2020年湖南省普通高中学业水平考试合格性考试数学试卷
2020年湖南省普通高中学业水平考试样卷

2020年湖南省普通高中学业水平考试样卷一、选择题(共本大题10个小题,每小题4分,共40分,每小题只有一个正确选项)1.下列几何体中为圆锥的是( )2.已知集合A a A ∈=4},,3,2,1{,则=a ( ) A.1 B.2 C.3 D.43.函数x y 2sin =的最小正周期是( ) A.π4 B.π2 C.π D.2π 4.某班有男生30人,女生20人,现用分层抽样的方法从中抽取10人参加一项活动,则抽取的男生的人数为( )A.5B.6C.7D.8 5.为了得到函数y =cos(x +π4)的图象,只需将y =cosx 的图象向左平移( ) A.12个单位长度 B.π2个单位长度 C.14个单位长度 D.π4个单位长度6.已知向量)0,2(),1,1(==b a ,则=⋅b a ( )A.0B.1C.2D.3 7.已知R c b a ∈>,,则下列不等式恒成立的是( )A.c b b a +>+B.bc ac >C.c b c a -<-D.22b a < 8.函数xx f 2)(=的图象大致为( )9.设ABC ∆的内角C B A ,,所对的边分别为c b a ,,,若120,2===C b a ,则=c ( ) A.2 B.22 C.3 D.3210.已知直线043=++y x 与圆心在)0,2(的圆C 相切,则圆C 的方程为( ) A.3)2(22=+-y x B.9)2(22=+-y x C.3)2(22=++y x D.9)2(22=++y x二、填空题(本大题共5个小题,每小题4分,共20分) 11.若则1log 2=x ,则=x13.已知数列{a n }满足a 1=1,且a n+1−a n =2,a n =__________________.14.若关于x 的不等式0))((≤--n x m x 的解集为}42|{≤≤x x ,则=+n m . 15.已知棱长为2的正方体的顶点都在球面上,则球的表面积为___________.三、解答题(本大题共4小题,共40分,解答应写了相应的文字说明,证明过程及演算步骤) 16.(本小题10分)甲乙两个学习小组各有7名同学,在某次数学测试中,测试成绩的茎叶图如图所示. (1)求甲组同学成绩的中位数和乙组同学成绩的众数;(2)从这次测试成绩在90分以上的学生中,随机抽取1名学生,求抽到的这名学生来自甲组的概率.17. (本小题10分) 已知α为锐角,且sinα=45(1)求cosα的值; (2)求sin(2α+π4)的值.18. (本小题10分)如图所示,三棱柱111C B A ABC -中,⊥1AA 底面ABC ,AC AB ⊥. (1)求证:⊥AB 平面11A ACC ;(2)已知4,3==AC AB ,且异面直线1BB 与C A 1所成的角为 45,求三棱柱111C B A ABC -的体积.CABA 1B 1C 119. (本小题10分)已知二次函数1)1(2)(2--+=x a ax x f . (1)若)(x f 为偶函数,求a 的值;(2)判断函数)(x f 在区间)2,0(内是否有零点,请说明理由; (3)已知函数)22)((sin ππ<<-=x x f y 存在最小值)(a h ,求)(a h 的最大值.。
2020年湖南省普通高中学业水平合格性仿真考试数学试卷参考答案

设'3%3-%.则,3% 槡.&3.&%槡&.A789-',3%槡.&.%槡&&!
!0!解!依题意&$B$!$$&3$!$$#63$!$!!3$!$!&63%3$!$$63$!$$&6%!解得%%$!$$;6!
&由图可知最高矩形的数据组为 &&$&"$A众数为&&$&3&"$%&'$!
!
2020年湖南省仿普真通考高中数学学业参水考平答合案格!性第仿!真页考试数学试卷
'规格在 &&$&"$的钢材在四组钢材中所占比例为
$!$!&63$!$$$;!$6!3&$6!$$63$!$$&6%!6!
A规格在 &&$&"$的钢材中应抽取!!B!6!%6根!
!#!解!*%!时$%%#%1'%3!1"%'%&1''%1"%$可得'%1"'%3!%$ @'%.$A'%%"解得%%-./'"!
&令'%%6@%(1!!A6(
! '
'
由$%)10可得6&1'*61")10'*%63
" 6
对6(
! '
'
恒成立
因为63
" 6
)&槡"%"当且仅当6%
" 6
学业水平】2020年湖南省普通高中学业水平考试合格性考试数学真题试卷

学业水平】2020年湖南省普通高中学业水平考试合格性考试数学真题试卷2020年湖南省普通高中学业水平考试合格性考试数学部分真题本试题卷包括选择题、填空题和解答题三部分,共4页。
时长120分钟,满分100分。
一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图1所示的几何体是:A。
圆锥 B。
棱锥 C。
圆台 D。
棱柱2.已知向量a=(2,1)。
b=(-1,1)。
若a+b=(x,2),则x的值为:A。
0 B。
1 C。
2 D。
33.圆C: x^2+y^2=1的面积是:A。
π/2 B。
π C。
2π D。
4π4.盒子里装有大小相同的2个红球和1个白球,从中随机取出1个球,取到白球的概率是:A。
1/3 B。
1/2 C。
2/3 D。
15.要得到函数y=1+sinx的图象,只需将函数y=sinx的图象:A。
向上平移1个单位长度B。
向下平移1个单位长度C。
向右平移1个单位长度 D。
向左平移1个单位长度6.已知数列{an}满足a1=1,an+1=2an,则a4的值为:A。
4 B。
8 C。
16 D。
327.已知函数f(x)=(x+2.x>0)(x。
x<0),若f(0)=a,则f(a)的值为:A。
4 B。
2 C。
-2 D。
08.函数f(x)=2sinxcosx的最小正周期是:A。
π/2 B。
π C。
2π D。
4π9.用12cm长的铁丝折成一个面积最大的矩形,则这个矩形的面积是:A。
3cm^2 B。
6cm^2 C。
9cm^2 D。
12cm^210.已知定义在[-3,3]上的函数y=f(x)的图象如图2所示。
下述四个结论:①函数y=f(x)的值域为[-2,2];②函数y=f(x)的单调递减区间为[-1,1];③函数y=f(x)仅有两个零点;④存在实数a满足f(a)+f(-a)=0.其中所有正确结论的编号是:A。
①② B。
②③ C。
③④ D。
②④二、填空题:本大题共5小题,每小题4分,共20分。
2020年湖南省普通高中学业水平合格性考试仿真模拟试题数学试题(解析版)

2020年湖南省普通高中学业水平合格性考试仿真模拟试题数 学全卷共19小题,满分100分,考试时间为90分钟一、选择题(本大题共10小题,每小题4分,满分40分)1.2sin 22.5cos22.5︒︒的值为( )A.2B.4C.12D.22.已知集合{}1,0,2A =-,}3{B x =,,若{}2A B ⋂=,则x 的值为( ) A. 3B. 2C. 0D. 1-3.函数()(1)(2)f x x x =-+的零点个数是( ) A. 0B. 1C. 2D. 34.函数()22log 4y x =-的定义域为( ) A. RB. (,2)(2,)-∞-+∞UC. (,2)(2,)-∞⋃+∞D. (2,)+∞5.已知两个平面相互垂直,下列命题①一个平面内已知直线必垂直于另一个平面内的任意一条直线 ②一个平面内已知直线必垂直于另一个平面内的无数条直线 ③一个平面内任意一条直线必垂直于另一个平面④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面 其中正确命题个数是( ) A. 3B. 2C. 1D. 06.已知直线l 1:y=2x+1,l 2:y=2x+5,则直线l 1与l 2的位置关系是( ) A. 重合 B. 垂直 C. 相交但不垂直D. 平行7.袋内装的红、白、黑球分别有3,2,1个,从中任取两个球,则互斥而不对立的事件是( ) A. 至少一个白球;都白球 B. 至少一个白球;至少一个黑球 C. 至少一个白球;一个白球一个黑球D. 至少一个白球;红球、黑球各一个8.在△ABC 中,ab b c a =+-222,则角C 为( )A .45°或135°B .60°C .120°D .30°9.在等差数列{}n a 中,21a =,33a =,则其前10项和为( ) A. 60B. 80C. 100D. 12010.在某种新型材料的研制中,实验人员获得了下面一组实验数据(见下表):现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )x 1.99 3 4 5.1 6.12 y1.54.047.51218.01A. y =2x -2B. y =12(x 2-1) C. y =log 2xD. y =12x⎛⎫ ⎪⎝⎭二、填空题(本大题共5小题,每小题4分,满分20分)11.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是 .12.已知3a =r ,4b =r ,()(2)23a b a b +⋅+=r r r r,那么a r 与b r 的夹角为____________.13.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 是平行四边形,PA AD =,则异面直线PD 与BC 所成角的大小是_______________.14.设n S 为数列{}n a 的前n 项和,且14a =,*1,n n a S n +=∈N ,则5a =________.15.已知236()(0)1x x f x x x ++=>+,则()f x 的最小值是___________.三、解答题(本大题共4小题,每小题10分,满分40分)16.已知函数()4sin 23f x x π⎛⎫=+ ⎪⎝⎭. (1)求()f x 最小正周期.。
2020年湖南省普通高中学业水平合格性考试模拟试卷三数学(长郡版)

机密★启用前2020年湖南省普通高中学业水平合格性考试模拟试卷三(长郡版)数学本试题卷包括选择题、填空题和解答题三部分.共4页。
时量90分钟,满分100分一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题 目要求的。
1. 下列几何体中,正视图、侧视图和俯视图都相同的是A.圆柱B.圆锥C.球D.三棱柱2. 己知集合 M = {0, 1, 2), N={1, x},若 MCN = {1, 2},则 x 的值为A3 B.2 C.l D.03. 已知向量a=(l, 2), b=(x, 4).若Mb,则实数x 的值为A.8B.2C.-2D.-84. 己知a>b・ c>d.则下列不等式恒成立的是A・a+c>b+d B.a+d>b+c Ca —c>b —d Da —b>c —d 5. 从一个装有3个红球A ” A 2, Aa 和2个白球B i ,Bz 的盒子中,随机取出2个球,取出的2个球都是红 球的概率为3 5 2 3A.- B.—— C. — D.——5 10 5 106. 己知函数y=x(x-a)的图象如图所示,则不等式x(x-a)<0的解集为A 」xl0WxW2}B (xl0<x<2| CJxlxWO 或 xN2] D.(xlx<0 或 x>2}7. 为了得到函数y=sin(x-:)的图象,只需将y=sinx 的图象A.向左平移!个单位长度B.向左平移;个单位长度C .向右平移[个单位长度D .向右平移生个单位长度3 38. 已知函数f(x)=ag 0且a#l), f(l)=2,则函数f(x)的解析式是1 1A・f(x)=4* Bf(x)=(-尸 C・f(x)=2, D.f(x)=(-尸4 29. 如图,长方形的而积为2,将50颗豆子随机地撒在长方形内,其中恰好有30颗豆子落在阴影部分内,则用随机模拟的方法可以估计图中阴影部分的而积为10.己知点P是圆Cl:(x-l)2+y2=l上的动点,点Q是圆C2:x?+(y-3)2=l上的动点,则线段IPQI长的最小值为A.应一2B710-1 C.710+1D>/10二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡中对应题号的横线上。
2020年湖南省普通高中学业水平考试数学试题(解析版)

2020年湖南省普通高中学业水平考试数学试题一、单选题1.如图所示的几何体是( )A .圆锥B .棱锥C .圆台D .棱柱【答案】D【解析】分析几何体的结构,可得出合适的选项. 【详解】由图形可知,该几何体有两个面平行且全等,侧棱平行且相等,故该几何体为棱柱. 故选:D. 【点睛】本题考查几何体的识别,属于基础题.2.已知向量()2,1a =,()11b =-,,若(),2a b x +=,则x =( ) A .0 B .1C .2D .3【答案】B【解析】根据平面向量的坐标运算可求得x 的值. 【详解】已知向量()2,1a =,()11b =-,,则()()1,2,2a b x +==,因此,1x =. 故选:B. 【点睛】本题考查利用平面向量的坐标运算求参数的值,考查计算能力,属于基础题. 3.圆C : x 2+y 2= 1的面积是( ) A .4πB .2π C .π D .2π【答案】C【解析】根据圆的方程即可知圆的半径,由圆的面积公式即可求其面积.【详解】由圆的方程知:圆C 的半径为1,所以面积2S r ππ==, 故选:C 【点睛】本题考查了圆的标准方程,由圆的方程求面积,属于简单题.4.盒子里装有大小相同的2个红球和1个白球,从中随机取出1个球,取到白球的概率是( ) A .13B .12C .23D .1【答案】A【解析】直接由古典概型的概率公式求解即可 【详解】解:由题意可知盒子里装有大小相同的红球和白球共3 个,其中1个白球, 所以从中随机取出1个球,取到白球的概率是13, 故选:A 【点睛】此题考查古典概型的概率的计算,属于基础题5.要得到函数y =1+sin x 的图象,只需将函数y =sin x 的图象( ) A .向上平移1个单位长度 B .向下平移1个单位长度 C .向右平移1个单位长度 D .向左平移1个单位长度【答案】A【解析】由函数图象平移原则即可知如何平移y =sin x 的图象得到y =1+sin x 的图象. 【详解】根据“左加右减,上加下减”的原则,将函数y =sin x 的图象向上平移1个单位可得y =1+sin x 的图象,故选:A. 【点睛】本题考查了由平移前后的函数解析式描述图象变换过程,属于简单题. 6.已知数列{a n }满足a 1=1,a n +1=2a n ,则a 4=( ) A .4 B .8C .16D .32【答案】B【解析】由已知可得通项公式12n n a ,即可求a 4的值.【详解】由题意a n +1=2a n 可知,数列{a n }是首项为1,公比为2的等比数列, 故可得数列的通项公式为12n na ,∴3428a ==,故选:B. 【点睛】本题考查了等比数列,由定义法求等比数列通项公式,进而求项,属于简单题.7.已知函数2,0()0x x f x x +≤⎧⎪=>,若f (0)=a ,则f (a )=( )A .4B .2CD .0【答案】C【解析】先由f (0)=a ,可得2a =,从而可求出f (a )的值 【详解】解:因为f (0)=a ,代入分段函数中可得02a +=,得2a =,所以()(2)f a f ==,故选:C 【点睛】此题考查分段函数求值问题,属于基础题8.函数()2sin cos f x x x =的最小正周期是( ) A .2πB .πC .2πD .4π【答案】B【解析】利用二倍角的正弦公式化简函数()f x 的解析式,利用正弦型函数的周期公式可求得结果. 【详解】()2sin cos sin 2f x x x x ==,所以,函数()f x 的最小正周期为22T ππ==. 故选:B. 【点睛】本题考查正弦型函数周期的求解,同时也考查了二倍角正弦公式的应用,考查计算能力,属于基础题.9.用12cm 长的铁丝折成一个面积最大的矩形,则这个矩形的面积是( )A .3cm 2B .6cm 2C .9cm 2D .12cm 2【答案】C【解析】由已知可得6x y +=,而矩形的面积S xy =,应用基本不等式即可求矩形的最大面积. 【详解】设矩形的长、宽分别为,x y cm ,则有2()12x y +=,即6x y +=, ∵矩形的面积Sxy =,∴2()94x y S xy +=≤= cm 2,当且仅当3x y ==时等号成立,故选:C 【点睛】本题考查了基本不等式的应用,由和定求积的最大值,属于简单题. 10.已知定义在[3,3]-上的函数y =f (x )的图象如图所示.下述四个结论:①函数y =f (x )的值域为[2,2]- ②函数y =f (x )的单调递减区间为[1,1]- ③函数y =f (x )仅有两个零点④存在实数a 满足()()0f a f a +-= 其中所有正确结论的编号是( ) A .①② B .②③C .③④D .②④【答案】D【解析】由图像直接得其最小值和最大值,单调区间,由图像与x 轴交点的个数可得其零点的个数,当1a =时,可得()()0f a f a +-= 【详解】解:由图像可知函数的最大值大于2,最小值小于2-,所以①错误; 由图像可知函数y =f (x )的单调递减区间为[1,1]-,所以②正确;由图像可知其图像与x 轴交点的个数为3,所以函数有3个零点,所以③错误; 当1a =时,有()()(1)(1)220f a f a f f +-=+-=-+=,所以④正确, 故选:D 【点睛】此题考查函数图像的应用,考查函数的零点,单调性,考查数形结合的思想,属于基础题二、填空题11.已知集合2{|1},{|}A x x B x x a ====,若A B ⊆,则a =______________. 【答案】1【解析】由A B ⊆,得到1是方程2x a =是方程的根,代入即可求解. 【详解】由题意,集合2{|1},{|}A x x B x x a ====,因为A B ⊆,所以1B ∈,即1是方程2x a =是方程的根,解得1a =, 当1a =,可得集合{}1,1b =-,此时满足A B ⊆, 所以1a =. 故答案为:1. 【点睛】本题主要考查了根据集合间的关系求解参数问题,其中解答中熟记集合件的包含关系,结合元素与集合的关系,列出方程求解是解答的关键,属于基础题.12.某班视力近视的学生有15人,视力正常的学生有30人.为了解该班学生近视形成的原因,拟采用分层抽样的方法抽取部分学生,调查相关信息,则抽取的学生中视力近视与视力正常的人数之比为_____________ 【答案】12【解析】利用分层抽样的定义直接求解即可 【详解】解:因为某班视力近视的学生有15人,视力正常的学生有30人, 所以用分层抽样的方法抽取部分学生中,视力近视与视力正常的人数之比为151302=, 故答案为:12【点睛】此题考查分层抽样的应用,属于基础题13.已知直线l 1:y =x ,l 2:y =kx .若l 1⊥l 2,则k =______________. 【答案】-1【解析】由两直线垂直有斜率之积为-1,即可求k 值. 【详解】由l 1⊥l 2,知:1k =-, 故答案为:-1. 【点睛】本题考查了根据直线垂直求斜率,属于简单题.14.已知等差数列{a n }满足a 1=1,a 2=2,则{ a n }的前5项和S 5= __________. 【答案】15【解析】由题意可得等差数列通项公式n a n =,结合1()2n n n a a S +=可得前n 项和公式,进而求5S 即可. 【详解】由等差数列{a n }满足a 1=1,a 2=2,知:公差1d =,∴{a n }是首项为1,公差为1的等差数列,故通项公式为1(1)n a a n d n =+-=, ∴由等差数列前n 项和公式1()(1)22n n n a a n n S ++==, 即可得55(51)152S ⨯+==, 故答案为:15. 【点睛】本题考查了求等差数列前n 项和,属于简单题.15.已知角α的终边经过点(3,4),则cos α=______________.【答案】35【解析】利用任意角的三角函数的定义直接求解即可 【详解】解:因为角α的终边经过点(3,4), 所以223cos 534x r α===+, 故答案:35【点睛】此题考查任意角的三角函数的定义的应用,属于基础题三、解答题16.2020年春季,受疫情的影响,学校推迟了开学时间.上级部门倡导“停课不停学”,鼓励学生在家学习,复课后,某校为了解学生在家学习的周均时长(单位:小时), 随机调查了部分学生,根据他们学习的周均时长,得到如图所示的频率分布直方图.(1)求该校学生学习的周均时长的众数的估计值; (2)估计该校学生学习的周均时长不少于30小时的概率. 【答案】(1)25小时;(2)0.3.【解析】(1)根据直方图,频率最大的区间中点横坐标为众数即可求众数;(2)由学习的周均时长不少于30小时的区间有[30,40)、[40,50),它们的频率之和,即为该校学生学习的周均时长不少于30小时的概率. 【详解】(1)根据直方图知:频率最大的区间中点横坐标即为众数, ∴由频率最大区间为[20,30),则众数为2030252+=;(2)由图知:不少于30小时的区间有[30,40)、[40,50),∴该校学生学习的周均时长不少于30小时的概率0.03100.3P =⨯=. 【点睛】本题考查了根据直方图求众数、概率,应用了众数的概念、频率法求概率,属于简单题. 17.如图所示,△ABC 中,AB =AC =2,BC =23.(1)求内角B 的大小;(2)设函数f (x )=2sin(x +B ),求f (x )的最大值,并指出此时x 的值. 【答案】(1)6B π=,(2)f (x )的最大值为2,此时2,3x k k Z ππ=+∈【解析】(1)利用余弦定理求解即可; (2)利用正弦函数的性质直接求其最大值 【详解】解:(1)因为△ABC 中,AB =AC =2,BC 3所以222222(23)3cos 222223AB BC AC B AB BC +-===⋅⨯⨯, 因为(0,)B π∈,所以6B π=,(2)由(1)可知()2sin()6f x x π=+,所以当2,62x k k Z πππ+=+∈时,()f x 取最大值2,即2,3x k k Z ππ=+∈【点睛】此题考查余弦定理的应用,考查正弦函数的性质的应用,属于基础题18.如图所示,三棱锥P -ABC 中,PA ⊥平面ABC ,AB ⊥AC ,且E ,F 分别为BC ,PC 的中点.(1)求证: EF //平面PAB ;(2)已知AB =AC =4,PA =6,求三棱锥F -AEC 的体积. 【答案】(1)证明见解析;(2)4.【解析】(1)连接EF 有中位线//EF PB ,结合,EF PB 与面PAB 的关系,由线面平行的判定即可证//EF 面PAB ;(2)过F 作//FG PA 交AC 于G 易知FG 是三棱锥F -AEC 的高,结合已知有2ABCAECSS =即可求三棱锥F -AEC 的体积.【详解】(1)连接EF ,在△PBC 中EF 为中位线,故//EF PB ,∵EF ⊄面PAB ,PB ⊂面PAB ∴//EF 面PAB ;(2)过F 作//FG PA 交AC 于G ,如下图示:∵P A ⊥平面ABC ,∴FG ⊥平面ABC ,即FG 是三棱锥F -AEC 的高,又F 为PC 的中点, ∴由P A =6,则32PAFG ==, 又AB =AC =4,E 为BC 的中点且AB ⊥AC ,知:44424ABCAECSS⨯===, ∴三棱锥F -AEC 的体积143AECV FG S =⋅⋅=.【点睛】本题考查了应用线面平行的判定证明线面平行,应用三棱锥体积公式求体积,属于简单题.19.已知函数(())xxf x ag x a-==,,其中0a >,且1a ≠.(1)判断()f x 的奇偶性,并说明理由;(2)若不等式()()f x g x ≥对x ∈R 都成立,求a 的取值范围;(3)设(1)2f =,直线1y t =与()y f x =的图象交于A B ,两点,直线2y t =与()y g x =的图象交于C D ,两点,得到四边形ABCD .证明:存在实数12t t ,,使四边形ABCD 为正方形.【答案】(1)偶函数,理由见解析;(2)1a >;(3)证明见解析 【解析】(1)利用函数的奇偶性做出判断;(2)()()xx x f x g a a -⇔≥≥对x ∈R 都成立,可求出a 的范围(3)由(1)2f =,求出2a =,由已知AB BC =得到000222x xx -=-,求得121t t =得证. 【详解】(1) ()f x 是偶函数()x f x a =,))((xxf x aa f x -∴==-=,()f x ∴是偶函数(2)))((xxf x ag ax -==,(())xx x f x g a a-≥⇔≥∴当1a >时0x x x x R ≥-⇒≥⇒∈ 满足题意, 当01a <<时00x x x x ≥-⇒≤⇒= 不满足题意 所以1a >第 11 页 共 11 页 (3)(1)2,2f a =∴= ()22()x x f x g x -∴==,因为四边形ABCD 为正方形,所以AB BC = ,设01(,)B x t 则02(,)C x t0122x t t ∴=- ,又00122,2,x x t t -==02122log log x t t ∴==-212212log log 01t t t t ∴+=⇒=故存在实数12t t ,当121t t =使得四边形ABCD 为正方形.【点睛】本题考查函数奇偶性、不等式求参数范围及利用函数图象交点判断方程有解,属于中档题.。
2024年湖南省普通高中学业水平合格性考试数学试题

2024年湖南省普通高中学业水平合格性考试数学试题一、单选题1.已知集合{}0,1,2A =,则下列结论正确的是( ) A .3A ∈B .1A ∈C .2A ∉D .0A ∉2.下列函数中,定义域为R 的是( )A .12y x =+ B .y C .()2log 1y x =+ D .2y x =3.已知向量()1,2a =r ,(),4b m =r ,且//a b r r,则m =( ) A .1B .2C .3D .44.某环保志愿者计划从甲、乙、丙、丁四个社区中随机选择一个社区进行“垃圾分类”宣讲,则该志愿者选择甲社区的概率为( )A .14B .13C .12D .345.已知i 为虚数单位,则下列复数为纯虚数的是( ) A .13i -B .5C .3i +D .3i6.已知幂函数y x α=的图象经过点()2,4,则α=( ) A .2B .2-C .12D .12-7.函数3x y =的图象大致是( )A .B .C .D .8.已知x ,y 是实数,则“0x y -<”是“x y <”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.已知函数()()90f x x x x=+>,则()f x 的最小值是( ) A .2B .3C .6D .1010.下列命题为真命题的是( )A .x ∀∈R ,210x +=B .x ∀∈R ,21x >C .x ∃∈R ,10x +=D .x ∃∈R ,20x +=11.如图,AB 为圆柱底面直径,BC 为母线,若AB BC =,则AC 与圆柱底面所成角的大小为( )A .30︒B .45︒C .60︒D .90︒12.2023年袁隆平“超级稻”突破亩产1200kg ,再次刷新了杂交水稻单季亩产世界纪录.已知甲、乙两种杂交水稻在面积相等的两块试验田中连续6年的产量如图所示,则( )A .甲的平均产量高于乙的平均产量B .甲的最高产量高于乙的最高产量C .甲的产量更稳定D .乙的产量更稳定13.函数()()lg 1f x x =-的零点是( )A .0B .1C .2D .314.为了得到函数πsin 6y x ⎛⎫=+ ⎪⎝⎭的图象,只需把sin y x =图象上所有的点( )A .向左平移π6个单位B .向左平移π3个单位C .向右平移π6个单位D .向右平移π3个单位15.如图,ABC V 是边长为2的等边三角形,则⋅=u u u r u u u rAB AC ( )A .4B .4-C .2D .2-16.2sin15cos15︒︒的值是( )A .1B C D .1217.已知函数()πsin 23f x x ⎛⎫=+ ⎪⎝⎭,则( )A .()f x 为奇函数B .()f x 的最小正周期为2πC .()f x 的最大值为1D .()f x 在5ππ,1212⎛⎫- ⎪⎝⎭上单调递减18.为了节约能源,某城市对居民生活用燃气实行“阶梯定价”,计费方式如下表:若某户居民一年的燃气用量为3500m ,则此户居民这一年应缴纳的燃气费为( )A .1600元B .1680元C .1800元D .2250元二、填空题19.已知复数132i z =+,224i z =+,则12z z +=.20.若sin 3cos αα=,则tan α的值为21.已知某班有男生25人,女生20人.为了解该班学生的体质健康情况,按性别进行分层,采用分层随机抽样的方法抽取一个容量为9的样本进行调查.若样本按比例分配,则抽取的男生人数为.22.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c .若4sin a b A =,则sin B =.三、解答题23.某射击运动员在一天的射击训练中射靶100次,训练成绩统计结果如图所示.(1)请估计这名运动员射击成绩的众数; (2)请估计这名运动员射击一次命中9环的概率;(3)如果这名运动员连续射击两次,每次射击成绩互不影响,请估计他两次命中环数都大于8环的概率.24.如图,四棱锥P ABCD -的底面是正方形,PA ⊥平面ABCD ,1AB =,PB =(1)求四棱锥P ABCD -的体积; (2)求证:BD ⊥平面PAC .25.已知函数()()()22243,f x a a x bx a a b =++--∈R ,()2xg x =,且()f x 为偶函数.(1)若()03g x =,求0x 的值; (2)求实数b 的值;(3)若对任意的[]11,2x ∈,存在[]21,0x ∈-,使得()()12f x g x ≤恒成立,求实数a 的取值范围.。
2020年湖南省普通高中学业水平考试数学试卷及答案

(第3题图)俯视图侧视图正视图2020年普通高中学业水平考试数学试卷一、选择题:本大题共10小题,每小题4分,满分40分. 1.已知集合{0,1,2}M =,{}N x =,若{0,1,2,3}M N =,则x 的值为( )A .3B .2C .1D .02.设1,(1)()2,(1)x f x x x ⎧≥⎪=⎨⎪<⎩,则(1)f 的值为( )A .0B .1C .2D .-13.已知一个几何体的三视图如图所示,则该几何体是( ). A.圆柱 B. 三棱柱 C.球 D.四棱柱4.函数2cos ,y x x R =∈的最小值是( )A .-3B .-1C .1D .35.已知向量(1,2),(,4)x ==a b ,若a ∥b ,则实数x 的值为( )A .8B .2C .-2D .-86.某学校高一、高二、高三年级的学生人数分别为600,400,800,为了了解教师的教学情况,该校采用分层抽样的方法,从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别为( ) A .15,5,25B .15,15,15C .10,5,30D .15,10,207.某袋中有9个大小相同的球,其中有5个红球,4个白球,现从中任意取出1个,则取出的球恰好是白球的概率为( )A .15 B .14 C .49 D .598.已知点(,)x y 在如图所示的平面区域(阴影部分)内运动,则z x y =+的最大值是( ) A .1 B .2 C .3 D .59.已知两点(4,0),(0,2)P Q ,则以线段PQ 为直径的圆的方程是( ) A .22(2)(1)5x y +++= B .22(2)(1)10x y -+-=C .22(2)(1)5x y -+-=D .22(2)(1)10x y +++=10.如图,在高速公路建设中需要确定隧道的长度,工程技术人员已测得隧道两端的两点,A B 到点C 的距离1AC BC ==km ,且0120ACB ∠=,则,A B 两点间的距离为( )A B km C .1.5km D .2km(第14题图)二、填空题:本大题共5小题,每小题4分,满分20分. 11.计算:22log 1log 4+= ..12.已知1,,9x 成等比数列,则实数x = .13.经过点(0,3)A ,且与直线2y x =-+垂直的直线方程是 .14.某程序框图如图所示,若输入的x 的值为2,则输出的y 值为 .15.已知向量a 与b 的夹角为4π,2a =,且4a b =,则b = .三、解答题:本大题共5小题,满分40分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分6分)已知1cos ,(0,22παα=∈(1)求tan α的值;(2)求sin()6πα+的值.某公司为了了解本公司职员的早餐费用情况,抽样调査了100位职员的早餐日平均费用(单位:元),得到如下图所示的频率分布直方图,图中标注a 的数字模糊不清.(1) 试根据频率分布直方图求a 的值,并估计该公司职员早餐日平均费用的众数;(2) 已知该公司有1000名职员,试估计该公司有多少职员早餐日平均费用不少于8元?18.(本小题满分8分) 如图,在三棱锥A BCD -中,AB ⊥平面BCD ,BC BD ⊥,3BC =,4BD =,直线AD 与平面BCD 所成的角为045,点,E F 分别是,AC AD 的中点. (1)求证:EF ∥平面BCD ; (2)求三棱锥A BCD -的体积.a (第17题图)FEDCBA(第18题图)已知数列{}n a 满足:313a =-,14n n a a -=+(1,)n n N >∈. (1)求12,a a 及通项n a ;(2)设n S 是数列{}n a 的前n 项和n S ,则数列1S ,2S ,3S ,…中哪一项最小?并求出这个最小值. 20.(本小题满分10分)已知函数()22x x f x λ-=+⋅()R λ∈ (1)当1λ=-时,求函数()f x 的零点; (2)若函数()f x 为偶函数,求实数λ的值; (3)若不等式12≤()f x ≤4在[0,1]x ∈上恒成立,求实数λ的取值范围.参考答案一、选择题二、填空题11、 2 ; 12、 ±3 ; 13、30x y -+=; 14; 15、 4三、解答题:16、(1)(0,),cos 02παα∈∴>,从而cos α=(2)2sin 2cos22sin cos 12sin ααααα+=+-=17、(1)高一有:20012001202000⨯=(人);高二有20012080-=(人) (2)频率为0.015100.03100.025100.005100.75⨯+⨯+⨯+⨯=∴人数为0.7520001500⨯=(人) 18、(1)2(0)62()26(1)156f b a f x x x f a b b ===-⎧⎧⇒⇒=-+⎨⎨=++==⎩⎩ (2)22()26(1)5,[2,2]f x x x x x =-+=-+∈-1x ∴=时,()f x 的最小值为5,2x =-时,()f x 的最大值为14.19、(1)11232,2,4,8n n a a a a a -==∴==*12(2,)nn a n n N a -=≥∈,{}n a ∴为首项为2,公比为2的等比数列,1222n n n a -∴=⋅= (2)22log log 2n n n b a n ===,(1)1232n n n S n +∴=++++=20、(1)22:(1)(2)5C x y k ++-=-,(1,2)C ∴-(2)由505k k ->⇒< (3)由22224051680(1)(2)5x y y y k x y k-+=⎧⇒-++=⎨++-=-⎩设1122(,),(,),M x y N x y 则1212168,55k y y y y ++==,2241620(8)05k k ∆=-+>⇒<112212*********24,24,(24)(24)4[2()4]5k x y x y x x y y y y y y -=-=-∴=--=-++= 1212,0,OM ON x x y y ⊥∴+=即41688240()5555k k k k -++=⇒=<满足2014年湖南省普通高中学业水平考试试卷数 学本试卷包括选择题、填空题和解答题三部分,共5页时量120分钟,满分100分.一、选择题:本大题共10小题,每小题4分,满分40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图是一个几何体的三视图,则该几何体为 A.圆柱 B.圆锥 C.圆台 D.球2.已知元素{0,1,2,3}a ∈,且{0,1,2}a ∉,则a 的值为 A.0 B.1 C.2 D.33.在区间[0,5]内任取一个实数,则此数大于3的概率为A.15 B. 25C.35 D.454.某程序框图如图所示,若输入x 的值为1,则输出y 的值是A.2B.3C.4D.55.在△ABC 中,若0AB AC ⋅=,则△ABC 的形状是 A.直角三角形 B.等腰三角形 C.锐角三角形 D.钝角三角形6.sin120的值为A.22B.1-C. 32D. 22-7.如图,在正方体1111ABCD A B C D -中,异面直线BD 与11A C 的位置关系是A.平行B.相交C.异面但不垂直D. 异面且垂直 8.不等式(1)(2)0x x +-≤的解集为A.{|12}x x -≤≤B. {|12}x x -<<C. {|12}x x x ≤-≥或D. {|12}x x x <->或9.点(,1)P m 不在不等式02<-+y x 表示的平面区域内,则实数m 的取值范围是 A.1m < B. 1m ≤ C.1m ≥ D.1m >10. 某同学从家里骑车一路匀速行驶到学校,只是在途中遇到一次交通堵塞,耽误了一些时间,下列函数的图像最能符合上述情况的是二、填空题:本大题共5小题,每小题4分,满分20分. 11. 样本数据2,0,6,3,6-的众数是 .12. 在ABC ∆中, 角A 、B 、C 所对应的边分别为a 、b 、c ,已知11,2,sin 3a b A ===,则sin B = .13. 已知a 是函数()22log f x x =-的零点, 则实数a 的值为 . 14.已知函数sin (0)y x ωω=>在一个周期内的图像如图所示,则ω的值为 .15. 如图1,矩形ABCD 中,2,,AB BC E F =分别是,AB CD 的中点,现在沿EF 把这个矩形折成一个二面角A EF C --(如图2)则在图2中直线AF 与平面EBCF 所成的角为 .三、解答题:本大题共5小题,满分40分. 解答应写出文字说明、证明过程或演算步骤 . 16.(本小题满分6分)已知函数,[0,2],()4,(2,4].x x f x x x∈⎧⎪=⎨∈⎪⎩(1)画出函数()f x 的大致图像;(2)写出函数()f x 的最大值和单调递减区间.17.(本小题满分8分)某班有学生50人,期中男同学300人,用分层抽样的方法从该班抽取5人去参加某社区服务活动.(1)求从该班男、女同学中各抽取的人数;(2)从抽取的5名同学中任选2名谈此活动的感受,求选出的2名同学中恰有1名男同学的概率.18. (本小题满分8分)已知等比数列{}n a 的公比2q =,且234,1,a a a +成等差数列. (1)求1n a a 及;(2)设n n b a n =+,求数列{}n b 的前5项和5S .19. (本小题满分8分) 已知向量(1,sin ),(2,1).a b θ== (1)当6πθ=时,求向量2a b +的坐标;(2)若a ∥b ,且(0,)2πθ∈,求sin()4πθ+的值.20. (本小题满分10分)已知圆22:230C x y x ++-=. (1)求圆的圆心C 的坐标和半径长;(2)直线l 经过坐标原点且不与y 轴重合,l 与圆C 相交于1122(,),B(,)A x y x y 两点,求证:1211x x +为定值; (3)斜率为1的直线m 与圆C 相交于,D E 两点,求直线m 的方程,使△CDE 的面积最大.参考答案及评分标准一、选择题(每小题4分,满分40分) 题号 1 2 3 4 5 6 7 8 9 10 答案CDBBACDACA二 、填空题(每小题4分,满分20分) 11.6 12.23 13.4 14.2 15. 45(或4π)三 、解答题(满分40分)16. 解:(1)函数()f x 的大致图象如图所示; ……………………………2分 (2)由函数()f x 的图象得出,()f x 的最大值为2, ………………4分其单调递减区间为[]2,4.…………6分17. 解: (1)305350⨯=(人), 205250⨯=(人), 所以从男同学中抽取3人, 女同学中抽取2人; ……………………………………4分 (2)过程略. 3()5P A =. ……………………………………………………………………………8分18. 解: (1)12n n a -=; ………………………………………………………………4分 (2)546S =. ……………………………………………………………………………8分 19. 解: (1)()4,2; …………………………………………………………………4分 (2)264+. ………………………………………………………………………8分 20. 解: (1)配方得()2214x y ++=, 则圆心C 的坐标为()1,0-,……………………2分 圆的半径长为2; ………………………………………………………………………4分 (2)设直线l 的方程为y kx =, 联立方程组22230x y x y kx⎧++-=⎨=⎩,消去y 得()221230k x x ++-=, ………………………………………………5分则有: 1221222131x x k x x k ⎧+=-⎪⎪+⎨⎪=-⎪+⎩………………………………………………6分所以1212121123x x x x x x ++==为定值. ………………………………………………7分 (3)解法一 设直线m 的方程为y kx b =+, 则圆心C 到直线m 的距离d =所以DE =, …………………………………8分()2241222CDEd d S DE d d ∆-+=⋅=≤=,当且仅当d =即d =时, CDE ∆的面积最大, …………………………9分=解之得3b =或1b =-, 故所求直线方程为30x y -+=或10x y --=.……………………………………10分解法二 由(1)知2CD CE R ===, 所以1sin 2sin 22CDE S CD CE DCE DCE ∆=⋅⋅∠=∠≤,当且仅当CD CE ⊥时, CDE ∆的面积最大,此时DE = ………………………………………………………8分 设直线m 的方程为y x b =+ 则圆心C 到直线m的距离d =…………………………………………………9分由DE ===,得d=得3b =或1b =-, 故所求直线方程为30x y -+=或10x y --=.……………………………………10分普通高中学业水平考试数学试卷本试题卷包括选择题、填空题和解答题三部分,时量120分钟,满分100分 一、选择题:本大题共10小题,每小题4分,共40分。
2020年湖南省普通高中学业水平考试数学试题

2020年湖南省普通高中学业水平考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图所示的几何体是( )A .圆锥B .棱锥C .圆台D .棱柱2.已知向量()2,1a =,()11b =-,,若(),2a b x +=,则x =( ) A .0B .1C .2D .33.圆C : x 2+y 2= 1的面积是( ) A .4πB .2π C .π D .2π4.盒子里装有大小相同的2个红球和1个白球,从中随机取出1个球,取到白球的概率是( ) A .13B .12C .23D .15.要得到函数y =1+sin x 的图象,只需将函数y =sin x 的图象( ) A .向上平移1个单位长度 B .向下平移1个单位长度 C .向右平移1个单位长度D .向左平移1个单位长度6.已知数列{a n }满足a 1=1,a n +1=2a n ,则a 4=( ) A .4B .8C .16D .327.已知函数2,0()0x x f x x +≤⎧⎪=>,若f (0)=a ,则f (a )=( )A .4B .2CD .08.函数()2sin cos f x x x =的最小正周期是( ) A .2πB .πC .2πD .4π9.用12cm 长的铁丝折成一个面积最大的矩形,则这个矩形的面积是( )A .3cm 2B .6cm 2C .9cm 2D .12cm 210.已知定义在[3,3]-上的函数y =f (x )的图象如图所示.下述四个结论:①函数y =f (x )的值域为[2,2]- ②函数y =f (x )的单调递减区间为[1,1]- ③函数y =f (x )仅有两个零点④存在实数a 满足()()0f a f a +-= 其中所有正确结论的编号是( ) A .①② B .②③C .③④D .②④二、填空题11.已知集合2{|1},{|}A x x B x x a ====,若A B ⊆,则a =______________. 12.某班视力近视的学生有15人,视力正常的学生有30人.为了解该班学生近视形成的原因,拟采用分层抽样的方法抽取部分学生,调查相关信息,则抽取的学生中视力近视与视力正常的人数之比为_____________13.已知直线l 1:y =x ,l 2:y =kx .若l 1⊥l 2,则k =______________.14.已知等差数列{a n }满足a 1=1,a 2=2,则{ a n }的前5项和S 5= __________. 15.已知角α的终边经过点(3,4),则cos α=______________.三、解答题16.2020年春季,受疫情的影响,学校推迟了开学时间.上级部门倡导“停课不停学”,鼓励学生在家学习,复课后,某校为了解学生在家学习的周均时长(单位:小时), 随机调查了部分学生,根据他们学习的周均时长,得到如图所示的频率分布直方图.(1)求该校学生学习的周均时长的众数的估计值; (2)估计该校学生学习的周均时长不少于30小时的概率.17.如图所示,△ABC 中,AB =AC =2,BC(1)求内角B 的大小;(2)设函数f (x )=2sin(x +B ),求f (x )的最大值,并指出此时x 的值.18.如图所示,三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥AC ,且E ,F 分别为BC ,PC 的中点.(1)求证: EF //平面P AB ;(2)已知AB =AC =4,P A =6,求三棱锥F -AEC 的体积. 19.已知函数(())x x f x a g x a -==,,其中0a >,且1a ≠. (1)判断()f x 的奇偶性,并说明理由;(2)若不等式()()f x g x ≥对x ∈R 都成立,求a 的取值范围;(3)设(1)2f =,直线1y t =与()y f x =的图象交于A B ,两点,直线2y t =与()y g x =的图象交于C D ,两点,得到四边形ABCD .证明:存在实数12t t ,,使四边形ABCD 为正方形.参考答案1.D 【分析】分析几何体的结构,可得出合适的选项. 【详解】由图形可知,该几何体有两个面平行且全等,侧棱平行且相等,故该几何体为棱柱. 故选:D. 【点睛】本题考查几何体的识别,属于基础题. 2.B 【分析】根据平面向量的坐标运算可求得x 的值. 【详解】已知向量()2,1a =,()11b =-,,则()()1,2,2a b x +==,因此,1x =. 故选:B. 【点睛】本题考查利用平面向量的坐标运算求参数的值,考查计算能力,属于基础题. 3.C 【分析】根据圆的方程即可知圆的半径,由圆的面积公式即可求其面积. 【详解】由圆的方程知:圆C 的半径为1,所以面积2S r ππ==, 故选:C 【点睛】本题考查了圆的标准方程,由圆的方程求面积,属于简单题. 4.A 【分析】直接由古典概型的概率公式求解即可 【详解】解:由题意可知盒子里装有大小相同的红球和白球共3 个,其中1个白球,所以从中随机取出1个球,取到白球的概率是13, 故选:A 【点睛】此题考查古典概型的概率的计算,属于基础题 5.A 【分析】由函数图象平移原则即可知如何平移y =sin x 的图象得到y =1+sin x 的图象. 【详解】根据“左加右减,上加下减”的原则,将函数y =sin x 的图象向上平移1个单位可得y =1+sin x 的图象,故选:A. 【点睛】本题考查了由平移前后的函数解析式描述图象变换过程,属于简单题. 6.B 【分析】由已知可得通项公式12n n a ,即可求a 4的值.【详解】由题意a n +1=2a n 可知,数列{a n }是首项为1,公比为2的等比数列, 故可得数列的通项公式为12n na ,∴3428a ==,故选:B. 【点睛】本题考查了等比数列,由定义法求等比数列通项公式,进而求项,属于简单题. 7.C 【分析】先由f (0)=a ,可得2a =,从而可求出f (a )的值 【详解】解:因为f (0)=a ,代入分段函数中可得02a +=,得2a =,所以()(2)f a f ==,故选:C 【点睛】此题考查分段函数求值问题,属于基础题 8.B 【分析】利用二倍角的正弦公式化简函数()f x 的解析式,利用正弦型函数的周期公式可求得结果. 【详解】()2sin cos sin 2f x x x x ==,所以,函数()f x 的最小正周期为22T ππ==. 故选:B. 【点睛】本题考查正弦型函数周期的求解,同时也考查了二倍角正弦公式的应用,考查计算能力,属于基础题. 9.C 【分析】由已知可得6x y +=,而矩形的面积S xy =,应用基本不等式即可求矩形的最大面积.【详解】设矩形的长、宽分别为,x y cm ,则有2()12x y +=,即6x y +=, ∵矩形的面积Sxy =,∴2()94x y S xy +=≤= cm 2,当且仅当3x y ==时等号成立,故选:C 【点睛】本题考查了基本不等式的应用,由和定求积的最大值,属于简单题. 10.D 【分析】由图像直接得其最小值和最大值,单调区间,由图像与x 轴交点的个数可得其零点的个数,当1a =时,可得()()0f a f a +-= 【详解】解:由图像可知函数的最大值大于2,最小值小于2-,所以①错误; 由图像可知函数y =f (x )的单调递减区间为[1,1]-,所以②正确;由图像可知其图像与x 轴交点的个数为3,所以函数有3个零点,所以③错误; 当1a =时,有()()(1)(1)220f a f a f f +-=+-=-+=,所以④正确, 故选:D 【点睛】此题考查函数图像的应用,考查函数的零点,单调性,考查数形结合的思想,属于基础题 11.1 【分析】由A B ⊆,得到1是方程2x a =是方程的根,代入即可求解. 【详解】由题意,集合2{|1},{|}A x x B x x a ====,因为A B ⊆,所以1B ∈,即1是方程2x a =是方程的根,解得1a =, 当1a =,可得集合{}1,1b =-,此时满足A B ⊆, 所以1a =. 故答案为:1. 【点睛】本题主要考查了根据集合间的关系求解参数问题,其中解答中熟记集合件的包含关系,结合元素与集合的关系,列出方程求解是解答的关键,属于基础题. 12.12【分析】利用分层抽样的定义直接求解即可 【详解】解:因为某班视力近视的学生有15人,视力正常的学生有30人, 所以用分层抽样的方法抽取部分学生中,视力近视与视力正常的人数之比为151302=, 故答案为:12【点睛】此题考查分层抽样的应用,属于基础题 13.-1 【分析】由两直线垂直有斜率之积为-1,即可求k 值. 【详解】由l 1⊥l 2,知:1k =-, 故答案为:-1. 【点睛】本题考查了根据直线垂直求斜率,属于简单题. 14.15 【分析】由题意可得等差数列通项公式n a n =,结合1()2n n n a a S +=可得前n 项和公式,进而求5S 即可. 【详解】由等差数列{a n }满足a 1=1,a 2=2,知:公差1d =,∴{a n }是首项为1,公差为1的等差数列,故通项公式为1(1)n a a n d n =+-=, ∴由等差数列前n 项和公式1()(1)22n n n a a n n S ++==, 即可得55(51)152S ⨯+==, 故答案为:15. 【点睛】本题考查了求等差数列前n 项和,属于简单题. 15.35【分析】利用任意角的三角函数的定义直接求解即可 【详解】解:因为角α的终边经过点(3,4),所以3cos 5x r α===, 故答案:35【点睛】此题考查任意角的三角函数的定义的应用,属于基础题 16.(1)25小时;(2)0.3. 【分析】(1)根据直方图,频率最大的区间中点横坐标为众数即可求众数;(2)由学习的周均时长不少于30小时的区间有[30,40)、[40,50),它们的频率之和,即为该校学生学习的周均时长不少于30小时的概率. 【详解】(1)根据直方图知:频率最大的区间中点横坐标即为众数, ∴由频率最大区间为[20,30),则众数为2030252+=; (2)由图知:不少于30小时的区间有[30,40)、[40,50),∴该校学生学习的周均时长不少于30小时的概率0.03100.3P =⨯=. 【点睛】本题考查了根据直方图求众数、概率,应用了众数的概念、频率法求概率,属于简单题. 17.(1)6B π=,(2)f (x )的最大值为2,此时2,3x k k Z ππ=+∈【分析】(1)利用余弦定理求解即可;(2)利用正弦函数的性质直接求其最大值 【详解】解:(1)因为△ABC 中,AB =AC =2,BC所以222cos 2AB BC AC B AB BC +-===⋅ 因为(0,)B π∈,所以6B π=,(2)由(1)可知()2sin()6f x x π=+, 所以当2,62x k k Z πππ+=+∈时,()f x 取最大值2,即2,3x k k Z ππ=+∈【点睛】 此题考查余弦定理的应用,考查正弦函数的性质的应用,属于基础题18.(1)证明见解析;(2)4.【分析】(1)连接EF 有中位线//EF PB ,结合,EF PB 与面PAB 的关系,由线面平行的判定即可证//EF 面PAB ;(2)过F 作//FG PA 交AC 于G 易知FG 是三棱锥F -AEC 的高,结合已知有2ABC AEC S S=即可求三棱锥F -AEC 的体积.【详解】(1)连接EF ,在△PBC 中EF 为中位线,故//EF PB ,∵EF ⊄面PAB ,PB ⊂面PAB∴//EF 面PAB ;(2)过F 作//FG PA 交AC 于G ,如下图示:∵P A ⊥平面ABC ,∴FG ⊥平面ABC ,即FG 是三棱锥F -AEC 的高,又F 为PC 的中点,∴由P A =6,则32PA FG ==, 又AB =AC =4,E 为BC 的中点且AB ⊥AC ,知:44424ABC AEC S S ⨯===, ∴三棱锥F -AEC 的体积143AEC V FG S =⋅⋅=.【点睛】 本题考查了应用线面平行的判定证明线面平行,应用三棱锥体积公式求体积,属于简单题. 19.(1)偶函数,理由见解析;(2)1a >;(3)证明见解析 【分析】 (1)利用函数的奇偶性做出判断;(2)()()x x x f x g a a -⇔≥≥对x ∈R 都成立,可求出a 的范围(3)由(1)2f =,求出2a =,由已知AB BC =得到000222x x x -=-,求得121t t =得证.【详解】 (1) ()f x 是偶函数 ()x f x a =,))((x x f x aa f x -∴==-=,()f x ∴是偶函数 (2)))((x x f x a g a x -==,(())x x x f x g a a -≥⇔≥∴ 当1a >时0x x x x R ≥-⇒≥⇒∈ 满足题意, 当01a <<时00x x x x ≥-⇒≤⇒= 不满足题意所以1a >(3)(1)2,2f a =∴= ()22()x x f x g x -∴==,因为四边形ABCD 为正方形,所以AB BC = ,设01(,)B x t 则02(,)C x t 0122x t t ∴=- ,又00122,2,x x t t -== 02122log log x t t ∴==-212212log log 01t t t t ∴+=⇒=故存在实数12t t ,当121t t =使得四边形ABCD 为正方形.【点睛】本题考查函数奇偶性、不等式求参数范围及利用函数图象交点判断方程有解,属于中档题.。
2020年湖南省普通高中学业水平和合格性考试仿真卷数学试题PDF版含答案

()!'
*)!5
+)!0
,)! #
6!已知角的终边经过点'"1'"'
+)1'6
,)" 6
5!若直线(%槡'%3)与圆%&3(&%!相切则)%
():&'槡'
*):槡&
+):&
,):槡6
;!函数(%<=9 &1&% 是
()最小正周期为的奇函数
*)最小正周期为的偶函数
设'3%3-%.则,3% 槡.&3.&%槡&.A789-',3%槡.&.%槡&&!
!0!解!依题意&$B$!$$&3$!$$#63$!$!!3$!$!&63%3$!$$63$!$$&6%!解得%%$!$$;6!
&由图可知最高矩形的数据组为 &&$&"$A众数为&&$&3&"$%&'$!
'规格在 &&$&"$的钢材在四组钢材中所占比例为
$!$!&63$!$$$;!$6!3&$6!$$63$!$$&6%!6!
A规格在 &&$&"$的钢材中应抽取!!B!6!%6根!
!#!解!*%!时$%%#%1'%3!1"%'%&1''%1"%$可得'%1"'%3!%$ @'%.$A'%%"解得%%-./'"!
2020年湖南省普通高中学业水平考试合格性考试数学试卷

2020年湖南省普通高中学业水平考试合格性考试数学试卷一、选择题1.如图1所示的几何体是A.圆锥B.棱锥C.圆台D.棱柱2.已知向量)1,1(),1,2(-==b a .若)2,(x b a =+,则=xA.0B.1C.2D.33.圆122=+y x C :的面积是 A.4π B.2π C.π D.π2 4.盒子里装有大小相同的2个红球和1个白球,从中随机取出1个球,取到白球的概率是 A.31 B.21 C.32 D.1 5.要得到函数x y sin 1+=的图象,只需将函数x y sin =的图象 A.向上平移1个单位长度 B.向下平移1个单位长度C.向右平移1个单位长度D.向左平移1个单位长度6.已知数列}{n a 满足n n a a a 2,111==+,则=4aA.4B.8C.16D.327.已知函数⎩⎨⎧><+=.0,,0,2)(x x x x x f 若a f =)0(,则=)(a f A.4 B.2 C.2 D.08.函数x x x f cos sin 2)(=的最小正周期是 A.2π B.π C.π2 D.π4 9.用cm 12长的铁丝折成一个面积最大的矩形,则这个矩形的面积是 A. 23cm B.26cm C.29cm D.212cm10.已知定义在]3,3[-上的函数)(x f y =的图象如图2所示.下述四个结论:①函数)(x f y =的值域为]2,2[-②函数)(x f y =的单调递减区间为]1,1[-③函数)(x f y =仅有两个零点④存在实数a 满足0)()(=-+a f a f 其中所有正确结论的编号是A.①②B.②③C.③④D.②④二、填空题11.已知集合}|{},1|{2a x x B x x A ====.若B A ⊆,则=a .12.某班视力近视的学生有15人,视力正常的学生有30人.为了解该班学生近视形成的原因, 拟采用分层抽样的方法抽取部分学生,调查相关信息,则抽取的学生中视力近视与视力正AE F 常的人数之比为 .13.已知直线kx y l x y l ==:,:21.若21l l ⊥,则=k .14.已知等差数列}{n a 满足2,121==a a ,则}{n a 的前5项和=5S .15.已知角α的终边经过点)4,3(,则=αcos .三、解答题:16.2020年春季,受疫情的影响,学校推迟了开学时间.上级部门倡导“停课不停学”,鼓励学生在家学习,复课后,某校为了解学生在家学习的周均时长(单位:小时),随机调查了部分学生,根据他们学习的周均时长,得到如图3所示的频率分布直方图.(1)求该校学生学习的周均时长的众数的估计值;(2)估计该校学生学习的周均时长不少于30小时的概率.17.如图4所示,ABC ∆中,32,2===BC AC AB .(1)求内角B 的大小;(2)设函数)sin(2)(B x x f +=,求)(x f 的最大值,并指出此时x 的值.18.如图5所示,三棱锥ABC P -中,⊥PA 平面ABC ,AC AB ⊥,且F E ,分别为PC BC ,的中点.(1)求证://EF 平面PAB ;(2)已知6,4===PA AC AB ,求三棱锥AEC F -的体积.19.已知函数||||)(,)(x x a x g a x f -==,其中0>a ,且1≠a .(1)判断)(x f 的奇偶性,并说明理由;(2)若不等式)()(x g x f ≥对R x ∈都成立,求a 的取值范围;(3)设2)1(=f ,直线1t y =与)(x f y =的图象交于B A ,两点,直线2t y =与)(x g y =的图象交于D C ,两点,得到四边形ABCD .证明:存在实数21,t t ,使四边形ABCD 为正方形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年湖南省普通高中学业水平考试合格性考试
数学试卷
一、选择题
1.如图1所示的几何体是
A.圆锥
B.棱锥
C.圆台
D.棱柱
2.已知向量)1,1(),1,2(-==b a .若)2,(x b a =+,则=x
A.0
B.1
C.2
D.3
3.圆122=+y x C :的面积是 A.4π B.2
π C.π D.π2 4.盒子里装有大小相同的2个红球和1个白球,从中随机取出1个球,取到白球的概率是 A.
31 B.21 C.3
2 D.1 5.要得到函数x y sin 1+=的图象,只需将函数x y sin =的图象 A.向上平移1个单位长度 B.向下平移1个单位长度
C.向右平移1个单位长度
D.向左平移1个单位长度
6.已知数列}{n a 满足n n a a a 2,111==+,则=4a
A.4
B.8
C.16
D.32
7.已知函数⎩
⎨⎧><+=.0,,0,2)(x x x x x f 若a f =)0(,则=)(a f A.4 B.2 C.2 D.0
8.函数x x x f cos sin 2)(=的最小正周期是 A.
2
π B.π C.π2 D.π4 9.用cm 12长的铁丝折成一个面积最大的矩形,则这个矩形的面积是 A. 23cm B.26cm C.29cm D.212cm
10.已知定义在]3,3[-上的函数)(x f y =的图象如图2所示.下述四个结论:
①函数)(x f y =的值域为]2,2[-
②函数)(x f y =的单调递减区间为]1,1[-
③函数)(x f y =仅有两个零点
④存在实数a 满足0)()(=-+a f a f 其中所有正确结论的编号是
A.①②
B.②③
C.③④
D.②④
二、填空题
11.已知集合}|{},1|{2a x x B x x A ====.若B A ⊆,则=a .
12.某班视力近视的学生有15人,视力正常的学生有30人.为了解该班学生近视形成的原因, 拟采用分层抽样的方法抽取部分学生,调查相关信息,则抽取的学生中视力近视与视力正
A
E F 常的人数之比为 .
13.已知直线kx y l x y l ==:,:21.若21l l ⊥,则=k .
14.已知等差数列}{n a 满足2,121==a a ,则}{n a 的前5项和=5S .
15.已知角α的终边经过点)4,3(,则=αcos .
三、解答题:
16.2020年春季,受疫情的影响,学校推迟了开学时间.上级部门倡导“停课不停学”,鼓励学生在家学习,复课后,某校为了解学生在家学习的周均时长(单位:小时),随机调查了部分学生,根据他们学习的周均时长,得到如图3所示的频率分布直方图.
(1)求该校学生学习的周均时长的众数的估计值;
(2)估计该校学生学习的周均时长不少于30小时的概率.
17.如图4所示,ABC ∆中,32,2===BC AC AB .
(1)求内角B 的大小;
(2)设函数)sin(2)(B x x f +=,求)(x f 的最大值,并指出此时x 的值.
18.如图5所示,三棱锥ABC P -中,⊥PA 平面ABC ,AC AB ⊥,且F E ,分别为PC BC ,的中点.
(1)求证://EF 平面PAB ;
(2)已知6,4===PA AC AB ,求三棱锥AEC F -的体积.
19.已知函数||||)(,)(x x a x g a x f -==,其中0>a ,且1≠a .
(1)判断)(x f 的奇偶性,并说明理由;
(2)若不等式)()(x g x f ≥对R x ∈都成立,求a 的取值范围;
(3)设2)1(=f ,直线1t y =与)(x f y =的图象交于B A ,两点,直线2t y =与)(x g y =的图象交于D C ,两点,得到四边形ABCD .证明:存在实数21,t t ,使四边形ABCD 为正方形.。