晶体的典型结构类型
1.7 常见的晶体结构
![1.7 常见的晶体结构](https://img.taocdn.com/s3/m/d56ab218ba1aa8114431d9d1.png)
晶胞中:2个八面体空隙
4个四面体空隙;
Zn2+离子填充1/2四面体空隙
(2)质点坐标:
211 S : 000 , ; 332 21 1 2 Zn : 00u, (u ) 33 2
2
其中,u=0.875 (3)配位数与配位多面体:
Zn2+与 S2-的配位数均为:4
闪锌矿与纤锌矿的结构区别:
反正尖晶石:二价阳离子A填充于八面体空隙,
三价阳离子B一半填充四面体空隙,另一半填充在
八面体空隙中称为反尖晶石。
例:已知Na+离子半径为0.102nm,Cl-离 子半径为0.181nm,计算NaCl结构的
堆积系数及密度。
1.7 常见的晶体结构
典型金属的晶体结构
典型金属的晶体结构是最简单的晶体结
构。由于金属键的性质,使典型金属的晶体
具有高对称性,高密度的特点。常见的典型
金属晶体是面心立方、体心立方和密排六方 三种晶体。
1、面心立方结构(FCC,A1型) (1)密堆积情况: 原子以ABCABC……的方式堆积, 面心立方紧密堆积 (111)面为密排面。 (2)原子分布:
(5)每个碳原子周围都有
四个碳,碳原子之间形成
共价键,CN=4
金刚石结构:Si、Ge、灰锡α-Sn、 人工合成的立方氮化硼BN……
2、石墨结构
——六方晶系
石墨结构为碳原子成层状 排列,每一层中碳原子成六方
环状排列。
石墨结构中:层内碳原子以共价 键相连,CN=3,三角形配位;层 间碳原子则以分子键相连。 石墨型结构:人工合成的六方氮化硼BN……
的原子密度。
A1型结构:-Fe、铝、铜、镍、铅、金、银、铂等
2、体心立方结构(A2型)
典型晶体结构类型
![典型晶体结构类型](https://img.taocdn.com/s3/m/3540dc50f242336c1eb95e8e.png)
非金属元素单质晶体的结构基元:第VI族元素
对于第V族元素:
每个原子周围共价单键个数为:8-5=3 其晶体结构是:原子之间首先共价结合形成 无限层状单元,层状单元之间借助范德华力结合 形成晶体
非金属元素单质晶体的结构基元:第V族元素
对于第IV族元素:
每个原子周围共价单键个数为:8-4=4 其中:C、Si、Ge皆为金刚石结构,由四面体 以共顶方式共价结合形成三维空间结构。
刚玉型:α-Fe2O3、Cr2O3、Ti2O3、V2O3、FeTiO3、 LiNbO3
(四)ABO3型结构
—— CaTiO3(钙钛矿)型结构
CaTiO3(钙钛矿)型:PbTiO3、BaTiO3……
在理想对称的ABO3型结构中,三种离子半径 有如下关系:
rA rO 2 rB rO
第二章 晶体结构与晶体 中的缺陷
典型结构类型
硅酸盐晶
金属单质晶体结构 非金属单质晶体结构
无机化合物晶体结构
一、金属单质晶体结构
同种元素组成的晶体称为单质晶体。 典型金属的晶体结构是最简单的晶体结 构。由于金属键的性质,使典型金属的晶体 具有高对称性,高密度的特点。常见的典型
非金属元素单质晶体的结构基元:第IV族元素
典型非金属元素晶体结构
(1)金刚石结构
金刚石结构:Si、Ge、灰锡α-Sn、人工合成的立方氮化硼BN……
(2)石墨结构
石墨型结构:人工合成的六方氮化硼BN……
三、无机化合物晶体结构(离子晶体)
根据数量关系(化学式):
AX型、 AX2型、 A2X3型、 ABO3型、 ABO4型、AB2O4型 根据密堆积形式: 面心立方紧密堆积 六方紧密堆积 常用分析方法: 坐标系法、密堆积法和多面体配置法
晶体的五种类型
![晶体的五种类型](https://img.taocdn.com/s3/m/f088ecd3c9d376eeaeaad1f34693daef5ef713ba.png)
晶体的五种类型晶体是固体物质中最基本的结构单位,是由原子、离子或分子组成的有序三维排列结构,通常会表现出明显的对称性和周期性,具有独特的物理、化学和光学性质。
晶体具有非常重要的应用价值,在化学、物理、地学、材料科学等领域都有广泛的应用。
本文将介绍晶体的五种类型,分别为离子晶体、共价分子晶体、金属晶体、非金属共价晶体和离子共价晶体。
一、离子晶体离子晶体是由正、负离子按确定的方式排列而成的固体。
离子晶体的原子、离子之间的相互作用力是电吸引力,形成的结构呈离子晶体的晶格。
离子晶体往往是高熔点、高硬度的固体,具有良好的导电、导热性能和高抗化学侵蚀性。
例如,氯化钠(NaCl)、氧化镁(MgO)等都是典型的离子晶体。
二、共价分子晶体共价分子晶体是由分子间的共价键组成的晶体,具有明显的分子性,分子间的弱分子力重叠性质使其具有低熔点、低硬度的特点。
与大多数离子晶体不同,共价分子晶体通常在常温下都是不导电的。
典型的共价分子晶体有二氧化硅(SiO2)、石墨(C)等。
三、金属晶体金属晶体是由金属原子组成的固体。
由于金属原子之间相互较大的共价键跨越整个晶体结构,因此,金属晶体之间的相互作用力基本为金属键。
金属晶体的导电性能非常好,同时也具有优异的导热性能和良好的塑性变形性能。
金属晶体也不易破坏,不易受光化反应的影响。
铜、铁、铝等常见金属都是典型的金属晶体。
四、非金属共价晶体非金属共价晶体除了不同于金属晶体的结论中核心原子种类不同外,其它的与金属晶体相似。
非金属元素间共同构成的共价键及离子间结构在化学中有着广泛的应用。
如硫化氢(H2S)、氨气(NH3)和水(H2O)等分子晶体都属于非金属共价晶体。
五、离子共价晶体离子共价晶体是离子晶体和共价分子晶体的混合物,由正、负离子和分子团按照一定的比例组成。
离子共价晶体的结晶形式介于离子晶体与共价分子晶体之间,具有离子晶体的物理性质,如硬度、熔点,又具有共价分子晶体的化学性质,如静电作用、极性等。
晶体结构的类型分类
![晶体结构的类型分类](https://img.taocdn.com/s3/m/23c9fe3a24c52cc58bd63186bceb19e8b9f6ec59.png)
晶体结构的类型分类晶体是由原子、离子或分子按照一定的规则排列而成的固体物质。
晶体结构的类型分类是对晶体结构进行系统性的整理和归纳,以便更好地理解和研究晶体的性质和行为。
本文将介绍晶体结构的主要类型分类,并对每种类型进行详细的描述和分析。
简单晶格简单晶格是最基本、最简单的晶体结构类型。
它由相同大小、相同形状的原子或离子按照规则排列而成。
简单晶格可以分为立方晶系、四方晶系、正交晶系、单斜晶系、菱面晶系和三斜晶系等六种类型。
立方晶系立方晶系是最简单的晶体结构类型,具有最高的对称性。
在立方晶系中,原子或离子按照等间距排列在立方体的顶点上。
立方晶系又可分为面心立方和体心立方两种类型。
四方晶系四方晶系与立方晶系非常相似,但其晶胞形状为长方体,其中一个边长与其他两个边长相等。
四方晶系只有一种类型,即体心四方晶系。
正交晶系正交晶系的晶胞形状为长方体,其中三个边长相互垂直且长度不等。
正交晶系包括体心正交晶系和面心正交晶系两种类型。
单斜晶系单斜晶系的晶胞形状为斜方体,其中一个边长与其他两个边长相等,且与第四个边垂直。
单斜晶系包括底心单斜晶系和侧心单斜晶系两种类型。
菱面晶系菱面晶系的晶胞形状为菱形,其中两个边长相等,另外两个边长也相等但不等于前两个边长。
菱面晶系只有一种类型,即底心菱面晶系。
三斜晶系三斜晶系的晶胞形状为斜方体,其中三个边长不相等且不垂直。
三斜晶系只有一种类型,即底心三斜晶系。
复式晶格复式晶格是由多种不同的原子或离子按照规则排列而成的复杂结构。
复式晶格可以分为两种类型:层状复式晶格和链状复式晶格。
层状复式晶格层状复式晶格是由多层原子或离子按照规则排列而成的结构。
每一层内的原子或离子之间的距离较小,而不同层之间的距离较大。
层状复式晶格包括六方密堆积、立方密堆积和六方密堆积等类型。
链状复式晶格链状复式晶格是由多个链状结构按照规则排列而成的结构。
链状复式晶格包括一维链状结构、二维链状结构和三维链状结构等类型。
第二章晶体结构与常见晶体结构类型
![第二章晶体结构与常见晶体结构类型](https://img.taocdn.com/s3/m/34c6021e910ef12d2bf9e720.png)
对称就是物体相同部分有规律的重复。
对称不仅针对几何形态,还有更深和更广的含义,它包含了自然 科学、社会科学、文学艺术等各领域的对称性,如战争中的非对称 战略。
晶体对称的特点
1)由于晶体内部都具有格子构造,通过平移,可使相同质点重 复,因此所有的晶体结构都是对称的。
2)晶体的对称受格子构造规律的限制,它遵循“晶体对称定 律” 。
4 平行六面体(parallelepiped)
平行六面体:结点在三维空间的分布构成空间格子。 特点:任意三个相交且不在同一个平面的行列构成一个空间点阵。 根据基矢的不同选择可以得到不同的平行六面体。
计算由基矢构成的平行六面体点阵点数量时 必须考虑: (1)在平行六面体顶角上的点阵点时由8 个相邻平行六面体所共有的; (2)位于平行六面体棱上的点阵点是由4 个相邻平行六面体所共有的; (3)位于平行六面体面上的点阵点时2个 相邻平行六面体所共有的; (4)位于平行六面体内部的点阵点完全属 于该平行六面体。
1 结点(node):点阵中的点。 结点间距:相邻结点间的距离。
空间点阵几何要素(点线面)
2 行列(row) :结点在直线上的排列。 特点:平行的行列间距相等。
3 面网(net)
面网:由结点在平面上分布构成的平面。 特点:任意两个相交行列便可以构成一个面网。
面网密度:面网上单位面积内的结点数目。 面网间距:两个相邻面网间的垂直距离,平行面网间距相等。
三轴定向通式为[uvw],四轴定向通式为[uvtw], 晶向符号的确定步骤:
①选定坐标系,以晶轴x、y、z为坐标轴,轴单位分别是a、b和c; ②通过原点作一直线,使其平行于待标定晶向AB; ③在直线上任取一点P,求出P点在坐标轴上的坐标xa、yb、zc; ④xa/a:yb/b:zc/c=u:v:w应为整数比,去掉比号,以方括号括之,
14种晶体结构
![14种晶体结构](https://img.taocdn.com/s3/m/da6fe052c4da50e2524de518964bcf84b9d52dd7.png)
14种晶体结构晶体是由原子、分子或福隔离子按照一定的空间规则排列而成的有序固体。
晶体结构是指晶体中原子、离子或分子排列的规则和顺序。
在固体物质中,晶体结构的种类有很多种,其中比较常见的有以下14种:1. 立方晶体结构:最简单的晶体结构之一,具有三个等长的边和六个等角,包括简单立方、体心立方和面心立方三种类型。
2. 六方晶体结构:其晶胞的基本结构是六方密堆,其中最典型的就是六方晶体和螺旋晶体。
3. 正交晶体结构:晶胞具有三个不相互垂直的晶轴,分别被称为a、b 和c 轴,是最常见的晶体结构之一。
4. 单斜晶体结构:晶胞具有两个不相互垂直的晶轴,是晶体结构中的一种。
5. 三方晶体结构:具有三个相等的轴,夹角为60度,最常见的晶体结构之一是石英。
6. 菱晶体结构:晶胞内部有四面体结构,是一种简单的晶体结构。
7. 钙钛矿晶体结构:一种具有钙钛矿结构的晶体,包括钙钛矿结构和螺旋钙钛矿结构。
8. 蜗牛晶体结构:晶胞的形状像一只蜗牛的壳,是晶体结构中的一种。
9. 立方密排晶体结构:晶胞的结构是立方密排,是晶体结构中的一种。
10. 体心立方晶体结构:晶体结构的晶胞中有一个原子位于晶体的中心,是晶体结构中的一种。
11. 面心立方晶体结构:晶体结构的晶胞的各个面的中心有一个原子,是晶体结构中的一种。
12. 钻石晶体结构:晶体结构的晶胞构成了一种钻石结构,是晶体结构中的一种。
13. 银晶体结构:晶体结构的晶胞构成了一种银结构,是晶体结构中的一种。
14. 锶钛矿晶体结构:晶体结构的晶胞构成了一种锶钛矿结构,是晶体结构中的一种。
晶体结构的种类繁多,每种晶体结构都有其独特的结构特点和性质,对晶体的物理和化学性质有着重要的影响。
研究晶体结构不仅可以帮助我们更好地了解晶体的构成和性质,还有助于我们在材料科学、物理化学等领域的应用和研究。
因此,对晶体结构的研究具有重要的科学意义和应用价值。
晶体结构(共78张PPT)
![晶体结构(共78张PPT)](https://img.taocdn.com/s3/m/f0ab71f76394dd88d0d233d4b14e852458fb39c4.png)
山东大学材料科学基础
共价键结合,有方 向性和饱和性,键 能约80kJ/mol
Si,InSb, PbTe
金属键结合, 无方向性,配 位数高,键能 约80kJ/mol
Fe,Cu,W
范得华力结合 ,键能低, 约 8-40 kJ /mol
Ar,H2,CO2
熔点高
强度和硬度由中到 高,质地脆
闪锌矿〔立方ZnS〕结构 S
Zn
属于闪锌矿结构的晶体有β-SiC,GaAs,AlP,InSb
山东大学材料科学基础
•
•
•
•
萤石〔CaF2〕型结构
立方晶系Fm3m空间群,
a0=0.545nm, Z=4。 AB2型化合物, rc/ra>0.732〔0.975〕 配位数:8:4
Ca2+作立方紧密堆积,
F-填入全部四面体 空隙中。 注意:所有八面 体空隙都未被占据。
山东大学材料科学基础
钙钛矿〔CaTiO3〕结构
Ti
ABO3型
立方晶系:以
•
一个Ca2+和3个
O2-作面心立方
Ca
密堆积,
Ti4+占1/4八面体C空aT隙iO3。晶胞 配位多面体连接与Ca2+配位数
Ti4+配位数6,rc/ra=0.436(0.414-0.732)
Ca2+配位数12,rc/ra=0.96
O2-配位数6;
取决温度、组成、掺杂等条件,钙钛矿结构呈现立方、
四方、正交等结构形式。
山东大学材料科学基础
许多化学式为ABO3型的化合物,其中A与B两种阳 离子的半径相差颇大时常取钙钛矿型结构。在钙钛矿 结构中实际上并不存在一个密堆积的亚格子,该结构 可以看成是面心立方密堆积的衍生结构。较小的B离 子占据面心立方点阵的八面体格位,其最近邻仅是氧 离子。
常见九种典型的晶体结构
![常见九种典型的晶体结构](https://img.taocdn.com/s3/m/617e389e680203d8ce2f24b5.png)
反萤石型结构
球键图
阳离子四面体配位 阴离子立方体配位
反萤石型结构可看作:阴离子做立方最紧密堆积,阳离 子充填在全部的四面体空隙中。
结构类型 物质名称 萤石(CaF2)
萤石型结 氯化锶(SrCl2)
构
氯化钡(BaCl2)
氟化铅(PbF2)
氧化钾(K2O)
反萤石型 结构
氧化钠(Na2O)
氧化锂(Li2O)
闪锌矿的晶体结构:球键图(左)、配位多面体连接图(右)
结构中,S2- 和Zn2+配位数都是4,配位多面体都 是四面体。四面体共角顶相联。
从图可看出,[SZn4] 四面体([ZnS4] 四面体 也是一样)共角顶联成的 四面体基元层与[111]方 向垂直。
由于S2-和Zn2+都呈配位四面体,所以闪锌矿只用一种配位 多面体结构形式表达(S和Zn互换是一样的)。
(Fe3+(Fe2+Fe3+)2O4)。
当结构中四、八面体孔隙被A2+和B3+无序占据时, 叫混合尖晶石结构,代表晶相是镁铁矿(Fe, Mg)3O4。
具有尖晶石型结构的部分物质
Fe3O4 VMn2O4 NiAl2O4 NiGa2O4 Co3S4 TiZn2O4 γ-Fe2O3 LiTi2O4 CoAl2O4 MgGa2O4 NiCo2S4 VZn2O4 MnFe2O4 MnTi2O4 ZnAl2O4 MnGa2O4 Fe2SiO4 SnMg2O4 MgFe2O4 ZnCr2O4 Co3O4 ZnIn2S4 Ni2SiO4 TiMg2O4 Ti Fe2O4 CoCr2O4 GeCo2O4 MgIn2O4 Co2SiO4 WNa2O4 LiMn2O4 CuMn2O4 VCo2O4 CuV2S4 Mg2SiO4 CdIn2O4
第一章 晶体结构
![第一章 晶体结构](https://img.taocdn.com/s3/m/35b92a4e852458fb770b5668.png)
19
1.3 对称性和布拉维格子的分类
二 基本对称操作
1 i,Cn,σ (m)
2 n度旋转 ─ 反演轴
绕μ轴旋转
2π后再进行中心反演:
n
1,2,3,,4, i, m 八种独立的对称操作。
宏观上看,晶体是有限的,描述晶体宏观对称性 不包含平移对称操作;但从微观上看,晶体是无 限的,为描述晶体结构的对称性,应加上平移对 称操作。
衍射斑点(峰) ↔ 晶格中的一族晶面 倒格子 ↔ 正格子 点子 ↔ 晶面
斑点分布 ↔ 晶格基矢 → 晶体结构
25
1.4 倒格子/倒易点阵
一 定义
设布拉维格子的基矢为:av1 ,av2 , av3
由
v Rl
=
l1av1
+
l2av2
+
l3av3 决定的格子称为正格子
(direct lattice),
满足
2vπ Gh
4 两点阵位矢的关系
v Rn
•
v Gh
=
2πm
m为整数
利用
aavvii
• •
v bvj bj
= =
2π 0
i= j i≠ j
( ) Rv n •Gvh = (l1av1 + l2av2 + l3av3 )•
v h1b1
+
v h2b2
+
v h3b3
= l1h1 • 2π + l2h2 • 2π + l3h3 • 2π
按坐标系的性质,晶体可划分为七大晶 系,每一晶系有一种或数种特征性的布拉 维原胞,共有14种布拉维原胞:
三斜(简单三斜) 单斜(简单、底心) 正交(简单、底心、体心、面心) 四方(简单、体心) 三角 六角 立方(简单、体心、面心)
常见的晶体结构
![常见的晶体结构](https://img.taocdn.com/s3/m/804ec74dad02de80d4d84024.png)
晶胞分子数:Z=2;
晶胞中:2个八面体空隙 4个四面体空隙;
(2)质点坐标:
111 Ti : 000, 222
4
1 1 1 1 1 1 O : uuo, 1 u 1 u 0, u u , u u 2 2 2 2 2 2
1、金刚石结构
——立方晶系
(1)金刚石是面心立方格子
(2)碳原子位于立方体的8个
顶点,6个面心及立方体内4个
小立方体的中心。 (3)单位晶胞原子数:n=8
(4)晶胞内各原子的空间坐标: 000, ½ ½ 0, ½ 0 ½ , 0 ½ ½ , ¼ ¼ ¾ , ¼ ¾ ¼, ¾ ¼ ¼ , ¾ ¾ ¾
体结构中,每一个负离子电荷数等于或近似等于相邻正离 子分配给这个负离子的静电键强度的总和,其偏差1/4 价”。
静电键强度
S=
正离子电荷数 Z , 正离子配位数 n
Z Z Si i ni i i
则负离子电荷数
。
电价规则有两个用途: 其一,判断晶体是否稳定;
其二,判断共用一个顶点的多面体的数目。
离子半径、电中性、阴离子多面体之间的连接
1、NaCl型结构
(1)密堆积情况: Cl- 离子面心立方堆积; Na+离子填充八面体空隙;
——立方晶系
晶胞分子数:Z=4;
晶胞中:4个八面体空隙
8个四面体空隙;
Na+离子填充全部八面体空隙
(2)质点坐标:
11 1 1 11 Cl : 000 , 0, 0 ,0 22 2 2 22
连接(2个配位多面体共用一个顶点),或者和另外3个[MgO6]八面体
晶体的典型结构类型
![晶体的典型结构类型](https://img.taocdn.com/s3/m/45ddbc3659fafab069dc5022aaea998fcd22404a.png)
内Cd-I为具有离子键的共价键,键力较强。
属于碘化镉型结构的晶体:
Ca(OH)2;Mg(OH)2;CdI2;MgI2
钙钛矿型结构
钙钛矿结构的通式为ABO3 ,以CaTiO3为例讨论 其结构:
Ca2+
O2-
Ti 4+
配位关系的分析:
可以看出:
Ca的CN=12 Ti的CN=6 O的CN=2+4=6
• 从结构可以看出,α—石英到α—方石英的转变要 比α—石英到α—磷石英的转变容易一些。
α ----石英
8700C
α ----鳞石英
14700C
α ----方石英
17230C
熔体
5730C
1600C
2680C
β ----石英
β ----鳞石英
β ----方石英
1170C
γ ----鳞石英
重建型转变
00
1 2
,
11 22
00
,0
1 2
0,
11 11 1 22 22 2
2、球体堆积法
3、配位多面体及其连接方式描述法
球体紧密堆积法
• 对于金属晶体和一些简单的离子晶体有用。
• 如氯化钠的晶体结构: Cl-离子按立方紧密堆积,Na+处于全部
的八面体空隙中。
配位多面体及其连接法
• 对结构比较复杂的晶体,用这种方 法。如对于硅酸盐的晶体结构常用。
• α—磷石英
• 属六方晶系,对称型L66L27PC。ao=0.503nm, co=0.822nm,
• 其晶格是由[SiO4]四面体构成六方环状网 格,结构中六个硅氧四面体成六方环状连 接,其中相间的三个顶端向上,另外三个 向下。然后再与上下环中四面体的顶端相 接,在三维空间组成无限延伸的环状骨架。
材料科学基础第一章2-1典型的晶体结构及几何特征
![材料科学基础第一章2-1典型的晶体结构及几何特征](https://img.taocdn.com/s3/m/d5a9da3aeef9aef8941ea76e58fafab069dc448b.png)
与相邻的8个晶胞共有,每个晶胞
实际上只占其1/8;位于晶胞棱上
的原子为相邻的4个晶胞所共有;
每个面心原子为相邻两个晶胞共
有;而晶胞中心原子为晶胞所独
有。
• FCC结构每个晶胞中的原子数:
1
1
8 6 4
8
2
1、FCC 面心立方
配位数
• 配位数是指晶体结构中任一原子周围
( )
3
4
3
4r 3
2
2、HCP 密排六方
••
•
• 原子半径:
上下底面的中心原子与周围六个
顶角上的原子相切
1
2 = , =
2
• 每个晶胞中的原子数:
1
1
12 2 3 6
6
2
•
••
•
•
•
•
•
••
•
•
••
2、HCP 密排六方
• 配位数:
C.N.= 6 + 3×2 =12
最邻近的原子数。常用CN
(coordination number)表示。
• 对于多元素晶体,“最近邻”是同种原
子比较而言,配位数是一个原子周围的
各元素的最近邻原子数之和。
• 晶体结构中每个原子的配位数愈大,
晶体中的原子排列就愈紧密。
• •
•
•
•
• • • •
•
•
•
•
•ห้องสมุดไป่ตู้
• FCC结构的配位数:
A面、B面、C面上各4个,等同点, 4×3=12
• 堆垛密度
2
c
3
常见九种典型的晶体结构
![常见九种典型的晶体结构](https://img.taocdn.com/s3/m/7d4b9a52f6ec4afe04a1b0717fd5360cba1a8dff.png)
尖晶石通式是A2+B3+2O4,表示二价阳离子A占据了 晶胞四面体空隙,三价阳离子B占据八面体空隙,此即尖晶 石结构,代表是尖晶石 MgAl2O4 。
当结构中的四面体空隙被B3+占据,而八面体空隙则被 B3+和A2+各占一半,即有分子式B3+ A2+B3+ 2O4时,这 种结构叫做反尖晶石结构,代表物质磁铁矿
从图可看出, SZn4 四 面体 ZnS4 四面体也是 一样 共角顶联成的四面 体基元层与 111 方向垂 直。
由于S2-和Zn2+都呈配位四面体,所以闪锌矿只用一种配位多 面体结构形式表达 S和Zn互换是一样的 。
如果将闪锌矿结构中的Zn和S都变成C,则结构变成金刚石
结构 Fd3m 。
具有闪锌矿型结构的物质
▪ 层电荷的来源
1 来源于四面体片的 Al->Si替代。这时,与配 平电荷的层间阳离子距离 较近,称之为“近电”。
记为 Xt
2 来源于八面体片的 Mg->Al替代。这时,于配 平电荷的层间阳离子距离 较远,称之为“远电”。
记为 Xo
▪ 层电荷的分布
在晶胞所示范围 内,每个单面只有 -0.33价的电荷。
2.51A, 上面的4个 为3.24A
2 TiO6 八面 体中,Ti亦不在 中心位置。
▪ 以上两个原因导致晶体的对称降低,由原来的立 方原始格子降低为四方原始格子。空间群Pm3m P4mm。从而晶体具有了极性 具有极轴 ,这是 导致其铁电性的最根本原因。
8 尖晶石结构
Spinel ,AB2O4
萤石晶胞中存在平行于 111 面的离子堆积层,因此, 萤石具有{111}完全解理。
阳离子配位四面体的连接:共棱联结形成的萤石结构。 晶胞中由8个 FCa4 共棱连接而成,而且四面体的每根棱 都被共用了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多面体:〔ZnS4〕四面体共顶连接 键型:Zn、S为极性共价键
属纤锌矿型结构的晶体有:
BeO;ZnO;AlN等。
纤锌矿晶体结构图
萤石型结构
化学式: CaF2
萤石晶体结构
晶体结构 立方晶系,a=0.545nm,Z=4,
3L44L36L29PC
空间格子: Ca2+位于立方面心的结点位置 ,F-位于立方体内八个小立方体的中心,即 Ca2+按立方紧密堆积的方式排列, F-充填 于全部四面体空隙中。
性质:碳原子有一个电子可以在层内移 动,平行于层的方向具有良好的导电性 。石墨的硬度低,熔点高,导电性好。
石墨与金刚石属同质多像变体。
AX型晶体
NaCI型结构
矿物名称:石盐。
化学式为:NaCI
CI- Na+
结构描述:
(1)立方晶系,a=0.563nm,Z=4, 3L44L36L29PC
(2)Na+ CI—离子键,NaCI为离子晶体. (3)CN+= CN-=6
• 属于闪锌矿型结构晶体有: β-SiC;GaAs;AlP;InSb等。
纤锌矿型结构
化学式: α-ZnS 晶体结构: 六方晶系;
a=0.382nm;c=0.625nm;Z=2
质点坐标:
S2-:0 0 0;2/3 1/3 1/2
Zn2+:0 0 u ; 2/3 1/3 (u-1/2)
空间格子: S2-按六方紧密堆积排列 Zn2+充填于1/2的四面体 空隙,形成六方格子。
思考题
• 在氯化钠晶体结构中有多少八面体空隙、 多少四面体空隙?如何计算?
氯化铯型结构
• 晶体化学:CsCl
• 晶体结构:立方晶系,a=0.411nm
•
Z=1
• 空间格子:CsCl是原始格子
氯化铯晶体结构 大球为Cl‾;小球为Cs+
Cl-离子处于立方 原始格子的八个 角顶上,Cs+离子 位于立方体的中 心(立方体空隙) CN+=CN-=8, 单位晶胞中有一个 Cl-和一个Cs+ 配位多面体:在空间以共面形 式连接。
昼夜,甚至几个星期之久。
• α—方石英
• 属立方晶系,对称型3L44L36L29PC。ao=0.716nm。
• 晶体结构中硅离子在立方晶胞中成类似于金刚石的 结构,氧离子位于每二个硅离子之间,硅离子位于 四个氧离子之中组成硅氧四面体。
• 结构特点为:两个在垂向上彼此相连的硅氧四面体 之间,相当于以共用氧的位置为对称中心(图中AB 线段的中点位置)相互反伸。
晶体结构:O2-可看成是变形 六方密堆积,Ti4+ 离子填充1/2的八面 体空隙
配位数:CN+=6;CN-=3
多面体:[TiO6]八面体
连接方式:Ti-O八面体以共 棱方式连接成链, 链与链之间以共顶 方式相连。
与金红石结构相同的晶体有: SnO2;PbO2;MnO2;MoO2 WO2;MnF2;MgF2;VO2
a= 0.246nm , c=0.670nm 三方晶系(3R),L33L23PC, c=1.004nm
结构表现:C原子组成层状排列, 层内C原子成六方环状排列,每 个碳原子与三个相邻的碳原子 之间的距离为0.142nm,层与层 之间的距离为0.335nm。
石墨晶体结构
键型:层内为共价键,层间为分子键, 还有自由电子存在-金属键。
键性: 复合层与复合层之间为范德华力,层状结构层
内Cd-I为具有离子键的共价键,键力较强。
属于碘化镉型结构的晶体:
Ca(OH)2;Mg(OH)2;CdI2;MgI2
钙钛矿型结构
钙钛矿结构的通式为ABO3 ,以CaTiO3为例讨论 其结构:
Ca2+
O2-
Ti 4+
配位关系的分析:
可以看出:
Ca的CN=12 Ti的CN=6 O的CN=2+4=6
金刚石结构
键型: 每个C原子周围有四个C, 碳原子之间形成共价键。
形成: 自然界、实验室
性质: 金刚石是硬度最大的矿物 具有半导体的性能和极好 的导电性。
与金刚石结构相同的有:
硅、锗、灰锡(α-Sn)
合成的立方氮化硼(CBN)等。
金刚石晶体结构
2.石墨结构
化学式:C
晶体结构:六方晶系(2H),L66L27PC
金红石链
化学式:
碘化镉型结构
CdI2
晶体结构:三方晶系 a=0.424nm;c=0.684nm; Z=1
空间格子:Cd2+离子占有六方原始格子的结点位置,I-离子 交叉分布于三个Cd2+离子三角形中心的上下方; 相当于两层I-离子中间夹 一层Cd2+离子,构成 复合层。
配位数: CN+=6;CN-=3
•
若以rA代表ABO3型结构中离子半径
较大的A离子半径,rB代表离子半径较小
的B离子半径。rO代表氧离子半径,在钙
钛矿结构中,这三种离子半径之间存在
如下的几何关系:
•
rA+rO= 2 (rB+rO)
• 经实际晶体的测定发现,AB离子的半径都可以 有一定范围的波动。只要满足下式即可。
• rA+rO=t 2 (rB+rO)
00
1 2
,
11 22
00
,0
1 2
0,
11 11 1 22 22 2
2、球体堆积法
3、配位多面体及其连接方式描述法
球体紧密堆积法
• 对于金属晶体和一些简单的离子晶体有用。
• 如氯化钠的晶体结构: Cl-离子按立方紧密堆积,Na+处于全部
的八面体空隙中。
配位多面体及其连接法
• 对结构比较复杂的晶体,用这种方 法。如对于硅酸盐的晶体结构常用。
• 而对于简单的晶体就不一定好用, 如氯化钠的晶体结构:
• Na+离子的配位数是6,构成Na-Cl八 面体,NaCl结构就是由Na-Cl八面体以共 棱方式相连而成的。
结构类型
(1) 金刚石晶体结构
化学式为:C
晶体结构为:立方晶系,a=0.356nm,3L44L36L29PC
空间格子: C原子组成立方面心格子,C原子位于立方面 心的所有结点位置和交替分布在立方体内的四个小立方体 的中心。
• α—磷石英
• 属六方晶系,对称型L66L27PC。ao=0.503nm, co=0.822nm,
• 其晶格是由[SiO4]四面体构成六方环状网 格,结构中六个硅氧四面体成六方环状连 接,其中相间的三个顶端向上,另外三个 向下。然后再与上下环中四面体的顶端相 接,在三维空间组成无限延伸的环状骨架。
结构的描述
(1) 钙钛矿在高温时属立方晶系,在降温时,通过某个特定 温度后将产生结构的畸变使立方晶格的对称性下降.
(2 ) CaTiO3为离子晶体
(3) Ca的CN=12
Ti的CN=6
O的CN=2+4=6
(4) CaTiO3的结构可看成O2-和半径较大的Ca2+离子共同组成 立方紧密堆积,Ti4+离子充填于1/4的八面体空隙中。其Z=4
• 结构特点为: 两个在垂向上彼此相连的硅氧四面体
之间,相当于以共用氧的水平位置为对称 面(图中AB位置)互成镜像反映。
结构显示,由α—石英转变为α—磷 石英,不但要改变Si-O-Si的键角和键长,
而且还要重新调整硅氧之间的分布,即破
坏原有的键,建立新的Si-O-Si,它们之
间的转变一般比较困难,常需要持续几个
• 晶体名称:石英 • 晶体化学:SiO2
晶体结构 石英(SiO2)的三个主要同质多
象变体α-石英、α-鳞石英、α-方石英 具有典型的架状结构,其[SiO4]四面体的 连接方式如下:
A
B
β—石英的晶体结构
硅氧四面体的连接方式
• α—石英
• 属六方晶系,对称型L66L2,ao=0.501nm,
co=0.547nm。
位移型转变
金红石型结构
化学式:
TiO2
晶体结构 四方晶系,a=0.459nm;c=0.296nm;Z=2
L44L25PC
格子类型:四方原始格子。Ti4+位于结点位置,体心的属另 一套格子。O2-处在一些特殊位置上,
质点坐标:Ti4+ :000;1/2 1/2 1/2; O2- : uu0; (1-u)(1-u)0; (1/2+u)(1/2-u)1/2; (1/2-u)(1/2+u)1/2
矿物晶体典型结构类型
目录
• 第一节 结构的表征 • 第二节 结构类型 • 金刚石、石墨、石盐、氯化铯、
萤石、闪锌矿、石英
• 1、结构的表征
•
与晶体结构有关的因素有: 晶体化学组成,
晶体中质点的相对大小,极化性能。
•
并非所有化学组成不同的晶体,都有不同
的结构,化学组成不同的晶体,可以有相同的
结构类型。
(5) 结点坐标为:
Ca2+ 000 , 001 ,010 , 100 ,110 ,011 ,101 , 111
O2- 0 1/2 1/2 , 1/2 0 1/2 , 1/2 1/2 0 ,1 1/2 1/2 ,1/2 1 1/2 ,1/2 1/2 1
Ti 4+ 1/2 1/2 1/2
(6) 立方面心格子
(4)--- CI—离子按立方最紧密堆积方式堆积, Na+离子充 填于全部八面体空隙。
--- Na+ 离子的配位数是6,构成Na--Cl八面体。NaCI
结构是由Na--Cl八面体以共棱的方式相连而成。
--- Na+ 离子位于面心格子的结点位置上,CI—离子也位 于另一套这样的格子上,后一个格子与前一个格子相距1/2晶棱 的位移。
•
其中t为容差因子,其值为0.77一1.10,