高考数学平行垂直关系的证明
2022届高三数学第一轮复习(高考教练)考点70-平行、垂直关系的证明(理科)课件
第三十一页第,三第编十辑三于一星页十期,四一编:点辑页于三十星,九期分编四。:辑一于点 四星十期分。四:十九点 四十四分。
第三十二页第,第编三辑三于十星十期二四二:页点页,三十,编九分编。辑辑于于星星期期四四::一十点九四点十四分十。四分。
第三十三页第,第编三辑三于十星十期三四三:页点页,三十,编九分编。辑辑于于星星期期四四::一十点九四点十四分十。四分。
第二十八页,第编辑第二于星期十二四:八十点 三页十八九,分页。 编,辑编于辑星期于四星:期一四点:四十十九分点。 四十四分。
第二十第九第二页,十二编九十辑页九于,星页编期,辑四编:于点辑星三期于十四星九:期分一。四点:四十十九分点。 四十四分。
第三十第页第三,十三编页十辑,页于编,星辑期编于四辑星:于期点四星三:期十一四九点:分四十。十九分点。四十四分。
D
第十三第页第十,三十编页三辑,页于编,星辑期编于四辑星:于期点四星三:期十一四九点:分四十。十九分点。四十四分。
第十四页,编第辑于第星十期四十四:点四三页十九页分,。,编编辑辑于于星星期期四四::一十点九四点十四分十。四分。
第十五第页第十,十五编五页辑页于,,星编期编辑四辑于:于星点星期三期四十四:九:一分十。点九四点十四分十。四分。
理科数学
第九章 直线、平面与简单几何体
第一页,编辑于星期第四:点第一三十九页一分。 ,页编,辑编于辑星于期星四:期一四点:四十十九分点。四十四分。
考点70 平行、垂直关系的证明
知识要点
基础自测
典例示范
互动演练
方法总结
第二页第,二第页编二,辑编页于辑,于星星编期期四四辑::于一点点星四三期十十分四。九:分十。九点 四十四分。
第十九页第,十第编九辑十页于九星,期编页四辑,:于点编星三期辑十九四于分:。星一点期四四十:分十。 九点 四十四分。
2022年高考数学总复习:立体几何中的向量方法(一)证明平行与垂直
2022年高考数学总复习:立体几何中的向量方法(一)——证明平行与垂直最新考纲 1.理解直线的方向向量及平面的法向量;2.能用向量语言表述线线、线面、面面的平行和垂直关系;3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.知识梳理1.直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2 l1⊥l2n1⊥n2⇔n1·n2=0直线l的方向向量为n,平面α的法向量为m l∥αn⊥m⇔n·m=0 l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,m α∥βn∥m⇔n=λm α⊥βn⊥m⇔n·m=0[常用结论与微点提醒]1.用向量知识证明立体几何问题,仍离不开立体几何中的定理.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.2.用向量证明立体几何问题,写准点的坐标是关键,要充分利用中点、向量共线、向量相等来确定点的坐标.诊断自测1.思考辨析(在括号内打“√”或“×”)(1)直线的方向向量是唯一确定的.()(2)若直线a 的方向向量和平面α的法向量平行,则a ∥α.( ) (3)若两平面的法向量平行,则两平面平行.( )(4)若直线a 的方向向量与平面α的法向量垂直,则a ∥α.( ) 解析 (1)直线的方向向量不是唯一的,有无数多个; (2)a ⊥α;(3)两平面平行或重合;(4)a ∥α或a ⊂α. 答案 (1)× (2)× (3)× (4)×2.(选修2-1P104练习2改编)已知平面α,β的法向量分别为n 1=(2,3,5),n 2=(-3,1,-4),则( ) A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不对解析 ∵n 1≠λn 2,且n 1·n 2=2×(-3)+3×1+5×(-4)=-23≠0,∴α,β相交但不垂直. 答案 C3.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( ) A.l ∥α B.l ⊥α C.l ⊂αD.l 与α斜交解析 ∵a =(1,0,2),n =(-2,0,-4), ∴n =-2a ,即a ∥n .∴l ⊥α. 答案 B4.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( )A.(-1,1,1)B.(1,-1,1)C.⎝ ⎛⎭⎪⎫-33,-33,-33D.⎝ ⎛⎭⎪⎫33,33,-33解析 设n =(x ,y ,z )为平面ABC 的法向量, 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎨⎧-x +y =0,-x +z =0,∴x =y =z .答案 C5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.解析 以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z轴,建立空间直角坐标系(图略),设正方体的棱长为1,则A (0,0,0),M ⎝ ⎛⎭⎪⎫0,1,12,O ⎝ ⎛⎭⎪⎫12,12,0,N ⎝ ⎛⎭⎪⎫12,0,1.AM →·ON →=⎝ ⎛⎭⎪⎫0,1,12·⎝ ⎛⎭⎪⎫0,-12,1=0,∴ON 与AM 垂直. 答案 垂直考点一 利用空间向量证明平行问题【例1】 (一题多解)如图,在四面体ABCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC . 证明:PQ ∥平面BCD .证明 法一 如图,取BD 的中点O ,以O 为原点,OD ,OP 所在射线分别为y , z 轴的正半轴,建立空间直角坐标系O -xyz .由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ→=3QC →, 所以Q ⎝ ⎛⎭⎪⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12,所以PQ→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0. 又平面BCD 的一个法向量为a =(0,0,1),故PQ→·a =0.又PQ ⊄平面BCD , 所以PQ ∥平面BCD .法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同法一建立空间直角坐标系,写出点A ,B ,C 的坐标,设点C 坐标为(x 0,y 0,0). ∵CF→=14CD →,设点F 坐标为(x ,y ,0),则 (x -x 0,y -y 0,0)=14(-x 0,2-y 0,0), ∴⎩⎪⎨⎪⎧x =34x 0,y =24+34y 0,∴OF →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0又由法一知PQ→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0, ∴OF→=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .规律方法 1.恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.2.证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.【训练1】 已知正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F ,G 分别为AB ,AD ,AA 1的中点,求证:平面EFG ∥平面B 1CD 1. 证明 建立如图所示的空间直角坐标系D -xyz ,则A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,0),A 1(1,0,1),B 1(1,1,1),D 1(0,0,1).得E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫12,0,0,G ⎝ ⎛⎭⎪⎫1,0,12, EF →=⎝ ⎛⎭⎪⎫-12,-12,0,EG →=⎝ ⎛⎭⎪⎫0,-12,12. 设n 1=(x 1,y 1,z 1)为平面EFG 的法向量,n 2=(x 2,y 2,z 2)为平面B 1CD 1的一个则⎩⎪⎨⎪⎧n 1·EF →=0,n 1·EG →=0,即⎩⎪⎨⎪⎧-12x 1-12y 1=0,-12y 1+12z 1=0.令x 1=1,可得y 1=-1,z 1=-1, 同理可得x 2=1,y 2=-1,z 2=-1. 则n 1=(1,-1,-1),n 2=(1,-1,-1). 由n 1=n 2,得平面EFG ∥平面B 1CD 1. 考点二 利用空间向量证明垂直问题【例2】 如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明: (1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .证明 (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,BC 为交线,PO ⊂平面PBC ,△PBC 为等边三角形,即PO ⊥BC , ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0,∴P A ⊥BD , ∴P A ⊥BD .(2)取P A 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32.∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3),∴DM→·PB →=32×1+0×0+32×(-3)=0, ∴DM→⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0, ∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,P A ,PB ⊂平面P AB , ∴DM ⊥平面P AB . ∵DM ⊂平面P AD , ∴平面P AD ⊥平面P AB .规律方法 1.利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键. 2.用向量证明垂直的方法(1)线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零. (2)线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.(3)面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.【训练2】 如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB =AA 1= 2.证明:A 1C ⊥平面BB 1D 1D .证明 由题设易知OA ,OB ,OA 1两两垂直,以O 为原点建立如图所示的空间直角坐标系.因为AB =AA 1=2,所以OA =OB =OA 1=1,所以A (1,0,0),B (0,1,0), C (-1,0,0),D (0,-1,0),A 1(0,0,1). 由A 1B 1→=AB →,易得B 1(-1,1,1).因为A 1C →=(-1,0,-1),BD →=(0,-2,0),BB 1→=(-1,0,1), 所以A 1C →·BD →=0,A 1C →·BB 1→=0, 所以A 1C ⊥BD ,A 1C ⊥BB 1.又BD ∩BB 1=B ,BD ,BB 1⊂平面BB 1D 1D , 所以A 1C ⊥平面BB 1D 1D .考点三 用空间向量解决探索性问题(多维探究) 命题角度1 与平行有关的探索性问题【例3-1】 (2016·北京卷改编)如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB ;(2)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.(1)证明 因为平面P AD ⊥平面ABCD ,AB ⊥AD , 所以AB ⊥平面P AD ,所以AB ⊥PD .又因为P A ⊥PD 且AB ∩P A =A ,P A ,AB ⊂平面P AB ,所以PD ⊥平面P AB .(2)解 取AD 的中点O ,连接PO ,CO . 因为P A =PD ,所以PO ⊥AD .又因为PO ⊂平面P AD ,平面P AD ⊥平面ABCD , 所以PO ⊥平面ABCD .因为CO ⊂平面ABCD ,所以PO ⊥CO . 因为AC =CD ,所以CO ⊥AD .如图,建立空间直角坐标系O -xyz .由题意得,A (0,1,0),B (1,1,0),C (2,0,0), D (0,-1,0),P (0,0,1).设M 是棱P A 上一点,则存在λ∈[0,1],使得AM →=λAP →.因此M (0,1-λ,λ),BM→=(-1,-λ,λ).因为BM ⊄平面PCD ,所以BM ∥平面PCD , 当且仅当BM→·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M ,使得BM ∥平面PCD , 此时AM AP =14.命题角度2 与垂直有关的探索性问题【例3-2】 如图,正方形ADEF 所在平面和等腰梯形ABCD 所在的平面互相垂直,已知BC =4,AB =AD =2. (1)求证:AC ⊥BF ;(2)在线段BE 上是否存在一点P ,使得平面P AC ⊥平面BCEF ?若存在,求出BP PE 的值;若不存在,请说明理由.(1)证明 ∵平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,AF ⊥AD ,AF ⊂平面ADEF , ∴AF ⊥平面ABCD .又AC ⊂平面ABCD ,∴AF ⊥AC .过A 作AH ⊥BC 于H ,则BH =1,AH =3,CH =3,∴AC =23,∴AB 2+AC 2=BC 2,∴AC ⊥AB , ∵AB ∩AF =A ,AB ,AF ⊂平面F AB , ∴AC ⊥平面F AB ,∵BF ⊂平面F AB ,∴AC ⊥BF .(2)解 存在.由(1)知,AF ,AB ,AC 两两垂直,以A 为坐标原点,AB→,AC →,AF →的方向分别为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,23,0),E (-1,3,2).假设在线段BE 上存在一点P 满足题意,则易知点P 不与点B ,E 重合, 设BP →=λPE →,则λ>0,P ⎝ ⎛⎭⎪⎫2-λ1+λ,3λ1+λ,2λ1+λ. 设平面P AC 的法向量为m =(x ,y ,z ).由AP →=⎝ ⎛⎭⎪⎫2-λ1+λ,3λ1+λ,2λ1+λ,AC →=(0,23,0), 得⎩⎨⎧m ·AP →=2-λ1+λx +3λ1+λy +2λ1+λz =0,m ·AC →=23y =0,即⎩⎪⎨⎪⎧y =0,z =λ-22λx ,令x =1,则z =λ-22λ, 所以m =⎝⎛⎭⎪⎫1,0,λ-22λ为平面P AC 的一个法向量. 同理,可求得n =⎝ ⎛⎭⎪⎫1,33,1为平面BCEF 的一个法向量.当m ·n =0,即λ=23时,平面P AC ⊥平面BCEF ,故存在满足题意的点P ,此时BP PE =23.规律方法 解决立体几何中探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理. (2)探索性问题的关键是设点:①空间中的点可设为(x ,y ,z );②坐标平面内的点其中一个坐标为0,如xOy 面上的点为(x ,y ,0);③坐标轴上的点两个坐标为0,如z 轴上的点为(0,0,z );④直线(线段)AB 上的点P ,可设为AP →=λAB →,表示出点P 的坐标,或直接利用向量运算.提醒 解这类问题时要利用好向量垂直和平行的坐标表示. 【训练3】 如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5. (1)求证:AA 1⊥平面ABC ;(2)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求BDBC 1的值.证明 (1)因为AA 1C 1C 为正方形,所以AA 1⊥AC .因为平面ABC ⊥平面AA 1C 1C ,AA 1⊂平面AA 1C 1C ,且AA 1垂直于这两个平面的交线AC ,所以AA 1⊥平面ABC .(2)由(1)知AA 1⊥AB ,AA 1⊥AC .由题知AB =3,BC =5,AC =4,所以AB ⊥AC . 如图,以A 为原点建立空间直角坐标系A -xyz .则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4). 设D (x ,y ,z )是直线BC 1上的一点,且BD →=λBC →1,所以(x ,y -3,z )=λ(4,-3,4), 解得x =4λ,y =3-3λ,z =4λ, 所以AD→=(4λ,3-3λ,4λ). 由AD →·A 1B →=0,A 1B →=(0,3,-4),则9-25λ=0,解得λ=925.因为925∈[0,1],所以在线段BC 1上存在点D ,使得AD ⊥A 1B ,此时,BD BC 1=λ=925.基础巩固题组 (建议用时:40分钟)一、选择题1.平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k 等于( ) A.2B.-4C.4D.-2解析 ∵α∥β,∴两平面的法向量平行, ∴-21=-42=k -2,∴k =4.答案 C2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( ) A.相交 B.平行C.在平面内D.平行或在平面内解析 ∵AB→=λCD →+μCE →,∴AB →,CD →,CE →共面.则AB 与平面CDE 的位置关系是平行或在平面内. 答案 D3.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( ) A.P (2,3,3)B.P (-2,0,1)C.P (-4,4,0)D.P (3,-3,4)解析 逐一验证法,对于选项A ,MP →=(1,4,1),∴MP→·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内. 答案 A4.(2018·郑州月考)如图,F 是正方体ABCD -A 1B 1C 1D 1的棱CD 的中点.E 是BB 1上一点,若D 1F ⊥DE ,则有( ) A.B 1E =EB B.B 1E =2EB C.B 1E =12EB D.E 与B 重合解析 分别以DA ,DC ,DD 1为x ,y ,z 轴建立空间直角坐标系,设正方形的边长为2,则D (0,0,0),F (0,1,0),D 1(0,0,2),设E (2,2,z ),D 1F →=(0,1,-2),DE →=(2,2,z ),∵D 1F →·DE →=0×2+1×2-2z =0,∴z =1,∴B 1E =EB . 答案 A5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是( ) A.斜交 B.平行C.垂直D.MN 在平面BB 1C 1C 内解析 建立如图所示的空间直角坐标系, 由于A 1M =AN =2a 3,则M ⎝ ⎛⎭⎪⎫a ,2a 3,a 3,N ⎝ ⎛⎭⎪⎫2a 3,2a 3,a ,MN →=⎝ ⎛⎭⎪⎫-a 3,0,2a 3. 又C 1D 1⊥平面BB 1C 1C ,所以C 1D 1→=(0,a ,0)为平面BB 1C 1C 的一个法向量. 因为MN →·C 1D 1→=0,所以MN →⊥C 1D 1→,又MN ⊄平面BB 1C 1C , 所以MN ∥平面BB 1C 1C . 答案 B二、填空题6.(2018·武汉调研)已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.解析 设平面α的法向量为m =(x ,y ,z ), 由m ·AB →=0,得x ·0+y -z =0⇒y =z , 由m ·AC →=0,得x -z =0⇒x =z ,取x =1, ∴m =(1,1,1),m =-n ,∴m ∥n ,∴α∥β. 答案 α∥β7.(2018·西安调研)已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x +y =________.解析由条件得⎩⎨⎧3+5-2z =0,x -1+5y +6=0,3(x -1)+y -3z =0,解得x =407,y =-157,z =4, ∴x +y =407-157=257. 答案 2578.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP→=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP→∥BD →.其中正确的序号是________.解析 ∵AB→·AP →=0,AD →·AP →=0,∴AB ⊥AP ,AD ⊥AP ,则①②正确.又AB→与AD →不平行,∴AP →是平面ABCD 的法向量,则③正确.由于BD→=AD →-AB →=(2,3,4),AP →=(-1,2,-1), ∴BD →与AP →不平行,故④错误. 答案 ①②③ 三、解答题9.(一题多解)如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG . 证明 ∵平面P AD ⊥平面ABCD ,且ABCD 为正方形, ∴AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如右图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0). 法一 ∴EF→=(0,1,0),EG →=(1,2,-1),设平面EFG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·EF →=0,n ·EG →=0,即⎩⎨⎧y =0,x +2y -z =0,令z =1,则n =(1,0,1)为平面EFG 的一个法向量, ∵PB→=(2,0,-2),∴PB →·n =0,∴n ⊥PB →, ∵PB ⊄平面EFG ,∴PB ∥平面EFG .法二 PB→=(2,0,-2),FE →=(0,-1,0),FG→=(1,1,-1).设PB →=sFE →+tFG →, 即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎨⎧t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →,又∵FE→与FG →不共线,∴PB →,FE →与FG →共面.∵PB ⊄平面EFG , ∴PB ∥平面EFG .10.如图正方形ABCD 的边长为22,四边形BDEF 是平行四边形,BD 与AC 交于点G ,O 为GC 的中点,FO =3,且FO ⊥平面ABCD .(1)求证:AE ∥平面BCF ; (2)求证:CF ⊥平面AEF .证明 取BC 中点H ,连接OH ,则OH ∥BD , 又四边形ABCD 为正方形,∴AC ⊥BD ,∴OH ⊥AC ,故以O 为原点,建立如图所示的直角坐标系,则A (3,0,0),C (-1,0,0),D (1,-2,0),F (0,0,3),B (1,2,0).BC→=(-2,-2,0),CF →=(1,0,3),BF →=(-1,-2,3).(1)设平面BCF 的法向量为n =(x ,y ,z ), 则⎩⎨⎧-2x -2y =0,x +3z =0,取z =1,得n =(-3,3,1). 又四边形BDEF 为平行四边形, ∴DE→=BF →=(-1,-2,3), ∴AE→=AD →+DE →=BC →+BF → =(-2,-2,0)+(-1,-2,3)=(-3,-4,3), ∴AE→·n =33-43+3=0,∴AE →⊥n , 又AE ⊄平面BCF ,∴AE ∥平面BCF .(2)AF →=(-3,0,3),∴CF →·AF →=-3+3=0,CF →·AE→=-3+3=0,∴CF →⊥AF →,CF →⊥AE →, 又AE ∩AF =A , AE ,AF ⊂平面AEF , ∴CF ⊥平面AEF .能力提升题组 (建议用时:20分钟)11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE .则M 点的坐标为( )A.(1,1,1)B.⎝ ⎛⎭⎪⎫23,23,1 C.⎝ ⎛⎭⎪⎫22,22,1D.⎝⎛⎭⎪⎫24,24,1 解析 设AC 与BD 相交于O 点,连接OE ,由AM ∥平面BDE ,且AM ⊂平面ACEF ,平面ACEF ∩平面BDE =OE ,∴AM ∥EO , 又O 是正方形ABCD 对角线交点, ∴M 为线段EF 的中点.在空间坐标系中,E (0,0,1),F (2,2,1). 由中点坐标公式,知点M 的坐标⎝ ⎛⎭⎪⎫22,22,1.答案 C12.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.解析 以D 1A 1,D 1C 1,D 1D 分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x ,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1), ∴B 1E →=(x -1,0,1),∴FB →=(1,1,y ), 由于B 1E ⊥平面ABF ,所以FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1. 答案 113.如图,正△ABC 的边长为4,CD 为AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B .(1)试判断直线AB 与平面DEF 的位置关系,并说明理由;(2)在线段BC 上是否存在一点P ,使AP ⊥DE ?如果存在,求出BPBC 的值;如果不存在,请说明理由.解 (1)AB ∥平面DEF ,理由如下:在△ABC 中,由E ,F 分别是AC ,BC 的中点,得EF ∥AB . 又因为AB ⊄平面DEF ,EF ⊂平面DEF , 所以AB ∥平面DEF .(2)以点D 为坐标原点,直线DB ,DC ,DA 分别为x 轴,y 轴,z 轴,建立空间直角坐标系(如图所示),则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),故DE→=(0,3,1).假设存在点P (x ,y ,0)满足条件,则AP →=(x ,y ,-2),AP →·DE →=3y -2=0, 所以y =233.又BP→=(x -2,y ,0),PC →=(-x ,23-y ,0),BP →∥PC →, 所以(x -2)(23-y )=-xy ,所以3x +y =2 3. 把y =233代入上式得x =43,所以BP →=13BC →,BP BC=1 3.所以在线段BC上存在点P使AP⊥DE,此时。
高考数学复习—立体几何:(二)空间直线平面关系判断与证明—平行与垂直关系证明(试题版)
【考点2:空间直线、平面的平行与垂直关系证明】题型1:直线、平面平行的判断及性质【典型例题】[例1]►(1)如图,在四面体P ABC中,点D,E,F,G分别是棱AP,AC,BC,PB的中点.求证:DE∥平面BCP .►(2)(2013福建改编)如图,在四棱锥P-ABCD中,AB∥DC, AB=6,DC=3,若M为P A的中点,求证:DM∥平面PBC . ►(3)如图,在四面体A-BCD中,F,E,H分别是棱AB,BD,AC 的中点,G为DE的中点.证明:直线HG∥平面CEF .[例2]►(1)如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:①B,C,H,G四点共面;②平面EF A1∥平面BCHG .►(2)如图E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证:①EG∥平面BB1D1D;②平面BDF∥平面B1D1H .【变式训练】1.(2014·衡阳质检)在正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为______.2.如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH .3.如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G,求证:FG∥平面ADD1A1.4.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E 在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E,B,F,D1四点共面;(2)求证:平面A1GH∥平面BED1F .题型2:直线、平面垂直的判断及性质【典型例题】[例1]►(1)如图,在四棱锥P-ABCD中, P A⊥底面ABCD, AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC中点. 证明:①CD⊥AE;②PD⊥平面ABE .►(2)如图所示,在四棱锥P-ABCD中,AB⊥平面P AD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=12AB,PH为△P AD中AD边上的高.①证明:PH⊥平面ABCD;②证明:EF⊥平面P AB.[例2]►(1)[2014·辽宁文]如图所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(I)求证:EF⊥平面BCG;(II)求三棱锥D -BCG的体积.►(2)(2012·课标全国)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点.(I)证明:平面BDC1⊥平面BDC;(II)平面BDC1分此棱柱为两部分,求这两部分体积的比.►(3)(2015·大庆质检) 如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.①求证:PC⊥BC;②求点A到平面PBC的距离.【变式训练】1.如图,四棱锥P—ABCD中,P A⊥底面ABCD,AB⊥AD,点E 在线段AD上,且CE∥AB. (1)求证:CE⊥平面P AD;(2)若P A=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥P-ABCD的体积.2.[2014·福建文]如图所示,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A -MBC的体积.3.(2015·唐山统考)如图,在三棱锥P-ABC中,P A=PB=AB =BC,∠PBC=90°,D为AC的中点,AB⊥PD.(1)求证:平面P AB⊥平面ABC;(2)如果三棱锥P-BCD的体积为3,求P A.4.[2014·课标Ⅰ文]如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.☆题型3:直线、平面平行与垂直关系的综合【典型例题】[例1]►(1)已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题中真命题是(写出序号).①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.►(2)(2014·辽宁)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α►(3)(2015·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面►(4)(2013·课标Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l►(5)(2016·课标Ⅱ)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号) [例2]►(1)(2014·北京)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.(I)求证:平面ABE⊥平面B1BCC1;(II)求证:C1F∥平面ABE;(III)求三棱锥E-ABC的体积.►(2)[2014江苏文]如图,三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5. 求证:(I)直线P A∥平面DEF;(II)平面BDE⊥平面ABC.[例3]►(1)[2014·陕西文]四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(I)求四面体ABCD的体积;(II)证明:四边形EFGH是矩形.►(2)(2012·北京)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(I)求证:DE∥平面A1CB;(II)求证:A1F⊥BE;(III)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【变式训练】1.(2016·浙江联考)已知a,b,c为三条不同的直线,α,β是空间两个平面,且a⊂α,b⊂β,α∩β=c.给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c;④若a⊥b,a⊥c,则必有α⊥β. 其中正确命题的个数是()A.0B.1C.2D.32.(2012·四川)下列命题正确的是()A.若两直线和同一平面所成的角相等,则这两条直线平行B.若一平面内有三点到另一平面的距离相等,则这两平面平行C.若一直线平行于两相交平面,则这条直线与这两平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行3.(2015·福建)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(2016·山东济南一模)设m,n是两条不同的直线,α,β是两个不同的平面.()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α5.(2016·浙江温州联考)关于直线a,b,l及平面α,β,下列命题中正确的是()A.若a∥α,b∥α,则a∥bB.若a∥α,b⊥a,则b⊥αC.若a ⊂α,b ⊂α,且l ⊥a ,l ⊥b ,则l ⊥αD.若a ⊥α,a ∥β,则α⊥β 6.(2015·山东二模)设m ,n 是空间两条直线,α,β是空间两个平面,则下列命题中不正确的是( ) A.当n ⊥α时,“n ⊥β”是“α∥β”的充要条件B.当m ⊂α时,“m ⊥β”是“α⊥β”的充分不必要条件C.当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件D.当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件 7.(2016·浙江)已知互相垂直的平面α,β交于直线l ,若直线m ,n 满足m ∥α,n ⊥β,则( )A.m ∥lB.m ∥nC.n ⊥lD.m ⊥n 8.(2013北京)如图,四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD .E 和F 分别是CD 和PC 的中点.求证: (1)P A ⊥底面ABCD ; (2)BE ∥平面P AD ;(3)平面BEF ⊥平面PCD .9.[2014·山东文]如图,四棱锥P -ABCD 中,AP ⊥平面PCD , AD ∥BC ,AB =BC=12AD ,E ,F 分别为线段AD ,PC 的中点. (1)求证:AP ∥平面BEF ; (2)求证:BE ⊥平面P AC .10.(2013全国Ⅱ文)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(Ⅰ)证明:BC 1∥平面A 1CD ;(Ⅱ)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.11.(2013·辽宁)如图,AB 是圆O 的直径,P A 垂直圆O 所在的平面,C 是圆O 上的点. (1)求证:BC ⊥平面P AC ; (2)设Q 为P A 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC .12.[2014·课标Ⅱ文]如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点. (1)证明:PB ∥平面AEC ;(2)设AP =1,AD =3,三棱锥P - ABD 的体积V =34,求A到平面PBC 的距离.13.(2015江苏)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E . 求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.14.(2015广东文)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3. (1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.15.(2015课标Ⅱ)如图,长方体ABCD -A 1B 1C 1D 1中,AB =16, BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值.16.(2015陕西)如图,直角梯形ABCD 中,AD ∥B C,∠BAD =π2, AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到如图2中△A 1BE 的位置,得到四棱锥A 1﹣BCDE . (Ⅰ)证明:CD ⊥平面A 1OC ;(Ⅱ)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1﹣BCDE 的体积为362,求a 的值.17.(2016·课标Ⅱ文)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置. (1)证明:AC ⊥HD ′(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′ABCFE 的体积.18.(2016·课标Ⅲ文)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明MN ∥平面P AB ;(2)求四面体N -BCM 的体积.19.[2017全国I 文]如图,在四棱锥P-ABCD 中,AB//CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,∠ADP =90°,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.20.[2017全国II 文]如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD , ∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 面积为27,求四棱锥P-ABCD 的体积.21.[2017全国III 文]在正方体ABCD-A 1B 1C 1D 1中,E 为棱CD 的中点,则( )A.A 1E ⊥DC 1B.A 1E ⊥BDC.A 1E ⊥BC 1D.A 1E ⊥AC22.[2017全国III 文]如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.。
高考数学 专题32 空间中直线、平面垂直位置关系的证明方法黄金解题模板
专题32 空间中直线、平面垂直位置关系的证明方法【高考地位】立体几何是高考的重点内容之一,每年高考大题必有立体几何题,尤其是第一问主要考查证明线面垂直、平行,面面垂直等问题,解决这类问题的方法主要有:几何法和空间向量法. 在高考中其难度属中档题. 【方法点评】方法一 几何法使用情景:转化的直线或平面比较容易找到解题模板:第一步 按照线线垂直得到线面垂直,进而得出面面垂直的思路分析解答;第二步 找到关键的直线或平面; 第三步 得出结论.例1、【2018广西桂林市第十八中模拟】如图,在三棱锥P ABC -中, ,44CBA AB π∠===,,D E 分别为线段,AB BC 的中点, ,PD AC PE BC ⊥⊥.(1)求证: CD ⊥平面PAB ;(2)若F 为PA 上的点,且2,3C PEF PF FA V -==P 平面ABC 的距离.又∵,PD AC BC AC C ⊥⋂=,∴PD ⊥面ABC , ∵CD ⊂面ABC ∴PD CD ⊥在ABC ∆中D 是AB 的中点, AC BC =,∴CD AB ⊥ ∵PD AB D ⋂=, ,PD AB ⊂面PAB ,∴CD ⊥平面PAB (2)由(1)知P 到面ABC 的距离为PD 由等体积知: 2233C PEF F PEC A PEC P AEC V V V V ----===∵3C PEF V -=2P AEC V -=∴123AEC PD S ∆⨯⨯⨯=∵122AEC S AC AE ∆=⨯⨯=, 1223PD ⨯⨯⨯=, ∴98PD =. 例2、如图所示,在四棱锥P ABCD -中,底面四边形ABCD 为等腰梯形,E 为PD 中点,PA ⊥平面ABCD ,//,,24AD BC AC BD AD BC ⊥==.证明:平面EBD ⊥平面PAC ; 【答案】详见解析线线垂直PA BD ⊥.试题解析:因为PA ⊥平面,ABCD BD ⊂平面ABCD ,所以PA BD ⊥,又因为,AC BD PA AC A ⊥=,所以BD ⊥平面PAC ,而BD ⊂平面EBD ,所以平面EBD ⊥平面PAC . 考点:面面垂直判定定理【思路点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.【变式演练1】如图, 已知矩形ABCD 所在平面垂直于直角梯形ABPE 所在平面, 平面ABCD平面ABPE AB =,且2,1,AB BP AD AE AE AB ====⊥,且AE BP . 设点M 为棱PD 中点, 在面ABCD 内是否存在点N ,使得MN ⊥平面ABCD ?若存在, 请证明, 若不存在, 说明理由。
高考数学《利用空间向量证明平行与垂直关系》复习
(4)线面垂直
l a a=kμ a1=ka3,b1=kb3,c=kc3 .
(5)面面平行
v =kv a3=ka4,b3=kb4,c3=kc4.
(6)面面垂直
v ·v=0 a3a4+b3b4+c3c4=0.
解题技巧
利用空间向量证明平行与垂直的方法与步骤 (1) 坐标运算法:一般步骤:①建立空间直角坐标系,建系时, 要尽可能地利用载体中的垂直关系; ②建立空间图形与空间向量之间的关系,用向量表示出问题中所涉及的点、 直线、平面的要素; ③通过空间向量的运算研究平行、垂直关系; ④根据运算结果解释相关问题.
解题技巧
4.利用空间向量求点到平面距离的方法 如图,设 A 为平面 内的一点,B 为平面 外的一点,n 为平面 的法向量,
AB n
则 B 到平面 的距离 d=
.
n
1.如图,某圆锥 SO 的轴截面 SAC 是等边三角形,点 B 是底面圆周上的一点,且 BOC 60 ,
点 M 是 SA 的中点,则异面直线 AB 与 CM 所成角的余弦值是( )
(4)点到平面的距离的向量求法
如图,设 AB 为平面 α 的一条斜线段,n 为平面 α 的法向量,
AB n
则点 B 到平面 α 的距离 d=
.
n
2.模、夹角和距离公式
(1) 设 a=(a1,a2,a3 ),b=(b1,b2,b3 ) ,则 a = a·a a12a22a32 , b = b·b b12b22b32 ,
B.3
ห้องสมุดไป่ตู้
√C.4
D.6
由直棱柱的性质,知直线 A1B1 到平面 ABO 的距离为棱柱的高,不妨设为 t t 0 .以 O 为坐标原
点, OA,OB,OO1 所在的直线分别为 x, y, z 轴,建立如图所示的空间直角坐标系, 则 O(0,0,0), B(0,6,0), A1(2,0,t) , B1(0,6,t) ,则 D(1,3,t) .所以 A1B (2, 6, t),OD (1,3,t) 所以 A1B OD 2 18 t2 0 ,所以 t 4 ,故选 C.
专题08 利用空间向量证明平行、垂直(解析版)
2020年高考数学立体几何突破性讲练08利用空间向量证明平行、垂直一、考点传真:能用向量语言表述线线、线面、面面的平行和垂直关系二、知识点梳理:证明平行、垂直问题的思路(1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.3其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.三、例题:例1. (2019江苏卷)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【解析】证明:(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .例2.(2016年北京卷) 如图,在四棱锥中,平面PAD ⊥平面,,,,,,(1)求证:平面;(2)求直线与平面所成角的正弦值;(3)在棱上是否存在点,使得平面?若存在,求的值;若不存在,说明理由.【解析】(1)∵面PAD面ABCD AD =,面PAD ⊥面ABCD ,∵AB ⊥AD ,AB ⊂面ABCD ,∴AB ⊥面PAD ,P ABCD -ABCD PA PD ⊥PA PD =AB AD ⊥1AB =2AD =AC CD ==PD ⊥PAB PB PCD PA M //BM PCD AMAP∵PD ⊂面PAD , ∴AB ⊥PD , 又PD ⊥PA ,∴PD ⊥面PAB , (2)取AD 中点为O ,连结CO ,PO ,∵CD AC == ∴CO ⊥AD , ∵PA PD =, ∴PO ⊥AD ,以O 为原点,如图建系易知(001)P ,,,(110)B ,,,(010)D -,,,(200)C ,,,则(111)PB =-,,,(011)PD =--,,,(201)PC =-,,,(210)CD =--,,, 设n 为面PDC 的法向量,令00(,1)n x y =,.011,120n PD n n PC ⎧⋅=⎪⎛⎫⇒=-⎨⎪⎝⎭⋅=⎪⎩,,则PB 与面PCD 夹角θ有,sin cos ,1n PB n PB n PBθ⋅=<>== (3)假设存在M 点使得BM ∥面PCD , 设AMAPλ=,()0,','M y z , 由(2)知()0,1,0A ,()0,0,1P ,()0,1,1AP =-,()1,1,0B ,()0,'1,'AM y z =- 有()0,1,AM AP M λλλ=⇒- ∴()1,,BM λλ=--∵BM ∥面PCD ,n 为PCD 的法向量, ∴0BM n ⋅=,即102λλ-++=,∴1=4λ∴综上,存在M 点,即当14AM AP =时,M 点即为所求. 例3.(2011安徽)如图,ABCDEFG 为多面体,平面ABED 与平面AGFD 垂直,点O 在线段AD 上,1,2,OA OD ==OAB ∆,OAC ∆,ODE ∆,ODF ∆都是正三角形. (Ⅰ)证明直线BC ∥EF ; (Ⅱ)求棱锥F OBED -的体积.【解析】(Ⅰ)(综合法)证明:设G 是线段DA 与EB 延长线的交点. 由于OAB ∆与ODE∆都是正三角形,所以OB ∥DE 21,OG=OD=2, 同理,设G '是线段DA 与线段FC 延长线的交点,有.2=='OD G O 又由于G 和G '都在线段DA 的延长线上,所以G 与G '重合.在GED ∆和GFD 中,由OB ∥DE 21和OC ∥DF 21,可知B 和C 分别是GE 和GF 的中点,所以BC 是GEF ∆的中位线,故BC ∥EF .(向量法)过点F 作AD FQ ⊥,交AD 于点Q ,连QE ,由平面ABED ⊥平面ADFC ,知FQ ⊥平面ABED ,以Q 为坐标原点,QE 为x 轴正向,QD 为y 轴正向,QF 为z 轴正向,建立如图所示空间直角坐标系. 由条件知).23,23,0(),0,23,23(),3,0,0(),0,0,3(--C B F E则有33(,0,),(3,0,BC EF =-=- 所以,2=即得BC ∥EF .(Ⅱ)由OB=1,OE=2,23,60=︒=∠EOB S EOB 知,而O E D ∆是边长为2的正三角形,故.3=OED S 所以.233=+=OED EOB OBED S S S过点F 作FQ ⊥AD ,交AD 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F —OBED 的高,且FQ=3,所以.2331=⋅=-OBED OBED F S FQ V 例4.(2011江苏)如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB AD =,BAD ∠=60°,E 、F 分别是AP 、AD 的中点. 求证:(Ⅰ)直线EF ∥平面PCD ;(Ⅱ)平面BEF ⊥平面PAD .【证明】(Ⅰ)在△PAD 中,因为E 、F 分别为AP ,AD 的中点,所以EF//PD .又因为EF ⊄平面PCD ,PD ⊂平面PCD ,所以直线EF//平面PCD .(Ⅱ)连结DB ,因为AB=AD ,∠BAD=60°,所以ABD ∆为正三角形,因为F 是AD 的中点,所以BF ⊥AD .因为平面PAD ⊥平面ABCD ,BF ⊂平面ABCD ,平面PAD 平面ABCD=AD ,所以BF ⊥平面PAD .又因为BF ⊂平面BEF ,所以平面BEF ⊥平面PAD .例5.(2010广东)如图,¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FB FD ==,EF =.(Ⅰ)证明:EB FD ⊥;(Ⅱ)已知点,Q R 为线段,FE FB 上的点,23FQ FE =,23FR FB =,求平面BED 与平面RQD 所成二面角的正弦值.【证明】:(Ⅰ)连结CF ,因为¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,所以EB AC ⊥.在RT BCE ∆中,EC ===.在BDF ∆中,BF DF ==,BDF ∆为等腰三角形, 且点C 是底边BD 的中点,故CF BD ⊥.在CEF ∆中,222222)(2)6CE CF a a EF +=+==,所以CEF ∆为Rt ∆,且CF EC ⊥.因为CF BD ⊥,CF EC ⊥,且CE BD C =I ,所以CF ⊥平面BED , 而EB ⊂平面BED ,CF EB ∴⊥.因为EB AC ⊥,EB CF ⊥,且AC CF C =I ,所以EB ⊥平面BDF , 而FD ⊂平面BDF ,EB FD ∴⊥.(Ⅱ)设平面BED 与平面RQD 的交线为DG .由23FQ FE =,23FR FB =,知//QR EB . 而EB ⊂平面BDE ,∴//QR 平面BDE , 而平面BDE I 平面RQD = DG , ∴////QR DG EB .由(Ⅰ)知,BE ⊥平面BDF ,∴DG ⊥平面BDF , 而,DR DB ⊂平面BDF ,∴DG DR ⊥,DG DQ ⊥, ∴RDB ∠是平面BED 与平面RQD 所成二面角的平面角. 在Rt BCF ∆中,2CF a ===,sin FC RBD BF ∠===cos RBD ∠==. 在BDR ∆中,由23FR FB =知,133BR FB ==,由余弦定理得,RD== 由正弦定理得,sin sin BR RD RDB RBD=∠∠,即332sin RDB =∠,sin RDB ∠=故平面BED 与平面RQD 所成二面角的正弦值为29.为GC 的中点,FO =3,且FO ⊥平面ABCD .(1)求证:AE ∥平面BCF ; (2)求证:CF ⊥平面AEF .【解析】证明 取BC 中点H ,连接OH ,则OH ∥BD ,又四边形ABCD 为正方形, ∴AC ⊥BD ,∴OH ⊥AC ,故以O 为原点,建立如图所示的直角坐标系,则A (3,0,0),C (-1,0,0),D (1,-2,0),F (0,0,3),B (1,2,0).BC →=(-2,-2,0),CF →=(1,0,3),BF →=(-1,-2,3). (1)设平面BCF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·CF →=0,即⎩⎨⎧-2x -2y =0,x +3z =0,取z =1,得n =(-3,3,1). 又四边形BDEF 为平行四边形, ∴DE →=BF →=(-1,-2,3), ∴AE →=AD →+DE →=BC →+BF →=(-2,-2,0)+(-1,-2,3)=(-3,-4,3), ∴AE →·n =33-43+3=0,∴AE →⊥n , 又AE ⊄平面BCF ,∴AE ∥平面BCF .(2)AF →=(-3,0,3),∴CF →·AF →=-3+3=0,CF →·AE →=-3+3=0, ∴CF →⊥AF →,CF →⊥AE →, 即CF ⊥AF ,CF ⊥AE , 又AE ∩AF =A , AE ,AF ⊂平面AEF , ∴CF ⊥平面AEF .2.如图所示,在直三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C 和侧面AA 1B 1B 都是正方形且互相垂直,M 为AA 1的中点,N 为BC 1的中点.求证:(1)MN ∥平面A 1B 1C 1; (2)平面MBC 1⊥平面BB 1C 1C .【解析】证明 由题意知AA 1,AB ,AC 两两垂直,以A 为坐标原点建立如图所示的空间直角坐标系.不妨设正方形AA 1C 1C 的边长为2,则A (0,0,0),A 1(2,0,0),B (0,2,0),B 1(2,2,0),C (0,0,2),C 1(2,0,2),M (1,0,0),N (1,1,1).(1)因为几何体是直三棱柱,所以侧棱AA 1⊥底面A 1B 1C 1.因为AA 1→=(2,0,0),MN →=(0,1,1),所以MN →·AA 1→=0,即MN →⊥AA 1→.MN ⊄平面A 1B 1C 1,故MN ∥平面A 1B 1C 1.(2)设平面MBC 1与平面BB 1C 1C 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). 因为MB →=(-1,2,0),MC 1→=(1,0,2), 所以⎩⎪⎨⎪⎧n 1·MB →=0,n 1·MC 1→=0,即⎩⎪⎨⎪⎧-x 1+2y 1=0,x 1+2z 1=0,,令x 1=2,则平面MBC 1的一个法向量为n 1=(2,1,-1).同理可得平面BB 1C 1C 的一个法向量为n 2=(0,1,1).因为n 1·n 2=2×0+1×1+(-1)×1=0,所以n 1⊥n 2,所以平面MBC 1⊥平面BB 1C 1C . 3.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,∠BAD =60°,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,DE =2,M 为线段BF 的中点.(1)求M 到平面DEC 的距离及三棱锥M -CDE 的体积; (2)求证:DM ⊥平面ACE .【解析】(1)设AC ∩BD =O ,以O 为原点,OB 为x 轴,OC 为y 轴,过O 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,则C (0,3,0),D (-1,0,0),E (-1,0,2),M (1,0,1), DE →=(0,0,2),DC →=(1,3,0),DM →=(2,0,1), ∵DE →·DC →=0, ∴DE ⊥DC ,∴S △DEC =12×DE ×DC =12×2×2=2,设平面DEC 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DE →=2z =0,n ·DC →=x +3y =0,取x =3,得n =(3,-1,0),∴M 到平面DEC 的距离h =|DM →·n ||n |=233+1=3,∴三棱锥M -CDE 的体积V =13×S △CDE ×h =13×2×3=233.(2)证明:A (0,-3,0),AC →=(0,23,0),AE →=(-1,3,2), AC →·DM →=0,AE →·DM →=-2+2=0, ∴AC ⊥DM ,AE ⊥DM ,∵AC ∩AE =A ,∴DM ⊥平面ACE .4.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面P AD ⊥底面ABCD ,且P A =PD =22AD ,设E ,F 分别为PC ,BD 的中点.(1)求证:EF ∥平面P AD ; (2)求证:平面P AB ⊥平面PDC .【解析】证明 (1)如图,取AD 的中点O ,连接OP ,OF .因为P A =PD ,所以PO ⊥AD .因为侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD , 所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点, 所以OF ∥AB .又ABCD 是正方形,所以OF ⊥AD . 因为P A =PD =22AD , 所以P A ⊥PD ,OP =OA =a2.以O 为原点,OA ,OF ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系, 则A ⎝⎛⎭⎫a 2,0,0,F ⎝⎛⎭⎫0,a 2,0,D ⎝⎛⎭⎫-a2,0,0, P ⎝⎛⎭⎫0,0,a 2,B ⎝⎛⎭⎫a 2,a ,0,C ⎝⎛⎭⎫-a2,a ,0. 因为E 为PC 的中点,所以E ⎝⎛⎭⎫-a 4,a 2,a4. 易知平面P AD 的一个法向量为OF →=⎝⎛⎭⎫0,a 2,0, 因为EF →=⎝⎛⎭⎫a 4,0,-a 4,且OF →·EF →=⎝⎛⎭⎫0,a 2,0·⎝⎛⎭⎫a4,0,-a 4=0, 又因为EF ⊄平面P AD , 所以EF ∥平面P AD .(2)因为P A →=⎝⎛⎭⎫a 2,0,-a 2,CD →=(0,-a,0), 所以P A →·CD →=⎝⎛⎭⎫a2,0,-a 2·(0,-a,0)=0, 所以P A →⊥CD →,所以P A ⊥CD . 又P A ⊥PD ,PD ∩CD =D , PD ,CD ⊂平面PDC , 所以P A ⊥平面PDC . 又P A ⊂平面P AB , 所以平面P AB ⊥平面PDC .5.如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .【解析】证明 如图所示,以O 为坐标原点,以射线OP 为z 轴的正半轴建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4).(1)∵AP →=(0,3,4),BC →=(-8,0,0),∴AP →·BC →=(0,3,4)·(-8,0,0)=0,AP →⊥BC →,即AP ⊥BC . (2)由(1)知|AP |=5,又|AM |=3,且点M 在线段AP 上, ∴AM →=35AP →=⎝⎛⎭⎫0,95,125. 又AC →=(-4,5,0),BA →=(-4,-5,0), ∴BM →=BA →+AM →=⎝⎛⎭⎫-4,-165,125, 则A P →·BM →=(0,3,4)·⎝⎛⎭⎫-4,-165,125=0, ∴AP →⊥BM →,即AP ⊥BM ,又根据(1)的结论知AP ⊥BC ,BM ∩BC =B , ∴AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BCM .6. 如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .【解析】证明 (1)取BC 的中点O ,连接PO ,△PBC 为等边三角形,即PO ⊥BC , ∵平面PBC ⊥底面ABCD ,BC 为交线,PO ⊂平面PBC , ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD →, ∴P A ⊥BD .(2)取P A 的中点M ,连接DM ,则M ⎝⎛⎭⎫12,-1,32.∵DM →=⎝⎛⎭⎫32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,P A ,PB ⊂平面P AB , ∴DM ⊥平面P AB . ∵DM ⊂平面P AD , ∴平面P AD ⊥平面P AB .7.如图所示,在四棱柱ABCD -A 1B 1C 1D 1中,A 1D ⊥平面ABCD ,底面ABCD 是边长为1的正方形,侧棱A 1A =2.(1)证明:AC ⊥A 1B ;(2)是否在棱A 1A 上存在一点P ,使得AP →=λP A 1→且面AB 1C 1⊥面PB 1C 1.【解析】 如图所示,以DA ,DC ,DA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则D (0,0,0),A (1,0,0),C (0,1,0),A 1(0,0,3),B (1,1,0),D 1(-1,0,3),B 1(0,1,3),C 1(-1,1,3).(1)证明:AC →=(-1,1,0),A 1B →=(1,1,-3), ∴AC →·A 1B →=0,∴AC ⊥A 1B . (2)假设存在, ∵AP →=λP A 1→, ∴P ⎝⎛⎭⎪⎫11+λ,0,3λ1+λ. 设平面AB 1C 1的一个法向量为n 1=(x 1,y 1,z 1), ∵AB 1→=(-1,1,3),AC 1→=(-2,1,3), ∴⎩⎪⎨⎪⎧n 1·AB 1→=-x 1+y 1+3z 1=0,n 1·AC 1→=-2x 1+y 1+3z 1=0.令z 1=3,则y 1=-3,x 1=0.∴n 1=(0,-3,3).同理可求面PB 1C 1的一个法向量为n 2=⎝ ⎛⎭⎪⎫0,3λ+1,-1, ∴n 1·n 2=0.∴-331+λ-3=0,即λ=-4.∵P 在棱A 1A 上,∴λ>0,矛盾. ∴这样的点P 不存在.8.如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.【解析】(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1, 设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设平面DA 1C 1的法向量为n 3=(x 3,y 3,z 3), 则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1, 则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .。
高考数学平行垂直知识点
高考数学平行垂直知识点高考数学中的平行垂直知识点高考是每个学生都无法绕过的一道坎。
而在这道坎上,数学一直被视为是考试重点科目之一。
其中,平行和垂直是数学中非常重要的概念和知识点。
在高考中,我们经常会遇到与平行垂直相关的问题。
本文将深入探讨高考数学中的平行垂直知识点。
一、平行线及其判定平行线是指在同一个平面上,永远不相交的两条直线。
在高中数学中,我们通常通过两个条件来判断两条直线是否平行:同一平面内,有且只有一对内角相等;同一平面内,有且只有一对对应角相等。
这两个条件可以帮助我们判定平面内任意两条直线的平行关系。
除了判定平行关系外,我们还经常会遇到一些与平行线相关的问题。
例如,两条平行线所夹的角等于180°减去这两条平行线与另一直线的两个内角,这个公式被广泛应用于解决许多与平行线夹角有关的题目。
二、垂直线及其判定垂直线是指在同一个平面上,相交沿特定角度交相垂直的两条直线。
在高中数学中,我们通常通过两个条件来判断两条直线是否垂直:两条直线的斜率乘积为-1;同一平面上,一条直线与另一直线的两个内角相加等于二直角的度数(90°)。
在实际应用中,我们还经常会用到垂直线的性质。
例如,在求解垂直线段的问题中,我们可以利用勾股定理来计算两条垂直线段之间的关系。
此外,我们还会遇到一些根据垂直线的性质来推论的问题,需要我们根据给定条件进行推断。
三、平行线与垂直线的性质平行线和垂直线在几何中有许多重要的性质。
其中,平行线的性质主要包括:平行线之间的夹角相等;两个平行线被一条横穿线切割,所形成的对应角、内错角以及同旁内角是相等的。
这些性质在解题过程中经常会被用到,它们帮助我们更好地理解平行线的特性。
垂直线的性质则包括:垂直直线之间的夹角为直角(90°);两条直线互相垂直,其中一条直线上的一条直线与另一条直线上的互相垂直。
这些性质在解决垂直问题时也起着重要的作用,它们可以帮助我们确定直角关系并简化问题。
2021届高考数学 8.6立体几何中的向量方式(一)证明平行与垂直配套文档 理
§8.6立体几何中的向量方式(一)——证明平行与垂直1.用向量表示直线或点在直线上的位置(1)给定一个定点A和一个向量a,再任给一个实数t,以A为起点作向量AP→=t a,那么此向量方程叫做直线l以t为参数的参数方程.向量a称为该直线的方向向量.(2)对空间任一确信的点O,点P在直线l上的充要条件是存在唯一的实数t,知足等式OP→=(1-t)OA→+tOB→,叫做空间直线的向量参数方程.2.用向量证明空间中的平行关系(1)设直线l1和l2的方向向量别离为v1和v2,那么l1∥l2(或l1与l2重合)⇔v1∥v2.(2)设直线l的方向向量为v,与平面α共面的两个不共线向量v1和v2,那么l∥α或l⊂α⇔存在两个实数x,y,使v=x v1+y v2.(3)设直线l的方向向量为v,平面α的法向量为u,那么l∥α或l⊂α⇔v⊥u.(4)设平面α和β的法向量别离为u1,u2,那么α∥β⇔u1∥u2.3.用向量证明空间中的垂直关系(1)设直线l1和l2的方向向量别离为v1和v2,那么l1⊥l2⇔v1⊥v2⇔v1·v2=0.(2)设直线l的方向向量为v,平面α的法向量为u,那么l⊥α⇔v∥u.(3)设平面α和β的法向量别离为u1和u2,那么α⊥β⇔u1⊥u2⇔u1·u2=0.1.判定下面结论是不是正确(请在括号中打“√”或“×”)(1)直线的方向向量是唯一确信的.( ×)(2)平面的单位法向量是唯一确信的.( ×)(3)假设两平面的法向量平行,那么两平面平行.( ×)(4)假设两直线的方向向量不平行,那么两直线不平行.( √)(5)假设a∥b,那么a所在直线与b所在直线平行.( ×)(6)假设空间向量a平行于平面α,那么a所在直线与平面α平行.( ×)2.假设直线l1,l2的方向向量别离为a=(2,4,-4),b=(-6,9,6),那么( ) A.l1∥l2B.l1⊥l2C.l1与l2相交但不垂直D.以上均不正确解析 a ·b =-12+36-24=0,故a ⊥b ,即l 1⊥l 2,选B.3. 已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),那么以下点P 中,在平面α内的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)答案 A解析 一一验证法,关于选项A ,MP →=(1,4,1), ∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内.4. 已知AB →=(1,5,-2),BC →=(3,1,z ),假设AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,那么实数x ,y ,z 别离为______________.答案 407,-157,4解析 由题意知,BP →⊥AB →,BP →⊥BC →.因此⎩⎪⎨⎪⎧AB →·BC →=0,BP →·AB →=0,BP →·BC →=0,即⎩⎪⎨⎪⎧1×3+5×1+-2×z =0,x -1+5y +-2×-3=0,3x -1+y -3z =0,解得,x =407,y =-157,z =4.5. 若A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α内的三点,设平面α的法向量n =(x ,y ,z ),那么x ∶y ∶z答案 2∶3∶(-4) 题型一 证明平行问题例1 (2021·浙江改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC . 证明:PQ ∥平面BCD .思维启发 证明线面平行,能够利用判定定理先证线线平行, 也可利用平面的法向量.证明 方式一 如图,取BD 的中点O ,以O 为原点,OD 、OP 所在射线为y 、z 轴的正半轴,成立空间直角坐标系Oxyz .由题意知,A (0,2,2),B (0,-2,0),D (0,2,0).设点C 的坐标为(x 0,y 0,0). 因为AQ →=3QC →,因此Q ⎝ ⎛⎭⎪⎪⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1).又P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12,因此PQ →=⎝ ⎛⎭⎪⎪⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD ,因此PQ ∥平面BCD .方式二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同证法一成立空间直角坐标系,写出点A 、B 、C 的坐标,设点C 坐标为(x 0,y 0,0). ∵CF →=14CD →,设F 点坐标系(x ,y,0)那么(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0)∴⎩⎪⎨⎪⎧x =34x 0y =24+34y∴OF →=(34x 0,24+34y 0,0)又由证法一知PQ →=(34x 0,24+34y 0,0),∴OF →=PQ →, ∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .思维升华 用向量证明线面平行的方式有(1)证明该直线的方向向量与平面的某一法向量垂直; (2)证明该直线的方向向量与平面内某直线的方向向量平行;(3)证明该直线的方向向量能够用平面内的两个不共线的向量线性表示.如下图,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E 、F 、G 别离是线段PA 、PD 、CD 的中点.求证:PB ∥平面EFG . 证明 ∵平面PAD ⊥平面ABCD 且ABCD 为正方形,∴AB 、AP 、AD 两两垂直,以A 为坐标原点,成立如下图的空间直角坐标系Axyz ,那么A (0,0,0)、B (2,0,0)、C (2,2,0)、D (0,2,0)、P (0,0,2)、E (0,0,1)、F (0,1,1)、G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →、FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 题型二 证明垂直问题例2 如下图,正三棱柱ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .思维启发 证明线面垂直能够利用线面垂直的概念,即证线与平面内的任意一条直线垂直;也能够证线与面的法向量平行.证明 方式一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,那么存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,而且|a |=|b |=|c |=2,a ·b =a·c =0,b·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝ ⎛⎭⎪⎫λ+12μa +μb +λc ,AB 1→·m =(a -c )·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫λ+12μa +μb +λc=4⎝ ⎛⎭⎪⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证.方式二 如下图,取BC 的中点O ,连接AO . 因为△ABC 为正三角形, 因此AO ⊥BC .因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,因此AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,以OB →,OO 1→,OA →为x 轴,y 轴,z 轴成立空间直角坐标系, 则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0).因为n ⊥BA 1→,n ⊥BD →,故⎩⎨⎧n ·BA1→=0,n ·BD→=0⇒⎩⎪⎨⎪⎧-x +2y +3z =0,-2x +y =0,令x =1,那么y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),因此AB 1→=n ,因此AB 1→∥n ,故AB 1⊥平面A 1BD .思维升华 用向量证明垂直的方式(1)线线垂直:证明两直线所在的方向向量相互垂直,即证它们的数量积为零.(2)线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示. (3)面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.如下图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC=2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.求证:(1)CM ∥平面PAD ; (2)平面PAB ⊥平面PAD .证明 以C 为坐标原点,CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴成立如下图的空间直角坐标系Cxyz , ∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角,∴∠PBC =30°.∵PC =2,∴BC =23,PB =4. ∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M (32,0,32),∴DP →=(0,-1,2),DA →=(23,3,0),CM →=(32,0,32),(1)令n =(x ,y ,z )为平面PAD 的一个法向量,则⎩⎨⎧DP →·n =0,DA→·n =0,即⎩⎪⎨⎪⎧-y +2z =0,23x +3y =0,∴⎩⎪⎨⎪⎧z =12y ,x =-32y ,令y =2,得n =(-3,2,1).∵n ·CM →=-3×32+2×0+1×32=0,∴n ⊥CM →,又CM ⊄平面PAD ,∴CM ∥平面PAD . (2)取AP 的中点E ,那么E (3,2,1),BE →=(-3,2,1).∵PB =AB ,∴BE ⊥PA . 又∵BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE →⊥DA →,∴BE ⊥DA ,又PA ∩DA =A ,∴BE ⊥平面PAD , 又∵BE ⊂平面PAB ,∴平面PAB ⊥平面PAD . 题型三 解决探讨性问题例3 (2021·福建)如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD=1,E 为CD 的中点. (1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是不是存在一点P ,使得DP ∥平面B 1AE ?假设存在,求AP 的长;假设不存在,说明理由. 思维启发 利用向量法成立空间直角坐标系,将几何问题进行转化;关于存在性问题可通过计算下结论.(1)证明 以A 为原点,AB →,AD →,AA 1→的方向别离为x 轴,y 轴,z 轴的正方向成立空间直角坐标系(如图).设AB =a ,那么A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝ ⎛⎭⎪⎫a 2,1,0,B 1(a,0,1), 故AD 1→=(0,1,1),B 1E →=⎝ ⎛⎭⎪⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝ ⎛⎭⎪⎫a2,1,0.∵AD 1→·B 1E →=-a 2×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)解 假设在棱AA 1上存在一点P (0,0,z 0). 使得DP ∥平面B 1AE ,现在DP →=(0,-1,z 0). 又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ax +z =0,ax2+y =0.取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎪⎫1,-a 2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a2-az 0=0,解得z 0=12.又DP ⊄平面B 1AE ,∴存在点P ,知足DP ∥平面B 1AE ,现在AP =12.思维升华 关于“是不是存在”型问题的探讨方式有两种:一种是依照条件作出判定,再进一步论证.另一种是利用空间向量,先设出假设存在点的坐标,再依照条件求该点的坐标,即找到“存在点”,假设该点坐标不能求出,或有矛盾,那么判定“不存在”.如下图,四棱锥S —ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD .(2)假设SD ⊥平面PAC ,那么侧棱SC 上是不是存在一点E ,使得BE ∥平面PAC .假设存在,求SE ∶EC 的值;假设不存在,试说明理由.(1)证明 连接BD ,设AC 交BD 于O ,那么AC ⊥BD . 由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →别离为x 轴、y 轴、z 轴正方向,成立空间直角坐标系如图. 设底面边长为a ,那么高SO =62a ,于是S ⎝ ⎛⎭⎪⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎪⎫-22a ,0,0,B ⎝ ⎛⎭⎪⎪⎫22a ,0,0,C ⎝ ⎛⎭⎪⎪⎫0,22a ,0,OC →=⎝ ⎛⎭⎪⎪⎫0,22a ,0,SD →=⎝ ⎛⎭⎪⎪⎫-22a ,0,-62a ,那么OC →·SD →=0. 故OC ⊥SD .从而AC ⊥SD .(2)解 棱SC 上存在一点E 使BE ∥平面PAC .理由如下:由已知条件知DS →是平面PAC 的一个法向量,且DS →=⎝ ⎛⎭⎪⎪⎫22a ,0,62a ,CS →=⎝ ⎛⎭⎪⎪⎫0,-22a ,62a ,BC →=⎝ ⎛⎭⎪⎪⎫-22a ,22a ,0.设CE →=tCS →,那么BE →=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎪⎫-22a ,22a 1-t ,62at ,而BE →·DS →=0⇔t =13.即当SE ∶EC =2∶1时,BE →⊥DS →.而BE 不在平面PAC 内,故BE ∥平面PAC .利用向量法解决立体几何问题典例:(12分)(2021·湖南)如下图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.(1)证明:CD ⊥平面PAE ;(2)假设直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P -ABCD 的体积. 思维启发 此题中的(1)有两种证明思路:(1)利用常规方式,将证明线面垂直转化为证明线线垂直,利用线面垂直的判定定理证之; (2)将证明线面垂直问题转化为向量间的关系问题,证明向量垂直;然后计算两个向量的数量积. 标准解答方式一 (1)证明 如图,连接AC .由AB =4,BC =3,∠ABC =90°得AC =5.[1分] 又AD =5,E 是CD 的中点,因此CD ⊥AE .[2分]因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,因此PA ⊥CD .[4分] 而PA ,AE 是平面PAE 内的两条相交直线, 因此CD ⊥平面PAE .[5分](2)解 过点B 作BG ∥CD ,别离与AE ,AD 相交于点F ,G ,连接PF . 由(1)CD ⊥平面PAE 知,BG ⊥平面PAE .于是∠BPF 为直线PB 与平面PAE 所成的角,[6分] 且BG ⊥AE .由PA ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角.[7分] 由题意得∠PBA =∠BPF , 因为sin∠PBA =PAPB,sin∠BPF =BFPB,因此PA =BF .由∠DAB =∠ABC =90°知,AD ∥BC .又BG ∥CD ,因此四边形BCDG 是平行四边形. 故GD =BC =3.于是AG =2.在Rt△BAG 中,AB =4,AG =2,BG ⊥AF ,因此BG =AB 2+AG 2=25,BF =AB 2BG =1625=855. 于是PA =BF =855.[10分]又梯形ABCD 的面积为S =12×(5+3)×4=16, 因此四棱锥P -ABCD 的体积为V =13×S ×PA =13×16×855=128515.[12分] 方式二 如图,以A 为坐标原点,AB ,AD ,AP 所在直线别离为x 轴,y 轴,z 轴成立空间直角坐标系.设PA =h ,那么A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).[2分](1)证明 易知CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ).因为CD →·AE →=-8+8+0=0,CD →·AP →=0,[4分]因此CD ⊥AE ,CD ⊥AP .而AP ,AE 是平面PAE 内的两条相交直线,因此CD ⊥平面PAE .[5分](2)解 由题设和(1)知,CD →,PA →别离是平面PAE ,平面ABCD 的法向量.[6分]而PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,因此|cos 〈CD →,PB →〉|=|cos 〈PA →,PB →〉|,即⎪⎪⎪⎪⎪⎪CD →·PB →|CD →|·|PB →|=⎪⎪⎪⎪⎪⎪PA →·PB →|PA →|·|PB →|.[8分] 由(1)知,CD →=(-4,2,0),PA →=(0,0,-h ),又PB →=(4,0,-h ),故⎪⎪⎪⎪⎪⎪⎪⎪-16+0+025·16+h 2=⎪⎪⎪⎪⎪⎪⎪⎪0+0+h 2h ·16+h 2. 解得h =855.[10分]又梯形ABCD 的面积为S =12×(5+3)×4=16, 因此四棱锥P -ABCD 的体积为V =13×S ×PA =13×16×855=128515.[12分] 温馨提示 (1)利用向量法证明立体几何问题,能够建坐标系或利用基底表示向量;(2)成立空间直角坐标系时要依照题中条件找出三条相互垂直的直线;(3)关于和平面有关的垂直问题,也可利用平面的法向量.方式与技术用向量知识证明立体几何问题有两种大体思路:一种是用向量表示几何量,利用向量的运算进行判定;另一种是用向量的坐标表示几何量,共分三步:(1)成立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、线、面之间的位置关系;(3)依照运算结果的几何意义来讲明相关问题.失误与防范用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方式证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.假设用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外. A 组 专项基础训练(时刻:40分钟)一、选择题1. 假设直线l 的一个方向向量为a =(2,5,7),平面α的一个法向量为u =(1,1,-1),那么( )A .l ∥α或l ⊂αB .l ⊥αC .l ⊂αD .l 与α斜交答案 A2. 假设直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0)B .a =(1,3,5),n =(1,0,1)C .a =(0,2,1),n =(-1,0,-1)D .a =(1,-1,3),n =(0,3,1)答案 D解析 假设l ∥α,那么a ·n =0,D 中,a ·n =1×0+(-1)×3+3×1=0,∴a ⊥n .3. 设平面α的法向量为a =(1,2,-2),平面β的法向量b =(-2,h ,k ),假设α∥β,那么h +k 的值为( )A .-2B .-8C .0D .-6答案 C解析 由α∥β得a ∥b , ∴-21=h 2=k -2, ∴h =-4,k =4,∴h +k =0.4. 已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),假设a ,b ,c 三向量共面,那么实数λ等于( ) A.627 B.637 C.607 D.657答案 D解析 由题意得c =t a +μb =(2t -μ,-t +4μ,3t -2μ), ∴⎩⎪⎨⎪⎧ 7=2t -μ5=-t +4μλ=3t -2μ,∴⎩⎪⎨⎪⎧ t =337μ=177λ=657.5. 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.那么AM 与PM 所成的角为( )A .60°B .45°C .90°D .以上都不正确答案 C解析 以D 点为原点,别离以DA ,DC ,DD 1所在直线为x ,y ,z 轴,成立如下图的空间直角坐标系Dxyz , 依题意,可得,D (0,0,0),P (0,1,3),C (0,2,0),A (22,0,0), M (2,2,0).∴PM →=(2,1,-3), AM →=(-2,2,0),∴PM →·AM →=(2,1,-3)·(-2,2,0)=0,即PM →⊥AM →,∴AM ⊥PM .二、填空题6. 已知平面α和平面β的法向量别离为a =(1,1,2),b =(x ,-2,3),且α⊥β,那么x =________.答案 -4解析 ∵a·b =x -2+6=0,∴x =-4.7. 设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确信的平面上,那么a =________.答案 16解析 PA →=(-1,-3,2),PB →=(6,-1,4).依照共面向量定理,设PC →=xPA →+yPB → (x 、y ∈R ),那么(2a -1,a +1,2)=x (-1,-3,2)+y (6,-1,4)=(-x +6y ,-3x -y,2x +4y ),∴⎩⎪⎨⎪⎧ 2a -1=-x +6y ,a +1=-3x -y ,2=2x +4y , 解得x =-7,y =4,a =16.8. 如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 别离为A 1B 和AC 上的点,A 1M =AN =2a 3,那么MN 与平面BB 1C 1C 的位 置关系是________.答案 平行解析 ∵正方体棱长为a ,A 1M =AN =2a 3, ∴MB →=23A 1B →,CN →=23CA →, ∴MN →=MB →+BC →+CN →=23A 1B →+BC →+23CA → =23(A 1B 1→+B 1B →)+BC →+23(CD →+DA →) =23B 1B →+13B 1C 1→. 又∵CD →是平面B 1BCC 1的法向量,∴MN →·CD →=⎝ ⎛⎭⎪⎫23B 1B →+13B 1C 1→·CD →=0, ∴MN →⊥CD →.又∵MN ⊄平面B 1BCC 1,∴MN ∥平面B 1BCC 1.三、解答题9. 如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ . 证明 如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 为x 轴的正半轴成立空间直角坐标系Dxyz .依题意有Q (1,1,0),C (0,0,1),P (0,2,0),那么DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0).∴PQ →·DQ →=0,PQ →·DC →=0.即PQ ⊥DQ ,PQ ⊥DC ,又DQ ∩DC =D ,故PQ ⊥平面DCQ ,又PQ ⊂平面PQC ,∴平面PQC ⊥平面DCQ .10. 如图,在底面是矩形的四棱锥P -ACBD 中,PA ⊥底面ABCD ,E ,F 别离是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .证明 (1)以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,成立如下图的空间直角坐标系,那么A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),∴E (12,1,12),F (0,1,12),EF →=(-12,0,0),PB →=(1,0,-1),PD →=(0,2,-1),AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),AB →=(1,0,0).∵EF →=-12AB →,∴EF →∥AB →,即EF ∥AB , 又AB ⊂平面PAB ,EF ⊄平面PAB ,∴EF ∥平面PAB .(2)∵AP →·DC →=(0,0,1)·(1,0,0)=0, AD →·DC →=(0,2,0)·(1,0,0)=0,∴AP →⊥DC →,AD →⊥DC →,即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,∴DC ⊥平面PAD .∵DC ⊂平面PDC ,∴平面PAD ⊥平面PDC .B 组 专项能力提升(时刻:30分钟)1. 已知a =(1,1,1),b =(0,2,-1),c =m a +n b +(4,-4,1).假设c 与a 及b 都垂直,那么m ,n 的值别离为 ( ) A .-1,2 B .1,-2 C .1,2 D .-1,-2答案 A解析 由已知得c =(m +4,m +2n -4,m -n +1),故a·c =3m +n +1=0,b·c =m +5n -9=0.解得⎩⎪⎨⎪⎧ m =-1,n =2. 2. 已知平面ABC ,点M 是空间任意一点,点M 知足条件OM →=34OA →+18OB →+18OC →,那么 直线AM ( )A .与平面ABC 平行B .是平面ABC 的斜线C .是平面ABC 的垂线D .在平面ABC 内答案 D解析 由已知得M 、A 、B 、C 四点共面.因此AM 在平面ABC 内,选D.3. 在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 别离为AB ,BC 的中点,点Q为平面ABCD 内一点,线段D 1Q 与OP 相互平分,那么知足MQ →=λMN →的实数λ的有________个.答案 2解析 成立如图的坐标系,设正方体的边长为2,那么P (x ,y,2),O (1,1,0),∴OP 的中点坐标为 ⎝ ⎛⎭⎪⎫x +12,y +12,1, 又知D 1(0,0,2),∴Q (x +1,y +1,0),而Q 在MN 上,∴x Q +y Q =3,∴x +y =1,即点P 坐标知足x +y =1.∴有2个符合题意的点P ,即对应有2个λ.4. 如下图,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 别离为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .证明 (1)如图成立空间直角坐标系Axyz ,令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4).取AB 中点为N ,连接CN ,则N (2,0,0),C (0,4,0),D (2,0,2),∴DE →=(-2,4,0),NC →=(-2,4,0),∴DE →=NC →,∴DE ∥NC ,又∵NC ⊂平面ABC ,DE ⊄平面ABC .故DE ∥平面ABC .(2)B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0).B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0,B 1F →·AF →=(-2)×2+2×2+(-4)×0=0.∴B 1F →⊥EF →,B 1F →⊥AF →,即B 1F ⊥EF ,B 1F ⊥AF ,又∵AF ∩FE =F ,∴B 1F ⊥平面AEF .5. 在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 别离是AB 、PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论.(1)证明 如图,以DA 、DC 、DP 所在直线别离为x 轴、y 轴、z 轴成立空间直角坐标系,设AD =a ,那么D (0,0,0)、A (a,0,0)、B (a ,a,0)、C (0,a,0)、E ⎝ ⎛⎭⎪⎫a ,a 2,0、 P (0,0,a )、F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2. EF →=⎝ ⎛⎭⎪⎫-a 2,0,a 2,DC →=(0,a,0). ∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .(2)解 设G (x,0,z ),那么FG →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2, 假设使GF ⊥平面PCB ,那么由FG →·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(a,0,0) =a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a 2; 由FG →·CP →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(0,-a ,a ) =a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0. ∴G 点坐标为⎝ ⎛⎭⎪⎫a 2,0,0,即G 点为AD 的中点.。
20届高考数学(理)二轮复习 第2部分 专题3 第2讲 立体几何(1)
第2讲 立体几何(大题)热点一 平行、垂直关系的证明用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.例1 如图,在直三棱柱ADE -BCF 中,平面ABFE 和平面ABCD 都是正方形且互相垂直,点M 为AB 的中点,点O 为DF 的中点.运用向量方法证明:(1)OM ∥平面BCF ; (2)平面MDF ⊥平面EFCD .证明 方法一 (1)由题意,得AB ,AD ,AE 两两垂直,以点A 为原点建立如图所示的空间直角坐标系A -xyz .设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎝⎛⎭⎫12,0,0,O ⎝⎛⎭⎫12,12,12. OM →=⎝⎛⎭⎫0,-12,-12,BA →=(-1,0,0), ∴OM →·BA →=0,∴OM →⊥BA →. ∵棱柱ADE -BCF 是直三棱柱,∴AB ⊥平面BCF ,∴BA →是平面BCF 的一个法向量, 且OM ⊄平面BCF ,∴OM ∥平面BCF . (2)设平面MDF 与平面EFCD 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).∵DF →=(1,-1,1),DM →=⎝⎛⎭⎫12,-1,0,DC →=(1,0,0),CF →=(0,-1,1), 由⎩⎪⎨⎪⎧ n 1·DF →=0,n 1·DM →=0,得⎩⎪⎨⎪⎧x 1-y 1+z 1=0,12x 1-y 1=0,令x 1=1,则n 1=⎝⎛⎭⎫1,12,-12. 同理可得n 2=(0,1,1).∵n 1·n 2=0,∴平面MDF ⊥平面EFCD . 方法二 (1)OM →=OF →+FB →+BM →=12DF →-BF →+12BA →=12(DB →+BF →)-BF →+12BA → =-12BD →-12BF →+12BA →=-12(BC →+BA →)-12BF →+12BA →=-12BC →-12BF →.∴向量OM →与向量BF →,BC →共面, 又BF ,BC ⊂平面BCF ,OM ⊄平面BCF , ∴OM ∥平面BCF .(2)由题意及(1)知,BF ,BC ,BA 两两垂直, ∵CD →=BA →,FC →=BC →-BF →, ∴OM →·CD →=⎝⎛⎭⎫-12BC →-12BF →·BA →=0, OM →·FC →=⎝⎛⎭⎫-12BC →-12BF →·(BC →-BF →) =-12BC →2+12BF →2=0,∴OM →⊥CD →,OM →⊥FC →, 即OM ⊥CD ,OM ⊥FC ,又CD ∩FC =C ,CD ,FC ⊂平面EFCD , ∴OM ⊥平面EFCD .又OM ⊂平面MDF ,∴平面MDF ⊥平面EFCD .跟踪演练1 如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AD ⊥CD ,BC =2,AD =CD =1,M 是PB 的中点.(1)求证:AM ∥平面PCD ; (2)求证:平面ACM ⊥平面P AB .证明 (1)如图,以C 为坐标原点建立空间直角坐标系C -xyz ,则A (1,1,0),B (0,2,0),C (0,0,0),D (1,0,0),P (1,1,a )(a >0),M ⎝⎛⎭⎫12,32,a 2,CP →=(1,1,a ),CD →=(1,0,0),AM →=⎝⎛⎭⎫-12,12,a 2, 设平面PCD 的法向量为n 1=(x 0,y 0,z 0),则⎩⎪⎨⎪⎧x 0+y 0+az 0=0,x 0=0,令y 0=a ,则n 1=(0,a ,-1), 所以AM →·n 1=a 2-a 2=0,又AM ⊄平面PCD , 所以AM ∥平面PCD .(2)由(1)得,CA →=(1,1,0),CM →=⎝⎛⎭⎫12,32,a 2, 设平面ACM 的法向量为n 2=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧x 1+y 1=0,12x 1+32y 1+a2z 1=0, 令x 1=1,则n 2=⎝⎛⎭⎫1,-1,2a , AP →=(0,0,a ),AB →=(-1,1,0),设平面P AB 的法向量为n 3=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧-x 2+y 2=0,az 2=0,令x 2=1,则n 3=(1,1,0), 所以n 2·n 3=1-1=0. 所以平面ACM ⊥平面P AB .热点二 利用空间向量求空间角设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线夹角设l ,m 的夹角为θ⎝⎛⎭⎫0≤θ≤π2, 则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21 a 22+b 22+c 22. (2)线面夹角设直线l 与平面α的夹角为θ⎝⎛⎭⎫0≤θ≤π2, 则sin θ=|a ·μ||a ||μ|=|cos 〈a ,μ〉|. (3)二面角设α-a -β的平面角为θ(0≤θ≤π), 则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|. 例2 (2019·南昌模拟)如图,四棱台ABCD -A 1B 1C 1D 1中,底面ABCD 是菱形,CC 1⊥底面ABCD ,且∠BAD =60°,CD =CC 1=2C 1D 1=4,E 是棱BB 1的中点.(1)求证:AA 1⊥BD ;(2)求二面角E -A 1C 1-C 的余弦值.(1)证明 因为C 1C ⊥底面ABCD ,所以C 1C ⊥BD . 因为底面ABCD 是菱形,所以BD ⊥AC . 又AC ∩CC 1=C ,AC ,CC 1⊂平面ACC 1A 1, 所以BD ⊥平面ACC 1A 1. 又AA 1⊂平面ACC 1A 1, 所以BD ⊥AA 1.(2)解 如图,设AC 交BD 于点O ,依题意,A 1C 1∥OC 且A 1C 1=OC , 所以四边形A 1OCC 1为平行四边形, 所以A 1O ∥CC 1,且A 1O =CC 1. 所以A 1O ⊥底面ABCD .以O 为原点,OA ,OB ,OA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系. 则A (23,0,0),A 1(0,0,4),C 1(-23,0,4),B (0,2,0), AB →=(-23,2,0).由A 1B 1----→=12AB →,得B 1(-3,1,4).因为E 是棱BB 1的中点, 所以E ⎝⎛⎭⎫-32,32,2, 所以EA 1→=⎝⎛⎭⎫32,-32,2,A 1C 1----→=(-23,0,0).设n =(x ,y ,z )为平面EA 1C 1的法向量,则⎩⎨⎧n ·A 1C 1----→=-23x =0,n ·EA 1→=32x -32y +2z =0,取z =3,得n =(0,4,3),平面A 1C 1C 的法向量m =(0,1,0),又由图可知,二面角E -A 1C 1-C 为锐二面角, 设二面角E -A 1C 1-C 的平面角为θ, 则cos θ=|m ·n ||m ||n |=45,所以二面角E -A 1C 1-C 的余弦值为45.跟踪演练2 (2019·河南名校联盟联考)如图,在四棱锥P -ABCD 中,∠P AB =90°,AB ∥CD ,且PB =BC =BD =6,CD =2AB =22,∠P AD =120°.E 和F 分别是棱CD 和PC 的中点.(1)求证:CD ⊥BF ;(2)求直线PB 与平面PCD 所成的角的正弦值. (1)证明 ∵E 为CD 中点,CD =2AB , ∴AB =DE .又AB∥CD,∴四边形ABED为平行四边形.∵BC=BD,E为CD中点,∴BE⊥CD,∴四边形ABED为矩形,∴AB⊥AD.由∠P AB=90°,得P A⊥AB,又P A∩AD=A,P A,AD⊂平面P AD,∴AB⊥平面P AD.∵AB∥CD,∴CD⊥平面P AD.又PD⊂平面P AD,∴CD⊥PD.∵EF∥PD,∴CD⊥EF.又CD⊥BE,BE∩EF=E,BE,EF⊂平面BEF,∴CD⊥平面BEF.又∵BF⊂平面BEF,∴CD⊥BF.(2)解由(1)知AB⊥平面P AD.以A为原点,AB所在直线为x轴,AD所在直线为y轴,平面P AD内过点A且与AD垂直的线为z轴建立空间直角坐标系A-xyz,如图所示.∵∠P AD=120°,∴∠P Az=30°.又PB=6,AB=2,AB⊥P A,∴P A=2.∴点P到z轴的距离为1.∴P(0,-1,3),同时知A(0,0,0),B(2,0,0).又BC=BD=6,CD=22,∴BE=2.∴C (22,2,0),D (0,2,0).设平面PCD 的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·PD →=(x ,y ,z )·(0,3,-3)=0,n ·CD →=(x ,y ,z )·(-22,0,0)=0,得⎩⎨⎧3y -3z =0,-22x =0.令y =1,则n =(0,1,3). 又PB →=(2,1,-3),设直线PB 与平面PCD 所成的角为θ. 则sin θ=|cos 〈n ,PB →〉|=|n ·PB →||n |·|PB →|=22+1+3×1+3=66.即直线PB 与平面PCD 所成的角的正弦值为66. 热点三 利用空间向量解决探索性问题与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或二面角满足特定要求时的存在性问题.处理原则是:先建立空间直角坐标系,引入参数(有些是题中已给出),设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断.例3 (2019·临沂模拟)如图,平面ABCD ⊥平面ABE ,四边形ABCD 是边长为2的正方形,AE =1,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥平面BCE ;(2)线段AD 上是否存在一点M ,使平面ABE 与平面MCE 所成二面角的余弦值为34?若存在,试确定点M 的位置;若不存在,请说明理由. (1)证明 ∵BF ⊥平面ACE ,AE ⊂平面ACE , ∴BF ⊥AE ,∵四边形ABCD 是正方形,∴BC ⊥AB ,又平面ABCD ⊥平面ABE ,平面ABCD ∩平面ABE =AB , ∴CB ⊥平面ABE , ∵AE ⊂平面ABE , ∴CB ⊥AE ,∵BF ∩BC =B ,BF ,BC ⊂平面BCE , ∴AE ⊥平面BCE .(2)解 线段AD 上存在一点M ,当AM =3时,使平面ABE 与平面MCE 所成二面角的余弦值为34. ∵AE ⊥平面BCE ,BE ⊂平面BCE , ∴AE ⊥BE ,在Rt △AEB 中,AB =2,AE =1, ∴∠ABE =30°,∠BAE =60°,以A 为原点,建立空间直角坐标系A -xyz , 设AM =h ,则0≤h ≤2, ∵AE =1,∠BAE =60°, ∴M (0,0,h ),E ⎝⎛⎭⎫32,12,0,B (0,2,0),C (0,2,2),所以ME →=⎝⎛⎭⎫32,12,-h ,CE →=⎝⎛⎭⎫32,-32,-2,设平面MCE 的一个法向量n =(x ,y ,z ), 则⎩⎨⎧n ·ME →=3x 2+12y -hz =0,n ·CE →=3x 2-32y -2z =0,令z =2,解得n =⎝⎛⎭⎫33(2+3h ),h -2,2,平面ABE 的一个法向量m =(0,0,1),由题意可知cos 〈m ,n 〉=m ·n|m ||n |=213(2+3h )2+(h -2)2+4=34, 解得h =3,所以当AM =3时,使平面ABE 与平面MCE 所成二面角的余弦值为34. 跟踪演练3 如图,在直三棱柱ABC -A 1B 1C 1中,AC ⊥BC ,AC =BC =AA 1=2,点P 为棱B 1C 1的中点,点Q 为线段A 1B 上一动点.(1)求证:当点Q 为线段A 1B 的中点时,PQ ⊥平面A 1BC ;(2)设BQ →=λBA 1→,试问:是否存在实数λ,使得平面A 1PQ 与平面B 1PQ 所成锐二面角的余弦值为3010?若存在,求出这个实数λ;若不存在,请说明理由. (1)证明 连接AB 1,AC 1,∵点Q 为线段A 1B 的中点, ∴A ,Q ,B 1三点共线, 且Q 为AB 1的中点, ∵点P 为B 1C 1的中点, ∴PQ ∥AC 1.在直三棱柱ABC -A 1B 1C 1中, AC ⊥BC ,∴BC ⊥平面ACC 1A 1, 又AC 1⊂平面ACC 1A 1, ∴BC ⊥AC 1.∵AC =AA 1,∴四边形ACC 1A 1为正方形, ∴AC 1⊥A 1C ,又A 1C ,BC ⊂平面A 1BC ,A 1C ∩BC =C , ∴AC 1⊥平面A 1BC , 而PQ ∥AC 1, ∴PQ ⊥平面A 1BC .(2)解 由题意可知,CA ,CB ,CC 1两两垂直,以C 为原点,分别以CA ,CB ,CC 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系C -xyz , 连接B 1Q ,PB ,设Q (x ,y ,z ), B (0,2,0),A 1(2,0,2), P (0,1,2),B 1(0,2,2), ∵BQ →=λBA 1→,∴(x ,y -2,z )=λ(2,-2,2), ∴⎩⎪⎨⎪⎧x =2λ,y =2-2λ,z =2λ,∴Q (2λ,2-2λ,2λ). ∵点Q 在线段A 1B 上运动,∴平面A 1PQ 的法向量即为平面A 1PB 的法向量, 设平面A 1PB 的法向量为n 1=(x ,y ,z ), BP →=(0,-1,2),P A 1→=(2,-1,0), 由⎩⎪⎨⎪⎧n 1·BP →=0,n 1·P A 1→=0,得⎩⎪⎨⎪⎧-y +2z =0,2x -y =0,令y =2,得n 1=(1,2,1),设平面B 1PQ 的法向量为n 2=(x ,y ,z ), PB 1→=(0,1,0),B 1Q →=(2λ,-2λ,2λ-2).由⎩⎪⎨⎪⎧n 2·PB 1→=0,n 2·B 1Q →=0,得⎩⎪⎨⎪⎧y =0,2λx -2λy +(2λ-2)z =0,令z =1得n 2=⎝⎛⎭⎫1-λλ,0,1=1λ(1-λ,0,λ), 取n 2=(1-λ,0,λ),由题意得|cos 〈n 1,n 2〉|=|()1,2,1·()1-λ,0,λ|6·(1-λ)2+λ2=16×2λ2-2λ+1=3010,∴9λ2-9λ+2=0, 解得λ=13或λ=23,∴当λ=13或λ=23时,平面A 1PQ 与平面B 1PQ 所成锐二面角的余弦值为3010.真题体验(2019·全国Ⅰ,理,18)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A -MA 1-N 的正弦值.(1)证明 连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1∥DC 且A 1B 1=DC ,可得B 1C ∥A 1D 且B 1C =A 1D ,故ME ∥ND 且ME =ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN ⊄平面C 1DE ,ED ⊂平面C 1DE ,所以MN ∥平面C 1DE .(2)解 由已知可得DE ⊥DA ,以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).设m =(x ,y ,z )为平面A 1MA 的一个法向量,则 ⎩⎪⎨⎪⎧m ·A 1M →=0,m ·A 1A →=0,所以⎩⎨⎧-x +3y -2z =0,-4z =0,可得m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的一个法向量,则 ⎩⎪⎨⎪⎧n ·MN →=0,n ·A 1N →=0,所以⎩⎨⎧-3q =0,-p -2r =0,可取n =(2,0,-1).于是cos 〈m ,n 〉=m ·n |m ||n |=232×5=155,所以二面角A -MA 1-N 的正弦值为105.押题预测如图1,在梯形ABCD 中,AB ∥CD ,过A ,B 分别作AE ⊥CD ,BF ⊥CD ,垂足分别E ,F ,AB =AE =2,CD =5,已知DE =1,将梯形ABCD 沿AE ,BF 同侧折起,得空间几何体ADE -BCF ,如图2.(1)若AF ⊥BD ,证明:DE ⊥平面ABFE ;(2)若DE ∥CF ,CD =3,线段AB 上存在一点P ,满足CP 与平面ACD 所成角的正弦值为520,求AP 的长.(1)证明 由已知得四边形ABFE 是正方形,且边长为2,在图2中,AF ⊥BE , 由已知得AF ⊥BD ,BE ∩BD =B ,BE ,BD ⊂平面BDE , ∴AF ⊥平面BDE ,又DE ⊂平面BDE ,∴AF ⊥DE ,又AE ⊥DE ,AE ∩AF =A ,AE ,AF ⊂平面ABFE , ∴DE ⊥平面ABFE .(2)解 在图2中,AE ⊥DE ,AE ⊥EF ,DE ∩EF =E ,DE ,EF ⊂平面DEFC ,即AE ⊥平面DEFC ,在梯形DEFC 中,过点D 作DM ∥EF 交CF 于点M ,连接CE , 由题意得DM =2,CM =1, 由勾股定理可得DC ⊥CF , 则∠CDM =π6,CE =2,过E 作EG ⊥EF 交DC 于点G , 可知GE ,EA ,EF 两两垂直,以E 为坐标原点,以EA →,EF →,EG →分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系, 则A (2,0,0),B (2,2,0),C (0,1,3),D ⎝⎛⎭⎫0,-12,32,AC →=(-2,1,3),AD →=⎝⎛⎭⎫-2,-12,32.设平面ACD 的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AC →=0,n ·AD →=0,得⎩⎪⎨⎪⎧-2x +y +3z =0,-2x -12y +32z =0, 取x =1,得n =(1,-1,3), 设AP =m ,则P (2,m ,0),0≤m ≤2, 得CP →=(2,m -1,-3), 设CP 与平面ACD 所成的角为θ, sin θ=|cos 〈CP →,n 〉|=|m |5×7+(m -1)2=520⇒m =23(舍负). 所以AP =23.A 组 专题通关1.(2019·全国Ⅱ)如图,长方体ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B -EC -C 1的正弦值.(1)证明 由已知得,B 1C 1⊥平面ABB 1A 1,因为BE ⊂平面ABB 1A 1,故B 1C 1⊥BE . 又BE ⊥EC 1,EC 1∩B 1C 1=C 1, 所以BE ⊥平面EB 1C 1. (2)解 由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以∠AEB =45°,故AE =AB ,AA 1=2AB .以D 为坐标原点,DA →的方向为x 轴正方向,|DA →|为单位长,建立如图所示的空间直角坐标系D -xyz ,则C (0,1,0),B (1,1,0),C 1(0,1,2),E (1,0,1),CB →=(1,0,0),CE →=(1,-1,1),CC 1→=(0,0,2). 设平面EBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧CB →·n =0,CE →·n =0,即⎩⎪⎨⎪⎧x =0,x -y +z =0,所以可取n =(0,-1,-1).设平面ECC 1的法向量为m =(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧CC 1→·m =0,CE →·m =0,即⎩⎪⎨⎪⎧2z 1=0,x 1-y 1+z 1=0,所以可取m =(1,1,0).于是cos 〈n ,m 〉=n ·m |n ||m |=-12,sin 〈n ,m 〉=1-⎝⎛⎭⎫-122=32, 所以二面角B -EC -C 1的正弦值为32. 2.(2019·全国Ⅲ)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B —CG —A 的大小.(1)证明 由已知得AD ∥BE ,CG ∥BE ,所以AD ∥CG , 故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,BE ∩BC =B , BE ,BC ⊂平面BCGE ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)解 作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,平面BCGE ∩平面ABC =BC ,所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°, 可求得BH =1,EH = 3.以H 为坐标原点,HC →的方向为x 轴的正方向, 建立如图所示的空间直角坐标系H -xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0). 设平面ACGD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧CG →·n =0,AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0.所以可取n =(3,6,-3).又平面BCGE 的法向量可取为m =(0,1,0), 所以cos 〈n ,m 〉=n ·m |n ||m |=32.因此二面角B -CG -A 的大小为30°.3.(2019·马鞍山模拟)如图,在三棱柱ABC -A 1B 1C 1中,∠ACB =90°,A 1B ⊥AC 1,AC =AA 1=4,BC =2.(1)求证:平面A 1ACC 1⊥平面ABC ;(2)若∠A 1AC =60°,在线段AC 上是否存在一点P ,使二面角B -A 1P -C 的平面角的余弦值为34?若存在,确定点P 的位置;若不存在,请说明理由. (1)证明 如图,∵AC =AA 1, ∴四边形AA 1C 1C 为菱形,连接A 1C ,则A 1C ⊥AC 1,又A 1B ⊥AC 1,且A 1C ∩A 1B =A 1, A 1C ,A 1B ⊂平面A 1CB ,∴AC 1⊥平面A 1CB ,则AC 1⊥BC , 又∠ACB =90°,即BC ⊥AC ,又AC 1∩AC =A ,AC 1,AC ⊂平面A 1ACC 1, ∴BC ⊥平面A 1ACC 1,而BC ⊂平面ABC ,∴平面A 1ACC 1⊥平面ABC .(2)解 在平面ACC 1A 1中,过点C 作CE ⊥AC 交A 1C 1于E , 由(1)知,CE ⊥平面ABC ,以C 为坐标原点,分别以CA ,CB 所在直线为x 轴,y 轴建立如图所示的空间直角坐标系C -xyz ,∵AC =AA 1=4,BC =2,∠A 1AC =60°, ∴C (0,0,0),B (0,2,0),A (4,0,0),A 1(2,0,23).设在线段AC 上存在一点P ,满足AP →=λAC →(0≤λ<1),使得二面角B -A 1P -C 的平面角的余弦值为34. 则AP →=(-4λ,0,0).BP →=BA →+AP →=(4,-2,0)+(-4λ,0,0) =(4-4λ,-2,0),A 1P →=A 1A →+AP →=(2-4λ,0,-23), CA 1→=(2,0,23).设平面BA 1P 的一个法向量为m =(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧m ·BP →=(4-4λ)x 1-2y 1=0,m ·A 1P →=(2-4λ)x 1-23z 1=0,取x 1=1,得m =⎝⎛⎭⎪⎫1,2-2λ,1-2λ3;平面A 1PC 的一个法向量为n =(0,1,0). 由|cos 〈m ,n 〉|=|m ·n ||m ||n |=|2-2λ|1+(2-2λ)2+(1-2λ)23×1=34, 解得λ=43或λ=34,因为0≤λ<1,所以λ=34.故在线段AC 上存在一点P ,满足AP →=34AC →,使二面角B -A 1P -C 的平面角的余弦值为34.B 组 能力提高4.如图所示,在四棱锥P -ABCD 中,P A =PD =AD =2CD =2BC =2,且∠ADC =∠BCD =90°.(1)当PB =2时,证明:平面P AD ⊥平面ABCD ;(2)当四棱锥P -ABCD 的体积为34,且二面角P -AD -B 为钝角时,求直线P A 与平面PCD所成角的正弦值.(1)证明 如图所示,取AD 的中点O ,连接PO ,OB .∵P A =PD ,∴PO ⊥AD . ∵∠ADC =∠BCD =90°, ∴BC ∥AD ,又BC =12AD =1,∴BC =OD ,∴四边形BCDO 为矩形, ∴OB =CD =1.在△POB 中,PO =3,OB =1,PB =2, ∴∠POB =90°,则PO ⊥OB .∵AD ∩OB =O ,∴PO ⊥平面ABCD , 又PO ⊂平面P AD , ∴平面P AD ⊥平面ABCD .(2)解 由(1)知AD ⊥PO ,AD ⊥BO , ∵PO ∩OB =O ,∴AD ⊥平面POB , 又AD ⊂平面ABCD , ∴平面POB ⊥平面ABCD . 过点P 作PE ⊥平面ABCD ,则垂足E 一定落在平面POB 与平面ABCD 的交线OB 上. ∵四棱锥P -ABCD 的体积为34,∴13×PE ×12×(AD +BC )×CD =13×PE ×12×(2+1)×1 =12PE =34, ∴PE =32.∵PO =3,∴OE =PO 2-PE 2=32. 以O 为坐标原点,OA ,OB 所在直线分别为x 轴,y 轴, 在平面POB 内过点O 作垂直于平面AOB 的直线为z 轴, 建立如图所示的空间直角坐标系O -xyz . 由题意可知A (1,0,0),P ⎝⎛⎭⎫0,-32,32,D (-1,0,0),C (-1,1,0), 则DP →=⎝⎛⎭⎫1,-32,32,DC →=(0,1,0),P A →=⎝⎛⎭⎫1,32,-32.设平面PCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ n ·DP →=0,n ·DC →=0,即⎩⎪⎨⎪⎧x -32y +32z =0,y =0,令x =1,则y =0,z =-23,∴n =⎝⎛⎭⎫1,0,-23. 设直线P A 与平面PCD 所成的角为θ,则sin θ=|P A →·n ||P A →||n |=22×133=31313,故直线P A 与平面PCD 所成角的正弦值为31313.5.如图,已知圆锥OO 1和圆柱O 1O 2的组合体(它们的底面重合),圆锥的底面圆O 1的半径为r =5,OA 为圆锥的母线,AB 为圆柱O 1O 2的母线,D ,E 为下底面圆O 2上的两点,且DE =6,AB =6.4,AO =52,AO ⊥AD .(1)求证:平面ABD ⊥平面ODE; (2)求二面角B -AD -O 的正弦值.(1)证明 依题意知,圆锥的高为h =(52)2-52=5,又圆柱的高为AB =6.4,AO ⊥AD ,所以OD 2=OA 2+AD 2, 因为AB ⊥BD , 所以AD 2=AB 2+BD 2,连接OO 1,O 1O 2,DO 2,易知O ,O 1,O 2三点共线,OO 2⊥DO 2,所以OD 2=OO 22+O 2D 2, 所以BD 2=OO 22+O 2D 2-AO 2-AB 2=(6.4+5)2+52-(52)2-6.42=64,解得BD =8,又因为DE =6,圆O 2的直径为10,圆心O 2在∠BDE 内, 所以∠BDE =90°,所以DE ⊥BD .因为AB ⊥平面BDE ,DE ⊂平面BDE ,所以DE ⊥AB , 因为AB ∩BD =B ,AB ,BD ⊂平面ABD , 所以DE ⊥平面ABD . 又因为DE ⊂平面ODE , 所以平面ABD ⊥平面ODE .(2)解 如图,以D 为原点,DB ,DE 所在直线为x ,y 轴,建立空间直角坐标系.则D (0,0,0),A (8,0,6.4),B (8,0,0),O (4,3,11.4).所以DA →=(8,0,6.4),DB →=(8,0,0),DO →=(4,3,11.4), 设平面DAO 的法向量为u =(x ,y ,z ),所以DA →·u =8x +6.4z =0,DO →·u =4x +3y +11.4z =0,令x =12,则u =(12,41,-15).可取平面BDA 的一个法向量为v =(0,1,0),所以cos 〈u ,v 〉=u·v |u||v |=41582=8210, 所以二面角B -AD -O 的正弦值为3210.。
立体几何3直线与平面的位置关系(平行、垂直、异面)-高考数学专题复习
立体几何—直线与平面的位置关系(平行、垂直、异面)知识精要1、证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行. 2、证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面。
3、证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角; (2)转化为线面垂直;(3) 转化为两平面的法向量平行。
4、 空间向量的直角坐标运算:设a =123(,,)a a a ,b =123(,,)b b b 则:(1) a +b =112233(,,)a b a b a b +++; (2) a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4) a ·b =112233a b a b a b ++; 5、 夹角公式:设a =123(,,)a a a ,b =123(,,)b b b ,则2cos ,a b a <>=.6、 异面直线间的距离 :||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、是12,l l 上任一点,d 为12,l l 间的距离).7、点B 到平面α的距离:||||AB n d n ⋅=(n 为平面α的法向量,A α∈,AB 是α的一条斜线段). 热身练习:1、A 、B 、C 表示不同的点,a 、l 表示不同的直线,α、β表示不同的平面,下列推理不正确的是 ( C )()A ααα⊂⇒∈∈∈∈l B l B A l A ,,,()B βα∈∈A A ,,AB B B =⇒∈∈βαβα ,直线 ()C αα∉⇒∈A l A l ,内不在()D α∈C B A ,,,β∈C B A ,,且C B A ,,不共线α⇒与β重合2、对于空间三条直线,有下列四个条件:①三条直线两两相交且不共点;②三条直线两两平行;③三条直线共点;④有两条直线平行,第三条直线和这两条直线都相交. 其中,使三条直线共面的充分条件有 ( B )(1和4)()A 1个 ()B 2个 ()C 3个 ()D 4个3、在空间四边形ABCD 的边AB 、BC 、CD 、DA 上分别取点H G F E ,,,,如果EF 与HG 相交于一点M ,那么 ( A )()A M 一定在直线AC 上 ()B M 一定在直线BD 上 ()C M 可能在直线AC 上,也可能在直线BD 上 ()D M 既不在直线AC 上,也不在直线BD 上4、设ABCD 是空间四边形,E ,F 分别是AB ,CD 的中点,则,,满足( B ) (A ) 共线 (B ) 共面 (C ) 不共面 (D ) 可作为空间基向量 正确答案:B 错因:学生把向量看为直线。
高考数学一轮总复习第6章立体几何第6节立体几何中的向量方法__证明平行与垂直教师用书
第六节 立体几何中的向量方法——证明平行与垂直考试要求:1.理解直线的方向向量及平面的法向量,能用向量语言表述线线、线面、面面的平行和垂直关系.2.能用向量方法证明立体几何中有关直线、平面位置关系的判定定理.一、教材概念·结论·性质重现1.直线的方向向量与平面的法向量直线的方向向量直线的方向向量是指和这条直线平行( 或重合) 的非零向量,一条直线的方向向量有无数个平面的法向量直线l⊥平面α,取直线l的方向向量a ,我们称向量a为平面α的法向量.显然一个平面的法向量有无数个,它们是共线向量方向向量和法向量均不为零向量且不唯一.2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2 l1⊥l2n1⊥n2⇔n1·n2=直线l的方向向量为n,平面α的法向量为m l∥αn⊥m⇔m·n=0 l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,m α∥ βn∥m⇔n=λm α⊥βn⊥m⇔n·m=0二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)直线的方向向量是唯一确定的.( × )(2)平面的单位法向量是唯一确定的.( × )(3)若两平面的法向量平行,则两平面平行.( √ )(4)若两直线的方向向量不平行,则两直线不平行.( √ )(5)若a∥b,则a所在直线与b所在直线平行.( × )(6)若空间向量a平行于平面α,则a所在直线与平面α平行.( × ) 2.若直线l的方向向量a=(1,-3,5),平面α的法向量n=(-1,3,-5),则有( )A.l∥α B.l⊥αC.l与α斜交 D.l⊂α或l∥αB 解析:由a=-n知,n∥a,则有l⊥α.故选B.3.已知平面α,β的法向量分别为n1=(2,3,5),n2=(-3,1,-4),则( )A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不对C 解析:因为n1≠λn2,且n1·n2=2×(-3)+3×1+5×(-4)=-23≠0,所以α,β既不平行,也不垂直.4.如图,在正方体ABCD A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D 的中点,N是A1B1的中点,则直线ON,AM的位置关系是________.垂直 解析:以A为原点,分别以AB,AD,AA1所在的直线为x轴、y轴、z轴建立空间直角坐标系(图略).设正方体的棱长为1,则A(0,0,0),M,O,N,AM·ON=·=0,所以ON与AM垂直.5.在空间直角坐标系中,已知A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB与CD的位置关系是________.平行 解析:由题意得,AB=(-3,-3,3),CD=(1,1,-1),所以AB=-3CD,所以AB与CD共线.又AB与CD没有公共点,所以AB∥CD.考点1 利用空间向量证明平行问题——基础性如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点.求证:PB∥平面EFG.证明:因为平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD,所以AB,AP,AD两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0),则EF=(0,1,0),EG=(1,2,-1).设平面EFG的法向量为n=(x,y,z),则即令z=1,则n=(1,0,1)为平面EFG的一个法向量.因为PB=(2,0,-2),所以PB·n=0,所以n⊥PB.因为PB⊄平面EFG,所以PB∥平面EFG.本例中条件不变,证明:平面EFG∥平面PBC.证明:因为EF=(0,1,0),BC=(0,2,0),所以BC=2EF,所以BC∥EF.又因为EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC,同理可证GF∥PC,从而得出GF∥平面PBC.又EF∩GF=F,EF⊂平面EFG,GF⊂平面EFG,所以平面EFG∥平面PBC.利用空间向量证明平行的方法线线平行证明两直线的方向向量共线线面平行(1)证明该直线的方向向量与平面的某一法向量垂直.(2)证明直线的方向向量与平面内某直线的方向向量平行面面平行(1)证明两平面的法向量为共线向量.(2)转化为线面平行、线线平行问题如图,在四棱锥P ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°角.求证:CM∥平面PAD.证明:由题意知,CB,CD,CP两两垂直,以C为坐标原点,CB所在直线为x轴,CD所在直线为y轴,CP所在直线为z轴建立如图所示的空间直角坐标系Cxyz.因为PC⊥平面ABCD,所以∠PBC为PB与平面ABCD所成的角,所以∠PBC=30°.因为PC=2,所以BC=2,PB=4,所以D(0,1,0),B(2,0,0),A(2,4,0),P(0,0,2),M,所以DP=(0,-1,2),DA=(2,3,0),CM=.设n=(x,y,z)为平面PAD的一个法向量,由得取y=2,得x=-,z=1,所以n=(-,2,1)是平面PAD的一个法向量.因为n·CM=-×+2×0+1×=0,所以n⊥CM.又CM⊄平面PAD,所以CM∥平面PAD.考点2 利用空间向量证明垂直问题——应用性如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE =2AB.求证:平面BCE⊥平面CDE.证明:设AD=DE=2AB=2a,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),C(2a,0,0),B(0,0,a),D(a,a,0),E(a,a,2a),所以BE=(a,a,a),BC=(2a,0,-a),CD=(-a,a,0),ED=(0,0,-2a).设平面BCE的法向量为n1=(x1,y1,z1),由n1·BE=0,n1·BC=0可得即令z1=2,可得n1=(1,-,2).设平面CDE的法向量为n2=(x2,y2,z2),由n2·CD=0,n2·ED=0可得即令y2=1,可得n2=(,1,0).因为n1·n2=1×+1×(-)=0,所以n1⊥n2,所以平面BCE⊥平面CDE.若本例中条件不变,点F是CE的中点,证明:DF⊥平面BCE.证明:由例2知C(2a,0,0),E(a,a,2a),平面BCE的法向量n1=(1,-,2).因为点F是CE的中点,所以f,所以DF=,所以DF=n1,所以DF∥n1,故DF⊥平面BCE.1.利用空间向量证明垂直的方法线线垂直证明两直线所在的方向向量互相垂直,即证它们的数量积为零线面垂直证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示面面垂直证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示2.向量法证明空间垂直、平行关系时,是以计算为手段,寻求直线上的线段对应的向量和平面的基向量、法向量的关系,关键是建立空间直角坐标系(或找空间一组基底)及平面的法向量.如图,在四棱锥P ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)AE⊥CD;(2)PD⊥平面ABE.证明:以A为原点,AB,AD,AP所在直线分别为x轴、y轴、z轴建立如图所示的空间直角坐标系Axyz.设PA=AB=BC=1,则P(0,0,1).(1)因为∠ABC=60°,所以△ABC为正三角形,所以C,E.设D(0,y,0),由AC⊥CD,得AC·CD=0,即y=,则D,所以CD=.又AE=,所以AE·CD=-×+×=0,所以AE⊥CD,即AE⊥CD.(2)(方法一)由(1)知,D,P(0,0,1),所以PD=.又AE·PD=×+×(-1)=0,所以PD⊥AE,即PD⊥AE.因为AB=(1,0,0),所以PD·AB=0,所以PD⊥AB.又AB∩AE=A,AB,AE⊂平面AEB,所以PD⊥平面AEB.(方法二)由(1)知,AB=(1,0,0),AE=.设平面ABE的法向量为n=(x,y,z),则令y=2,则z=-,所以n=(0,2,-)为平面ABE的一个法向量.因为PD=,显然PD=n.因为PD∥n,所以PD⊥平面ABE,即PD⊥平面ABE.考点3 利用空间向量解决探索性问题——应用性如图,在正方体ABCD A1B1C1D1中,E是棱DD1的中点.在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.解:在棱C1D1上存在一点F(C1D1的中点),使B1F∥平面A1BE.证明如下:依题意,建立如图所示的空间直角坐标系,设正方体ABCDA1B1C1D1的棱长为1,则A1(0,0,1),B(1,0,0),B1(1,0,1),E,所以BA1=(-1,0,1),BE=.设n=(x,y,z)是平面A1BE的一个法向量,则由得所以x=z,y=z.取z=2,得n=(2,1,2).设棱C1D1上存在点F(t,1,1)(0≤t≤1)满足条件,又因为B1(1,0,1),所以B1F=(t-1,1,0).而B1F⊄平面A1BE,于是B1F∥平面A1BE⇔B1F·n=0⇔(t-1,1,0)·(2,1,2)=0⇔2(t-1)+1=0⇔t=⇔F为C1D1的中点.即说明在棱C1D1上存在点F(C1D1的中点),使B1F∥平面A1BE.向量法解决与垂直、平行有关的探索性问题的思路在四棱锥PABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.(1)求证:EF⊥CD;(2)在平面PAD内是否存在一点G,使GF⊥平面PCB?若存在,求出点G坐标;若不存在,试说明理由.(1)证明:由题意知,DA,DC,DP两两垂直.如图所示,以DA,DC,DP所在直线分别为x轴、y轴、z轴建立空间直角坐标系.设AD=a,则D(0,0,0),A(a,0,0),B(a,a,0),C(0,a,0),E,P(0,0,a),F,所以EF=,DC=(0,a,0).因为EF·DC=0,所以EF⊥DC,从而得EF⊥CD.(2)解:假设存在满足条件的点G,设G(x,0,z),则FG=.若使GF⊥平面PCB,则由FG·CB=·(a,0,0)=a=0,得x=.由FG·CP=·(0,-a,a)=+a=0,得z=0,所以点G坐标为,故存在满足条件的点G,且点G为AD的中点.。
高考数学(考点解读命题热点突破)专题13空间中的平行与垂直文
专题13 空间中的平行与垂直 文【考向解读】1.以选择题、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面的判定与性质定理对命题的真假进行判断,属基础题.2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查,难度中等.【命题热点突破一】 空间线面位置关系的判定(1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题;(2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断.例1、【2016高考江苏卷】(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .【答案】(1)详见解析(2)详见解析(2)在直三棱柱111ABC A B C -中,1111AA ⊥平面A B C因为11AC ⊂平面111A B C ,所以111AA⊥A C 又因为111111111111111,,AC A B AA ABB A A B ABB A A B AA A ⊥⊂⊂=,平面平面 所以11AC ⊥平面11ABB A因为1B D ⊂平面11ABB A ,所以111AC B D ⊥又因为1111111111111C F,C F,B D A AC A A F A AC A F A ⊥⊂⊂=F ,平面平面所以111C F B D A ⊥平面因为直线11B D B DE ⊂平面,所以1B DE 平面11.AC F ⊥平面【变式探究】(1)若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交(2)平面α∥平面β的一个充分条件是( )A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α【答案】 (1)D (2)D【特别提醒】解决空间点、线、面位置关系的组合判断题,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理进行判断,必要时可以利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全引用到立体几何中.【变式探究】已知m ,n 为两条不同的直线,α,β为两个不重合的平面,给出下列命题:①若m ⊥α,n ⊥α,则m ∥n ;②若m ⊥α,m ⊥n ,则n ∥α;③若α⊥β,m ∥α,则m ⊥β;④若m ⊥α,m ∥β,则α⊥β.A .0B .1C .2D .3【答案】 C【命题热点突破二】 空间平行、垂直关系的证明空间平行、垂直关系证明的主要思想是转化,即通过判定、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.例2、 【2016高考江苏卷】(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .【答案】(1)详见解析(2)详见解析【变式探究】如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C到平面PDA的距离.【解析】 (1)证明因为四边形ABCD是长方形,所以BC∥AD,因为BC⊄平面PDA,AD⊂平面PDA,所以BC∥平面PDA.(2)证明因为四边形ABCD是长方形,所以BC⊥CD,因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD =CD,BC⊂平面ABCD,所以BC⊥平面PDC,因为PD⊂平面PDC,所以BC⊥PD.(3)解如图,取CD的中点E,连接AE和PE.因为PD=PC,所以PE⊥CD,在Rt△PED中,PE=PD2-DE2=42-32=7.【特别提醒】垂直、平行关系的基础是线线垂直和线线平行,常用方法如下:(1)证明线线平行常用的方法:一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换;三是利用三角形的中位线定理证线线平行;四是利用线面平行、面面平行的性质定理进行平行转换.(2)证明线线垂直常用的方法:①利用等腰三角形底边中线即高线的性质;②勾股定理;③线面垂直的性质:即要证两线垂直,只需证明一线垂直于另一线所在的平面即可,l⊥α,a⊂α⇒l⊥a.【变式探究】如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.【命题热点突破三】 平面图形的折叠问题平面图形经过翻折成为空间图形后,原有的性质有的发生变化、有的没有发生变化,这些发生变化和没有发生变化的性质是解决问题的关键.一般地,在翻折后还在一个平面上的性质不发生变化,不在同一个平面上的性质发生变化,解决这类问题就是要根据这些变与不变,去研究翻折以后的空间图形中的线面关系和各类几何量的度量值,这是化解翻折问题的主要方法.例3、【2016高考新课标2理数】如图,菱形ABCD 的对角线AC 与BD 交于点O ,5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,OD '(Ⅰ)证明:D H '⊥平面ABCD ;(Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;【解析】【变式探究】如图(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图(2).(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?请说明理由.【解析】例3 (1)证明因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,BC⊂平面A1CB,所以DE∥平面A1CB.【特别提醒】(1)折叠问题中不变的数量和位置关系是解题的突破口;(2)存在探索性问题可先假设存在,然后在此前提下进行逻辑推理,得出矛盾或肯定结论.【变式探究】如图(1),四边形ABCD为矩形,PD⊥平面ABCD,AB=1,BC=PC=2,作如图(2)折叠,折痕EF∥DC.其中点E,F分别在线段PD,PC上,沿EF折叠后点P叠在线段AD上的点记为M,并且MF⊥CF.(1)证明:CF⊥平面MDF;(2)求三棱锥M-CDE的体积.【高考真题解读】9.【2016高考新课标2理数】,αβ是两个平面,,m n是两条直线,有下列四个命题:(1)如果,,//m n m n αβ⊥⊥,那么αβ⊥. (2)如果,//m n αα⊥,那么m n ⊥. (3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号) 【答案】②③④10.【2016高考浙江理数】如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .【答案】12【解析】ABC △中,因为2,120AB BC ABC ==∠=,所以30BAD BCA ∠=∠=.由余弦定理可得2222cos AC AB BC AB BC B =+-⋅2222222cos12012=+-⨯⨯=,所以AC =.设AD x =,则0x <<,DC x =.在ABD ∆中,由余弦定理可得2222c o s B D A D A B A D A BA =+-⋅22222cos30x x =+-⋅24x =-+.故BD =.在PBD ∆中,PD AD x ==,2PB BA ==.由余弦定理可得222222(33c o s 2222P D P BB D x BPD PD PBx +-+--+∠===⋅⋅⋅,所以30BPD ∠=.由此可得,将△ABD 沿BD 翻折后可与△PBD 重合,无论点D 在任何位置,只要点D 的位置确定,当平面PBD ⊥平面BDC 时,四面体PBCD 的体积最大(欲求最大值可不考虑不垂直的情况).EDCBAP11.【2016高考新课标1卷】平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,αI 平面ABCD =m ,αI 平面AB B 1A 1=n ,则m 、n 所成角的正弦值为B13【答案】A【解析】如图,设平面11CBD 平面ABCD ='m ,平面11CBD 平面11ABB A ='n ,因为α∥平面11CB D ,所以','m m n n ∥∥,则,m n 所成的角等于','m n 所成的角.过1D 作11D E B C ∥,交AD 的延长线于点E,连接CE ,则CE 为'm .连接1A B ,过B 1作111B F A B ∥,交1AA 的延长线于点1F ,则11B F 为'n .连接BD ,则111,BD CE B F AB ∥∥,则','m n 所成的角即为1,A B BD 所成的角,为60︒,故,m n 所成角的正弦值为2,选A.12.【2016高考新课标3理数】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π(C )6π (D )323π【答案】B【解析】要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B . 1.(2015·安徽,5)已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) A .若α,β垂直于同一平面,则α与β平行 B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面 【答案】 D2.(2015·浙江,8)如图,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 翻折成△A ′CD ,所成二面角A ′-CD -B 的平面角为α,则( )A .∠A ′DB ≤α B .∠A ′DB ≥αC .∠A ′CB ≤αD .∠A ′CB ≥α 【答案】 B【解析】 极限思想:若α=π,则∠A ′CB <π,排除D ;若α=0,如图,则∠A ′DB ,∠A ′CB 都可以大于0,排除A ,C.故选B.3.(2015·浙江,13)如图,三棱锥A -BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是________.【答案】 784.(2015·江苏,16)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E .(2)BC1⊥AB1.5.(2015·新课标全国Ⅱ,19)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.【解析】6.(2015·新课标全国Ⅰ,18)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC,(2)求直线AE与直线CF所成角的余弦值.(2)解 如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长,建立空间直角坐标系G -xyz ,由(1)可得A (0,-3,0),E (1,0,2),F ⎝ ⎛⎭⎪⎫-1,0,22,C (0,3,0),所以AE →=(1,3,2),CF →=⎝⎛⎭⎪⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 7.(2014·江苏,16)如图,在三棱锥P -ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知PA ⊥AC ,PA =6,BC =8,DF =5.求证:(1)直线PA ∥平面DEF ; (2)平面BDE ⊥平面ABC .8.(2014·新课标全国Ⅱ,18)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD 的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.【解析】(1)证明连接BD交AC于点O,连接EO.因为ABCD为矩形,所以O为BD的中点.21 又E 为PD 的中点,所以EO ∥PB .又因为EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥平面AEC .(2)解 因为PA ⊥平面ABCD ,ABCD 为矩形,所以AB ,AD ,AP 两两垂直.可取n 1=⎝ ⎛⎭⎪⎫3m ,-1,3. 又n 2=(1,0,0)为平面DAE 的法向量,由题设知|cos 〈n 1,n 2〉|=12,即33+4m 2=12,解得m =32.因为E 为PD 的中点,所以三棱锥E -ACD 的高为12,三棱锥E -ACD 的体积V =13×12×3×32×12=38.。
高中数学课件-立体几何复习——平行、垂直证明
(1) 证明 如图所示,取线段 BC 的中点 F, 连接 EF、FD.
在△PBC 中,E、F 分别为 PC、CB 的中点, ∴EF∥PB. 在直角梯形 ABCD 中,F 为 CB 的中点, ∴BF=12BC=1. 又∵AD∥BC,且 AD=1, ∴AD // BF. ∴四边形 ABFD 是平行四边形, ∴FD∥AB. 又∵EF∩FD=F,PB∩BA=B, ∴平面 EFD∥平面 PAB. 又∵DE⊂平面 EFD,∴DE∥平面 PAB.
F
构造平面法
(1) 证明 如图所示,取线段 PB 的中点 H, 连接 EH、AH.
在△PBC 中,E、H和分别为 PC、PB 的中点, ∴EH // BC. 在直角梯形 ABCD 中, ∵AD∥BC,且 AD=1,BC=2 ∴AD // 12BC. ∴AD // EH. ∴四边形 ABFD 是平行四边形, ∴ED∥AH.
β
a
αlHale Waihona Puke a all
a
☺ 简称:面面垂直,线面垂直.
归纳小结
1.垂直关系的转化 在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若 这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂 直时,一般要用性质定理,在一个平面内作交线的垂线,使之转 化为线面垂直,然后进一步转化为线线垂直.故熟练掌握“线线 垂直”、“面面垂直”间的转化条件是解决这类问题的关键.
➳性质:如果两个平行平面同时和第三个平面相交 ,那么它们的交线平行.
//
a
a // b
b
☺ 简称:面面平行,线线平行.
定理应用
空间中的平行
1.长方体ABCD-A1B1C1D1中,点E, F分别是BA1,BC1的中点。 求证:EF // 平面ABCD
高考文科数学精准培优专题十五平行垂直关系的证明 含答案
培优点十五平行垂直关系的证明.平行关系的证明1BCGAACDABCD?ABCDCCEHF,分别是正方体,,的棱例1:如图,,,,11111111的中点.求证:∥EGDBBD 1)平面;(11HBD∥BDF)平面平面.(211)见解析.【答案】(1)见解析;(2OBGOODB,证明(【解析】1)如图,取,连接,的中点111EGOB∥BEGOBEOGBECOGB,所以因为,,所以四边形为平行四边形,故∥∥∥112?EGOB?DBBDBBDBBDDD平面平面因为,,所以平面.∥EG111111FDDBD∥BHB,)由题意可知.连接,(2111DFBHBF∥HBFDHD因为,所以四边形是平行四边形,故∥111BDIHD=DBDH ∥BDF.平面又,所以平面,BBFBDI=1111112.垂直关系的证明ABCACAB=BC?AAC?ABCABM,的中点.,为棱在三棱柱:例2如图,侧棱中,底面1111=2ACAA=2,.1.ABM∥BC;(1)求证:平面11AC?ABM;平面(2)求证:11BNNCCAABB?ACN的(3)在棱平面上是否存在点?如果存在,求此时,使得平面1111BB1值;如果不存在,请说明理由.1.3)存在,)见解析;【答案】(1(2)见解析;(2OOMABBA.与,连接【解析】(1)证明:连接,两线交于点11OACABOMAC∥BC△BM,,分别为中,∵在的中点,∴,111OM?ABMBC?ABMABM∥CB.又∵,∴平面平面平面,11111ABCABCAA?AA?BM?BM,,,∴底面(2)证明:∵侧棱平面11ACAB=BCBM?ACM.,∴为棱又∵的中点,AC?ACCAACCAAAABM?ACAAAC=?BM平面,∴平面,,∴∵,1111111=2ACAA=2Rt△ACCRt△AAM1=AM中,,∴在∵和,∴.又∵111tan?ACC?tanAMA?2,11?ACC=?AMA,∴11?ACC??CAC??AMA??CAC?90?AM?AC,∴即111111BMAM?MAM?ABMAC?ABMBM.,∴,平面,平面∵11111BN1NBBCAAC?ACN的中点,即为3(时,平面)解:当点平面?11112BB1.证明如下:DNACCC∥DMACACDMMDD设分别为的中点为,,连接,,,,∵的中点,∴1111BN?∥BNDMNDMBBCC?DM的中点,∴.又∵,为且,且112DN∥BNDMBM为平行四边形,∴∴四边形,?DNDN?NACAACACCAC?BM平面平面平面,∴∵.又∵,11111CAAC?NAC ∴平面.平面111对点增分集训一、单选题nm,给出下列内的射影分别是和,如果1.平面外有两条直线和和在平面??nmmn11四个命题:m?nm??nn?m?n?mnm?nmm平③与④;②相交与相交或重合;①与;n11111111m?)行平行或重合;其中不正确的命题个数是(与n B.2C.31 A.D.4D【答案】D?ABCDACB中:结合题意逐一分析所给的四个说法,在如图所示的正方体【解析】1111ABCDACACn,BDmBD,,对于说法①:若取平面为分别为,,,分别为?nm,1111m?nADDnAm?m,为满足,但是不满足,,该说法错误;对于说法②:若取平面?11111m?nm?AC,BDnnAD,AD,,满足分别为,但是不满足,分别为n,m111111111ABCDAC,BDnm,,分别为该说法错误;对于说法③:若取平面为分别为,?n,m11AC,BD,11nADDAm,相交,但是与异面,该说法错误;对于说法④:若取平面满足与为?nm1111nAD,ADAC,BCnmm平行,分别为,、、与分别为,满足nm11111111但是与异面,该说法错误;综上可得:不正确的命题个数是4.本题选择D选项.nm?为两个不同的平面,则下列命题中正确的是()为两条不同的直线,2.已知、、?nm??ll?nl?m,且,则A.若,??nm,???的距离相等,则内有不共线的三点到平面B.若平面∥???∥n?m?nm C.若,,则????mm∥nn,.若,则D【答案】Dl?ml?n,且,则对于选项A,若l不一定垂直平面,∵,有可【解析】??mn?m,能和平行,n∴该选项错误;??可能相交或平行,内有不共线的三点到平面、的距离相等,则对于选项B,若平面??∴该选项错误;?,m?nm?,则有可能在平面内,∴该选项错误;对于选项C,若?n对于选项D,由于两平行线中有一条垂直平面,则另一条也垂直平面,∴该选项正确,??故答案为D.3.给出下列四种说法:a∥b????;,直线①若平面,则?,∥ba??∥baa∥???;,直线,则②若直线,直线∥∥b???;,直线,则③若平面∥a∥??a?∥a???.其中正确说法的个数为(④若直线,则),∥∥a A.4个 B.3个 C.2个 D.1个D【答案】b,a????可异面;【解析】若平面,则,直线?,a∥?b?ba,ba∥a∥???,直线可相交,此时,直线,则平行两平面的交线;若直线,∥b?b,a∥a???,则若直线,平行两平面的交线;可相交,此时,a∥????与a,直线;故选若平面D无交点,即,则.∥a∥??a?、4.已知为两条不同的直线,、)为两个不同的平面,则下列命题中正确的有(?nm????,)(1,,∥?n∥m∥????nm????mn?mn∥),(2???∥n?m?nm???,(3)),,(4n?m∥?n∥??m3 .个 D B.1个个A.0 C.2B【答案】baba,∥????与,若相交,则可得,,【解析】由,,若,则∥n∥m∥????m?n?可能平行也可能相交,故(1)错误;???mnm∥n?,故(根据线面垂直的第二判定定理可得,2若)正确;m∥n???或异面,故(若3,,)错误;,则?n∥?nm,m???∥nm?m?n或,故(4若,则)错误;故选,B.??n M,N,PCD,B?ACDBC,ADABCD的中点,则下列中,分别是.如图,在正方体511111111命题正确的是()MN∥APMN∥BD A.B.1MN∥平面BBDD C .D.BDP∥平面MN11C【答案】.MNAP是异面直线,故选项不正确;和A【解析】:MNBD是异面直线,故选项不正确;和B:1M,NCDBCD,BCABCD?A是的中点,:记C.∵正方体分别中,OACIBD?1111111ON∥DM∥CDMNODMN∥ODCD?DM?ON,为平行四边形,∴∴,∴,11112MN?MN∥BDDBDDBDD?OD.平面,∵,∴平面平面1111MN∥平面BBDDBBDDBDP相交,故选项不正确;故选C.,而面和面D:由C知1111??是两个不同的平面,则下列命题正确的是()是两条不同的直线,6.已知,n,m????与平行A.若垂直于同一平面,则,B.若平行于同一平面,则平行nm与n,m???平行的直线不平行,则在C.若内不存在与,?D.若不平行,则不可能垂直于同一平面nm与nm,【答案】D【解析】垂直于同一平面的两平面相交或平行,A不正确;平行于同一平面的两直线可相交、平行或异面,B不正确;平面不平行即相交,在一个平面内平行两平面交线的直线与另一平面平行,C不正确;D为直线与平面垂直性质定理的逆否命题,故D正确.故选D.??是三个两两不重合的平面,给出下列四个,7.已知是两条不重合的直线,,?nm,命题: ????;,则①若?,mm?∥??????;,则②若??,∥????;③若,则∥nmm?,n?∥,??????.其中真命题是(是异面直线,④若),则∥,?m∥,m?,nn∥nm,A.①和②.①和④D .③和④C .①和③BD【答案】【解析】逐一考查所给的命题:????,则,命题正确;①由线面垂直的性质定理可得若??m,m∥.???DABC?ABCD分别为平面中,取平面②如图所示的正方体,,1111ABBA,ADDA,ABCD,1111??????,命题错误;满足,但是不满足?,?∥??ABBA,ADD?ABCDAABCD,中,取平面分别为平面③如图所示的正方体,11111111????DDBB,,命题错误;,满足,但是不满足直线分别为∥nm?m,n?∥,n,m11??????,,由面面平行的性质定理易知④若是异面直线,∥m∥,n?nm?,,∥n,m命题正确;综上可得,真命题是①和④,本题选择D选项.E,FCAEF?2;则下列结论错误,线段,且上有两个动点8.如图,正方体的棱长为111的是().BD?CE.B. A ABCDEF∥平面△CEFE?FBCBEF△的体积为定值.三棱锥的面积与的面积相等 CD.【答案】DABCD?ABCDAACC?BD,平面在正方体【解析】中,111111CE?BD?CEACCA而平面正确.A,故,故11.ABCDABCD∥AC∥EF,故B又正确.平面平面,因此11CEFCEFACCCBBEF的距当的距离就是变化时,三角形到平面的面积不变,点到平面11E?FBCB?CEF的体积)的体积为定值(此时可看成三棱锥离,它是一个定值,故三棱锥,故C正确.6CEFBEF的距离为1,D是错误的,故选,而D到在正方体中,点.到的距离为2OVAOCA,BAB是圆周上不同于垂直于圆是圆所在的平面,点9.如图所示,的直径,M,NVA,VC的中点,则下列结论正确的是()的任意一点,分别为MN∥ABMNBC45?与..A所成的角为BVAC?VACVBC?OC DC..平面平面平面D【答案】MNAB项错;A对于项,异面,故与A【解析】?90BC?V AC?MNBC平面,故项,可证,因此项错;,∴所成的角为B对于B VACACOCOC与不垂直,∴项错;不可能垂直平面,故CC对于项,BCABC?VA?BCVABC?AC?ABC平面项,由于,∴,,平面,D对于VBCBC??VAC?VACBCVBC,∴.平面∵,,故选平面D,∴平面平面A=VAACICCBA?AACBAABC?AB是正三角,底面三角形中,侧棱.如图,在三棱柱10底面1111111111BCE中点,则下列叙述正确的是(形,是)AC?ABBAECCB A.平面与B.是异面直线1111ACC∥ABEBCAE?BAE.C.,平面D为异面直线且1111111C【答案】CCBE在同一个侧面中,故不是异面直线,∴A与错;【解析】对于A项,11AC?ABBA 不可能,∴B平面对于B项,由题意知,上底面是一个正三角形,故错;11BCAE为在两个平行平面中且不平行的两条直线,故它们是异面直线,∴项,∵,对于C11C正确;ACABEAC与交线有公共点,相交,且项,∵D所在的平面与平面对于11111AC∥ABE不正确,∴D项不正确;故选平面C故.111E,FDCAB?2,EF?1DABCD?ABC,给出下列11.设分别是正方体上两点,且的棱1111四个命题:45?DBDB?D?BEFEF平面与的体积为定值;②异面直线①三棱锥;③所成的角为11111160?EFDBBBEF.其中正确的命题为(与平面)所成的角为;④直线1111A.①② B.②③ C.①②④ D.①④A【答案】由题意得,如图所示,【解析】1112V?V??S?BC???EF?2?2?,∴体①中,三棱锥的体积的为1B?DBD△EF1EFD?EF332311111积为定值;EF∥CDDBDBCDEF所成所成的角就是直线与,∴异面直线②中,在正方体中,与11111111的角,即,∴这正确的;??45?BDC111DBDB?BEFEF不成立,∴是错误的;③中,由②可知,直线不垂直,∴与面11111DBBEF?BDC?45?,④中,根据斜线与平面所成的角,可知与平面所成的角,即为111111∴不正确.ABCDAD∥BCAD?AB?1,AD?AB,?BCD?45?△ABD沿中,将如下图,梯形,,12.??BCD?ABDBDAA.,并且平面给出下面四个命对角线折起.设折起后点平面的位置为题:2????BCD?BCACDA?DBDA;的体积为;③平面;②三棱锥①2??DCABCA?.其中正确命题的序号是(平面④平面)A.①②.②④D .①③C .③④BB【答案】??ABD?45ADB90?BAD??,AD?AB??①∵【解析】,∴,DCBD??AD∥BC,?BCD45?∵,∴,???BCDBD?CDBCD??ABDBDA,∴平面,且平面∵平面平面平面,IBDA????BC?CD?ADAD?DABDA,∴,故平面不成立,故①错误;∵2112?BCDA?②棱锥,故②错误;的体积为???2??26223.??CDBDA,故③正确;③由①知平面????B??ACDCD?BABDBDAA,,又∵平面,∴④由①知平面????DC?ACD?D?BAADA,,,且又、平面D?DCDA????BCAADC?AABB?,平面∴,又平面??DCAABC?,故④正确.故选B.∴平面平面二、填空题??是两个不同的平面,则下列命题正确的是13.设是两条不同的直线,,nm,________.(填序号)???∥m∥∥n∥nmm???;,则,则,,①若;②若∥m∥???∥mm??nm∥n???.,;④若③若,则,则,??m【答案】③??m∥nn∥m∥,,与可能相交也可能异面,∴①不正确;【解析】,则nm?∥m????可能相交,∴②不正确;,,还有,则与∥∥m?????nm∥nm,满足直线与平面垂直的性质定理,故③正确;,则,??∥m????,∴④不正确;,也可能,,也可能,则Am?∥??mm故答案为③.14.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论CM60?MNMN∥CDEFABEFAB?.与;③①是异面直线;④;②与所成的角为以上四个命题中,正确命题的序号是_________.【答案】①③把正方体的平面展开图还原成原来的正方体,如图:【解析】.MNAB∥CM,MN?CDEFEFAB?,只有①③正确.故答案为①③.则与异面,,ABCDAB?CD,AC?BD,AD?BC,给出下列结15.若四面体的三组对棱分别相等,即论:ABCD每组对棱相互垂直;①四面体ABCD每个面的面积相等;②四面体ABCD90?180?;而小于③从四面体每个顶点出发的三条棱两两夹角之和大ABCD每组对棱中点的线段相互垂直平分.④连接四面体其中正确结论的序号是__________.(写出所有正确结论的序号)【答案】②④ABCD的三组对棱分别看作平行六面体的对角线,由于三组对棱分别相【解析】①将四面体等,∴平行六面体为长方体.由于长方体的各面不一定为正方形,∴同一面上的面对角线不一定垂直,从而每组对棱不一定相互垂直.①错误;ABCD的每个面是全等的三角形,面积是相等的.②正确;②四面体ABCDABCD每个顶点出发的三条棱的每个面是全等的三角形,从四面体③由②,四面体180?.③错误;两两夹角能够等量代换为同一个三角形内的三个内角,它们之和为ABCD每组对棱中点构成菱形,线段互垂直平分④正确,故答案为②④.④连接四面体10?ABE,FAD,BCABCD2AD?10的中点,,,,分别为16.如图,一张矩形白纸△CDFBE,DFA、CBFDE△ABE同侧,下列命题正确的折起,且现分别将沿在平面,是____________(写出所有正确命题的序号).CDFAC∥BFDE∥ABE平面时,①当平面平面CDFAE∥CD∥ABE时,②当平面平面A、CPG?PDP③当时,重合于点A、C150?DEF?PP重合于点④当的外接球的表面积为时,三棱锥【答案】①④22ACD△ABE△中,,在在中,,【解析】?CADtan???ABEtan22?ABE??DAC,由题意,将∴沿折起,DFBE,△ABE,△CDFBEDF同侧,且在平面C,AAGHC?AG,四点在同一平面内,平面此时平面IHABEA,C,G,ABE∥CDFAG∥AGHC?CHCHCDFI,平面平面,当平面平面时,得到AG?CHAGHCAC∥GH,显然是平行四边形,∴,∴四边形AC∥BFDE,∴①正确的;进而得到平面CDCDAEAE不平行,∴②错误的;与为异面直线,∴由于折叠后,直线与直线10322210GD?PD?10,折叠后,可得,,其中,?PGGDPG?PD?3PGPD不垂直,∴③不正确;和∴△FCDEFD△PP?DEF均为直角三角形,时,在三棱锥重合于点当和中,C,A DF56DF,∴为外接球的直径,即?R?222??652DEFP???1504??4?R?的外接球的表面积为,∴④是正确,则三棱锥????2??综上正确命题的序号为①④.三、解答题P?ABCDAB?AD?2BC?2BC∥ADAB?AD△PBD为正.如图,四棱锥17,,,中,三角形.PA?23.且PBC?PAB;平面(1)证明:平面ABCDACEPDPE∥PB,求四面体2,平面(2)若点是线段到底面上一点,且的距离为A?CDE的体积.8【答案】(1)见解析;(2).9BD?222AD?ABAB?AD?,,且,∴【解析】(1)证明:∵PA?2223PB?PD?BD?2△PBD?ABAB?PB,,∴为正三角形,∴又,又∵,BC∥ADAB?BCAD?AB,,又∵,,∴BBC?PB PBC?ABPAB平面平面∴,又∵,?ABPBC?PAB 平面∴平面.AD∥OACBCBD(2)如图,连接,,交于点,∵AD?2BCOD?2OBOE,,∴且,连接ACEPB∥OEDE?2PE∥PB,,则,∴平面∵.ABCDP的距离为2到平面,由(1)点24ABCDh??2?E,的距离为∴点到平面3311148??V?V?S?h???2?2??,∴??ACD△E?A?CDEACD 33239??8A?CDE的体积为.即四面体9EF?1ABCD2?AB?4AEEFEA?∥AB.,平面 18.如图,四边形,为正方形,,,ABCDBC?AF;(1)求证:1ACFBCCACM?∥EMM;(2)若点在线段,求证:上,且满足平面4EBC?AF.3)求证:平面(【答案】(1)见解析;(2)见解析;(3)见解析.EF∥ABEFABEABF,(1)∵确定平面与,∴【解析】ABCDEA?BCAB?BC?EA且,∴.由已知得平面∵,AIAB=EABC?BC?AFEABFEABF?AF.,∴平面∴.又平面MN?BCNFNMN∥ABM.,连接(2)过,垂足为作,则11MN?ABEF??ACABCMABEF∥,且.又,∴又44 FNEFNM?MNEM∥EFEF∥MN.∴,∴四边形为平行四边形,∴且FBC?FBCEMFN?FBC∥EM 平面.平面又,∴平面,BCAF?)由(1.)可知,(3???BAE?AEF?902?AEABABFE?41EF?,,中,,,在四边形1???EBAtan?FAEtan?EBA??FAE.∴,则2?PAE??PAB?90?,设,∵P?AFIBE?PBA??PAB?90??APB?90?EB?AF.,即,则故.EBC?AF.,∴平面又∵BBCIEB?。
专题08 利用空间向量证明平行、垂直(原卷版)
2020年高考数学立体几何突破性讲练 08利用空间向量证明平行、垂直一、考点传真:能用向量语言表述线线、线面、面面的平行和垂直关系 二、知识点梳理:证明平行、垂直问题的思路(1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.3其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可. 三、例题:例1. (2019江苏卷)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .例2.(2016年北京卷) 如图,在四棱锥中,平面PAD ⊥平面,,P ABCD -ABCD PA PD ⊥,,,,(1)求证:平面;(2)求直线与平面所成角的正弦值;(3)在棱上是否存在点,使得平面?若存在,求的值;若不存在,说明理由.例3.(2011安徽)如图,ABCDEFG 为多面体,平面ABED 与平面AGFD 垂直,点O 在线段AD 上,1,2,OA OD ==OAB ∆,OAC ∆,ODE ∆,ODF ∆都是正三角形. (Ⅰ)证明直线BC ∥EF ; (Ⅱ)求棱锥F OBED -的体积.例4.(2011江苏)如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB AD =,BAD ∠=60°,E 、F 分别是AP 、AD 的中点. PA PD =AB AD ⊥1AB =2AD =AC CD ==PD ⊥PAB PB PCD PA M //BM PCD AMAP求证:(Ⅰ)直线EF ∥平面PCD ;(Ⅱ)平面BEF ⊥平面PAD .例5.(2010广东)如图,¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FB FD ==,EF =.(Ⅰ)证明:EB FD ⊥;(Ⅱ)已知点,Q R 为线段,FE FB 上的点,23FQ FE =,23FR FB =,求平面BED 与平面RQD 所成二面角的正弦值.为GC的中点,FO=3,且FO⊥平面ABCD.(1)求证:AE∥平面BCF;(2)求证:CF⊥平面AEF.2.如图所示,在直三棱柱ABC-A1B1C1中,侧面AA1C1C和侧面AA1B1B都是正方形且互相垂直,M为AA1的中点,N为BC1的中点.求证:(1)MN∥平面A1B1C1;(2)平面MBC1⊥平面BB1C1C.3.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF 是矩形,平面BDEF⊥平面ABCD,DE=2,M为线段BF的中点.(1)求M到平面DEC的距离及三棱锥M-CDE的体积;(2)求证:DM⊥平面ACE.4.如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面P AD⊥底面ABCD,且P A=PD=22AD,设E,F分别为PC,BD的中点.(1)求证:EF∥平面P AD;(2)求证:平面P AB⊥平面PDC.5.如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.已知BC=8,PO=4,AO=3,OD=2.(1)证明:AP⊥BC;(2)若点M是线段AP上一点,且AM=3.试证明平面AMC⊥平面BMC.6. 如图所示,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD,侧面PBC⊥底面ABCD.证明:(1)P A⊥BD;(2)平面P AD⊥平面P AB.7.如图所示,在四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱A1A=2.(1)证明:AC ⊥A 1B ;(2)是否在棱A 1A 上存在一点P ,使得AP →=λP A 1→且面AB 1C 1⊥面PB 1C 1.8.如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.。
【高考数学二轮复习-经典微专题】第52讲 用空间向量判断,证明平行与垂直-解析版
第52讲 用空间向量判断,证明平行与垂直知识与方法1用空间向量判断证明线面平行或垂直,面面平行或垂直的思路 (1)直接利·用向量运算的几何意义进行证明.(2)通过建立三维坐标系,用向量的坐标形式进行运算和证明. 2用向量证明直线与平面平行的方法(1)证明直线的方向向量与平面某一法向量垂直. (2)证明直线的方向向量与平面内某直线的方向向亘平行. (3)证明直线的方向向量可以用平面内的两个不共线的向量线性表示. 3用向量证明直线与平面垂直的方法(1)证明直线的方向向量与平面的某一法向量平行.(2)证明直线的方向向量与平面内两条相交直线的方向向量垂直. (3)证明直线的方向向量与平面内的任意一条直线的方向向量垂直. 4证明空间两个平面的平行与垂直关系的方法(1)利用两个平面的法向量的平行与垂直关系进行证明,关键是求出两个平面的法向量. (2)将证明两个平面的平行和垂直关系转化为证明直线与平面的平行与垂直关系,再 利用上述介绍的证明方法进行证明.(3)利用面面平行、面面垂直判定定理的向量表示进行证明.典型例题【例1】 如图52-1所示,在正方体111ABCD A BC D 中,M N ,分别是111C C B C ,的中点.证明://MN 平面1.A BD【解析】【解法1】 ∵1111111111111()2222MN C N C M C B C C D A D D D A =-=-=-=1//.MN DA ∴又∵MN 与1DA 不共线,∴1//.MN DA 又MN ⊄平面11,A BD A D ⊂平面1A BD ,//MN ∴平面1A BD .【解法2】设正方体的棱长为1,以D 为原点,分别以1,,DA DC DD 所在直线为x 轴、y 轴、z 轴,建立如图52-2所示空间直角坐标系,则1110,1,,,1,1,(0,0,0),(1,0,1),(1,1,0).22M N D A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭于是111,0,,(1,0,1),(1,1,0)22MN DA DB ⎛⎫=== ⎪⎝⎭.设平面1A BD 的一个法向量为(),,n x y z =,则0,,0n DA n DB ⎧⎪⋅⎨⎪⎩=⋅= 得00x z x y ⎧⎨⎩+=+=,取1x =,得1,1y z =-=-,∴()1,1,1n =--.又1111,0,(1,1,1)10(1)(1)02222n MN ⎛⎫⋅=⋅--=⨯+⨯-+⨯-= ⎪⎝⎭,MN n ∴⊥,又MN ⊄平面1A BD .∴//MN 平面1.A BD【解法3】 如图52-2所示,1DA (1,0,1),(1,1,0),DB ==设1MN sDA tDB =+ , 即11,0,(1,0,1)(1,1,0),22s t ⎛⎫=+ ⎪⎝⎭12012s t t s ⎧+=⎪⎪∴=⎨⎪⎪=⎩解得1,0,2s t ==∴1,2MN DA =∴MN 与1DA 共线,∵MN ⊄平面1A BD ,∴//MN 平面1.A BD【例2】如图524-所示,四棱锥S ABCD -中,///,.CD AB CD BC ⊥侧面SAB 为等边三角形,2,1AB BC CD SD ====. (1)证明:SD ⊥平面SAB .(2)求点A 到平面SBC 的距离.【解析】(1)【证明】以C 为原点,射线CD 为x 轴的正半轴建立如图525-所示的空间直角坐标系C xyz -.设(1,0,0)D ,则(2,2,0),(0,2,0)A B 又设(,,)S x y z ,则0,0,0.x y z >>>(2,2,),(,2,),(1AS x y z BS x y z DS x =--=-=-,)y z .由||||AS BS ==故1x =.由||1DS =,得221y z +=,又由||2BS =,得222(2)4x y z +-+=.即2410x y -+=,即可解得1,22y z ==,于是1333311,,1,,,1,,,0,222222S AS BS DS ⎛⎛⎫⎛⎫⎛=--=-= ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭. 0,0DS AS DS BS ∴⋅=⋅=,故S ,AS B DS DS ⊥⊥,又BS AS S ⋂=,SD ∴⊥平面SAB .(2)设平面SBC 的法向量(,,)a m n p =,则BS 0,CB 0a a ⋅=⋅=.又331,,,(0,2,0)22BS CB ⎛⎫=-= ⎪ ⎪⎝⎭,故30220m n p n ⎧-+=⎪⎨⎪=⎩则(a =,又(2,0,0),AB =-故点A 到平面SBC 的距离为||2||a AB d a ⋅==。
高考数学复习 空间位置关系的判断与证明.板块五.平行与垂直关系综合证明.学生版
【例1】 已知PA 垂直于正方形ABCD 所在的平面, ,E F 分别是PB 和AC 的中点, 求证:①EF ∥平面PAD ;②EF AB ⊥IH G F EDC B A P【例2】 (2008新课标江苏16)如图,在四面体ABCD 中,CB CD =,AD BD ⊥,点E 、F 分别是AB 、BD 的中点.求证:⑴直线EF ∥面ACD ;⑵面EFC ⊥面BCD .FD EABC【例3】 已知:四棱锥P ABCD -,PA ⊥平面ABCD ,底面ABCD 是直角梯形,90A ∠=,且AB CD ∥,12AB CD =,点F 为线段PC 的中点. 典例分析板块五.平行与垂直关系综合证明EFDB AP⑴求证:BF ∥平面PAD ;⑵求证:BF CD ⊥.【例6】 (2010年二模·丰台·文·题16)如图,在四棱锥S ABCD -中,底面ABCD 是菱形,SA ABCD ⊥底面,M 为SA 的中点,N 为CD 的中点.⑴ 证明:平面SBD ⊥平面SAC ;若垂直,请加以证明;若不垂直,请说明理由.【例8】 如图,已知PA O ⊥⊙所在的平面,AB 是O ⊙的直径,2AB =,C 是O ⊙上一点,且AC BC =,PC 与O ⊙所在的平面成45︒角,E 是PC 中点.F 为PB 中点. ⑴求证:EF ABC 面∥;⑵求证:EF PAC ⊥面;⑶求三棱锥B PAC -的体积.C A【例9】 如图,在正方体1111ABCD A B C D -中,EF ⊥1A D ,EF ⊥AC ,求证:⑴1BD ⊥平面11A C D ;⑵1//EF BD .FEA B C DA 1B 1C 1D 1【例10【例11】 (2010年二模·西城·文·题17)如图,已知四棱柱1111ABCD A B C D -的底面是菱形,侧棱1BB ⊥底面ABCD ,E 是侧棱1CC 的中点.⑴ 求证:AC ⊥平面11BDD B ;⑵ 求证:AC ⊥平面1B DE .【例13】 如图所示,在直四棱柱1111ABCD A B C D -中,DB BC =, DB AC ⊥,点M 是棱1BB 上一点.⑴求证:11B D ∥面1A BD ;⑵求证:MD AC ⊥.⑶试确定点M 的位置,使得平面1DMC ⊥平面11CC D D .MD 1C 1B 1A 1D CBA【例14】 (2009山东文18)如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为等腰梯形,AB CD ∥,4AB = 2BC CD ==,12AA =,E ,1E 分别是棱AD ,1AA 的中点.⑴设F 是棱AB 的中点,证明:直线1EE ∥平面1FCC ;⑵证明:平面1D AC ⊥平面11BB C C .D 1EE 1FC 1B 1A 1D CB A【例15】 如图,已知111A B C ABC -是正三棱柱,D 是AC 的中点,11AB ==,⑴证明:BD ⊥平面11ACC A ,1//AB 平面1BDC ;⑵求点D 到平面11BCC B 的距离.⑶证明:11AB BC ⊥.D CBA A 1B 1C 1【例16】 (2006天津)如图,在五面体ABCDEF 中,点O 是矩形ABCD 的对角线的交点,面CDE 是等边三角形,棱12EF BC ∥. ⑴证明FO ∥平面CDE ;⑵设BC ,证明:EO ⊥平面CDF .OF ED C B A【例17】 (2009江苏高三调研)如图,在三棱柱111ABC A B C -中,11AB BC BC BC AB BC ⊥⊥=,,,E F G ,,分别为线段1111AC AC BB ,,的中点,求证:⑴平面ABC ⊥平面1ABC ;⑵EF ∥面11BCC B ;⑶GF ⊥平面11AB C . C 1B 1A 1G F EC BA【例18】 如图,ABC ∆为正三角形,EC ⊥平面ABC ,BD CE ∥,2CE CA BD ==,M 是EA 的中点,求证:⑴DE DA =;⑵平面BDM ⊥平面ECA ;⑶平面DEA ⊥平面ECA . MEDCB A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行垂直关系的证明
1.平行关系的证明
例1:如图,E ,F ,G ,H 分别是正方体1111ABCD A B C D -的棱BC ,1CC ,11C D ,1AA 的中点.
求证:
(1)EG ∥平面11BB D D ;
(2)平面BDF ∥平面11B D H .
【答案】(1)见解析;(2)见解析.
【解析】证明(1)如图,取11B D 的中点O ,连接GO ,OB ,
因为1112
OG B C BE ∥∥,所以BE OG ∥,所以四边形BEGO 为平行四边形,故OB EG ∥, 因为OB ⊂平面11BB D D ,EG ⊄平面11BB D D ,所以EG ∥平面11BB D D .
(2)由题意可知11BD B D ∥.连接HB ,1D F , 因为1BH D F ∥
,所以四边形1HBFD 是平行四边形,故1HD BF ∥ 又1111=B D HD D I ,=BD BF B I ,所以平面BDF ∥平面11B D H .
2.垂直关系的证明
例2:如图,在三棱柱111ABC A B C -中,侧棱1AA ⊥底面ABC ,M 为棱AC 的中点.=AB BC ,
=2AC ,1AA .
(1)求证:1B C ∥平面1A BM ;
(2)求证:1AC ⊥平面1A BM ;
(3)在棱1BB 上是否存在点N ,使得平面1AC N ⊥平面11AA C C ?如果存在,求此时1BN BB 的值;如果不存在,请说明理由.
【答案】(1)见解析;(2)见解析;(3)存在,12
. 【解析】(1)证明:连接1AB 与1A B ,两线交于点O ,连接OM .
在1B AC △中,∵M ,O 分别为AC ,1AB 的中点,∴1OM B C ∥,
又∵OM ⊂平面1A BM ,1B C ⊄平面1A BM ,∴1B C ∥平面1A BM .
(2)证明:∵侧棱1AA ⊥底面ABC ,BM ⊂平面ABC ,∴1AA BM ⊥, 又∵M 为棱AC 的中点,=AB BC ,∴BM AC ⊥.
∵1=AA AC A ,1AA ,AC ⊂平面11ACC A ,∴BM ⊥平面11ACC A ,∴1BM AC ⊥ ∵=2AC ,∴=1AM
.又∵1AA ,∴在1Rt ACC △和1Rt A AM △
中,
11tan tan AC C A MA ∠==
∴11AC C A MA ∠∠=,
即111190AC C C AC A MA C AC ∠+∠=∠+∠=︒,∴11A M AC ⊥
∵1BM A M M =,BM ,1A M ⊂平面1A BM ,∴1AC ⊥平面1A BM .
(3)解:当点N 为1BB 的中点,即
112BN BB =时,平面1AC N ⊥平面11AA C C
证明如下:
设1AC 的中点为D ,连接DM ,DN ,∵D ,M 分别为1AC ,AC 的中点,∴1DM CC ∥,
且11
2DM CC =.又∵N 为1BB 的中点,∴DM BN ∥,且DM BN =,
∴四边形BNDM 为平行四边形,∴BM DN ∥,
∵BM ⊥平面11ACC A ,∴DN ⊥平面11AA C C .又∵DN ⊂平面1AC N , ∴平面1AC N ⊥平面11AA C C .。