和零指数幂的法则,求出x 的值,将,x y 的值代入化简后的式子中,进行计算求值即可.(1)解:根据分式的运算顺序,应该先算除法,爱民同学第①步先算的减法,∴从第①步开始出现错误;故答案为:①;(2)解:在去括号时,括号前面是“-”号,括号里面的每一项都要变号,爱民同学括号里的第二项没有变号,出现错误,∴从①到②不正确,错用去括号法则;故答案为:否,错用去括号法则;(3)解:原式()()()2212x y x y x y x y x y +-=-++-21x y x y +=-+2x y x y x y x y++=-++2x y x yx y+--=+y x y=-+;∵()1012023π213,22x y -⎛⎫=+-=+== ⎪⎝⎭,∴原式22325-==-+.【点拨】本题考查分式的化简求值.熟练掌握分式的运算法则和运算顺序,零指数幂,负整数指数幂的法则,是解题的关键.16.244x x+,54【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可.解:原式22244244x x x x x x --⎛⎫=+⨯ ⎪+-⎝⎭()()22244244422x x x x x x xx x --=⨯+⨯+-+-()2142x x -=+244444x x x x x-+=+244x x+=2x ≠± ,0,∴当1x =时,原式21441+=⨯54=.【点拨】本题考查分式化简求值,解题的关键是明确分式加法和除法的运算法则,注意:分式取值一定要使分式有意义.17.1a --,当11a =时,原式12=-;当3a =时,原式4=-【分析】先根据分式的混合计算法则化简,然后根据极差的定义求出a 的值,最后代值计算即可.解:22341121a a a a a -⎛⎫-+÷ ⎪+++⎝⎭()()2211341121a a a a a a a -+⎡⎤-=-÷⎢⎥++++⎣⎦()()()()22223111a a a a a --=÷+-++()()()2214122a a a a a +-=⋅++-()()()()()2222211a a a a a a +=⋅++--+1a =--;当数据7、9、6、a 、8、5中a 为最大值时,则56a -=,即11a =,当11a =时,原式11112=--=-;当数据7、9、6、a 、8、5中a 为最小值时,则96a -=,即3a =,当3a =时,原式314=--=-.【点拨】本题主要考查了分式的化简求值,极差,正确计算是解题的关键.18.21x x +;16【分析】先将分式的分子分母因式分解来化简,然后x 取值要避免取到使得分式分母为0的整数.解:221312221x x x x x x -⎛⎫÷-+- ⎪+++⎝⎭(1)(1)(2)(2)31(2)221x x x x x x x x x -+-+⎡⎤=÷+-⎢⎥++++⎣⎦2(1)(1)(4)31(2)21x x x x x x x ⎡⎤-+-+=÷-⎢+++⎣⎦(1)(1)(1)(1)1(2)21x x x x x x x x -+-+⎡⎤=÷-⎢⎥+++⎣⎦111x x =-+1(1)(1)x x x x x x +=-++1(1)x x =+21x x=+∵x 是绝对值不大于2的整数,∴0x =或1±或±2∵221312221x x x x x x -⎛⎫÷-+- ⎪+++⎝⎭中,0x ≠且1x ≠±且2x ≠-,∴2x =∴原式22111226x x ===++.【点拨】此题考查分式的化简求值,解题关键是将分式因式分解化简,取值时需令值使得分母不为0.19.3m +,4【分析】先把除法变成乘法,再计算括号内的,最后约分化简即可,根据分式有意义的条件结合m 的取值范围确定出m 的值.解:原式(2)(2)5223m m m m m +---=⨯--(3)(3)223m m m m m +--=⨯--3m =+∵53222m m m m -⎛⎫+-÷ ⎪--⎝⎭有意义,∴2m ≠,3m ≠.又∵m 为满足04m <<的整数,∴1m =∴原式134=+=.【点拨】本题考查分式的化简求值,分式的相关运算,以及分式有意义的条件,能够熟练掌握分式有意义的条件是解决本题的关键.20.212x x +;x 取1-时,值为1-,x 取2时,值为18.【分析】先将能够进行因式分解的分子或分母进行因式分解,然后算除法,再算加法,即可化简.分别解不等式确定不等式组的整数解,最后根据分式有意义的条件选取合适的x 的值代入求值即可.解:原式21(1)11(2)2x x x x x -=⋅+-++11(2)2x x x x -=+++1(2)x xx x -+=+212x x=+,52030x x -≥⎧⎨+>⎩①②,解不等式①,可得52x ≤,解不等式②,可得3x >-,∴不等式组的解集为532x -<≤,∴不等式组的整数解为2-、1-、0、1、2,又∵2()0x x +≠,10x -≠,∴0x ≠且1x ≠且2x ≠-,∴x 可取1-或2.当x 取1-时,原式211(1)2(1)==--+⨯-,当x 取2时,原式2812212==+⨯.【点拨】本题考查分式的化简求值,解一元一次不等式组,掌握分式混合运算的运算顺序(先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的)和计算法则,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题关键.21.31x -,1【分析】先根据分式的混合计算法则化简,然后代值计算即可.解:23211236x x x x -+⎛⎫-÷ ⎪++⎝⎭()()22322132x x x x x +⎛⎫=-÷ ⎪++⎝-+⎭()()2222133x x x x +-=⋅+-+()()231221x x x x -=⋅++-31x =-,当4x =时,原式3141==-.【点拨】本题主要考查了分式的化简求值,熟知分式的混合计算法则是解题的关键.22.3x x+,52【分析】先根据分式的混合计算法则化简,然后代值计算即可.解:2222339x x x x x x +⎛⎫+÷ ⎪---⎝⎭()()()33322x x x x x x +++÷--=()()()33223x x x x x x +-=⋅-++3x x+=,当2x =时,原式23522+==.【点拨】本题主要考查了分式的化简求值,熟知分式的混合计算法则是解题的关键.23.12a -,2【分析】先计算括号内的分式的减法,再把除法化为乘法运算,约分后可得结果,再把2a代入化简后的代数式进行计算即可.解:222122244a a a a a -⎛⎫-÷ ⎪---⎝⎭()()()()()2222222a a a a a a a -++-=-+-12a =-,∵2a =,∴原式=【点拨】本题考查的是分式的化简求值,掌握“分式的加减乘除混合运算的运算顺序”是解本题的关键.24.33x +,当1x =时,原式34=【分析】先化简括号内的式子,再算括号外的除法,然后从3-,1,3中选择一个使原分式有意义的值代入化简后的式子计算即可.解:原式()()()()()()()23333333333x x x x x x x x ⎡⎤+-=-⋅⎢⎥-+-+-⎢⎥⎣⎦()()()39333x x x -=⋅-+33x =+,当3x =±时,原分式无意义,∴1x =,∴原式33134==+.【点拨】本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.25.()()322x x -+,3【分析】先算括号内的加法,再把除化为乘,分子分母分解因式约分,化简后将4x =-代入即可得到答案.解:2211333x x x x x -⎛⎫÷+ ⎪-+-⎝⎭()()()333323x x x x x x x -++=÷-+--()()()33322x x x x x x +-=⋅--()()223x x =-+当4x =-时,原式()()434322-+=-=-【点拨】本题考查分式化简求值,解题的关键是掌握分式混合运算的顺序及相关运算的法则.26.527【分析】根据等式的性质求得1x x +的值,然后利用平方差公式求出221x x +的值,再继续利用平方差公式求出441x x +的值.解:由2510x x -+=得0x ≠,∴15x x+=,∴21()25x x+=∴22123x x +=,∴42224211()2232527x x x x +=+-=-=【点拨】此题考查完全平方公式的应用,解题关键是反复使用完全平方公式.27.2x +,当3x =时,原式325=+=【分析】先根据分式的混合计算法则化简,然后根据分式有意义的条件确定x 的值,最后代值计算即可.解:244224x x x x x -⎛⎫-÷ ⎪---⎝⎭()()44222x x x x x --=÷-+-()()22424x x x x x +--=⋅--2x =+,∵要使分式244224x x x x x -⎛⎫-÷ ---⎝⎭有意义,∴20x -≠,20x +≠,40x -≠,∴x 不能为2,2-,4,∴取3x =,当3x =时,原式325=+=.【点拨】本题主要考查了分式的化简求值,正确计算是解题的关键.28.()221x x +,1【分析】先根据分式的加减乘除混合运算进行化简,再根据分式有意义的条件选择合适的x 的值,代入计算即可解:()()222222121121111x x x x x x x x x x x x x +++÷-=⋅-++++++()()()22222111x x x x x x x x +=-=+++.∵0x ≠且1x ≠-,∴取1x =代入上式,原式1=.【点拨】本题考查分式的化简求值,解题的关键是掌握分式的加减乘除混合运算,正确化简.29.(1)−1(2) 1xx -【分析】(1)根据同分母分式的减法法则进行计算即可;(2)先计算括号内的,再把除法转换为乘法,再进行约分即可得到答案.解:(1)2y x y x y y x -+--2y x y x y x y-=---y xx y-=-=−1;(2)1211x x x -⎛⎫-÷ ⎪-⎝⎭11=11x x x -⎛⎫- ⎪--⎝⎭2x x -÷2·1x x -=-2x x -1xx =-【点拨】本题主要考查了分式的混合运算,熟练掌握运算法则是解答本题的关键.30.33x x +,310【分析】先对分式通分、因式分解、约分等化简,化成最简分式,后代入求值.解:2395222x x x x x -⎛⎫÷+- --⎝⎭=()()()33225222x x x x x x x -+-⎛⎫÷- ⎪---⎝⎭=()()()333322x x x x x x -+-÷--=()()()332233x x x x x x --⨯-+-=33x x +,当13x =时,33x x +=133311033⨯=+.【点拨】本题考查了分式的化简求值,运用因式分解,通分,约分等技巧化简是解题的关键.31.(1)24a a +(2)1【分析】(1)首先算括号内的及进行因式分解,再把除法运算变为乘法运算,即可求得结果;(2)由题意得24a a =+,再把此式代入化简后的式子,即可求得结果.(1)解:22381631a a a a a a ++⎛⎫+-÷ ⎪++⎝⎭()()224411a a a a a a ++=÷++()()()24114a a a a a a ++=⨯++24a a =+;(2)解:由410a a--=,得24a a =+,所以,原式22214a a a a ===+.【点拨】本题考查了分式的混合运算,代数式求值问题,准确计算是解决本题的关键.32.1x,3【分析】先对分式通分、因式分解、约分等化简,化成最简分式,后代入求值.解:2291(333x x x x x---+ =()29133x x x x -⨯-+=()()()33133x x x x x -+⨯-+=1x ,当13x =时,1x =1313=.【点拨】本题考查了分式的化简求值,运用因式分解,通分,约分等技巧化简是解题的关键.33.11m -;1【分析】先对分式通分、因式分解、约分等化简,化成最简分式,后代入求值.解:22111m m m m +-⎛⎫-÷ ⎪⎝⎭=()()2111m m m m m m -+⎛⎫⨯ ⎪+-⎝⎭=()()111m m m m m +⨯+-=11m -,当2m =时,111121m ==--.【点拨】本题考查了分式的化简求值,运用因式分解,通分,约分等技巧化简是解题的关键.34.(1)223x x +-,2022;(2)22m m -+,当3m =时,原式3=-;【分析】(1)将括号内通分,然后运用平方差公式和完全平方公式进行分式化简,再代入计算即可;(2)将括号内通分,然后运用平方差公式和完全平方公式进行分式化简,由20m -≠,40m -≠确定m 的值再代入计算即可.(1)解:2220250x x +-= ,222025x x ∴+=,22913321x x x x x x ⎛⎫-+÷ ⎪---+⎝⎭()2291331x x x x x ⎛⎫-=-÷ ⎪---⎝⎭()2219·31x x x x --=--()()()2331·31x x x x x +--=--()()31x x =+-223x x =+-,当222025x x +=时,原式20253=-2022=;(2)24442244m m m m m m --⎛⎫--÷ ⎪--+⎝⎭()24442244m m m m m m --⎡⎤=-+÷⎢⎥--+⎣⎦()()()222444222m m m m m m m ⎡⎤+---=-÷⎢⎥---⎣⎦()222444224m m m m m m -⎛⎫--=-⨯ ⎪---⎝⎭()22244424m m m m m ---+=⨯--()()24224m m m m m --=⨯--()2m m =--22m m =-+,20m -≠ ,40m -≠,2m ∴≠,4m ≠,当3m =时,原式2323=-+⨯3=-.【点拨】本题考查了分式的化简求值;灵活运用公式正确化简求值即可.35.m n m n -+,15【分析】先通分,再加减,化简后,再代入求值即可.解:2222m n n n m n m n m -++--=222()()2()()m mn mn n n m n m n --+++-=2()()m n m n m n -+-()=m n m n-+.当2m =,3n =时原式=321325-==+.【点拨】本题考查的是分式的化简求值、有理数的混合运算.解题的关键是熟记有理数的混合运算顺序,运算时需要注意符号.36.2x y x y ++,53【分析】利用公式法进行因式分解,然后根据分式的混合运算法则化简,最后代入计算即可.解:原式2(2)(2)2=()2x y x y x y x y x y x y x y+-++⋅=+-+,将1x =,2y =时,原式1225123+⨯==+.【点拨】本题主要考查了分式化简求值,熟练掌握相关运算法则是解题关键.37.(1)1a ,1(2)21x +,23【分析】(1)根据平方差公式和提取对分式进行化解,再代入求值即可;(2)将分式进行通分化解,将除法换算成乘法,即可对分式进行化解,代入求值即可.(1)解:224()2122a a a a a---+ 222412a a aa =-+-()(2)(2)212a a a a a +-=-+ 1a=当1a =时,原式1=;(2)解:26435()111x x x x ++÷---()()6(1)411135x x x x x ++=⨯--++1635101x x x =⨯+++21x =+当2x =时,原式22213==+.【点拨】本题考查分式的化简求值,解题的关键是熟练掌握平方差公式的应用.38.4a ,12【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把a 的值代入计算即可求出值.解:原式()2213221a a a a a a a --⎛⎫=++⋅ ⎪---⎝⎭()21321a a a a a a --=+⋅--3a a=+4a =,把3a =代入得:原式43=⨯12=.【点拨】本题主要考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.39.1x x --;0【分析】先计算括号内的分式的减法,再把除法化为乘法,约分后得到化简的结果,再确定使分式有意义的x 的整数值,代入计算即可.解:2221121x x x x x x ⎛⎫--÷ ⎪+++⎝⎭()()()2221111x x x x x x x +--=++- ()()()21111x x x x x +-=++- 1xx =--∵22x -<<,x 为整数,且1x ≠,1x ≠-∴0x =,∴原式0=.【点拨】本题考查的是分式的化简求值,分式有意义的条件,掌握“分式的混合运算的运算顺序”是解本题的关键.40.122a +,4【分析】先根据分式的加减运算法则计算括号内,再将除法转化为乘法进行分式乘法运算进行化简原式,再代值求解即可.解:2212111a a a a +⎛⎫-÷ ⎪---⎝⎭()()()211211a a a a a +-+-=⋅+-21112a a a +--=⋅+1112a =⋅+()121a =+122a =+,当1a =时,原式4==.【点拨】本题考查分式的化简求值,熟记平方差公式,掌握分式的混合运算法则和运算顺序,正确求解是解答的关键.41.2a a b-;2-【分析】先算括号内的减法,再把除法转化为乘法来做,通过分解因式,约分化为最简,最后把数代入计算.解:原式=(()22a a a b a b ---)÷(()()2a a a b a b a b -++-)+1()()()()()222a a b a a a b a a b a b a b ----=÷++--1()()()()()222a a b a a b a b a a b a a b --+-=⨯+---1a b a b +=+-12a a b=-,当12a b ==,时,原式2212==--.【点拨】此题考查的是分式的除法和减法的混合运算,有括号的先算括号,还要注意符号的变化.42.22x x -+;15【分析】根据分式混合运算法则进行化简,然后再解方程得出x 的值,最后代入数据求值即可.解:原式22(2)13111x x x x x ⎛⎫--=÷- ⎪---⎝⎭22(2)411x x x x --=÷--2(2)11(2)(2)x x x x x --=⨯-+-22x x -=+,∵11(3)32x x -=-,∴2639x x -=-,解得:3x =,将3x =代入上式得:23212325x x --==++.【点拨】本题主要考查了分式化简求值,解一元一次方程,解题的关键是熟练掌握分式混合运算法则,准确计算.43.(1)22x x -+;0(2)11x x -+;13【分析】(1)直接利用整式的混合运算法则化简,进而把x 的值代入得出答案;(2)将分式中能分解因式的进行因式分解,再化简求出答案.(1)解:原式=()3223x x x x x --+-,=3232x x x x x ---+,22x x =-+,当12x =时,原式2112022⎛⎫=-⨯+= ⎪⎝⎭.(2)解:221112111x x x x x x x-+-÷⋅-+-+,2(1)(1)11(1)11x x x x x x x +---=⋅-++ ,11x x-=+;把12x =代入上式得∶原式1112;1312-==+【点拨】此题主要考查了整式及分式的化简求值,正确分解因式进而化简分式是解题关键.44.11x x -+,2【分析】先根据分式的混合运算化简,然后求得不等式的整式解,代入化简结果进行计算即可求解.解:原式()()2342221121x x x x x x x +--+=÷+--+=22(1)(1)(1)2x x x x x +-⋅+-+=11x x -+解不等式组40251x x +>⎧⎨+<⎩得:4-<x 2<-.其整数解为:x 3=-.当x 3=-时,原式=3131---+2=【点拨】本题考查了分式的化简求值,求一元一次不等式组的整数解,正确的计算是解题的关键.45.1134x +,【分析】先根据分式混合运算的法则把原式进行化简,再选出合适的x 的值代入进行计算即可.解:35222x x x x -⎛⎫÷-- ⎪--⎝⎭()35222x x x x 轾-=¸-+犏犏--臌()()2235222x x x x x x 轾+--犏=¸-犏---臌()254322x x x x 轾---犏=¸犏--犏臌()()32233x x x x x --=´--+13x =+.当1x =时,原始14=.【点拨】本题考查了分式的化简求值,分式有意义的条件.解题的关键在于熟练掌握完全平方公式与通分.46.(1)12x -+;(2)12a -,1.【分析】(1)根据分式的四则运算求解即可;(2)根据分式的四则运算进行化简,然后代数求解即可.解:(1)()()31121x x x x -+-+-()()()()()()()()()2123121212x x x x x x x x x x +-+=-+-+-+-+()()2232212x x x x x x --++-=-+()()112xx x -=-+12x =-+(2)2111442a a a a -⎛⎫÷+ -+-⎝⎭()21122a a a a --⎛⎫=÷ ⎪-⎝⎭-()21212a a a a --⎛⎫=⨯ ⎪-⎝⎭-12a =-,由题意可得:20a -≠,10a -≠∴1a ≠,2a ≠将3a =代入得,原式1132==-.【点拨】此题考查了分式的四则运算,化简求值,解题的关键是熟练掌握分式的四则运算以及分式的有关知识.47.(1)44y x -;(2)26a -;选择0a =时,266a -=-;选择1a =时,264a -=-【分析】(1)先算乘方,然后根据分式乘法运算法则进行计算即可;(2)先根据分式混合运算法则进行化简,然后再代入合适的数,求值即可.解:(1)2322y x x y ⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭32624y x x y =-⨯44y x =-;(2)22111369a a a a a a ⎛⎫-+--÷ ⎪--+⎝⎭()()()221311333a a a a a a a +-⎡⎤-+=-÷⎢⎥---⎣⎦()222312331a a a a a a ---++=⋅-+()()221331a a a a +-=⋅-+()23a =-26a =-,∵30a -≠,10a +≠,∴3a ≠,1a ≠-,如果选择0a =,则原式2066=⨯-=-;如果选择1a =,则原式2164=⨯-=-.【点拨】本题主要考查了分式化简求值,分式有意义的条件,解题的关键是熟练掌握分式混合运算法则,准确计算.48.225,2x x x x ----2-【分析】先根据230x x --=,得到23-=x x ,再将2112x x x +-+-变形为22412x x x x -----,。

完整word版,120道分式化简求值练习题库

完整word版,120道分式化简求值练习题库

化简求值题12,此中 x=- 2.1.先化简,再求值:x 2x 112、先化简,再求值:,此中a=﹣1.3、先化简,再求值:,此中x=.4、先化简,再求值:,此中.5 先化简,再求值,此中x知足x2﹣x﹣1=0.6、化简:a3b a b a b a b7、先化简,再求值:,此中a=.8、先化简(x1)1,再从﹣ 1、 0、 1 三个数中,选择一个你以为适合的数作为x 的值代入求值.x 1x1x219、先化简,再求值: (+1 ) ÷ ,此中 x=2.3 1810、先化简,再求值: x –3–x 2 –9 ,此中 x =10–311、先化简以下式子,再从2,﹣ 2, 1, 0,﹣ 1 中选择一个适合的数进行计算. .12、先化简,再求值:x x121(-2), 此中 x=2.xx13、先化简,再求值:,此中 .14、先化简 (x x )2 x x 23 x 的值代x 2 ,而后从不等组 的解集中,选用一个你以为切合题意的x5 5 x 252x 12入求值.15、先化简,再求值:2a 24 a 2,此中 a 5 .a6a 9 2a616、先化简,再求值:3xx x 2,此中x3 .(x 1 x 1)x21217 先化简。

再求值:2a 1 a2a22a 11,此中a 1 。

a21a a1218.先化简,再求值:1x2-2x+ 1,此中 x=-5.1+÷2x-2x -4x212x 1,此中 x 是一元二次方程x2 2 x 2 0的正数根 .19. 先化简再计算:2xxx x20 化简,求值:m22m 1m1)此中 m=3.m21(m 11m,21、( 1)化简:÷.( 2)化简:a ba2ab b2( a b ) a a22、先化简,再求值:,此中.x3x26x9123请你先化简分式21x 22x1, 再取恰的 x的值代入求值 .x x 124、(本小题2a2 a 21此中 a= 3 +18 分)先化简再求值 a 1a 22a 1a125、化简,其结果是.26.先化简,再求值: (2- 16x- 2) ÷x2,此中 x= 3- 4.x- 2x- 2xx2+ 4x+ 4x+ 2-2x,此中 x= 2.27、先化简,再求值:2-16÷x2x- 8x+ 428、先化简,再求值:3x x 2 x,此中 x3 4 .(x 2x 2)x2429.先化简,再求值:(2aa) a ,此中 a2 1.a 11a30、先化简,再求值:2a11( 2) a ,此中 a2 a 1 1 a31、( 1)化简:1 x 211 ) a 1 .(2)1x (3) (axa a32.( 1) (a bb 2 ) ab。

八年级下册化简练习题

八年级下册化简练习题

八年级下册化简练习题一、整式化简1. 化简:(3a 2b) + (4a + 5b)2. 化简:(5x 3y) (2x + 4y)3. 化简:2(m n) 3(2m + n)4. 化简:4(a + b) 2(a b)5. 化简:(7x 4y) + (3x 6y) (5x + 2y)二、分式化简1. 化简:$\frac{2x}{3} + \frac{4x}{6} \frac{5x}{9}$2. 化简:$\frac{3a}{4} \frac{2a}{3} + \frac{5a}{12}$3. 化简:$\frac{5}{x} \frac{3}{2x} + \frac{4}{3x}$4. 化简:$\frac{4b}{5} \frac{3b}{10} + \frac{2b}{15}$5. 化简:$\frac{7c}{8} \frac{5c}{6} + \frac{3c}{4}$三、二次根式化简1. 化简:$\sqrt{45} \sqrt{20} + \sqrt{5}$2. 化简:$\sqrt{28} \sqrt{54} + \sqrt{2}$3. 化简:$\sqrt{75} \sqrt{50} + \sqrt{3}$4. 化简:$\sqrt{98} \sqrt{32} + \sqrt{2}$5. 化简:$\sqrt{128} \sqrt{81} + \sqrt{3}$四、混合运算化简1. 化简:(4x 3y) + 2(2x + y) (3x 4y)2. 化简:$\frac{3}{4}a \frac{2}{3}a + \frac{1}{6}a$3. 化简:$\sqrt{27} \sqrt{12} + \sqrt{3}$4. 化简:2(3m 4n) + 3(2m + n) 4(m 2n)5. 化简:$\frac{5}{x} \frac{3}{2x} + \frac{4}{3x}$五、实际问题化简1. 小明买了3千克苹果和4千克香蕉,苹果每千克5元,香蕉每千克3元。

《分式的化简求值》强化训练题(一)40题含答案1

《分式的化简求值》强化训练题(一)40题含答案1

《分式的化简求值》强化训练题(一) 组卷人:班级:_________________ 姓名:_________________ 座号:________________1.计算:21()(1)x x x x++÷.2.计算:222242a a a a a a +⋅−−−.3.计算:2224214424x x x x x x x−+÷−−+−.4.化简:231(1)22a a a a a +−−+÷++.5.化简:212(1)11a a a a ++÷−−.6.先化简,再求值:()a b a b ab b a +÷−,其中3a =,2b =.7.先化简,再求值:2344(1)11x x x x x −+−−÷−−,其中3x =.8.先化简,再求值:22691(1)22a a a a a −+÷−−−,其中4a =.9.先化简,再求值.221(1)11a a a −÷+−,其中3a =−.10.先化简,再求值:2269(1)11a a a a +++÷++,从3−,1−,2中选择合适的a 的值 代入求值.11.先化简,再求值:2292(1)693m m m m −÷−−+−,其中2m =.12.先化简,再求值:211()122x x x x −+÷+−−,其中1x =−.13.先化简,再求值:224(1)244x x x x x −−÷−−+,其中4x =−.14.先化简,再求值:21(21)11a a a a a +÷−−−−,其中3a =.15.先化简,再求值:2212()ab b a b a b a b ÷+−+−,其中1a =,1b =−.16.先化简2121(1)1221a a a a a −−−÷+−−+,再从1,2,3中选一个适当的数代入求值.17.化简求值:222244(1)x x x x x x −−+−÷−,其中4x =.18.先化简:2242(2)244x x x x x x −++÷−−+,再从0、1、2、3中选择一个适合的数代入求值.19.先化简,再求值:22221124()11x x x x x x x−+−−÷−++,其中6x =.20.先化简,再求值:22111x x x x−−÷−,其中x =21.先化简,再求值:211a a a −+−,其中5a =.22.先化简,再求值:211(1)a a a−+÷,其中1a =.23.先化简,再求值:2121()x x x x x−+÷−其中1x =.24.先化简222244()4424x x x x x x x −−−÷−+−−,再从1−、2、4中选一个你喜欢的数作为x 的值 代入求值.25.先化简:2212(1)244a a a a a a +−−÷−−+,然后从0,2,2023中选择一个合适的数代入求值.26.求代数式222232x y x x y y x++−−的值,其中2x y =+.27.先化简,再求值:22211391x x x x x x x +÷−⋅−−+,其中2x =.28.先化简,再从1−,0,1x 值代入求值.211()111x x x x +÷+−−.29.先化简,再求值:229311()21112a a a a a a a −−÷−⋅−+−−+,其中2a =.30.先化简,再求值:35(2)242a a a a −÷+−−−,其中32a =−.31.先化简,再求值:2269(1)11a a a a −+−÷−−,从3−,1−,1,3中选择一个合适的a 的 值代入求值.32.先化简,再求值:324(2)244x x x x x ++÷−−+,其中x 是满足条件2x 的合适的 非负整数.33.先化简,再求值:2296()693x x x x x x −÷+−+−,其中x =34.先化简,再求值:22211()2111x x x x x x −+÷−+−−,其中x 是满足条件11x −的整数.35.先化简,再求值22344(1)1a a a a a a −++−÷−−,其中113a =−.36.先化简,再求值:2228224442a a a a a a a −÷−++−+,其中1a =.37.先化简,再求值:22424412x x x x x x x −+÷−−++−,其中2x =.38.先化简,再求值:21(1)11x x x ÷−−+,其中1x =.39.先化简,再求值:2121(1)m m m m −+−÷,其中1m =+.40.已知:22x M +=,42x N x =+. (1)当0x >时,判断M N −与0的关系,并说明理由;(2)设2216x y N M=+时,若x 是正整数,求y 的正整数值.《分式的化简求值》练习题(一)参考答案1.解:原式21x x x x x +=⨯+1(1)x x x x x +=⨯+1x =.2.解:原式(2)2(2)(2)2a a a a a a a +=⋅−+−−222a a a =−−−1=.3. 解:2224214424x x x x x x x −+÷−−+−2(2)(2)2(2)1(2)(2)x x x x x x x +−−=⋅−−+21x x =−1x =.4. 解:231(1)22a a a a a +−−+÷++(1)(2)32[]22(1)(1)a a a a a a a a −+++=+⋅+++− 22122(1)(1)a a a a a a +++=⋅++−11a a +=−.5. 解:212(1)11a a a a ++÷−−211112a a a a a ++−−=⋅−2(1)(1)12a a a a a +−=⋅−1a =+.6. 解:()a b a b ab b a+÷−22a b a b ab ab +−=÷()()a b ab ab a b a b +=⋅+−1a b =−,当3a =,2b =时,原式1132==−. 7. 解:原式223(1)11(2)x x x x −−−=⋅−−2(2)(2)11(2)x x x x x +−−=−⋅−−22x x +=−−, 当3x =时,原式3232+=−−5=−.8. 解:原式2(3)21()(2)22a a a a a a −−=÷−−−−2(3)3(2)2a a a a a −−=÷−−2(3)2(2)3a a a a a −−=⋅−−3a a −=, 当4a =时,原式43144−==. 9. 解:原式2111(1)(1)a a a a a +−=÷++−2(1)(1)1a a a a a +−=⨯+1a a−=, 当3a =−时,原式31433−−==−.10. 解:原式23(3)11a a a a ++=÷++2311(3)a a a a ++=⋅++13a =+, 由分式有意义的条件可知:a 不能取1−,3−,故2a =,原式123=+15=. 11. 解:2292(1)693m m m m −÷−−+−2(3)(3)32(3)3m m m m m +−−−=÷−−3335m m m m +−=⋅−−35m m +=−, 当2m =时,原式235253+==−−.12. 解:原式2411[](1)(2)(1)(2)2x x x x x x x x −+−=+÷+−+−− 331(1)(2)2x x x x x −−=÷+−−3(1)2(1)(2)1x x x x x −−=⨯+−−31x =+,当1x =时,原式==.13. 解:原式2(2)(2)2(2)(2)x x x x x x −−−=⋅−+−2222x x x −=⋅−+22x =+, 当4x =−时,原式242=−+1=−.14. 解:原式(1)(1)(21)11a a a a a a +−=⨯−−−+21a a =−+1a =−+, 当3a =时,原式312=−+=−.15. 解:2212()ab b a b a b a b ÷+−+−2()()ab a b b a b a b a b −+=÷−+−()()ab a b a b a b a b+−=⋅−+ab =,当1a =,1b =−时,原式1)=51=−4=.16. 解:原式222112(1)a a a a a −−=⋅+−−−221121a a a a −=⨯+−−−2111a a =+−−31a =−; 因为1a =,2时分式无意义,所以3a =, 当3a =时,原式32=.17. 解:222244(1)x x x x x x −−+−÷−222(2)(1)x x x x x x −−−=÷−22(1)(2)x x x x x −−=⋅−12x x −=−, 当4x =时,原式4142−=−32=.18. 解:原式2244(2)()22(2)x x x x x x −−=+⋅−−−222x x x x−=⋅−x =, (2)0x x −≠,0x ∴≠,2x ≠,当1x =时,原式1=,当3x =时,原式3=.19. 解:22221124()11x x x x x x x−+−−÷−++112(2)()11(1)x x x x x x −−=−÷+++2(1)12(2)x x x x x −+=⋅+−2x =, 当6x =时,原式62=3=.20. 解:22111x x x x −−÷−2(1)(1)11x x x x x +−=⋅−−11x x +=−1x x x +−=1x =,当x ===. 21. 解:原式2(1)11a a a a −+−=−2211a a a a −+−=−2211a a a −−=−(21)(1)1a a a +−=−21a =+, 当5a =时,原式10111=+=.22. 解:原式1(1)(1)a a a a a++−=÷1(1)(1)a a a a a +=⋅+−11a =−,当1a =时,原式2==.23. 解:原式2121x x x x −+−=÷(1)(1)1x x x x x +−=⋅+1x =−,当1x =时,原式11=+−=24. 解:222244()4424x x x x x x x −−−÷−+−−2(2)4(2)(2)[](2)24x x x x x x x −+−=−⋅−−− 4(2)(2)()224x x x x x x +−=−⋅−−−4(2)(2)24x x x x x −+−=⋅−−2x =+, 2x =−,2或4时,原分式无意义,1x ∴=−,当1x =−时,原式121=−+=.25. 解:2212(1)244a a a a a a +−−÷−−+212(2)()22(2)a a a a a a a +−−=−÷−−−21(2)(2)2(2)a a a a a a +−−−=⨯−−212(2)2(2)a a a a a a +−+−=⨯−−23(2)2(2)a a a a −=⨯−−3a =, 当0a =,2a =时,原式没有意义,∴当2023a =时,332023a =.26. 解:原式32()()()()x y x x y x y x y x y +=−+−+−2()()()x y x y x y +=+−2x y =−, 当2x y =+时,原式212y y ==+−.27. 解:原式21(1)(3)(3)31x x x x x x x x +=⋅+−−⋅−+31x =+−2x =+, 当2x =时,原式224=+=.28. 解:原式111(1)(1)x x x x x −+−=⋅+−11x =+, 又1x ≠−,0,1,x ∴可以取==29. 解:原式2(3)(3)111[](1)312a a a a a a a −+−=⋅−⋅−−−+311()112a a a a +=−⋅−−+ 2112a a a +=⋅−+11a =−, 当2a =时,原式1121==−.30. 解:35(2)242a a a a −÷+−−−3(2)(2)52(2)2a a a a a −+−−=÷−− 2392(2)2a a a a −−=÷−−322(2)(3)(3)a a a a a −−=⋅−+−12(3)a =+126a =+, 当32a =−时,原式11332()62==⨯−+.31. 解:原式23(3)11a a a a −−=÷−−2311(3)a a a a −−=⋅−−13a =−, 由分式有意义的条件可知:a 不能取1,3,故1a =−,原式11134==−−−.32. 解:原式23244()22(2)x x x x x −=+÷−−−223(2)2x x x x −=⋅−2x x−=, 0x ≠且20x −≠,0x ∴≠且2x ≠,1x ∴=,则原式1211−==−.33. 解:原式22(3)(3)36(3)3x x x x x x x −+−+=÷−−333(3)x x x x x +−=⋅−+1x=,当x ==. 34. 解:22211()2111x x x x x x −+÷−+−−22(1)(1)11[](1)1x x x x x x +−−=−⨯−− 2111()11x x x x x+−=−⨯−−211x x x x −=⨯−1x =; x 是满足条件11x −的整数,且0x ≠且1x ≠,1x ∴=−,∴原式1=−.35. 解:22344(1)1a a a a a a−++−÷−−2213(2)()11(1)a a a a a a −−=−÷−−− 2(2)(2)(1)1(2)a a a a a a +−−=⨯−−(2)2a a a +=−222a a a +=−, 当113a =−时,原式得2221144(1)2(1)()2()2433331421512233a a a −+⨯−−+⨯−+====−−−−−.36. 解:原式28(2)2(2)(2)(2)2a a a a a a a −=÷−++−+28(2)(2)2(2)(2)2a a a a a a a +−=⋅−+−+ 8222a a =−++62a =+.当1a =,原式6====.37. 解:22424412x x x x x x x −+÷−−++−2(2)(2)1(2)22x x x x x x x +−+=⨯−−+− 122x x x x +=−−−12x =−,当2x =+==38. 解:21(1)11x x x ÷−−+21111x x =÷−+1(1)(1)(1)x x x =⨯++−11x =−;当1x =时,原式==39. 解:原式21(1)m m m m −−=÷21(1)m m m m −=⋅−11m =−,1m时,原式3===.40. 解:(1)0M N −,理由如下:22x M +=,42x N x =+, M N ∴−2422x x x +=−+24482(2)x x x x ++−=+2(2)2(2)x x −=+, 0x >,20x ∴+>,2(2)0x −, ∴2(2)02(2)x x −+, 即0M N −;(2)2216x y N M =+ 22164()22()2x x x x =+++ 2226416(2)(2)x x x x =+++ 2216(4)(2)x x x +=+ 2216(2)64(2)x x +−=+ 26416(2)x =−+, x 是正整数,y ∴的正整数值为:当2x =时,12y =,当6x =时,15y =.综上所述,y 的正整数值为12或15.。

分式化简求值练习题库(经典、精心整理)

分式化简求值练习题库(经典、精心整理)

1. 先化简,再求值:12112---x x ,其中x =-2. 2、先化简,再求值:,其中a=﹣1.3、(2011?綦江县)先化简,再求值:,其中x=.4、先化简,再求值:,其中.5先化简,再求值,其中x 满足x 2﹣x ﹣1=0.6、化简:ba ba b a b 3a -++-- 7、(2011?曲靖)先化简,再求值:,其中a=.8、(2011?保山)先化简211111x x x x -÷-+-(),再从﹣1、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值. 9、(2011?新疆)先化简,再求值:(+1)÷,其中x=2.10、先化简,再求值:3x –3 – 18x 2 – 9 ,其中x = 错误!–311、(2011?雅安)先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算..12、先化简,再求值:12-x x (xx 1--2),其中x =2.13、(2011?泸州)先化简,再求值:,其中.14、先化简22()5525x x xx x x -÷---,然后从不等组23212x x --≤⎧⎨<⎩的解集中,选取一个你认为符合题意的x 的值代入求值.15、先化简,再求值:62296422+-÷++-a a a a a ,其中5-=a .16、(2011?成都)先化简,再求值:232()111x x x x x x --÷+--,其中x =.17先化简。

再求值: 2222121111a a a a a a a +-+⋅---+,其中12a =-。

18. 先化简,再求值:⎝ ⎛⎭⎪⎫1+1x -2÷x 2-2x +1x 2-4,其中x =-5. 19. 先化简再计算:22121x x x x x x --⎛⎫÷- ⎪+⎝⎭,其中x 是一元二次方程2220x x --=的正数根.20 化简,求值: 111(11222+---÷-+-m m m m m m ) ,其中m=. 21、(1)化简:÷. (2)化简:22a b ab b a (a b )a a ⎛⎫--÷-≠ ⎪⎝⎭22、先化简,再求值:,其中.23请你先化简分式2223691,x 1211x x x x x x x +++÷+--++再取恰的的值代入求值. 24、(本小题8分)先化简再求值()121112222+--++÷-+a a a a a a 其中a=3+1 25、化简,其结果是.26.(11·辽阜新)先化简,再求值:(xx -2-2)÷x 2-16x 2-2x,其中x =3-4.27、 先化简,再求值:x 2+4x +4x 2-16÷x +22x -8-2xx +4,其中x =2.28、先化简,再求值:232()224x x xx x x -÷-+-,其中4x =. 29.先化简,再求值:2()11a aa a a +÷--,其中 1.a =+ 30、先化简,再求值:2211()11a a a a++÷--,其中a 31、(1)化简:. (2)2111x x x -⎛⎫+÷ ⎪⎝⎭(3)aa a a 1)1(-÷-32.(1)aba b a b b a +⋅++-)(2。

14 考点精练 分式化简求值(50题)(原卷版)

14  考点精练 分式化简求值(50题)(原卷版)

初二学生必会必考计算题分式化简求值(50题)1.先化简,再求值:(1−1a+1)÷a a 2−1,其中a =−12.2.先化简,再求值:a a−2+(a a−2−4a a 2−2),其中a =3.3.先化简,再求值:a a 2−1÷(1+1a−1),其中a =√3−π0.4.先化简,再求值:(1−1a−2)÷a−3a 2−4,其中a =−3. 5.先化简,再求值:a−1a 2+2a+1÷a−1a+1−1a−1,其中a=√2.6.先化简,再求值:a 2−4a+4a+1÷(3a+1−a +1),其中a =8.7.先化简,再求值:(2x +2)÷(x +1+2x+2x−1),其中x =−2.8.先化简,再求值:(a+2ab+b 2a )÷a 2−b 2a 2−ab ,其中a =﹣2,b =3.9.先化简,再求值:(1−2x−1)⋅x 2−x x 2−6x+9,其中x =2.10.先化简再求值:(x 2−2x+1x 2−1−1x )÷1x+1,再在−1,0,1,2中选择一个合适的数代入求值.11.先化简,再求值:(x x−1−1)÷x 2+2x+1x 2−1,其中x=-212.先化简,再求值:x 2+x x 2+2x+1÷x 2x 2−1,其中x =3.13.先化简,再代入求值:x 2x−2·(4x+x −4),其中x 2−2x −2=014.先化简,再求值: (1+1x−2)÷x−1x 2−2x+4 ,其中 x =6 .15.先化简,再求值:a 2−2ab+b 2a 2−b 2÷a 2−ab a −2a+b ,其中a =2,b =﹣1.16.先化简,再求值:(x x+1+1x−1)÷1x 2−1,其中x 是6的平方根.17.先化简,再求值: (2x+2x 2−1+1)÷x+1x 2−2x+1,其中x =4.18.先化简,再求值:(1x+1−11−x )÷1x 2−1,其中x =12.19.先化简,再求值: x 2−6x+9x−2 ÷(x +2﹣ 5x−2 ),其中x = −12.20.先化简,再求值:(2m 2−4m 2−1)÷m 2+2m m 2,其中m =(12)−1+(3.14−π)0.21.先化简 1a+1÷aa 2+2a+1 ,然后在0,1,-1中挑选一个合适的数代入求值.22.先化简:x 2+x x 2−2x+1÷(1+2x−1) ,再任选一个你喜欢的数作为x 的值代入求值.23.先化简(1−1a )÷a 2−1a 2+2a+1,再从−1,0,1,2中选择一个合适的数作为a 的值代入求值.24.先化简,再求值:b 2a 2−ab ÷(a 2−b 2a 2−2ab+b 2+a b−a ),其中a =(2022−π)0,b =13.25.先化简分式(1−1x−2)÷x 2−6x+92x−4,再从2≤x≤4中选一个合适的整数代入求值.26.先化简(1−1x−1)÷x 2−4x+4x 2−1,再从0,-2,-1,1中选择一个合适的数代入并求值.27.先化简(1−3a+2)÷a 2−2a+1a 2−4,再从-2,2,-1,1中选取一个恰当的数作为a 的值代入求值.28.先化简,再求值:x 2−2x+1x 2−1÷(1−3x+1),其中x 与2,3构成等腰三角形.29.先化简,再求值: a a+1 ÷(a ﹣1﹣ 2a−1a+1 ),并从﹣1,0,1,2四个数中,选一个合适的数代入求值30.先化简,再求值: (a+2a 2−2a −a−1a 2−4a+4)÷a−4a ,其中a 满足 a 2−4a +1=0 .31.先化简,再求值:(1−2x−1)÷x 2−5x+6x−1,其中x 从0,1,2,3四个数中适当选取.32.先化简,再求值: (1−4a+2)÷a 2−4a+42a−4,其中a = 2−1+(π−2022)0 .33.先化简,再求值 : (1−1a+1)÷a a 2−1并在1,-1,2,0这四个数中取一个合适的数作为a 的值代入求值.34.先化简,再求值:m m 2−9÷[(m +3)0+3m−3] ,其中 m =−2 .35.已知分式A =1−m m 2−1÷(1+1m−1).先化简A ,再从−1、0、1、2中选一个合适的数作为m 的值代入A 中,求A 的值.36.先化简: x 2−4x+42x−x 2÷(2x −4+x 2x) ,再从 −2 ,0,1,2中选取一个合适的 x 的值代入求值.37.先化简:x−3x 2−1⋅x 2+2x+1x−3−(1x−1+1),其中0≤x ≤3,且x 为整数,请选择一个你喜欢的数x 代入求值.38.先化简,再求值:(a a+2+9−4a a 2−4)÷a−3a−2,其中a 是已知两边分别为2和3的三角形的第三边长,且a 是整数.39.先化简,再求值: (a+2a 2−2a +1−a a 2−4a+4)÷a−4a ,并从 0<a <4 中选取合适的整数代入求值.40.先化简,再求值: b 2a 2−ab ÷(a 2−b 2a 2−2ab+b 2+a b−a ) ,其中 a =−2 , b =13 . 41.先化简,再求值:(1+ 1x+2 )÷ x 2−9x−3,其中x = √3 ﹣2.42.先化简 x 2−2x x 2−4÷(x −2−2x−4x+2) ,然后从-2,2,5中选取一个的合适的数作为x 的值代入求值.43.先化简,再求值: (2a −4a a−2)÷a−4a 2−4a+4,其中 a 与2,3构成 △ABC 的三边长,且 a 为整数.44.有一道题:“先化简,再求值:(x−2x+2+4x x 2−4)÷1x 2−4,其中x= -6.”小张做题时把x= -6错抄成x=6,但是他的计算结果却是正确的.请你阐明原因.45.先化简,再求值:(x 2+x x−1−x −1)÷x 2+x x 2−2x+1,其中x 为不等式组{2(2x +3)−x <12,x ≥−2的整数解,挑一个合适的x 代入求值.46.先化简: (a 2−1a 2−2a+1−a −1)÷a+1a−1 ,然后在 a ≤2 的非负整数集中选取一个合适的数作为a 的值代入求值.47.先化简,再求值: x 2−4x+4x 2−x ÷(x +1−3x−1) ,其中实不等x 式 2x <3(x +1) 的非正整数解.48.先化简分式:(1﹣ x x−1 )÷ x+1x 2−x ,然后在﹣2,﹣1,0,1,2中选一个你认为合适的x 的值,代入求值.49.先化简,再求值: (x x 2+x −1)÷x 2−1x 2+2x+1,其中x 的值从不等式组 {−x ≤12x −1<4的整数解中选取.50.有这样一道题:先化简再求值,“x 2−2x+1x2−1÷x−1x2+x−x+1,其中x=2021.”小华同学把条件“x=2021”错抄成“x=2012”,但他的计算结果也是正确的,请通过计算说明这是怎么回事.。

分式的化简求值经典练习题(带答案)

分式的化简求值经典练习题(带答案)

精心整理分式的化简内容基本要求略高要求较高要求分式的概念了解分式的概念,能确定分式有意义的条件能确定使分式的值为零的条件分式的性质理解分式的基本性质,并能进行简单的变型能用分式的性质进行通分和约分分式的运算理解分式的加、减、乘、除运算法则会进行简单的分式加、减、乘、除运算,会运用适当的方法解决与分式有关的问题一、比例的性质:⑴比例的基本性质:a c adbc bd,比例的两外项之积等于两内项之积.⑵更比性(交换比例的内项或外项):( ) ( )( )ab c d a c d c bdb a d bc a 交换内项交换外项同时交换内外项⑶反比性(把比例的前项、后项交换):a c b d b d a c ⑷合比性:a c abcd bd b d ,推广:acakb ckd b d b d(k 为任意实数)⑸等比性:如果....a c mb d n,那么......a c m a bdnb(...0bdn)二、基本运算分式的乘法:a ca cb d b d 分式的除法:ac ad a d bd bcb c 乘方:()n n n nn a a a a a a a a bb bb b bbb个个n 个=(n 为正整数)整数指数幂运算性质:⑴m n m na a a (m 、n 为整数)⑵()m n mna a (m 、n 为整数)⑶()n n nab a b (n 为整数) ⑷m n m n a a a (0a ,m 、n 为整数)知识点睛中考要求负整指数幂:一般地,当n 是正整数时,1nnaa(0a ),即na(0a )是na的倒数分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,a b a bccc 异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bcbdbdbdbd 分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.结果以最简形式存在.一、分式的化简求值【例1】先化简再求值:2111x xx,其中2x 【考点】分式的化简求值【难度】2星【题型】解答【关键词】2010年,湖南郴州【解析】原式111x x x x x 111x x x x当2x时,原式112x【答案】12【例2】已知:2221()111a aa a aa a ,其中3a 【考点】分式的化简求值【难度】2星【题型】解答【关键词】【解析】222221(1)()4111(1)a aa a a aaa a 【答案】4【例3】先化简,再求值:22144(1)1aa aaa,其中1a 例题精讲【考点】分式的化简求值【难度】2星【题型】解答【关键词】2010年,安徽省中考【解析】2221144211122a a aa aa a aaa a a当1a时,原式112123a a【答案】13【例4】先化简,再求值:2291333x xxxx其中13x.【考点】分式的化简求值【难度】2星【题型】解答【关键词】2010年,湖南省长沙市中考试题【解析】原式33133xx xx x当13x时,原式3【答案】3【例5】先化简,再求值:211(1)(2)11xxx,其中6x.【考点】分式的化简求值【难度】2星【题型】解答【关键词】2010年,湖北省十堰市中考试题【解析】原式111121x xx x x 当6x时,原式2624.【答案】4【例6】先化简,后求值:22121(1)24xx xx,其中5x.【考点】分式的化简求值【难度】2星【题型】解答【关键词】2010年,广东省肇庆市中考试题【解析】22121(1)24xx x x=221(1)2(2)(2)x x xxx =21(2)(2)2(1)x x x x x =21xx 当5x时,原式21x x521512.【答案】12【例7】先化简,再求值:532224x x xx,其中23x .【考点】分式的化简求值【难度】2星【题型】解答【关键词】2010年,湖北省武汉市中考试题【解析】原式2453(3)(3)2(2)22(2)22(3)3xx x x x xxxx x,当23x时,原式22。

分式的化简求值精选题44道

分式的化简求值精选题44道

分式的化简求值精选题44道一.选择题(共20小题)1.若分式,则分式的值等于()A.﹣B.C.﹣D.2.如果a2+2a﹣1=0,那么代数式(a﹣)•的值是()A.﹣3B.﹣1C.1D.33.已知m2+n2=n﹣m﹣2,则﹣的值等于()A.1B.0C.﹣1D.﹣4.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0B.1或﹣1C.2或﹣2D.0或﹣25.如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2C.3D.46.已知x2+3x+1=0,则x4+=()A.81B.64C.47D.307.已知abc=1,a+b+c=2,a2+b2+c2=3,则的值为()A.﹣1B.C.2D.8.如果a2﹣ab﹣1=0,那么代数式的值是()A.﹣1B.1C.﹣3D.39.如果a2+3a﹣2=0,那么代数式()的值为()A.1B.C.D.10.已知x=﹣1,y=+1,那么代数式的值是()A.2B.C.4D.211.如果m2+2m﹣2=0,那么代数式(m+)•的值是()A.﹣2B.﹣1C.2D.312.如果a2+3a+1=0,那么代数式()•的值为()A.1B.﹣1C.2D.﹣213.如果a+b=﹣,那么代数式(﹣a)•的值为()A.﹣B.C.3D.214.当|a|=3时,代数式(1﹣)÷的值为()A.5B.﹣1C.5或﹣1D.015.若m+n﹣p=0.则m(﹣)+n(﹣)﹣p(+)的值是()A.﹣3B.﹣1C.1D.316.若=≠0,则代数式(+1)÷的值为()A.2B.1C.﹣1D.﹣2 17.若,则的值为()A.B.3C.5D.718.如果x2+x﹣3=0,那么代数式(﹣1)÷的值为()A.﹣B.0C.D.319.若,则等于()A.﹣1B.1C.2D.320.已知abc≠0且a+b+c=0,则a()+b()+c()的值为()A.0B.1C.﹣1D.﹣3二.填空题(共17小题)21.已知=,则代数式的值是.22.若a2+5ab﹣b2=0,则的值为.23.已知+=3,则代数式的值为.24.若x2+3x=﹣1,则x﹣=.25.数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题:已知实数a,b同时满足a2+2a=b+2,b2+2b=a+2,求代数式的值.结合他们的对话,请解答下列问题:(1)当a=b时,a的值是.(2)当a≠b时,代数式的值是.26.当m=2015时,计算:﹣=.27.已知=,则的值为.28.已知a是满足不等式组的整数解,求代数式:(1+)÷的值.29.若x、y、z满足3x+7y+z=1和4x+10y+z=2001,则分式的值为.30.如果a2﹣a﹣1=0,那么代数式(1﹣)÷的值是.31.如果代数式a2﹣a﹣1=0,那么代数式(a﹣)的值为.32.如果m=n+4,那么代数式的值是.33.已知m﹣n=2,则•(﹣)的值为.34.已知:a2﹣7a+1=0,则a2+=.35.已知a2+=5,则a+的值是.36.若x2﹣3x=﹣5,则x+=.37.如果a﹣3b=0,那么代数式的值是.三.解答题(共7小题)38.先化简,再求值:(x﹣2+)÷,其中x=﹣.39.先化简:(﹣a+1)÷,并从0,﹣1,2中选一个合适的数作为a的值代入求值.40.先化简,再求值:÷(2+),其中x=﹣1.41.先化简:(﹣)÷,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a的值代入求值.42.先化简,再求值:(﹣)÷,其中x满足x2﹣2x﹣2=0.43.先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.44.先化简,再求值:(1﹣)÷,从﹣1,2,3中选择一个适当的数作为x值代入.分式的化简求值精选题44道参考答案与试题解析一.选择题(共20小题)1.若分式,则分式的值等于()A.﹣B.C.﹣D.【分析】根据已知条件,将分式整理为y﹣x=2xy,再代入则分式中求值即可.【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.【点评】由题干条件找出x﹣y之间的关系,然后将其整体代入求出答案即可.2.如果a2+2a﹣1=0,那么代数式(a﹣)•的值是()A.﹣3B.﹣1C.1D.3【分析】根据分式的减法和乘法可以化简题目中的式子,然后对a2+2a﹣1=0变形即可解答本题.【解答】解:(a﹣)•===a(a+2)=a2+2a,∵a2+2a﹣1=0,∴a2+2a=1,∴原式=1,故选:C.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.3.已知m2+n2=n﹣m﹣2,则﹣的值等于()A.1B.0C.﹣1D.﹣【分析】把所给等式整理为2个完全平方式的和为0的形式,得到m,n的值,代入求值即可.【解答】解:由m2+n2=n﹣m﹣2,得(m+2)2+(n﹣2)2=0,则m=﹣2,n=2,∴﹣=﹣﹣=﹣1.故选:C.【点评】考查分式的化简求值,把所给等式整理为2个完全平方式的和为0的形式是解决本题的突破点;用到的知识点为:2个完全平方式的和为0,这2个完全平方式的底数为0.4.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0B.1或﹣1C.2或﹣2D.0或﹣2【分析】根据a、b、c是非零实数,且a+b+c=0可知a,b,c为两正一负或两负一正,按两种情况分别讨论代数式的可能的取值,再求所有可能的值即可.【解答】解:由已知可得:a,b,c为两正一负或两负一正.①当a,b,c为两正一负时:;②当a,b,c为两负一正时:.由①②知所有可能的值为0.应选A.【点评】本题考查了分式的化简求值,涉及到绝对值、非零实数的性质等知识点,注意分情况讨论未知数的取值,不要漏解.5.如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2C.3D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.6.已知x2+3x+1=0,则x4+=()A.81B.64C.47D.30【分析】根据x2+3x+1=0,可以得到x+的值,然后平方变形,再平方,再变形,即可求得所求式子的值.【解答】解:∵x2+3x+1=0,∴x+3+=0,∴x+=﹣3,∴(x+)2=9,∴x2+2+=9,∴x2+=7,∴(x2+)2=49,∴x4+2+=49,∴x4+=47,故选:C.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.7.已知abc=1,a+b+c=2,a2+b2+c2=3,则的值为()A.﹣1B.C.2D.【分析】由a+b+c=2,a2+b2+c2=3,利用两个等式之间的平方关系得出ab+bc+ac=;再根据已知条件将各分母因式分解,通分,代入已知条件即可.【解答】解:由a+b+c=2,两边平方,得a2+b2+c2+2ab+2bc+2ac=4,将已知代入,得ab+bc+ac=;由a+b+c=2得:c﹣1=1﹣a﹣b,∴ab+c﹣1=ab+1﹣a﹣b=(a﹣1)(b﹣1),同理,得bc+a﹣1=(b﹣1)(c﹣1),ca+b﹣1=(c﹣1)(a﹣1),∴原式=++=====﹣.故选:D.【点评】本题考查了分式的化简其中计算,解题时,充分运用已知条件变形,使分式能化简通分,得出结果.8.如果a2﹣ab﹣1=0,那么代数式的值是()A.﹣1B.1C.﹣3D.3【分析】根据分式的加法和乘法可以化简题目中的式子,然后根据a2﹣ab﹣1=0,即可求得所求式子的值.【解答】解:===a(a﹣b)=a2﹣ab,∵a2﹣ab﹣1=0,∴a2﹣ab=1,∴原式=1,故选:B.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.9.如果a2+3a﹣2=0,那么代数式()的值为()A.1B.C.D.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=•=,由a2+3a﹣2=0,得到a2+3a=2,则原式=,故选:B.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.10.已知x=﹣1,y=+1,那么代数式的值是()A.2B.C.4D.2【分析】先将分式化简,再代入值求解即可.【解答】解:原式==x+y当x=﹣1,y=+1,原式=﹣1++1=2.故选:D.【点评】本题考查了分式的化简求值,解决本题的关键是掌握分式的化简.11.如果m2+2m﹣2=0,那么代数式(m+)•的值是()A.﹣2B.﹣1C.2D.3【分析】先把括号内通分,再把分子分解后约分得到原式=m2+2m,然后利用m2+2m﹣2=0进行整体代入计算.【解答】解:原式=•=•=m(m+2)=m2+2m,∵m2+2m﹣2=0,∴m2+2m=2,∴原式=2.故选:C.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.12.如果a2+3a+1=0,那么代数式()•的值为()A.1B.﹣1C.2D.﹣2【分析】根据分式的加法和乘法可以化简题目中的式子,然后根据a2+3a+1=0,即可求得所求式子的值.【解答】解:()•===2a(a+3)=2(a2+3a),∵a2+3a+1=0,∴a2+3a=﹣1,∴原式=2×(﹣1)=﹣2,故选:D.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.13.如果a+b=﹣,那么代数式(﹣a)•的值为()A.﹣B.C.3D.2【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a+b的值代入即可.【解答】解:原式=(﹣)•=•=•=﹣(a+b),当a+b=﹣时,原式=.故选:B.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.14.当|a|=3时,代数式(1﹣)÷的值为()A.5B.﹣1C.5或﹣1D.0【分析】先根据分式的混合运算顺序和运算法则化简原式,再由分式有意义的条件和绝对值性质得出a=﹣3,最后代入计算可得.【解答】解:原式=•=a+2,∵|a|=3,且a﹣3≠0,∴a≠3,当a=﹣3时,原式=﹣3+2=﹣1,故选:B.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.15.若m+n﹣p=0.则m(﹣)+n(﹣)﹣p(+)的值是()A.﹣3B.﹣1C.1D.3【分析】先由m+n﹣p=0,得出m﹣p=﹣n,m+n=p,n﹣p=﹣m,再根据m(﹣)+n(﹣)﹣p(+)=+﹣代入化简即可.【解答】解:∵m+n﹣p=0,∴m﹣p=﹣n,m+n=p,n﹣p=﹣m,∴m(﹣)+n(﹣)﹣p(+)=﹣+﹣﹣﹣=+﹣=+﹣=﹣1﹣1﹣1=﹣3;故选:A.【点评】此题考查了分式的化简求值,用到的知识点是约分、分式的加减,关键是把原式变形为+﹣.16.若=≠0,则代数式(+1)÷的值为()A.2B.1C.﹣1D.﹣2【分析】根据分式的加法和除法可以化简题目中的式子,然后根据=≠0,即可解答本题【解答】解:(+1)÷===,∵=≠0,∴2b=3a,∴原式===2,故选:A.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.若,则的值为()A.B.3C.5D.7【分析】法1:已知等式整理得到关系式5=(+)(a+b),计算即可求出值;法2:已知等式左边通分并利用同分母分式的加法法则运算,整理后得到a2+b2=3ab,原式变形后代入计算即可求出值.【解答】解:法1:∵+=,∴5=(+)(a+b)=2++,则+=5﹣2=3;法2:已知等式变形得:=,即(a+b)2=5ab,整理得:a2+2ab+b2=5ab,即a2+b2=3ab,则+===3.故选:B.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.如果x2+x﹣3=0,那么代数式(﹣1)÷的值为()A.﹣B.0C.D.3【分析】先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.【解答】解:原式=()÷=•=∵x2+x﹣3=0,∴x2+x=3,∴原式=,故选:C.【点评】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.19.若,则等于()A.﹣1B.1C.2D.3【分析】根据分式的通分和完全平方公式可以将所求式子化简,然后根据,可以得到xy和(x+y)2的关系,然后代入化简后的式子即可解答本题.【解答】解:==,∵,∴,∴xy=(x+y)2,当xy=(x+y)2时,原式===﹣1,故选:A.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.已知abc≠0且a+b+c=0,则a()+b()+c()的值为()A.0B.1C.﹣1D.﹣3【分析】先利用乘法的分配律得到原式=+++++,再把同分母相加,然后根据abc≠0且a+b+c=0得到a+c=﹣b,b+c=﹣a,a+b=﹣c,把它们代入即可得到原式的值.【解答】解:原式=+++++=++∵abc≠0且a+b+c=0,∴a+c=﹣b,b+c=﹣a,a+b=﹣c,∴原式=﹣1﹣1﹣1=﹣3.故选:D.【点评】本题考查了分式的化简求值:先把分式根据已知条件进行变形,然后利用整体代入的方法进行化简、求值.二.填空题(共17小题)21.已知=,则代数式的值是9.【分析】由已知条件变形得到a﹣b=3ab,再把原式变形得到原式=,接着把a﹣b=3ab代入,然后把分子分母合并后,最后约分即可.【解答】解:∵=,∴a﹣b=3ab,∴原式===9.故答案为9.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.22.若a2+5ab﹣b2=0,则的值为5.【分析】先根据题意得出b2﹣a2=5ab,再由分式的减法法则把原式进行化简,进而可得出结论.【解答】解:∵a2+5ab﹣b2=0,∴b2﹣a2=5ab,∴﹣===5.故答案为:5.【点评】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.23.已知+=3,则代数式的值为﹣.【分析】已知等式左边通分并利用同分母分式的加法法则计算,整理得到a+2b=6ab,原式变形后代入计算即可求出值.【解答】解:∵+=3,∴=3,即a+2b=6ab,则原式===﹣.故答案为:﹣【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.24.若x2+3x=﹣1,则x﹣=﹣2.【分析】根据分式的减法可以将所求式子化简,然后根据x2+3x=﹣1,可以得到x2=﹣1﹣3x,代入化简后的式子即可解答本题.【解答】解:x﹣==,∵x2+3x=﹣1,∴x2=﹣1﹣3x,∴原式====﹣2,故答案为:﹣2.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.25.数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题:已知实数a,b同时满足a2+2a=b+2,b2+2b=a+2,求代数式的值.结合他们的对话,请解答下列问题:(1)当a=b时,a的值是﹣2或1.(2)当a≠b时,代数式的值是7.【分析】(1)将a=b代入方程,然后解一元二次方程求解;(2)联立方程组,运用加减消元法并结合完全平方公式,求得a2+b2和ab的值,然后将原式通分化简,代入求解.【解答】解:(1)当a=b时,a2+2a=a+2,a2+a﹣2=0,(a+2)(a﹣1)=0,解得:a=﹣2或1,故答案为:﹣2或1;(2)联立方程组,将①+②,得:a2+b2+2a+2b=b+a+4,整理,得:a2+b2+a+b=4③,将①﹣②,得:a2﹣b2+2a﹣2b=b﹣a,整理,得:a2﹣b2+3a﹣3b=0,(a+b)(a﹣b)+3(a﹣b)=0,(a﹣b)(a+b+3)=0,又∵a≠b,∴a+b+3=0,即a+b=﹣3④,将④代入③,得a2+b2﹣3=4,即a2+b2=7,又∵(a+b)2=a2+2ab+b2=9∴ab=1,∴,故答案为:7.【点评】本题考查分式的化简求值及完全平方公式的运用,掌握完全平方公式的公式结构和分式的化简计算法则准确计算是解题关键.26.当m=2015时,计算:﹣=2013.【分析】原式利用同分母分式的减法法则计算,约分得到最简结果,把m的值代入计算即可求出值.【解答】解:原式===m﹣2,当m=2015时,原式=2015﹣2=2013.故答案为:2013.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.27.已知=,则的值为.【分析】根据分式的除法可以化简题目中的式子,然后将=代入化简后的式子即可解答本题.【解答】解:=﹣1,当=,原式=﹣1=,故答案为:.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.28.已知a是满足不等式组的整数解,求代数式:(1+)÷的值.【分析】根据分式的加法和除法可以化简题目中的式子,然后根据a是满足不等式组的整数解,可以得到a的值,然后选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:(1+)÷===,由不等式组,得0<a≤2,∵a是满足不等式组的整数解,(a+1)(a﹣1)≠0,∴a=2,当a=2时,==,故答案为:.【点评】本题考查分式的化简求值、一元一次不等式组的整数解,解答本题的关键是明确分式化简求值的方法.29.若x、y、z满足3x+7y+z=1和4x+10y+z=2001,则分式的值为﹣3999.【分析】分式=,视x+3y与x+y+z为两个整体,对方程组进行整体改造后即可得出答案.【解答】解:由x、y、z满足3x+7y+z=1和4x+10y+z=2001,得出:,解得:,∴=,==﹣3999.故答案为:﹣3999.【点评】本题考查了分式的化简求值与三元一次方程组的应用,难度较大,关键是视x+3y 与x+y+z为两个整体,对方程组进行整体改造.30.如果a2﹣a﹣1=0,那么代数式(1﹣)÷的值是1.【分析】首先计算括号里面的加法,然后再算括号外的除法,化简后可得答案.【解答】解:原式=(﹣)•=•=a(a﹣1)=a2﹣a,∵a2﹣a﹣1=0,∴a2﹣a=1,∴原式=1,故答案为:1.【点评】此题主要考查了分式的化简求值,关键是正确把分式进行化简.31.如果代数式a2﹣a﹣1=0,那么代数式(a﹣)的值为3.【分析】根据题意得到a2﹣a=1,根据分式的混合运算法则把原式化简,代入计算即可.【解答】解:∵a2﹣a﹣1=0,∴a2﹣a=1,(a﹣)===3a2﹣3a=3(a2﹣a)=3,故答案为:3.【点评】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.32.如果m=n+4,那么代数式的值是8.【分析】先化简分式,然后将m﹣n的值代入计算即可.【解答】解:原式===2(m﹣n),∵m=n+4,∴m﹣n=4,∴原式=2×4=8,故答案为8.【点评】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.33.已知m﹣n=2,则•(﹣)的值为﹣.【分析】根据分式的混合运算法则把原式化简,整体代入计算即可.【解答】解:原式=•=•=,当m﹣n=2,即n﹣m=﹣2时,原式=﹣,故答案为:﹣.【点评】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.34.已知:a2﹣7a+1=0,则a2+=47.【分析】先根据已知方程得出a+=7,再两边平方即可得出答案.【解答】解:∵a2﹣7a+1=0,∴a﹣7+=0,则a+=7,∴(a+)2=49,∴a2+2+=49,则a2+=47,故答案为:47.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的基本性质和完全平方公式.35.已知a2+=5,则a+的值是.【分析】先根据完全平方公式得出(a+)2=a2++2•a•,代入后求出(a+)2=7,再开平方即可.【解答】解:∵a2+=5,∴(a+)2=a2++2•a•=5+2=7,∴a+=±=,故答案为:±.【点评】本题考查了完全平方公式和分式的化简与求值,能正确根据完全平方公式进行变形是解此题的关键.36.若x2﹣3x=﹣5,则x+=2.【分析】求出x2﹣x=﹣5+2x,通分得出原式=,再求出答案即可.【解答】解:∵x2﹣3x=﹣5,∴x2﹣x=﹣5+2x,∴x+======2,故答案为:2.【点评】本题考查了分式的混合运算和求值,能选择适当的方法求解是解此题的关键.37.如果a﹣3b=0,那么代数式的值是.【分析】根据分式的运算法则得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:当a﹣3b=0时,即a=3b,∴原式=•=•===.故答案为:.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.三.解答题(共7小题)38.先化简,再求值:(x﹣2+)÷,其中x=﹣.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.39.先化简:(﹣a+1)÷,并从0,﹣1,2中选一个合适的数作为a的值代入求值.【分析】根据分式的加法和除法可以化简题目中的式子,然后在0,﹣1,2中选一个使得原分式有意义的值代入即可解答本题.【解答】解:(﹣a+1)÷===,当a=0时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.40.先化简,再求值:÷(2+),其中x=﹣1.【分析】先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解,约分后得到原式=,再把x的值代入计算.【解答】解:原式=÷=÷=•=,当x=﹣1时,原式==.【点评】本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.也考查了二次根式.41.先化简:(﹣)÷,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a的值代入求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•===,当a=﹣3,﹣1,0,1时,原式没有意义,舍去,当a=﹣2时,原式=﹣.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.42.先化简,再求值:(﹣)÷,其中x满足x2﹣2x﹣2=0.【分析】先根据分式的混合运算顺序和运算法则化简原式,再由x2﹣2x﹣2=0得x2=2x+2=2(x+1),整体代入计算可得.【解答】解:原式=[﹣]÷=•=,∵x2﹣2x﹣2=0,∴x2=2x+2=2(x+1),则原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.43.先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.【分析】先化简分式,然后根据分式有意义的条件即可求出m的值,从而可求出原式的值.【解答】解:原式=(﹣)×=×﹣×=﹣=,∵m≠±2,0,∴当m=3时,原式=3【点评】本题考查分式的化简求值,解题的关键是熟练运用分式的运算法则,本题属于基础题型.44.先化简,再求值:(1﹣)÷,从﹣1,2,3中选择一个适当的数作为x值代入.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式=•=,当x=3时,原式==3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式的化简求值练习50题
1、先化简,再求值:(1﹣
)÷,其中12x =.
2、先化简,再求值:2121(1)1a a a a
++-+g ,其中1a =.
3、先化简,再求值:22(1)2()11x x x x x
+÷---,其中x =
4、先化简,再求值:211(1)x x x -+÷,其中12
x =
5先化简,再求值22122()121
x x x x x x x x ----÷+++,其中x 满足x 2﹣x ﹣1=0.
6、先化简22144(1)11
x x x x -+-÷--,然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.
7、先化简,再求值:2222211221
a a a a a a a a -+--÷+++,其中2a =a .
8、先化简211111
x x x x -÷-+-(),再从﹣1、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值.
9、先化简,再求值:2(1)11
x x x x +÷--,其中x =2.
10、先化简,再求值:231839
x x ---,其中3x =。

11、先化简242()222x x x x x
++÷--,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算..
12、先化简,再求值:21(2)1x x x x
---g ,其中x =2.
13、先化简,再求值:211()1211
x x x x x x ++÷--+-
,其中x =
14、先化简22()5525x x x x x x -÷---,然后从不等组23212
x x --≤⎧⎨<⎩的解集中,选一个你认为符合题意的x 的值代入求值.
15、先化简,再求值:6
2296422+-÷++-a a a a a ,其中5-=a .
16、先化简,再求值:232(
)111
x x x x x x --÷+--
,其中x =.
17、先化简。

再求值: 2222121111a a a a a a a +-+⋅---+,其中12
a =-。

18、先化简,再求值:22121(1)24
x x x x -++÷--,其中x =-5.
19. 先化简再计算:22121()x x x x x x
--÷-+,其中x 是一元二次方程2220x x --=的正数根.
20、化简,求值: 111(1
1222+---÷-+-m m m m m m ) ,其中m =.
3
21、已知x 、y 满足方程组33814x y x y -=⎧⎨-=⎩,先将2x xy xy x y x y +÷--化简,再求值。

22、先化简,再求值:22121(1)1
x x x x -+-÷-,其中x =
23、先化简22236911211
x x x x x x x +++÷+--++,再取一个合适的x 的值代入求值。

24、先化简再求值:()1
21112222+--++÷-+a a a a a a ,其中a =3+1
25、先化简,再求代数式31922-÷-x x 的值,其中,x =5.
26.先化简,再求值:2216(2)22x x x x x
--÷--,其中4x =.
27、先化简,再求值:232()224
x x x x x x -÷-+-,其中4x =.
28、先化简,再求值:22442216284
x x x x x x x +++÷---+,其中2x =.
29.先化简,再求值:2(
)11a a a a a
+÷--,其中 1.a =
30、先化简,再求值:2211(
)11a a a a
++÷--,其中a
31、先化简,再求值:()22111a a a ⎛⎫-+÷+ ⎪+⎝⎭,其中1a .
32.先化简,再求值:
2121-1a a a ++-,其中2
1=a .
33、先化简222111x x x x x ++---,再选一个合适的x 值代入求值.
34.当2x =-时,求22111
x x x x ++++的值.
35、先化简,再把 x 取一个你最喜欢的数代入求值:2
)22444(22-÷+-++--x x x x x x x
36.先化简,再选择一个你喜欢的数代入求值:2220111(1)211
a a a a a +÷+-+-
37、先化简,再求值:a
b a b a b b a +⋅++-)(2,其中,1x =
38、化简(
)÷.再从1,2,3中选一个你认为合适的数作为a 的值代
入求值.
39、先化简,再求值:221(
)a b a b a b b a -÷-+-.其中:2,1a b ==.
40、先化简,再求值,(
+)÷,其中x=2.
41.先将代数式1
1)(2+⨯
+x x x 化简,再从-1,1两数中选取一个适当的数作为x 的值代入求值.
42、先化简再求值:22121(1)24
x x x x ++-÷+-,其中3x =-。

43.先化简,再求值:)4(22x
x x x x -÷-,其中x =3.
44.先化简,再求值:232244()()442x y y xy x x xy y x y -⋅+++-
,其中11
x y ⎧=⎪⎨=⎪⎩
45、先化简,再求值:(a ﹣
)÷•,其中a 的值是在﹣2<x≤3内的一个整数
46、先化简,再求值:x
x x x +++2212÷(2x — x x 2
1+)其中,x =2+1
47、先化简,再求值:2
2()x y xy y x x x
--÷-,其中x =2,y =-1.
48、先化简化式,再选择一个合适的值代入求值:
49、先化简,再求值:a
a a a 1)1(-÷-
,其中x =
50、先化简,再求值:211(1)22x x x -÷-++,其中13
x =.。

相关文档
最新文档