CCD基本知识
CCD基础知识
现以A-A截面的电极为例进行分析。很显然,它相似于移位寄存器中 的一个传输单元。如果在电极a1’、Z、a1上分别加上电压Ua’、Uz、 Ua,它们的波形如图。则对应于t0、t1、t2时刻的势阱波形同样可以得 到。如图。
d像素尺寸大能够更多地接收光子不容易饱和e对于高精密测量应尽量使用整个像素面积都感光的芯片f使用多通道传输的芯片能提高传输速度g使用3ccd技术的彩色相机色彩更真实ccdcmos设计单一感光器感光器连接放大器灵敏度同样面积下高感光开口小灵敏度低成本线路品质影响程度高成本高cmos整合集成成本低ccd与cmos比较解析度连接复杂度低解析度高低新技术高噪点比单一放大噪点低百万放大噪点高功耗比需外加电压功耗高直接放大功耗低90年代初cmos传感器开始被部分市场所采纳一个重要原因就是它可以在同一个芯片上集成各种信号和图象处理模块如运放器adcs彩色处理和数据压缩电路标准tv和计算机io接口形成一个单片集成数字成象系统
电荷耦合器件工作在瞬态和深度耗尽状态
CCD光敏元显微照片
CCD图像传感器的分类
1. 线阵CCD外形
2.面阵CCD
面阵CCD能在x、y两个方向都能实现电子自扫描,可以获得二维图像。
目前,面型CCD图像传感器使用得越来越多,所能 生产的产品的单元数也越来越多,已达 1024×1024像元。我国也能生产512×320像元的 面型CCD图像传感器。
面阵列CCD摄象器件
二维固体摄象器件中,电荷包转移情 况与线阵列器件类似,只是它的形式 较多。有的结构简单,但摄象质量不 好,有的摄象质量好些,但驱动电路 复杂,目前比较常用的形式是帧转移 结构。
光敏区是由光敏CCD阵列构成的,其 作用是光电变换和在自扫描正程时间 内进行光积分,暂存区是由遮光的 CCD构成的,它的位数和光敏区一一 对应,其作用是在自扫描逆程时间内, 迅速地将光敏区里整帧的电荷包转移 到它里面暂存起来。
CCD常用知识总结
CCD 常用知识总结随着CCD的不断发展,尤其典型的是当微光CCD向低照度方向发展时,噪声已经成为阻碍CCD进一步发展的障碍。
噪声是CCD的一个重要参数,它是决定信噪比S/N (Singal/Noise)的重要因素,而同时信噪比又是各种数据参数中最重要的指标之一。
随着CCD器件向小型化、集成化的不断发展,CCD光敏元数的增加势必减小光敏元的面积,从而降低了CCD的输出饱和信号。
为扩大CCD的动态范围,就必须降低CCD的噪声(动态范围与噪声间的联系)。
CCD工作时,在输入结构、输出结构、信号电荷存储和转移过程中都会产生噪声。
噪声叠加在信号电荷上,形成对信号的干扰,降低了信号电荷包所代表的信息复原后的精度,并且限制了信号电荷包的最小值。
CCD图像传感器的输出信号是空间采样的离散模拟信号,其中夹杂着各种噪声和干扰。
CCD输出信号处理的目的是在不损失图像细节并保证在CCD 动态范围内,图像信号随目标亮度线形变化是尽可能消除这些噪声和干扰。
(选自《CCD降噪技术的研究》燕山大学工学硕士学位论文)CCD的发展现状CCD最初是1969年由美国贝尔实验室的两名科学家W.S.Boyle与G.E.Smith提出,1970年在贝尔实验室制造成功。
它一问世,就显示出灵敏度高、光谱响应范围大、操作容易、维护方便、成本低、易推广等一系列优点,因而受到人们的普遍重视,现已取代摄像管,成为一种最常见的图像传感器。
自CCD问世以来,特别是近几年来,一直为美、日、英、法、德、荷兰等工业发达国家所瞩目,其中美、日两国的研制与生产能力居于世界领先地位。
国外主要的CCD研制与生产单位有日本的电气、东芝、索尼、夏普、日立,美国德州仪器,荷兰飞利浦等。
二十年来,CCD向着高集成度、高灵敏度、高分辨率、宽光谱响应的方向迅速发展,不断完善。
目前国外已研制出了像素数目为9K×9K的CCD芯片,像素尺寸最小已达到2.4μm×2.4μm;像素数目为4K×4K的CCD芯片已达到商业化水平。
CCD参数的基础知识
CCD参数的基础知识CCD(Charge-Coupled Device)是一种用于图像传感器的技术,被广泛应用于数码相机、摄像机以及其他光学设备中。
CCD参数是指影响图像质量和性能的一系列参数,了解这些参数对于选择和使用CCD设备至关重要。
本文将介绍CCD参数的基础知识,包括感光元件尺寸、像素数量、动态范围、噪声水平等。
1.感光元件尺寸:感光元件尺寸是指CCD芯片上感光元件的物理尺寸,通常以英寸(inch)为单位。
感光元件尺寸越大,可以捕捉到的光线越多,图像质量也越好。
常见的CCD感光元件尺寸有1/2.3英寸、1/1.8英寸、APS-C(1.5英寸)等。
2.像素数量:像素数量是指CCD芯片上感光元件的数量,也就是图像的分辨率。
像素数量越多,图像细节表现越清晰。
常见的CCD像素数量有100万像素、200万像素、1200万像素等。
3.动态范围:动态范围是指CCD芯片能够捕捉到的亮度范围。
动态范围越大,CCD可以同时捕捉到明亮和暗部的细节,图像的对比度和细节丰富度都会更好。
动态范围通常以dB(分贝)为单位表示。
4.噪声水平:噪声是CCD芯片产生的非图像信号,可以分为暗噪声和亮噪声。
暗噪声是指在低光条件下,CCD芯片自身产生的噪声;亮噪声是指在高光条件下,CCD芯片产生的噪声。
噪声水平越低,图像质量越好。
常见的噪声水平有e-(电子)/pixel、dB(分贝)等。
5.曝光时间:曝光时间是指CCD感光元件接收光线的时间长度。
曝光时间越长,CCD可以接收到更多的光线,图像亮度越高。
曝光时间通常以秒为单位。
6.帧率:帧率是指CCD设备每秒处理的图像帧数。
帧率越高,CCD设备可以更快地捕捉连续的图像,适用于快速移动的物体拍摄。
帧率通常以fps(帧/秒)为单位。
7.信噪比:信噪比是指CCD芯片输出信号与噪声之间的比值。
信噪比越高,CCD 输出的图像信号越清晰,噪声干扰越小。
信噪比通常以dB(分贝)为单位。
8.动态响应:动态响应是指CCD芯片对不同亮度的光线变化的反应能力。
CCD摄像机小知识与CMOS摄像机区别
只有一个例外,敏通C系列摄像机只使用12伏特/65毫安电源,几乎和CMOS摄像机一样,但是具有好得多的影像质量,C系列摄像机使用0.35um3.3 伏特数字讯号处理器,因此消耗非常少的能量(54C0,54C1,54C2,54C1,54C5,54C6)。所有其它公司生产的CCD摄像机的消耗12 伏特/150到300毫安,因此比CMOS的5到12伏特和35到70毫安高出了2到4倍。
有2个例外,CMOS传感器可以做得非常大并有和CCD传感器同样的感光度,CMOS传感器非常快速,比CCD传感器要快10到100倍,因此非常适用于特殊应用如high ens DSC camera ( Cannon D-30 )或者高帧摄像机。
CMOS传感器可以将所有逻辑和控制环都放在同一个硅芯片块上,可以使摄像机变得简单并易于携带,因此CMOS摄像机可以做得非常小。
CCD摄像机小知识与CMOS摄像机区别!
CCD摄像机
1. 什么是CCD摄像机?
CCD是Charge Coupled Device(电荷耦合器件)的缩写,它是一种半导体成像器件,因而具有灵敏度高、抗强光、畸变小、体积小、寿命长、抗震动等优点。
2. CCD摄像机的工作方式
被摄物体的图像经过镜头聚焦至CCD芯片上,CCD根据光的强弱积累相应比例的电荷,各个像素积累的电荷在视频时序的控制下,逐点外移,经滤波、放大处理后,形成视频信号输出。视频信号连接到监视器或电视机的视频输入端便可以看到与原始图像相同的视频图像。
4. 成像灵敏度
通常用最低环境照度要求来表明摄像机灵敏度,黑白摄像机的灵敏度大约是 0.02-0.5Lux(勒克斯),彩色摄像机多在1Lux以上。0.1Lux的摄像机用于普通的监视场合;在夜间使用或环境光线较弱时,推荐使用 0.02Lux的摄像机。与近红外灯配合使用时,也必须使用低照度的摄像机。另外摄像的灵敏度还与镜头有关,0.97Lux/F0.75相当于 2.5Lux/F1.2相当于3.4Lux/F1.
CCD的参数指标知识
CCD的参数指标知识很多普通的消费者,正像这位同事,在选择数码相机时,第一眼看中的就是CCD像素个数,第二眼也往往是最后一眼,看的就是价格。
两者皆看中,购买的决心就基本下定了。
然而,这个被许多消费者看重的CCD,却有着许多普通消费者并不了解的秘密。
到底需要多少CCD像素?CCD,是英文Charge Coupled Device的缩写,中文译名即“电荷耦合器件”。
从功能上看,它负责将镜头传来的光信号转换为电信号,类似于普通光学相机的胶片。
CCD光电转换是通过CCD上面布满的许多感光点(MOS电容)来实现的。
一张图片,就是通过这一个个的感光点来描述其色彩、亮度与灰度的。
对CCD感光点,我们通常的另一种描述是“像素”。
理论上,像素越多,拍摄时就能使被拍摄物的影像分得更精细,对图像的描述也会更精细。
也就是说,要提高图像的分辨率,最直接的方式就是提高像素个数,即CCD感光点的个数。
正是由于这个原因,CCD像素的个数,构成了数码相机成像质量的一个极其重要的决定因素——甚至,被绝大多数人当作了唯一重要的参数,尤其是在普通消费者那里,“唯像素论”已经变成了主流消费观念。
开头的例子中,那位同事,就是了为500万像素,甚至连变焦能力和镍氢电池都可以容忍。
那么,在实际应用中,我们究竟应该如何看待像素的个数呢?有人说,如果要达到普通35mm光学相机的画面质量,数码相机的像素至少要到千万以上。
这句话的另外一层意思好像是,即使如600万像素级的高档家用数码相机,其成像质量也无法与普通的光学相机相比。
但事实并不完全如此,上面的比较是不公平的,因为所有的一切皆取决于我们的应用。
在一些特殊的行业,比如出版、影像、广告行业等,它们经常需要将图片放得很大。
对这种应用,即时目前最先进的千万像素级数码相机,与传统光学相机相比,也捉襟见肘。
而在家用领域,却极少有把照片放大到7寸以上的需求——即使7寸照片,200万像素也完全满足需要了。
下面列出一组分辨率、像素与实际成像大小的关系:600×800=48万像素=3寸照片700×1000=约80万像素=5寸照片(3.5×5英寸,毫米规格89×127);800×1200=约100万像素=6寸照片(4×6英寸,毫米规格102×152);1000×1400=约150万像素=7寸照片(5×7英寸,毫米规格,127×178);1200×1600=约200万像素=8寸照片(6×8英寸,毫米规格152×203);1600×2000=约310万像素=10寸照片(8×10英寸,毫米规格203×258);1600×2400=约400万像素=标准照片(8×12英寸,毫米规格203×304);1600×2800=约400万像素=宽幅照片(8×14英寸,毫米规格203×356)。
CCD知识简介
对应的方法:
水桶 把桶做大 减少测量时间 把满的水桶到出一些 做个导流管 CCD芯片 增大单位像素尺寸 缩短曝光时间 间歇开关时钟电压 溢出沟道和溢出门 对于暗的部分曝光不足 降低速度 制作复杂,且还有缺陷 缺点
CCD芯片的工作方式:
A B C D 光电转换 电荷储存 电荷转移 转化为电压量
CCD与CMOS比较
CCD 电路更改 速度 噪声 灵敏度 功耗 成本 方便 慢 好 好 毫安级 高 CMOS 固定 快 差 差 微安级 低
从以上的对比可以看出:CCD在图像的质量上更有 优势。而常见的高速相机则会采用CMOS芯片。
PC
图像
由于 光电转换设备 和 放大设备 都是针对 微观的电荷进行量化操作。就需要一个精密 的器件来完成这两个过程。 我们常用的是
CCD
和
CMOS
CCD与CMOS的光电转换示意图 CCD 电路放大 电子 电压
光电转换 光子
A/D 数字信号
CMOS芯片可以在像素上同时完成这两个步骤 由上面两图可看出:CMOS和CCD最大的区别是 CMOS的 电荷到电压转换过程是在每个像素上完成的
我们的展位 1C08 ,1C16 欢迎大家参观
谢谢!
• 由此可见,增大像素尺寸是最简单有效的做法。
C 电荷转移
当一个CCD芯片感光完毕 后。每个像素所转换的电 荷包,就按照一行的方向 转移出CCD感光区域。为 下一次感光释放空间。
CCD知识
1.靈敏度
: Sensitivity
靈敏度: Sensitivity是CCD最重要的參數之一,它決定了 CCD光電轉換的速度,從而影響到整個Scanner系 統的運行速度.從公式可知:在輸入光量(X,即曝 光量)相同的情況下,靈敏度(a,即直線斜率)越大, 輸出電壓(y)越高.同理,如果要達到 同樣的y,則a越大,所需x越小,而x是與曝光時間 密切相關的,從而所需曝光時間可以縮短.
二. CCD 的Structure
1. CCD 外觀
2. CCD 元件構成簡圖(a)
CCD 元件構成簡圖 (b)
3. CCD 的組成
CCD(Charge Coupled Device)
感光部 傳送部
輸出部
3-1. 感光部
將光能轉換成電荷訊號
暫時儲存所得的訊號
感光部動作原理
認 識 CCD
1. 甚麼是CCD? Defining & Basic Function 2. CCD 的基本結構. Structure 3. CCD 是如何動作的? Active rules 4. 如何使用CCD? Application circuit 5. CCD 特性介紹
一. 甚麼是CCD ?
3-2. 傳送部
功能為傳送電荷訊號
以串列(serial)模式來動作
通常採用兩相驅動( Φ1,Φ2)
兩相驅動的 動作原理
其中一個電位井有儲存
電荷的功能 另一個電位井則有分離 各圖素電荷的功能 電位井間突出的設計可 防止電荷倒流 一個時脈週期內作一個 圖素的輸出
3-3. 輸出部
Out Stage
4. Stagger : 不常用 5. Multiple :不常用ShutterFra bibliotektype 結構簡圖
7-29 CCD、镜头选型知识
CCD與鏡頭的選用:
1.確定需攝像點ቤተ መጻሕፍቲ ባይዱ大小和和分辨率;
2.選擇合適的鏡頭并同時兼顧所選攝像機CCD的靶面尺寸。
1)鏡頭的視野和分辨率以及其光學放大倍率; 2)CCD的分辨率和靶面尺寸
3.確認機器的空間能否滿足鏡頭的工作距離,看是否需要選擇工作距 離可調的鏡頭
要保證CCD和鏡頭相配,比如若2/3英寸的CCD使用1/2鏡頭則圖像 就不能充滿屏幕,圖像邊緣不是發黑就是發虛
像素可以分为总像素(表示CCD 元件的全部领域的像素)、有效像素以及实
效像素(实际起作用的像素)。 有效像素: 总像素中图像信号的像素。 实效像素: 有效像素中用来保证产品性能的像素。
黑白CCD圖像接收元件和彩色CCD圖像接收元件
彩色CCD圖像接收元件能辨別出所拍物體的顏色,適合觀察和辨認目標 細節,但造價較高,清晰度較低。若進行宏觀監視,目標色彩又較為豐 富,此時最好選彩色的。 黑白CCD圖像接收元件,清晰度高,靈敏度也高於彩色的,但沒有色彩 體現,所以在光照度不高,目標沒有明顯的色彩標誌和差異,同時又希 望較清晰地反映出目標的情況下,應選用黑白的。
CCD 的大小
CCD 感光元件的大小,一般分为采用英寸单位表示和采用 APS-C 大小等规格表示。采用英寸表示时,该尺寸并不是 拍摄的实际尺寸,而是相当于摄像管的对角长度。例如, 1/2 英寸的 CCD 表示拥有相当于 1/2 英寸的摄像管的拍摄范 围。
主要的英寸规格的尺寸如下所示:
CCD 元件的受光部的大小。
(光程也就是相同時間內光在真空中通過的路程
n=c/v , t=d/v=nd/c 即ct=nd)
光在玻璃中的折射率為1.5~1.6
我的分享到此結束
謝謝
工业CCD相关知识简介-深圳市视清科技有限公司
工业CCD相关知识简介-深圳市视清科技有限公司工业CCD是电荷耦合器件的简称,是一部半导体设备,用来通过把光转化为电信号读取图像。
CCD 同时支持模拟和数字数据,并由于它的高速接入和小巧的尺寸被广泛用在相机的接收光部件上。
CCD的像素能表现为总像素,实际像和计划素和有效像素。
总像素:CCD是由代表亮度和颜色基本元素的像素组成的,但没有输出实际的图像。
总像素是指包括实际和有效像素的所有像素。
实际像素:彩色CCD通过比较一个像素和周围其它像素判断颜色。
CCD由代表颜色基本元素的像素组成,尽管不输出图像。
作为颜色基本元素使用的像素也就是实际像素。
有效像素:即像素被用来输出实际图像一、CCD的工作原理CCD是一部半导体设备,能将通过镜头进入的光线转化为数码数据并输出形成最终图像的数据。
就像CPU 和DRAM,CCD被排列在硅片上。
光电二极管被排列在表面上,光电二极管的数量代表了总像素。
当光线照射在CCD上时,CCD能把电子和空穴全部转化为电信号,并通过转移电极转化的电荷把电信号作为数据读取。
由于光电二极管不能检测精确的颜色,颜色信息通过与滤色镜或棱镜结合被再现。
颜色信息能通过使用红色(R),绿色(G),蓝色(B)基色滤色镜的基色模式或者通过使用蓝绿色(C),紫红色(M),黄色(Y),绿色(G)的四色滤色镜经过计算创建图像的补色滤色镜模式获得。
总之,基色模式创建的图像比较暗,但是由于它更高的色彩饱和度表现出更精确的颜色。
这个特点即高度的色彩再现能力。
二、CCD和滤色镜的工作原理示意图三、数码图像的再现数码显微镜能把通过镜头聚焦的图像由使用基色滤色镜的彩色CCD转化成数码信号。
四、数码图像再现的工作原理示意图光电传感器可检测特定位置上是否存在特定大小的目标物。
但是,单个传感器无法有效地进行更复杂的应用,例如,检测不同位置上的目标物、检测并测量不同形状的目标物或进行全面的位置和大小测量。
CCD 是数十万甚至数百万个传感器的集合,可实现单个传感器很难进行的应用。
CCD和COMS成像器件基础知识
UG
P型基底
栅极
Cox
QG+QI+QD=0
QG——栅电荷(+); QI——自由电子电荷(-); CD QD——耗尽层固定电荷(-)
QD=NAed d——耗尽层厚度;
NA——受主杂质浓度
根据半导体公式可知, d=(2εVS/NAe)1/2 ε——基底材料的介电常数。 QD=[2εNAeVs]1/2
VS↑,耗尽层宽度d↑,收集电子能力↑、势阱变深,如图6-2
(b)所示。
Ei
Ei
Vf
Ef
Ef
Ev
E
Ef
3. UG>0,UG继续增大
Ev
表面处能带进一步向下弯曲,表面处费米能级位置可能高
于禁带中央能级Ei,这意味着表面处的电子浓度将超过空穴 浓度,即形成与原来半导体衬底导电类型相(a反) 的一层叫做反
场感应耗尽层 和 PN结耗尽层
图6-10 埋沟CCD
图6-11 埋沟CCD能带
通过计算可得,VZ~UG 近似呈线性,VZ是氧化层厚 度dox、N层厚度dN、N层中 的施主浓度ND、P基底的受 主浓度的受主浓度NA,以及 栅压UG的函数。
1.dox=0.1μm, dN=2μm, ND=2×1015cm-3 2.dox=0.6μm, dN=2μm, ND=2×1015cm-3 3.dox=0.1μm, dN=2μm, ND=4×1015cm-3 4.dox=0.1μm, dN=5μm, ND=2×1015cm-3
2.BCCD结构(Vz)
基底为P型,在硅的表面注入杂质,如元素磷P,使之形 成N型薄层。在N型两端做上N+层,起源和漏的作用。
CCD的基础知识
CCD的基础知识CCD,英文全称:Charge-coupled Device,中文全称:电荷耦合元件。
可以称为CCD 图像传感器,也叫图像控制器。
CCD是一种半导体器件,能够把光学影像转化为数字信号。
CCD上植入的微小光敏物质称作像素(Pixel)。
一块CCD上包含的像素数越多,其提供的画面分辨率也就越高。
CCD的作用就像胶片一样,但它是把光信号转换成电荷信号。
CCD 上有许多排列整齐的光电二极管,能感应光线,并将光信号转变成电信号,经外部采样放大及模数转换电路转换成数字图像信号。
1.功能特性CCD图像传感器可直接将光学信号转换为模拟电流信号,电流信号经过放大和模数转换,实现图像的获取、存储、传输、处理和复现。
其显著特点是:1.体积小重量轻;2.功耗小,工作电压低,抗冲击与震动,性能稳定,寿命长;3.灵敏度高,噪声低,动态范围大;4.响应速度快,有自扫描功能,图像畸变小,无残像;5.应用超大规模集成电路工艺技术生产,像素集成度高,尺寸精确,商品化生产成本低。
因此,许多采用光学方法测量外径的仪器,把CCD器件作为光电接收器。
CCD从功能上可分为线阵CCD和面阵CCD两大类。
线阵CCD通常将CCD内部电极分成数组,每组称为一相,并施加同样的时钟脉冲。
所需相数由CCD芯片内部结构决定,结构相异的CCD可满足不同场合的使用要求。
线阵CCD 有单沟道和双沟道之分,其光敏区是MOS电容或光敏二极管结构,生产工艺相对较简单。
它由光敏区阵列与移位寄存器扫描电路组成,特点是处理信息速度快,外围电路简单,易实现实时控制,但获取信息量小,不能处理复杂的图像(线阵CCD如右图所示)。
面阵CCD 的结构要复杂得多,它由很多光敏区排列成一个方阵,并以一定的形式连接成一个器件,获取信息量大,能处理复杂的图像。
2.性能参数2.1光谱灵敏度CCD的光谱灵敏度取决于量子效率、波长、积分时间等参数。
量子效率表征CCD芯片对不同波长光信号的光电转换本领。
数码相机基本知识
1、CCD,英文全称:Charge-coupled Device,中文全称:电荷耦合元件。
可以称为CCD 图像传感器。
CCD是一种半导体器件,能够把光学影像转化为数字信号。
CCD上植入的微小光敏物质称作像素(Pixel)。
一块CCD上包含的像素数越多,其提供的画面分辨率也就越高。
CCD的作用就像胶片一样,但它是把图像像素转换成数字信号。
CCD上有许多排列整齐的电容,能感应光线,并将影像转变成数字信号。
经由外部电路的控制,每个小电容能将其所带的电荷转给它相邻的电容。
CCD的加工工艺有两种,一种是TTL工艺,一种是CMOS工艺,现在市场上所说的CCD和CMOS其实都是CCD,只不过是加工工艺不同,前者是毫安级的耗电量,而后者是微安级的耗电量。
TTL工艺下的CCD成像质量要优于CMOS工艺下的CCD。
CCD广泛用于工业,民用产品北京时间2009年10月6日,2009年诺贝尔物理学奖揭晓,瑞典皇家科学院诺贝尔奖委员会宣布将该奖项授予一名中国香港科学家高锟(Charles K. Kao)和两名科学家维拉·博伊尔(Willard S. Boyle)和乔治·史密斯(George E. Smith)。
科学家Charles K. Kao 因为“在光学通信领域中光的传输的开创性成就” 而获奖,科学家因博伊尔和乔治-E-史密斯因“发明了成像半导体电路——电荷藕合器件图像传感器CCD” 获此殊荣。
2、数码相机,英文全称:Digital Still Camera (DSC),简称:Digital Camera (DC),是数码照相机的简称,又名:数字式相机。
数码相机,是一种利用电子传感器把光学影像转换成电子数据的照相机。
按用途分为:单反相机,卡片相机,长焦相机和家用相机等。
优点:1、拍照之后可以立即看到图片,从而提供了对不满意的作品立刻重拍的可能性,减少了遗憾的发生。
2、只需为那些想冲洗的照片付费,其它不需要的照片可以删除。
CCD技术知识
CCD,是英文Charge Coupled Device 即电荷耦合器件的缩写,它是一种特殊半导体器件,上面有很多一样的感光元件,每个感光元件叫一个像素。
CCD在摄像机里是一个极其重要的部件,它起到将光线转换成电信号的作用,类似于人的眼睛,因此其性能的好坏将直接影响到摄像机的性能。
衡量CCD好坏的指标很多,有像素数量,CCD尺寸,灵敏度,信噪比等,其中像素数以及CCD尺寸是重要的指标。
像素数是指CCD上感光元件的数量。
摄像机拍摄的画面可以理解为由很多个小的点组成,每个点就是一个像素。
显然,像素数越多,画面就会越清晰,如果CCD没有足够的像素的话,拍摄出来的画面的清晰度就会大受影响,因此,理论上CCD的像素数量应该越多越好。
但CCD像素数的增加会使制造成本以及成品率下降,而且在现行电视标准下,像素数增加到某一数量后,再增加对拍摄画面清晰度的提高效果变得不明显,一般而言八十万左右的像素数对拍摄动态画面已经足够了。
CCD尺寸是指CCD芯片的对角线尺寸,用英寸表示,如1/2寸,1/4寸等。
一般说CCD尺寸越大越好,CCD尺寸越大其灵敏度就越高,在光线比较暗的时候拍摄的效果就比较好。
但CCD尺寸越大,其成本就越高,而且相应的镜头尺寸也较大,不利于摄像机体积的减小。
随着技术的发展,现在小尺寸的CCD其灵敏度也在不断地提高。
单CCD摄像机是指摄像机里只有一片CCD并用其进行亮度信号以及彩色信号的光电转换,其中色度信号是用CCD上的一些特定的彩色遮罩装置并结合后面的电路完成的。
由于一片CCD同时完成亮度信号和色度信号的转换,因此难以两全,使得拍摄出来的图像在彩色还原上达不到专业水平很高的要求。
为了解决这个问题,便出现了3CCD摄像机。
3CCD,顾名思义,就是一台摄像机使用了3片CCD。
我们知道,光线如果通过一种特殊的棱镜后,会被分为红,绿,蓝三种颜色,而这三种颜色就是我们电视使用的三基色,通过这三基色,就可以产生包括亮度信号在内的所有电视信号。
CCD知识培训
CCD知识培训1、依成像色彩划分彩色摄像机:适用于景物细部辨别,如辨别衣着或景物的颜色。
黑白摄像机:适用于光线不充足地区及夜间无法安装照明设备的地区,在仅监视景物的位置或移动时,可选用黑白摄像机。
2、依分辨率灵敏度等划分影像像素在38万以下的为一般型,其中尤以25万像素(512*492)、分辨率为400线的产品最普遍。
影像像素在38万以上的高分辨率型。
3、按CCD靶面大小划分 CCD芯片已经开发出多种尺寸:目前采用的芯片大多数为1/3"和1/4"。
在购买摄像头时,特别是对摄像角度有比较严格要求的时候,CCD靶面的大小,CCD与镜头的配合情况将直接影响视场角的大小和图像的清晰度。
1英寸--靶面尺寸为宽12.7mm*高9.6mm,对角线16mm。
2/3英寸--靶面尺寸为宽8.8mm*高6.6mm,对角线11mm。
1/2英寸--靶面尺寸为宽6.4mm*高4.8mm,对角线8mm。
1/3英寸--靶面尺寸为宽4.8mm*高3.6mm,对角线6mm。
1/4英寸--靶面尺寸为宽3.2mm*高2.4mm,对角线4mm。
4、按扫描制式划分 PAL制。
NTSC制。
中国采用隔行扫描(PAL)制式(黑白为CCIR),标准为625行,50场,只有医疗或其它专业领域才用到一些非标准制式。
另外,日本为NTSC制式,525行,60场(黑白为EIA)。
5、依供电电源划分 110VAC(NTSC制式多属此类), 220VAC, 24VAC。
12VDC或9VDC(微型摄像机多属此类)。
6、按同步方式划分内同步:用摄像机内同步信号发生电路产生的同步信号来完成操作。
外同步:使用一个外同步信号发生器,将同步信号送入摄像机的外同步输入端。
功率同步(线性锁定,line lock):用摄像机AC电源完成垂直推动同步。
外VD同步:将摄像机信号电缆上的VD同步脉冲输入完成外VD同步。
多台摄像机外同步:对多台摄像机固定外同步,使每一台摄像机可以在同样的条件下作业,因各摄像机同步,这样即使其中一台摄像机转换到其他景物,同步摄像机的画面亦不会失真。
ccd摄像机基础知识-相关技术-远飞
ccd摄像机基础知识-相关技术-远飞ccd摄像机基础知识前言什么是ccd?在闭路监控系统中,摄像机又称摄像头或ccd(charge coupled device)即电荷耦合元器件。
严格来说,摄像机是摄像头和镜头的总称,而实际上,摄像头与镜头大部分是分开购买的,用户根据目标物体的大小和摄像头与物体的距离,通过计算得到镜头的焦距,所以每个用户需要的镜头都是依据实际情况而定的,不要以为摄像机(头)上已经有镜头。
摄像头的主要传感部件是ccd,它具有灵敏度高、畸变小、寿命长、抗震动、抗磁场、体积小、无残影等特点,ccd能够将光线变为电荷并可将电荷储存及转移,也可将储存之电荷取出使电压发生变化,因此是理想的摄象元件。
是代替摄像管传感器的新型器件。
摄物体的图像经过镜头聚焦至ccd芯片上,ccd根据光的强弱积累相应比例的电荷,各个像素积累的电荷在视频时序的控制下,逐点外移,经滤波、放大处理后,形成视频信号输出。
视频信号连接到监视器或电视机的视频输入端便可以看到与原始图像相同的视频图像。
这个标准的视频信号同家用的录像机、vcd机、家用摄像机的视频输出是一样的,所以也可以录像或接到电视机上观看。
第一章摄像机发展史第一节ccd发展简史ccd产品问世已有30多年,从当时的20万像素发展到目前的500—800万像素,无论其市场规模还是其应用面,都得到了巨大的发展,可以说是在平稳中逐步提高,特别是近几年来,在消费领域中的应用发展速度更快。
由于ccd的技术生产工艺复杂,目前业界只有索尼、飞利浦、柯达、松下、富士和夏普6家厂商可以批量生产,而其中最主要的供商应是索尼,飞利浦和柯达,其中,在各厂商市占率方面,索尼以50%的市占率,成为市场领导厂商。
索尼从70年代研发ccd以来,即将其广泛运用在摄录放影机及广播电视等专业用摄影机等器材上,目前索尼的研发水平仍是领先于其它公司之上目前的ccd组件,每一个像素的面积和开发初期比较起来,己缩小到1/10以下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CCD芯片就像人的视网膜,是摄像头的核心。
目前市场上大部分摄像头采用的是日本SONY、SHARP、松下、LG等公司生产的芯片,现在韩国也有能力生产,但质量就要稍逊一筹。
因为芯片生产时产生不同等级,各厂家获得途径不同等原因,造成CCD采集效果也大不相同。
在购买时,可以采取如下方法检测:接通电源,连接视频电缆到监视器,关闭镜头光圈,看图像全黑时是否有亮点,屏幕上雪花大不大,这些是检测CCD芯片最简单直接的方法,而且不需要其它专用仪器。
然后可以打开光圈,看一个静物,如果是彩色摄像头,最好摄取一个色彩鲜艳的物体,查看监视器上的图像是否偏色,扭曲,色彩或灰度是否平滑。
好的CCD可以很好的还原景物的色彩,使物体看起来清晰自然;而残次品的图像就会有偏色现象,即使面对一张白纸,图像也会显示蓝色或红色。
个别CCD由于生产车间的灰尘,CCD 靶面上会有杂质,在一般情况下,杂质不会影响图像,但在弱光或显微摄像时,细小的灰尘也会造成不良的后果,如果用于此类工作,一定要仔细挑选。
第二章摄像机的主要技术参数一、CCD尺寸即摄象机靶面。
目前采用的芯片大多数为1/3”和1/4”。
在购买摄像头时,特别是对摄像角度有比较严格要求的时候,CCD靶面的大小,CCD与镜头的配合情况将直接影响视场角的大小和图像的清晰度。
在相同的光学镜头下,成像尺寸越大,视场角越大。
1英寸——靶面尺寸为宽12.7mm*高9.6mm,对角线16mm。
2 /3英寸——靶面尺寸为宽8.8mm*高6.6mm,对角线11mm。
1/2英寸——靶面尺寸为宽6.4mm*高4.8mm,对角线8mm。
1/3英寸——靶面尺寸为宽4.8mm*高3.6mm,对角线6mm。
1/4英寸——靶面尺寸为宽3.2m m*高2.4mm,对角线4mm。
二、CCD像素是CCD的主要性能指标,它决定了显示图像的清晰程度,分辨率越高,图像细节的表现越好。
CCD是由面阵感光元素组成,每一个元素称为像素,像素越多,图像越清晰。
现在市场上大多以25万和38万像素为划界,38万像素以上者为高清晰度摄象机。
三、水平分辨率分辨率是用电视线(简称线TV LINES)来表示的。
彩色摄象机的典型分辨率是在320到500电视线之间,主要有330线、380线、420线、460线、500线等不同档次。
分辨率与CCD和镜头有关,还与摄像头电路通道的频带宽度直接相关,通常规律是1MHz的频带宽度相当于清晰度为80线。
频带越宽,图像越清晰,线数值相对越大。
四、最小照度照度又称灵敏度。
是CCD对环境光线的敏感程度,或者说是CCD正常成像时所需要的最暗光线。
照度的单位是勒克斯(LUX),数值越小,表示需要的光线越少,摄像头也越灵敏。
照度是反映光照强度的一种单位,单位是每平方米的流明数,1LUX大约等于1烛光在1米距离的照度1LUX=1Lm/M*M(Lm是光通量的单位)黑白摄像机的灵敏度大约是0.02-0.5Lux(勒克斯),彩色摄像机多在1Lux以上。
摄像的灵敏度与镜头F值有关,0.97Lux/F0.75相当于2.5Lux/F1.2相当于3.4Lux/F1.0 普通型:正常工作所需照度1~3LUX 月光型:正常工作所需照度0.1LUX左右星光型:正常工作所需照度0.01LUX以下红外型:采用红外灯照明,在没有光线的情况下也可以成像参考环境与照度:参照环境大概照度夏日阳光下100000Lux室内日光灯100Lux阴天室外10000Lux黄昏室内10Lux电视台演播室1000Lux20cm处烛光10-15Lux距60W台灯60cm桌面300Lux夜间路灯0.1Lux照度值不仅与镜头的光圈大小(F值)有关,与测试时的周边环境也有着较大的关系,以光圈大小(F值)而言,光圈愈大则其所代表的F值愈小,所需的照度愈低。
五、扫描制式根据各国供电所采用的频率不同,有PAL制和NTSC制之分。
50HZ:PAL制,隔行扫描(PAL)制式(黑白为CCIR),标准为625行,50场。
60HZ:NTSC制式,525行,60场(黑白为EIA)。
六、摄象机电源交流有220V、110V、24V,直流为12V 或9V。
七、信噪比当摄像机摄取较亮场景时,监视器显示的画面通常比较明快,观察者不易看出画面中的干扰噪点;而取较暗场景时,监视器显示的画面就比较昏暗,观察者很容易看到画面中雪花状的干扰噪点。
干扰噪点的强弱与摄像机的信噪比指标有直接关系,即信噪比越高,干扰噪点对画面的影响就越小。
信噪比是信号电压对于噪声电压的比值,通常用符号S/N来表示。
由于在一般情况下,信号电压远高于噪声电压,比值非常大,信噪比的单位用DB来表示。
一般摄像机给出的信噪比值均是在AGC(自动增益控制)关闭时的值,因为当AGC接通时,会对小信号进行提升,使得噪声电平也相应提高。
信噪比的典型值为45~55db,若为50db,则图像有少量噪声,但图像质量良好;若为60db,则图像质量优良,不出现噪声。
八、视频输出1Vp-p、75Ω,采用BNC接头。
九、镜头安装方式有C和CS方式,两者的螺纹均为1英寸32牙,直径为1英寸,差别是镜头距CCD靶面的距离不同。
C式安装座从基准面到焦点的距离为17.562毫米,比CS式距离CCD靶面多一个专用接圈的长度,CS式距焦点距离为12.5毫米。
在安装镜头前,先看一看摄像头和镜头是不是同一种接口方式,如果不是,就需要根据具体情况增减接圈。
有的摄像头不用接圈,而采用后像调节环(如松下产品),调节时,用螺丝刀拧松调节环上的螺丝,转动调节环,此时CCD靶面会相对安装基座向后(前)运动,也起到接圈的作用。
另外(如SONY,JVC)采用的方式类似后像调节环,它的固定螺丝一般在摄像机的侧面。
拧松后,调节顶端的一个齿轮,也可以使图象清晰而不用加减接圈。
十、同步方式对单台摄象机而言,主要的同步方式有下列三种:内同步——利用摄象机内部的晶体振荡电路产生同步信号来完成操作。
外同步——利用一个外同步信号发生器产生的同步信号送到摄象机的外同步输入端来实现同步。
电源同步——也称之为线性锁定或行锁定,是利用摄象机的交流电源来完成垂直推动同步,即摄象机和电源零线同步。
十一、自动增益控制所有摄象机都有一个将来自CCD的信号放大到可以使用水准的视频放大器,其放大量即增益,将微弱的信号放大到能正常使用,从而使摄像机能在亮度较低的环境下使用。
然而在亮光照的环境中放大器将过载,使视频信号畸变。
需利用摄象机的自动增益控制(AGC)电路去探测视频信号的电平,适时地开关AGC,从而使摄象机能够在较大的光照范围内工作,即在低照度时自动增加摄象机的灵敏度,从而提高图像信号的强度来获得清晰的图像。
而照度较高时能自动降低增益放大倍数,保证图像不发生畸变。
自动增益打开时,售叼电压和噪声电压被同时放大,信噪比将会减小。
此时的噪点也会比较明显。
十二、背光补偿通常,摄象机的自动增益控制是通过对整个视场的平均亮度来调节增益的,但如果视场中包含一个很亮的背景区域,而观察的主体目标处于亮场的包围中,画面会显示一片昏暗,无层次。
放大器检测到的信号平均电平很高,增益的倍数也随之减少,无法改进画面主体目标的明暗度。
当背景光补偿为开启时,摄象机仅对整个视场的部份区域进行检测,来得到整个视场的平均信号电平,从而确定AGC电路的工作值。
由于子区域的平均电平很低,所以增益也会较高。
整个画面都会更加明亮。
十三、电子快门这是一个类比于照像机的机械快门功能提出的一个术语,相当于控制CCD图像传感受器的感光时间,感光时间越长,电荷积累时间也就越长,输出信号电流的强度也就越大。
在照度较高的地方,感光时间要求短些,否则画面会偏白。
在照度较低的地方,感光时间要求长些,这样画面会积累较多的电荷,从而使图像变得清晰。
CCD摄像机的电子快门还可以有效的防止高速移动物体的拖影现象。
十四、白平衡图像的各种色彩是由红、绿、蓝三种颜色组成的,当电路中的红、绿、蓝三种色彩各自的的信号电压相等时,可以在监视器上输出纯白色的被摄景物,此时称之为白平衡。
此时,摄像机能够显示最真实的被摄物体。
白平衡如果未调节好,显示的画面将出现偏色(红、蓝、绿)的情况。
白平衡设置有两种方式,自动白平衡和手动白平衡A、自动白平衡连续方式——此时白平衡设置将随着景物色彩温度的改变而连续地调整,范围为2800~60 00K。
这种方式对于景物的色彩温度在拍摄期间不断改变的场合是最适宜的,使色彩表现自然,但对于景物中很少甚至没有白色时,连续的白平衡不能产生最佳的彩色效果。
按钮方式——先将摄象机对准诸如白墙、白纸等白色目标,然后将自动方式开关从手动拨到设置位置,保留在该位置几秒钟或者至图像呈现白色为止,在白平衡被执行后,将自动方式开关拨回手动位置以锁定该白平衡的设置,此时白平衡设置将保持在摄象机的存储器中,直至再次执行被改变为止,其范围为2300~10000K,在此期间,即使摄象机断电也不会丢失该设置。
以按钮方式设置白平衡最为精确和可靠,适用于大部分应用场合。
B、手动白平衡开手动白平衡将关闭自动白平衡,此时改变图像的红色或兰色状况有多达107个等级供调节,如增加或减少红色各一个等级、增加或减少兰色各一个等级。
除次之外,有的摄象机还有将白平衡固定在3200K(白炽灯水平)和5500K(日光水平)等档次命令。
十五、低速快门(SLOW/SHUTTER)此类的摄影机获得低照度下图像的方法是通过电荷单帧累积方式增加CCD在单帧图像的爆光量,从而提高摄像机对单帧图像的灵敏度。
这种方式也可以获得较低的照度指针,但是需要降低图像的连贯程度,所以选择这种摄像机时要注意尽可能不要同云台一起使用,否则会造成丢失画面的现象。
在获得低照度下图像上还有一些其它的办法,但都不能从根本上解决照度问题。
此类摄像机又称为(画面)累积型摄像机,是利用计算机内存的技术,连续将几个因光线不足而较显模糊的画面累积起来,成为一个影像清晰的画面,运用SLOW SHUTTER技术降低摄像机照度至0.008LUX/F1.2(×128),并且画面能够累积的帧数 (128帧)是属于甚至包括进口品牌再内的领先水平。
此类型低照度摄像机适用于禁止红、紫外线破坏的博物馆,夜间生物活动观察,夜间军事海岸线监视等,属性较静态场所的监视。