4路基稳定性分析计算

合集下载

路基稳定性分析

路基稳定性分析

1、工程地质比拟法
经过长期的生产实践和大量的经验的积累
2、力学验算法
建立模型,受力分析。 两种相辅相成,可互相核对,作出正确合理的评价。
路基稳定性分析的力学验算方法
极限平衡法的基本的假设条件: ** 平面问题的假设; ** 滑动体整体下滑,极限平衡状态之发生在滑动面上; ** 滑动土体视作本身无变形的刚体,内应力不考虑。
在工程设计中,判断边坡稳定性的大小习惯上采用 边坡稳定安全系数来衡量。l955年,毕肖普(A.W.Bishop) 明确了土坡稳定安全系数的定义:
式中: f ——沿整个滑裂面上的平均抗剪强度;

f Ks
(2.1)
K s ——边坡稳定安全系数。 按照上述边坡稳定性概念,显然,>1,土坡稳定;<1, 土坡失稳;=1,土坡处于临界状态。 毕肖普的土坡稳定安全系数物理意义明确,概念清楚, 表达简洁,应用范围广泛,在边坡工程处治中也广泛应 用。其问题的关键是如何寻求滑裂面,如何寻求滑裂面 上的平均抗剪强度和平均剪应力τ。
1 Si (ci li Ni f i ) Ks
式中:ci ,
fi
li
-----条块滑动底面处岩土的粘聚力和摩擦系 数; fi tani ,i 为岩土的内摩擦角; -----条块滑动底面的长度。
要使整个土体达到力的平衡,其未知力有:每一土条底 部的有效法向反力,共n个;两相邻土条分界面上的法向条 间力Ei,共n-1个,切向条间力Ti,共n-1个;两相邻土条间 力Xi及Ei合力作用点位置Zi,共n-1个;每一土条底部切力Si 及法向力Ni的合力作用点位置ai,共n个。另外,滑体的安 全系数Ks,l个。
条分法实际上是一种刚体极限平衡分析法。其基本思 路是:假定边坡的岩土体坡坏是由于边坡内产生了滑动面, 部分坡体沿滑动面而滑动造成的。滑动面上的坡体服从破 坏条件。假设滑动面已知,通过考虑滑动面形成的隔离体 的静力平衡,确定沿滑面发生滑动时的破坏荷载,或者说 判断滑动面上的滑体的稳定状态或稳定程度。 该滑动面是人为确定的,其形状可以是平面、圆弧面、 对数螺旋面或其他不规则曲面。隔离体的静力平衡可以是 滑面上力的平衡或力矩的平衡。隔离体可以是一个整体, 也可由若干人为分隔的竖向土条组成。由于滑动面是人为 假定的,我们只有通过系统地求出一系列滑面发生滑动时 的破坏荷载,其中最小的破坏荷载要求的极限荷载与之相 应的滑动面就是可能存在的最危险滑动面。

路基边坡稳定性分析

路基边坡稳定性分析

长安大学
第四章 路基边坡稳定性分析
寻找最小稳定安全系数及最危险滑动面
假定 3~4个可能的滑动面,分别求出其相应的 K 值,绘 出 K~ω关系曲线,找出K min和与之对应的最危险滑动面。
国家级精品课程《路基路面工程》
长安大学
第四章 路基边坡稳定性分析
3. 均质砂质土路堑边坡
c ≠ 0,较小,φ 较大,无车辆荷载
假设楔体 ABD 沿AD滑动面滑动,取1m 长计, 则稳定
安全系数K :
F N tan cL
N Gcos
K F G cos • tan cL
T
G sin
国家级精品课程《路基路面工程》
长安大学
第四章 路基边坡稳定性分析
寻找最小稳定安全系数及最危险滑动面
G hL . sin( ) 2 sin
按高度计算 加权平均坡度
(a) 折线形边坡 国家级精品课程《路基路面工程》
(b)阶梯形边坡
长安大学
第四章 路基边坡稳定性分析
三、汽车荷载当量换算
1. 换算原理 将车辆按最不利情况排列,并将车辆的设计荷载换算成
当量土柱高(即以相等压力的土层厚度来代替荷载),以h0
表示。
路基填料的重度γ
h0
γ
路基填料的重度γ
长安大学
第四章 路基边坡稳定性分析
本章内容
1 边坡稳定性分析原理 2 边坡稳定性分析的计算参数 3 边坡稳定性分析方法 4 浸水路堤稳定性分析 5 陡坡路堤的稳定性分析
国家级精品课程《路基路面工程》
长安大学
第四章 路基边坡稳定性分析
第一节 边坡稳定性分析原理
一、边坡稳定性分析方法
1. 工程地质法(比拟法) 比拟自然山坡、人工边坡,地层土质、水文状况,稳

铁路路基稳定性检算及沉降计算

铁路路基稳定性检算及沉降计算

稳定性检算与沉降检算软土地基上路堤的滑动稳定性,可采用圆弧法分析检算,其稳定安全系数F 应根据软土地基的特征和加固措施类型按下列不同情况计算:软土层较厚,其抗剪强度随深度变化有很明显规律时:0()i iiS h l F T λ+=∑∑ 式中 S 0—————地基抗剪强度增长线在地面上的截距(kPa );λ———抗剪强度随深度的递增率(kPa/m );i h ———地基分条深度(m );i l ———分条的弧度(m ); i T ———荷载与地基分条重力在圆弧上的切向分力(KN/m )。

当软土层次较多,其抗剪强度随深度变化无明显规律时,安全系数根据分层抗剪强度平均值计算:ui i iS l F T =∑∑ 式中 ui S ———第i 层的平均抗剪强度(kPa )。

当其中有较厚层,其抗剪强度随深度变化又有明显规律时,可按式()和式()综合计算。

当考虑地基固结时:0()tan i i i cuii S h l UN F Tλφ++=∑∑∑Ⅱ 或 ui tan i i cui i S l UN F T φ+=∑∑∑Ⅱ式中 U ———地基平均固结度;i N Ⅱ———填土重力和上部荷载在圆弧上的法向分力(KN/m ); cui φ———第i 层地基土固结不排水剪切的内摩擦角(。

)。

地基表层铺设土工合成材料加筋时,其承受的拉力应纳入抗滑力部分。

复合地基稳定性应根据滑弧切割地层及范围分别采用加固土(复合)或天然地基土抗剪强度指标进行检算。

软土层较薄或软土底部存在斜坡时,应检算路堤沿软土底部滑动的稳定性。

软土天然抗剪强度宜采用三轴不排水剪切实验、无侧限抗压强度、直剪快剪实验或十字板剪切实验确定。

路堤填筑临界高度宜根据稳定检算确定,也可用经验公式计算确定。

软土地基沉降量计算时,其压缩层厚度应按附加应力等于0.1倍自重应力确定。

软土地基的总沉降量(S )可按瞬时沉降(Sd )与主固结沉降(Sc )之和计算。

对泥炭土、富含有机质黏土或高塑性粘土地层,可根据情况考虑次固结沉降(Ss )。

道路路基稳定速率计算公式

道路路基稳定速率计算公式

道路路基稳定速率计算公式道路路基的稳定性是指道路路基在承受交通荷载作用下不发生破坏或者变形的能力。

在道路工程中,对道路路基的稳定性进行评估和计算是非常重要的,因为稳定的路基可以保证道路的安全和持久性。

为了评估道路路基的稳定性,工程师们通常会使用一些计算公式来进行计算。

本文将介绍道路路基稳定速率计算公式及其应用。

首先,我们需要了解什么是道路路基的稳定速率。

道路路基的稳定速率是指在一定条件下,道路路基能够承受的最大荷载速率。

这个速率通常是以车辆的重量和速度来表示的,也可以理解为路基的承载能力。

在道路设计和施工中,了解道路路基的稳定速率对于选择合适的材料和设计合理的路基结构非常重要。

道路路基的稳定速率可以通过一些经验公式来进行计算。

其中,最常用的是AASHTO公式和CBR公式。

AASHTO公式是由美国公路和交通官员协会(AASHTO)提出的,适用于评估不同类型道路路基的稳定性。

CBR公式则是加州型号法(California Bearing Ratio)提出的,适用于评估土壤的承载能力。

这两个公式都是根据实验数据和统计分析得出的,具有一定的可靠性和适用性。

AASHTO公式的计算公式如下:\[R = \frac{{W \times V}}{{(A B) \times L \times K}}\]其中,R代表稳定速率,W代表车辆的重量,V代表车辆的速度,A和B代表路基的宽度和厚度,L代表路基的长度,K代表修正系数。

这个公式可以用于评估不同类型道路路基的稳定速率,但需要根据具体情况进行修正和调整。

CBR公式的计算公式如下:\[R = \frac{{CBR}}{{100}} \times \frac{{W \times V}}{{A \times L}}\]其中,R代表稳定速率,CBR代表加州型号法的承载比,W代表车辆的重量,V代表车辆的速度,A代表路基的面积,L代表路基的长度。

这个公式适用于评估土壤的承载能力,可以帮助工程师们选择合适的路基材料和设计合理的路基结构。

路基稳定性分析

路基稳定性分析
考虑条间力简化为一水平推力E 而忽略T 影响,其误差仅为2~7%.此时: 此时: 考虑条间力简化为一水平推力 i,而忽略 i影响,其误差仅为 此时
S i + E i − E i -1) cos α i = W i sin α i + Q i cos α i ( ∆ E i = E i − E i - 1 = W i tg α i + Q i − S i sec α
∑(
yi
c iℓ i + N if i )R = Ks
∑W X
i
i
+ ∑ Qi Z i
i i
αi Wi Qi Si Ni αi
Ks =
∵ N i = Wi cos α i − Qi sin α i
∑(C ℓ + N f ) z (W Sinα + Q ) ∑ R
i i i i i i
+ (W i cos α i − Q i sin α i ) f i ] Ks zi y ∑ (W i Sin α i + Q i R ) 一般情况下, 相比很小, 相差不大, 一般情况下,Qi与Wi相比很小,或Zi与Yi相差不大,则Qi ·Zi/R近似用 近似用 Qicosαi代替。 α 代替。 ∑[Ciℓi + (Wi cosαi −Qi sin αi ) fi ] Ks = ∑(Wi Sinαi +Qi cosαi )
∑ [C ℓ =
i
i
此法因为未考虑条间力,故算出的 偏小 偏低可达10%~20% 偏小。 10%~20%, 此法因为未考虑条间力,故算出的Ks偏小。偏低可达10%~20%,过 于保守,但计算简单,故广泛采用,不过仅适用于园弧滑动面情况。 于保守,但计算简单,故广泛采用,不过仅适用于园弧滑动面情况。

路基路面工程04章路基边坡稳定性习题参考答案

路基路面工程04章路基边坡稳定性习题参考答案

第四章路基边坡稳定性分析一、名词解释1.工程地质法:经过长期的生产实践和大量的资料调查,拟定不同土的类别及其所处状态下的边坡稳定值参考数据;在实际工程边坡设计时,将影响边坡稳定的因素作比拟,采用类似条件下的稳定边坡值作为设计值的边坡稳定分析方法。

2.圆弧法:假定滑动面为一圆弧,将圆弧滑动面上的土体划分为若干竖向土条,依次计算每一土条沿滑动面的下滑力和抗滑力,然后叠加计算出整个滑动土体的稳定性性系数的边坡稳定分析方法。

3.力学法(数解):假定几个不同的滑动面,按力学平衡原理对每个滑动面进行边坡稳定性分析,从中找出极限滑动面,按此极限滑动面的稳定程度来判断边坡稳定性的边坡稳定分析方法。

4.力学法(表解):在计算机和图解分析的基础上,制定成待查的参考数据表格,用查找参考数据表的方法进行边坡稳定性分析的边坡稳定分析方法。

5.圆心辅助线:为了较快地找到极限滑动面,减少试算工作量,根据经验而确定的极限滑动圆心位置搜索直线。

二、简答题1.简述边坡稳定分析的基本步骤。

答:(1)边坡破裂面力学分析,包括滑动力(或滑动力矩)和抗滑力(或抗滑力矩);(2)通过公式推导给出滑动力和抗滑力的具体表达式;(3)分别给出滑动力和抗滑力代数和表达式,按照定义给出边坡稳定系数表达式;(4)通过破裂面试算法或极小值求解法获得最小稳定系数及其对应最危险破裂面;(5)依据最小稳定系数及其容许值,判定边坡稳定性。

2.简述圆弧法分析边坡稳定性的原理。

答:基本原理为静力矩平衡。

(1)假设条件:土质均匀,不计滑动面以外土体位移所产生作用力;(2)条分方法:计算考虑单位长度,滑动体划分为若干土条,分别计算各个土条对于滑动圆心的滑动力矩和抗滑力矩;(3)稳定系数:抗滑力矩与滑动力矩比值。

(4)判定方法:依据最小稳定系数判定边坡稳定性。

3.简述直线滑动面法和圆弧滑动面法各自适用条件?答:直线滑动面法适用于砂类土。

砂类土边坡渗水性强,粘性差,边坡稳定主要靠内摩擦力支承,失稳土体滑动面近似直线形态。

路基边坡稳定性验算

路基边坡稳定性验算

路基边坡稳定性验算计算书
一、计算说明
本设计路线中,以K0+080断面路堑边坡高度(H=30m)最高,故本计算算例取K0+080断面边坡进行计算。

具体边坡稳定性分析参数:路基填土为低液限粘土,粘聚力c=10Kpa,内摩擦角27度。

容重r=17KN/m3,荷载为公路Ⅰ级。

计算方法采用4.5H法确定圆心辅助线。

此边坡坡率不一致,故采用平均坡度进行计算,经计算可知此边坡的平均坡度为1:1.如下图示:
二、计算过程分析
计算原理采用瑞典条分法,将圆弧滑动面上的土体按照6m的宽度进行划分。

下图所示为o1圆弧滑动面的计算实例
采用计算表格可得计算结果:
L=
=R θπ
180
88.02m 则边坡稳定系数为: =
+=
∑∑i
hi b i
hi b cL Ks θγθϕγsin cos tan =⨯⨯⨯⨯⨯+⨯505
.9661701
.23927tan 61702.8810 1.35>1.25
按照上述方法一一计算出o2、o3、o4、o5处的稳定系数分别为1.32、1.29、1.33、1.37.故取Ks=1.29为最小的稳定系数,此时由于Ks>1.25,所以边坡稳定性满足要求。

第四章 路基稳定性知识讲解

第四章  路基稳定性知识讲解
O
R
βi
B d
c
A i Wi Ti Ni
i ab
i i
4.滑动面的总滑动力矩
C
T R R T iR W isiin
5.滑动面的总抗滑力矩
H
T R R fliiR itain cili
R (W icoitsain cili)

6.确定安全系数
KT TR RW i co W sisitig n iicili
第四章 路基稳定性 设计
第一节 概述
1、边坡失稳现象 路基边坡滑坍是公路上常见的破坏现象之一。在
岩质或土质山坡上开挖路堑,有可能因自然平衡条件 被破坏或者因边坡过陡,使坡体沿某一滑动面产生滑 坡。对河滩路堤、高路堤或软弱地基上的路堤,因水 流冲刷、边坡过陡或地基承载力过低而出现填方土体 (或连同原地面土体)沿某一剪切面产生坍塌。
2、圆弧滑动面的图式
重点:圆弧圆心确定
为了较快地找到极限滑动面,减少试算工作量,根据经验, 极限滑动圆心在一条线上,该线即是圆心辅助线。确定圆心辅 助线可以采用4.5 H法或36°线法。
4.5H法:过E向下作垂直
EF=H,过F作水平线FM=4.5H, 过E作一线EI与ES夹β1角,过S 作IS与水平线夹角β2,交于I点, 连IM作延长线,在其上取O1、 O2、O3点,求K1、K2、K3,取 小值。
例:路堤高12m,顶宽16m,土的c=10KPa,f=0.404,r= 16.8KN/m3边坡坡度1:1.5,用表解法分析K.
第四节 软土地基稳定性分析
软土是由天然含水率大、压缩性高、承载能力低的淤泥沉积物 及少量腐殖质所组成的土,主要有淤泥、淤泥质土及泥炭。
软土分为四种:河海沉积、湖泊沉积、江滩沉积、沼泽沉积

第四章-路基稳定性分析计算

第四章-路基稳定性分析计算
基本特点:假想用水的浮力作用间接抵消动水压力对边坡的影响, 即在计算抗滑力矩中,用降低后的内摩擦角反映浮力的影响,而 在计算滑动力矩中,不考虑浮力作用,滑动力矩没有减小,用以 抵偿动水压力的不利影响。 计算公式见(4-25)
三、条分法
该方法的基本原理和计算步骤,与非浸水时的条分法相同,但土 条分成浸水与干燥两部分,并直接计入浸水后
2、图解法 取K=1.0,式(4-9)改为(4-10),然后绘制图4-11,可以确 定任意高度H时的边坡角,或指定边坡角确定H值,见例4-5。
第七页,编辑于星期日:八点 十三分。
第四章 路基稳定性分析计算
三、圆弧滑动面的解析法 1、坡脚圆法 高塑性土的内摩擦角很小,路基边坡稳定性验算时,取为0,若坡 顶为水平面,圆弧滑动面通过坡脚,称之为坡脚圆,边坡稳定系数 计算公式见(4-13)(4-14),利用此两式,假定不同的坡脚参数, 分别计算和绘制成关系曲线图,可简化计算。
第二节 直线滑动面的边坡稳定性分析
砂类土路基边坡渗水性强,粘性差,边坡稳定性主要靠其内摩擦 力支承,失稳土体的滑动面近似直线形态。 一、试算法 按静力平衡公式有:
滑动面位置不同,K值亦随之改变,边坡稳定与否的判断依据,
应是稳定系数的最小值,相应的最危险滑动面的倾角 ,上式表
明,K值是 的函数,可选择4到5个滑动面,计算并绘制两 者的关系曲线,即可确定最小的K
第四页,编辑于星期日:八点 十三分。
第四章 路基稳定性分析计算
第三节 曲线滑动面的边坡稳定性分析 一般来说土均具有一定的粘结力,滑动面也多数是曲面,通常假 定为圆弧滑动面。边坡稳定性的计算方法较多,比如有条分法( 瑞典法)、条分法的图解和表解法、解析法(如应力圆法)等。
一、圆弧滑动面的条分法 1、原理

路基稳定性分析

路基稳定性分析
当滑动面为单一坡度的倾斜面时考虑:
E T 1 (N tan cL)
K
第四节 陡坡路堤稳定性分析
三.滑动面为折线滑动面
当滑动面为多坡地面时考虑,各土条剩余下滑力按下式计算:
Ei
Ti
Ei1
cos
i1
i
1 K
Ni Ei1 cos i1 i tani ci Li
Ti Qi sini Ni Qi cosi
第四节 陡坡路堤稳定性分析
四.增加陡坡路堤稳定性措施
开挖台阶,放缓边坡,减小下滑力; 清除坡积层,压实基底; 在路堤上侧开挖截水沟或边沟,阻止地表水流湿
润滑动面;
受地下水影响时,设置渗沟以疏干基底土层;
浸水路堤除承受车辆荷载和自重外,浸润线以下的土体还要
受到水的浮力和渗透动水压力的作用。作用方向指向土体内部, 有利于土体稳定,经过一定时间的渗透,土体内水位趋于平衡, 不再存在渗透动水压力。
浸水路堤水位变化
第三节 浸水路堤稳定性分析
动水压力的计算
D=IB0
D ——作用于浸润线以下土体重心的渗透动水压力,kN/m; I ——渗流水力坡降(取浸润曲线的平均坡降); ΩB——浸润曲线与滑动弧之间的面积,m2; 0 ——水的容重,kN/m3
第四章 路基稳定性分析
➢第一节 概述 ➢第二节 路基边坡稳定性分析 ➢第三节浸水路堤稳定性分析 ➢第四节 陡坡路堤稳定性分析
第一节 概述
一.路基边坡滑动破裂面的形状
边坡滑塌破坏时,会形成一滑动破裂面
砂类土及碎(砾)石土近似于平面 黏质土近似于圆弧面 有的土质可能是不规则的折面或曲面
第一节 概述
二.路基边坡稳定性分析的方法
第二节 路基边坡稳定性分析

4.路基稳定性的分析与计算

4.路基稳定性的分析与计算

设作用于分条上的水平 总合力为Qi,则: 取滑面上能提供的抗滑 力矩为Mr,与滑动力矩M0之 比为安全系数k,则有:
其中:
15
瑞典法存在的问题: 滑面为圆弧面及不考虑分条间作用力的2个假设, 使分析计算得到极大的简化,但也因此出现一定误差: 1.滑动面的形状问题 现实的边坡破坏,滑动面并非真正的圆弧面。但大 量试验资料表明,均质土坡的真正临界剪切面与圆弧 面相差无几,按圆弧法进行边坡稳定性验算,所得的 安全系数其偏差约为0.04。但这一假定对非均质边坡, 则会产生较大的误差。 2.分条间的作用力问题 无论何种类型的边坡,坡内土体必然存在一定的应 力状态;边坡失稳时,还将出现一种临界应力状态。 这两种应力状态的存在,必然在分条间产生作用力, 通常包括分条间的水平压力和竖向摩擦阻力。
根据这一假定滑动面上的抗滑阻力t根据图在滑动面上沿着x轴建立平衡式这时滑动面上的下滑力s当边坡达到极限平衡状态时滑动面上的抗滑阻力与下滑力相等可根据上列两式相等的条件求得分条两侧边的土压力增值e21按竖直方向上的平衡条件可以求得滑动面上的法又根据水平方向的平衡条件可求得整个边坡的安全系数为
1
边坡滑坍是工程中常见的病害之一。路基的稳定 性包括:①边坡稳定;②基底稳定;③陡坡上路堤整体 稳定。 这一讲主要介绍边坡稳定性分析方法。此外,还 将介绍浸水路堤以及地震地区路基稳定性问题。
分析时,可按单向固结理论进行计算。当边坡上的地 表不存在附加荷载或附加荷载下地基已达到完全固结, 或者是计算岩质边坡的稳定性时,则不必考虑超水压 力对边坡稳定性的影响。 地下水渗透压力的计算比较麻烦,在工程设计中, 通常有2种作法,即精确解和简化计算法。 1.精确解 通过对流线的数学分析或 根据试验,计算出各点的流速, 可得到比较精确的解。但计算 比较麻烦,工程中通常不采用。 2.简化计算法 基于任一点的渗透压力等于静水压力来进行分析, 简化计算法能满足工程设计要求,常被工程设计 18

第四章路基稳定性分析计算(路基工程)

第四章路基稳定性分析计算(路基工程)

路基工程第四章路基稳定性分析计算4.1边坡稳定性分析原理4.2直线滑动面的边坡稳定性分析4.3曲线滑动面的边坡稳定性分析4.4软土地基的路基稳定性分析4.5浸水路堤的稳定性分析4.6路基边坡抗震稳定性分析一、边坡稳定原理:力学计算基本方法是分析失稳滑动体沿滑动面上的下滑力T与抗滑力R,按静力平衡原理,取两者之比值为稳定系数K,即K=RT1、假设空间问题—>平面问题(1)通常按平面问题来处理(2)松散的砂性土和砾(石)土在边坡稳定分析时可采用直线破裂法。

(3)粘性土在边坡稳定分析时可采用圆弧破裂面法。

一、边坡稳定原理:⏹一般情况下,对于边坡不高的路基(不超过8.0的土质边坡,不超过12.0m的石质边坡),可按一般路基设计,采用规定的边坡值,不做稳定性分析;⏹地质与水文条件复杂,高填深挖或特殊需要的路基,应进行边坡稳定性分析计算,据此选定合理的边坡及相应的工程技术。

一、边坡稳定原理:边坡稳定分析时,大多采用近似的方法,并假设:(1)不考虑滑动土体本身内应力的分布。

(2)认为平衡状态只在滑动面上达到,滑动土体整体下滑。

(3)极限滑动面位置需要通过试算来确定。

二、边坡稳定性分析的计算参数:(一)土的计算参数:1、对于路堑或天然边坡取:原状土的容重γ,内摩擦角和粘聚力2、对于路堤边坡,应取与现场压实度一致的压实土的试验数据3、边坡由多层土体所构成时(取平均值)c = i=1n c i ℎii=1n ℎitanφ= i=1n ℎi tgφii=1n ℎiγ= i=1n γi ℎii=1n ℎi第一节边坡稳定性分析原理二、边坡稳定性分析的计算参数:(二)边坡稳定性分析边坡的取值:对于折线形、阶梯形边坡:取平均值。

(三)汽车荷载当量换算:边坡稳定分析时,需要将车辆按最不利情况排列,并将车辆的设计荷载换算成当量土柱高,以ℎ0表示:ℎ0=NQγBL式中:N—横向分布的车辆数(为车道数);Q—每辆重车的重力,kN(标准车辆荷载为550kN);L—汽车前后轴的总距;B—横向分布车辆轮胎最外缘之间的距离;B=Nb+(N-1)m+d式中:b—后轮轮距,取1.8m;m—相邻两辆车后轮的中心间距,取1.3m;d—轮胎着地宽度,取0.6m;三、边坡稳定性分析方法:一般情况,土质边坡的设计,先按力学分析法进行验算,再以工程地质法予以校核,岩石或碎石土类边坡则主要采用工程地质法,有条件时可以力学分析进行校核。

路基稳定性验算

路基稳定性验算

利用简单条分法进行路基稳定性计算一. 绘出最高填方路基横断面图(见CAD 图)二. 将汽车-20级荷载换算成土柱高,设两辆重车并列,则横向分布宽度可由公式换算得到B 。

在进行路堤稳定性验算时,将车辆荷载按最不利情况排列,并换算成相当的土层厚度。

公路二级汽车荷载换算成土柱高: 由《路基路面工程》有BlnGh γ=0 ;式中:n —并列车辆数 l —标准车辆轴距G—一辆重车的重力γ—路基填料的重度为20KN/m 3; B —荷载横向分布宽度本设计公路为二车道,设计荷载采用:汽车-20,挂车-100,则2n =,KNG 300=,m l 6.5=,6.03.118.12)1(+⨯+⨯=+-+=e d n nb B =m5.5则m h 97.06.55.52030020=⨯⨯⨯=。

三. 路基整体稳定性分析选择最大填土高度为7.12m 的横断面进行稳定性分析。

由资料可知:该路堤填土为低液限粘土,土的重度3m 20KN =γ土的内摩擦角 24=ϕ,黏聚力10=c Kpa 。

为简化计算,可假设破坏面为一圆弧滑动面,采用简单条分法进行计算。

四. 确定圆形辅助线先由4.5H 法确定圆心辅助线位置:10h h H +=,1h 为路基高度,0h 为汽车荷载换算高度。

计算知:H=4.99+0.97=5.96m 加上汽车荷载换算高度后,换算后的边坡坡度为8.09:13.33=1:1.5,查表知352,251==ββ,作图如下,得到0点。

五. 条分法验算路基稳定性土条编号)(b m i )(m x i )( i α)(m l i)(2m A i )(i kN W )(cos kN W i i α (sin kNW i i α1 2.5 12.97 59.98 4.996979 6.12 122.4 63.07255 104.8981 2 2 10.72 45.1 2.833377 11.15 223 157.4096 157.9596 3 2 8.72 35.18 2.446944 14.6 292 238.657 168.2463 4 2 6.72 26.36 2.232088 15.25 305 273.2831 135.4302 5 2 4.72 18.17 2.104963 13.66 273.2 259.5731 85.20576 6 2 2.72 10.35 2.033081 12.06 241.2 237.2724 43.35034 7 2 0.72 2.73 2.002272 9.86 197.2 196.9767 9.381789 8 2 -1.28 -4.85 2.007187 7.16 143.2 142.6869 -12.1115 9 2 -3.28 -12.52 2.048718 5.41 108.2 105.6282 -23.4502 101.95 -5.25 -20.32.079137 2.0140.237.70365-13.9454∑=102i i l24.78474627∑92icos iWα1712.2632i iWαsin ∑654.964989六.。

第四章 路基边坡稳定性设计

第四章 路基边坡稳定性设计
第四章 路基边坡稳定性设计

§4.1概述 一、边坡稳定系数 边坡高度:土质边坡高度超过18m,石质边坡高度超过20m,一般要 进行稳定性验算。 边坡稳定系数: K 式中:R—抗滑力; T—下滑力。 K=1,边坡处于平衡状态。 K>1,边坡稳定。 K<1,边坡不稳定。 一般要求:K≥1.20—1.25 直线滑动面:适用砂类土(砂土、砂性土)、碎(砾)石土等 圆弧滑动面:适用具有一定粘结力的粘性土、粉性土等
其稳定系数按下式计算(按纵向1m计,下同)为
R Nf cL Q cos tan cL K T T Q sin
式中:R——沿破裂面的抗滑力; T ——沿破裂面的下滑力; Q——土楔重量及路基顶面换算土柱的荷载之和; ω ——滑动面的倾角; φ——路堤土体的内摩擦角; c——路堤土体的单位黏聚力; L——破裂面的长度。 在关系曲线上找到最小稳定系数值Kmin及对应的极限破裂面倾斜角。 (P74 图4-4)
Φ=20 °,土的粘聚c=10kN/m2 求(1)当开挖坡度角θ=60°,土坡稳定时的 允许最大高度 (2)挖土高度为6.5m时的稳定坡度θ。
喷锚支护
喷锚支护
组合式支护结
组合式支护结构
边坡稳定系数:
K
M y M S
圆弧法的基本步骤如下:
①通过坡脚任意选定可能发生的圆弧滑动面AB,其半径为R,沿路线 纵向取单位长度1m。将滑动土体分成若干个一定宽度的垂直土条,
0.53
0.77 0.88 0.96 0.99 0.99 0.97 0.93
29.9
57.5 56 51 49.7 38.5 24 4.8
508
971 951 866 845 654 408 82

①4.5H法(图4-6)
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

❖ Hc——容许填土的临界高度; ❖ c ——软土的快剪粘结力; ❖ γ ——填土的容重; ❖ Nw——稳定因数,其值与路堤坡角及深度因素λ=(d+H)/H有关。如后图
临 界 高 度 的 计 算
图4-18 α与γH/c及λ关系图
2、路基稳定性的计算方法
❖ 1)总应力法:地基抗剪强度采用总强度(天然十字板快剪强 度),或采用直剪快剪指标。(快速施工瞬时加载情况)
多层土体:加权平均法
边坡取值: ❖ 可取综合坡度值,也可用坡顶与坡脚连线近似表达。
❖ 荷载当量高度
❖ 在边坡稳定性分析时,将车辆按最不利情况排 列,将车辆的设计荷载换算成当量土柱高(即以相等 压力的土层厚度来代替荷载),以h0表示。
NQ h0 = BL
B=Nb+(N-1)m+d
d
m
d
❖ 1)基本假定
❖ 适用于边坡有不同的土层、均质土边坡,部分被淹 没、均质土坝,局部发生渗漏、边坡为折线或台阶 形的粘性土的路堤与路堑。
❖ 2、分析方法 ❖ 圆弧滑动面的条分法(瑞典法) ❖ 简化的Bishop法 ❖ 传递系数法
3 圆弧滑动面的条分法(瑞典法)
1) 假定 ❖ 假定土为均质和各向同性; ❖ 滑动面通过坡脚; ❖ 不考虑土体的内应力分布及各土条之间相互作用力的影响,
第四章 路基稳定性分析计算
主要内容
❖ 第一节 概述 ❖ 第二节 直线滑动面的边坡稳定性分析 ❖ 第三节 曲线滑动面的边坡稳定性分析 ❖ 第四节 软土地基的路基稳定性分析 ❖ 第五节 浸水路堤的稳定性分析 ❖ 第六节 路基边坡抗震稳定性分析
第一节 概述
❖ 1、边坡种类:天然边坡、人工边坡。
❖ 边坡:具有倾斜坡面的岩土体。 ❖ 土坡:具有倾斜坡面的土体。
入土层中,使土中含水量增高,土中易溶盐溶解, 土质变软,强度降低;还可使土的重度增加,以及 孔隙水压力的产生,使土体作用有动、静水压力, 促使土体失稳,故设计斜坡应针对这些原因,采用 相应的排水措施。 (2)振动的作用:如地震的反复作用下,砂土极易 发生液化;粘性土,振动时易使土的结构破坏,从 而降低土的抗剪强度;车辆运动、施工打桩或爆破, 由于振动也可使邻近土坡变形或失稳等。 (3)人为影响:由于人类不合理地开挖,特别是开 挖坡脚;或开挖基坑、沟渠、道路边坡时将弃土堆 在坡顶附近;在斜坡上建房或堆放重物时,都可引 起斜坡变形破坏。
❖ ③判断稳定性:En≤0,整个土坡稳定;

En>0,应采取稳定或加固措施。
5)、圆弧滑动面的图表法及解析法
1)表解法和图解法 主要是对条分法进行简化后的粗略估算。不计行车
荷载,圆心位置用36度法确定。 表解法见P78(4-9)和图解法P79(4-10)式。
2)解析法 针对高塑性土(φ=0,坡顶为水平面且不计行车荷
第二节 直线滑动面的边坡稳定性分析 ❖ 1、适用范围 ❖ 直线法适用于砂土和砂性土(两者合称砂
类土),土的抗力以内摩擦力为主,粘聚力 甚小。边坡破坏时,破裂面近似平面。
直线滑动面示意图 a)高路堤 b)深路堑 c)陡坡路堤
2、试算法
下滑力: T = Q sin ω 抗滑力: R = Q cos ω tg+ cL
❖ 可以求固结过程中任意时刻已知固结度的安全系数, 但本身不计算固结度,只是将其作为已知条件。
❖ 安全系数为:
K = (Si +ΔS ) + (S j + Pj )
PT
ΔSi = W1iUi cosαi tanφgi
第五节 浸水路堤的稳定性分析
❖ ◆1、浸水路堤及水的浸润曲线
❖ 浸水路堤:指受到季节性或长期浸水的沿河路堤、 河滩路堤等。
土条不受侧向力作用,或虽有侧向力,但与滑动圆弧的切线 方向平行。
2) 基本原理 ❖ 将圆弧滑动面上的土体划分为若干竖向土条,依次计算每一
土条沿滑动面的下滑力和抗滑力,然后叠加计算出整个滑动 土体的稳定性。 ❖ 圆弧法的计算精度主要与分段数有关。分段愈多则计算结果 愈精确,一般分8~10段。 ❖ 小段的划分,还可结合横断面特性,如划分在边坡或地面坡 度变化之处,以便简化计算。
大,边坡容易失稳。
4)动水压力的计算
D=IΩBγ0
❖ D——作用于浸润线以下土体重心的渗透动水压力,kN/m; ❖ I——渗流水力坡降(取用浸润曲线的平均坡降); ❖ ΩB——浸润曲线与滑动弧之间的面积,m2; ❖ γ0——水的容重,kN/m3
4、渗水路堤的边坡稳定性计算方法
1)假想摩擦角法
❖ 基本点:适当改变填料的内摩擦角,利用非浸 水时的常用方法,进行浸水时的路堤稳定性计算。 (只适用于全浸水路堤)
3)条分法
❖ 与非浸水路堤的条分法基本相 同。
❖ 分干燥与浸水两部分。
重力:Qi=Filγ干+ Fi2γw 法向力:Ni=Qicosαi 切向力:Ti=Qisinαi 摩擦力: Nifx 粘聚力:cxli 动水压力:D=F2γ0I ❖ 浸水路堤的边坡稳定系数:
5、假定
①不考虑滑动土体本身内应力分布;
②认为平衡状态只在滑动面上达到,滑动时成整体下滑;
③最危险的破裂面位置通过试算确定。
2)滑动面的形状
6、土坡稳定性分析方法
1)按失稳土体的滑动面特征划分: ❖ 直线 ❖ 曲线 ❖ 折线
2)稳定性分析计算方法:
❖ 工程地质法(比拟法) ❖ 力学分析法 ❖ 图解法
tanφB
=
QB Q
tanφ同一滑动体γγB
tanφ
适用于粗略估算参考。
2)悬浮法
❖ 基本点:假想用水的浮力
作用间接抵消动水压力对
边坡的影响,即在计算抗

滑力矩中,用降低后的内
摩擦角反应浮力的影响,
而在计算滑动力矩中,不
考虑浮力作用,滑动力矩
没有减小,用以抵偿动水
压力的不利。
扣除浮力
(4-25)
适用于方案比较时估算参考。
❖ 天然边坡:江、河、湖、海岸坡 山、岭、丘、岗、天然坡
❖ 人工边坡:挖方:沟、渠、坑、池 填方:堤、坝、路基、堆料
2、什么是滑坡?
❖ 边坡丧失其原有稳定性,一部分土体相对 与另一部分土体滑动的现象称滑坡。
❖ 土坡滑坡前征兆:坡顶下沉并出现裂缝, 坡脚隆起。
3、路基失稳的原因
❖ 内部原因
(1)土质:各种土质的抗剪强度、抗水能力是不一样的, 如钙质或石膏质胶结的土、湿陷性黄土等,遇水后软化,使 原来的强度降低很多。
滑动面为折线或其它形状的边坡稳定性验算
原地面为折线形的陡坡上的路堤
层状构造岩土层路基边坡 滑坡
滑动面已知
剩余下滑力:
抗滑力
滑动力
稳定系数
❖ 验算方法:
❖ ①按地面变坡点将滑动面上土体垂直划分 为若干条块;
❖ 验算方法: ②自上而下分别计算各土块的剩余下滑力;
❖ 验算方法: 第n块土块的剩余下滑力;
❖ 浸水路堤的水的浸润曲线
由于土体内渗水速度远慢于河水,因此,当堤外水位升 高时,堤内水位的比降曲线(即浸润线)成凹形,当堤 外水位下降时,堤内水位的比降曲线成凸形。
双侧渗水路堤水位变化示意图
单侧渗水路堤水位变化示意图
2、渗透动水压力对浸水路堤的作用
❖ 水位急速上升时,浸水路堤的浸润曲线下凹,土体除承受竖 向的向上浮力外,还承受渗透动水压力的作用,作用方向指 向土体内部,有利于土体稳定,经过一定时间的渗透,土体 内水位趋于平衡,不再存在渗透动水压力。
3、渗透动水压力对浸水路堤的作用
❖ 1)浸水路堤的受力:自重、行车荷载、浮力 渗透 动水压力。
❖ 2)浸水路堤的不利时刻:涨水?、落水?。
❖ 3)土的渗透性:由于土中含有空隙,在水位变化 过程中伴有土中含水量的变化。
对砂性土——渗透性好,动水压力较小; 对黏性土——渗透性不好,动水压力也不大; 对亚砂土、亚黏土——具有一定的渗透性,动水压力较
3、路基失稳的原因
❖ 根本原因: 边坡中土体内部某个面上的剪应力 达到了它的抗剪强度。
❖ 具体原因: (1)滑面上的剪应力增加; (2)滑面上的抗剪强度减小。
4、边坡稳定性分析的计算参数 土的计算参数:
❖ 容重γ(kN/m3)
❖ 内摩擦角φ(°)
❖ 粘聚力c(kPa)
❖ 路堑或天然边坡:原状土; ❖ 路堤边坡:与现场压实度一致的压实土的试验数据。
❖ 软土分布:沿海地区、内陆湖泊和河流谷地 分布着大量淤泥、淤泥质粘土等软土。
❖ 软土分类:
河海沉积
湖泊沉积
江滩沉积 沼泽沉积
软土地段高填方路基
主要病害
❖ 在软土地基上修建高速公路会遇到
路基不稳定
沉降过大 不均匀沉降等问题
❖ 且工程性质恶劣,尤其在振动荷载的作用下, 易产生侧向滑移及蠕变,对路基、构筑物的 影响较大。
3)确定圆心辅助线
4.5H法
36°法
4)条分法基本步骤
Θi有正负之分
θi y
瑞典圆弧滑动条分法总示意图
(式4-8)
Ti=Qisinαi,有正负之分,αi=arcsin(xi/R), y轴之右侧取正值, 左侧取负值。
条分法是一种试算法,应选取不同圆心 位置和不同半径进行计算,求最小的安全系 数。
T
Q sin
tan
3.解析法
直线破裂的路堑或已知破裂面需要反求边坡的情况分析
K = FR = Q cos tan + cL
T
Q sin
= ( f + a) cot + a cot(α-ω)
Kmin = (2a + f )cotα + 2 a( f + a) ccosscα C
f——土体内摩擦系数, f = tan
❖ 水位骤然下降时,浸水路堤的浸润曲线上凸,渗透动水压力 的作用方向指向土体外,这将剧烈破坏路堤边坡的稳定性, 并可能产生边坡凸起和滑坡,不利于土体稳定,但经过一定 时间的渗透,土体内水位也会趋于平衡,不再存在渗透动水 压力。
相关文档
最新文档