2、地基变形计算

合集下载

土力学PPT课件: 地基变形计算

土力学PPT课件: 地基变形计算

e1
e0
h1 h0
1
e0
其中:e0
Gs 1 0
0
w
1
h Vs 0 A
1 e
0
hi ei
❖压缩曲线是室内压缩实验的成果,它是土的孔隙比e 与所受压力P的关系曲线。
•压缩性曲线的形状与土样的成分、结构、状态及受力历 史等有关。
•压缩性不同的土,其e-p曲线的形状不同。曲线愈陡,说 明压力增加时孔隙比减小得多,土易变形,压缩性愈高。
载荷试验
载荷试验观测标准:
a. 每级加载后,按间隔10、10、10、15、15、30分钟 读数,当连续2个小时内,每1个小时的沉降量小于 0.1mm时,可加下一级荷载;
b. 当出现承压板周围土有明显的侧向挤出或发生裂纹 时、当沉降s急剧增大时、当某一级 荷载24小时不能达到稳定标准时, 即可终止加载;
(二)压缩定律
1.压缩系数
e p曲线上任一 点切线斜率 a就表示了相应于压力 p作用下的压缩性。
压缩系数
a de e1 - e2 dp p2 - p1
式中 : a称为压缩系数 单位为MPa-1;
p1 : 相当于某深度处的自重 应力[kPa]; p2 : 相当于某深度处的自重 应力与附
加应力之和[ kPa];
六、由原始压缩曲线求土的压缩性指标
原始压缩曲线是指室内压缩试验e—logp曲线镜修正 后得出的符合现场原始土体孔隙比与有效应力的关系 曲线。 1. 正常固结土
(1)先作b点 (2)再作c点 (3)然后作bc直线
(原始压缩曲线)
2. 超固结土
(1)先作b1点 (2)过b1点作一直线 (3)再作c点 (4)然后作bc直线 (原始压缩曲线)
体积压缩系数

地基变形计算

地基变形计算

5
5.888 0.704 8.8 134.76
6
6.272 0.384 4.114286 138.8743
7
6.336 0.064 0.6 139.4743
8
6.08 -0.256 -2.13333 137.341
地基变形 四. 计算深度
Zn 按5.3.8计算Zn Zn=B(2.5-0.4lnB)= 9.281124 (m)
中心点
αi 1 0.88 0.8 0.72 0.64 0.56 0.48 0.4
层号 1
Ziαi 1.2
Ziαi-Zi1αi-1 1.2
Δsi' (mm) 45
ΣΔsi' (mm) 45
2
2.816 1.616 40.4 85.4
3
4.16 1.344 25.2 110.6
4
5.184 1.024 15.36 125.96
按5.3.7复核Zn
查表 5.3.7
Δz= 0.8
(m)
层号 Zi(m) Zi/b
l/b
8
15.2 6.08
1.6
n-Δz 14.4 5.76
1.6
αi
Ziαi
Esi(MP a)
Δsi'
ΣΔsi'
0.4
6.08
18 2.66667 137.341
0.4
5.76
0.025ΣΔsi'= 3.433524 > 2.666667 Yes
距基底深
层号

Zi/b
l/b
Zi(m)
1
1.20 0.48
1.6
2
3.20 1.28
1.6

地基变形验算

地基变形验算

地基变形验算
详细步骤
1. 锚杆初步验算
(1) 求解锚杆受拉应力:根据准则十四计算锚杆受拉应力大小;
(2) 求解锚杆抗拉强度:根据锚杆材料及规范要求,查找锚杆的抗拉强度或抗拉应力;
(3) 锚杆合理性判断:比较锚杆受拉应力大小与锚杆抗拉强度大小,确定锚杆符合要求;
2. 地基变形初步验算
(1) 求解地基压力:求解地基下方各锚杆点的压力分布以及地基面普遍压力;
(2) 求解地基变形:根据地基可塑性模型理论计算构件和地基传递耦合作用下地基的变形;
(3) 地基变形合理性判断:比较地基变形大小与上一步验算结果,确定地基变形符合要求。

注册岩土考试膨胀土地基变形量计算

注册岩土考试膨胀土地基变形量计算

S =ψ
∙△ ∙ ℎ S = ψ
其他情况
胀缩变形量 ( + ∙△ ) ∙ ℎ
经验系数 三层及以下建筑物:ψ =0.6
三层及以下建筑物:ψ =0.8
三层及以下建筑物:ψ =0.7
计算深度
(zn)
从基础底面 算起
Max(浸水影响深度;大气影响深度)
Max(热源影响深度;大气影响深度); 1、按场地大气影响深度;
判别条件 采用公式
膨胀土地基变形量计算 (by 华山论剑之独孤求败)
1、 天然地表 1m 处土的含水量等于或接近最 小值
2、 地面有覆盖无蒸发可能 3、 使用期间,经常有水浸湿的地基
1、 天然地表下 1m 处土的含水量大于 1.2 塑限含水量 Wp
2、 直接受高温作用
膨胀变形量
收缩变形量
S =ψ
∙ℎ
大气影响计 2、当计算深度内有稳定地下水位时,可计算
土的湿度系数ψ
大气影响深度 da
算至水位以上 3m。
至水位以上 3m。
0.6
5.0
0.7
4.0
0.8
3.5
0.9
3.0
土的湿度系数ψ :地表下 1m 处土层含水量可
能达到的最小值与其塑限之比。
膨胀率 :平均自重压力+准永久组合
收缩系数 = ,Δ 为收缩过程中两点含水量之差对应的竖向线缩率之差;
计算参数
平均附加压力下的膨胀率
第 层含水量变化值 Δw = Δ − (Δ − 0.01) ,相当于点(1,Δ ),(Zn,0.01) 内插,第 1 层含水量变化值 Δw = − ∙ w ,zi 为计算土层中点深度
特殊情况:地表下 4m 深度内存在不透水基岩△ 为常数:△ = − ∙ w

地基变形允许值

地基变形允许值
3地基的变形
3.1土的室内压缩试验 地基土假定为连续、匀质、各向同性的半无限弹性体,当 建筑的荷载作用于某一局部的地基土上时,该部分土要发生竖 向压缩变形,但由于周围土的限制作用而不发生水平膨胀变形。 故为了测定土的应力应变关系及压缩性指标以便于变形计算, 为了更好地符合实际土变形特点,采取从室外取得未经扰动的 天然结构土样,进行模拟土实际变形的有侧限的压缩试验即室 内试验(图3.1)。有时也称“固结试验”,因为在土力学中习 惯上把土的压缩过程称为“固结”。
1分层分层的原则是以0.4b(b为基底短边长度)为分层厚 度,同时必须将土的自然分层处和地下水位处作为分层界线。 由于附加应力在基底下沿深度方向的分布图线是曲线渐减的, 故分层厚度越小,其计算精度越高。
3地基的变形
图3.4分层总和法计算图
3地基的变形
2计算基底中心以下各层界面上的自重应力σcz和附加 应力σz,按同一比例画出σcz和σz的分布图形。
3地基的变形
图3.1压缩试验
3地基的变形
3.1.1土的固结与固结度 土体被压缩的过程称为固结。饱和土是由固体颗粒构成的骨 架以及充满孔隙的水组成。因此,土中的应力有两种形态: (1) 土粒与土粒之间在接触点上的压力即有效应力σ′; (2) 孔隙内水所受的压力即孔隙水压力u。当加荷瞬间附加 应力σz(因土粒骨架还未来得及变形)全由孔隙水来承担,此 时水压力称为超静水压力。孔隙水在超静水压力作用下逐渐被排 出,因此一部分压力由骨架承担。最后,逐渐由有效应力完全替 代静水压力。
3地基的变形
其试验方法是:用环刀切取天然土样,放入圆筒形压缩 容器内,土样上下各垫一块透水石,使土样压缩后的水可自 由排出。在土样上逐级加荷(p=50kPa、100kPa、200kPa、 400kPa),每次待压缩稳定后测其相应压缩变形值S。由于 室内压缩试验主要用于黏性土,特别间就相当长,需 几年甚至几十年才能压缩稳定。

土的压缩性和地基变形计算

土的压缩性和地基变形计算

土的压缩性和地基变形计算一、土的压缩性计算方法1.倒数法这种计算方法是通过土体在一定应力范围内的压缩变形数据,利用线性拟合方法得到的压缩指数。

数学公式为:Cc=1/ε其中,Cc为压缩指数,ε为压缩应变。

2.趋势线法这种方法是通过土体在不同应力水平下的压缩变形数据,利用非线性拟合方法得到的压缩指数。

数学公式为:Cc=aσ^b其中,Cc为压缩指数,σ为应力水平,a和b为经验系数。

3.液限试验法这种方法是通过液限试验得到土的液限含水量(wL)和塑限含水量(wP),然后通过经验公式计算压缩指数。

数学公式为:Cc=(wL-wP)/wP其中,Cc为压缩指数,wL和wP为液限含水量和塑限含水量。

二、地基变形计算方法地基变形通常分为沉降和倾斜两种形式。

它受到外加载荷、土的性质、环境温度等多种因素的影响。

下面介绍几种地基变形计算方法:1.弹性计算法这种方法适用于土壤刚度较高且加载荷较小的情况。

它通过弹性力学的原理,利用弹性模量和应力分布进行计算。

数学公式为:Δh=(σ/E)*B其中,Δh为地表沉降,σ为基底应力,E为弹性模量,B为基底宽度。

2.线性弹塑性计算法这种方法适用于土壤刚度较低但有一定强度的情况。

它通过引入塑性曲线和初始剪胀量进行计算。

数学公式为:Δh = Δhs + Δhp其中,Δhs为弹性沉降,Δhp为塑性沉降。

3.经验推算法这种方法是通过统计和经验总结,根据类似的工程经验进行估计。

根据工程的特点,选择合适的经验公式进行计算。

这种方法相对简单方便,但精度较低。

三、影响因素1.土的性质土的类型、颗粒大小和形状、含水量等因素都会影响土的压缩性和变形特性。

2.外加载荷外加载荷的大小和分布形式对土体的压缩性和变形有直接影响。

3.环境温度环境温度的变化会导致土体的收缩或胀大,从而引起地基的变形。

4.周围土体状态如果周围土体存在固结或胀大,会对地基的变形产生影响。

总结:。

《建筑地基基础设计方法及实例分析(第二版)》第2章

《建筑地基基础设计方法及实例分析(第二版)》第2章
三相草图法是求取物 理性质指标的简单而 有效的方法
24
土的物理特征
无粘性土的密实度 密实度 如何衡量?
单位体积中固体颗粒含量的多少 1) 按天然孔隙比 e 确定
优点:简单方便 缺点:不能反映级配的影响
只能用于同一种土 对 策
2) 按相对密实度Dr确定
emin = 0.35 emin = 0.20
2.1 设计基本要求
2.1 设计基本要求
粘性土的可塑性及其指标
可塑性
当土在一定条件下,因受外力作用被塑造或搓揉成任意形状而不产生 裂缝,且当外力移去后,仍能保持既得形状的性能,称为土的可塑性。
塑性指数
I p wL wp
塑性指数表示粘性土呈可塑状态时含水量的变化范围。
工程应用
----塑性指数与粘性土中土粒的组成、粘粒的含量及矿物 成分有关。土粒越细,含量越高,则其比表面积就越大,此时 粘性土中结合水含量就越高,塑性指数就会随之增大。从矿物 成分看,粘土中蒙脱石含量越多,塑性指数会急剧增大。
运积土
有搬运
重力: 坡积土 土粒粗细不同,性质不均匀
洪积土 有分选性,近粗远细
流水:
冲积土 浑圆度分选性明显,土层交迭 湖泊沼泽沉积土 含有机物淤泥,土性差
海相沉积物 颗粒细,表层松软,土性差
冰川: 冰积土 土粒粗细变化较大,性质不均匀
风力:风积土 颗粒均匀,层厚而不具层理
12
2.1 设计基本要求
强度问题 变形问题
土的应力-应变关系的假定
碎散体
非线性 弹塑性
① 连续介质 (宏观平均)
② 线弹性体 (应力较小时)
Δσ
线弹性体
成层土
③ 均匀一致各向同性体
各向异性 (土层性质变化不大时)

地基变形计算

地基变形计算

地基变形计算
项目名称_____________日期_____________
设计者_____________校对者_____________
一、工程信息
1.工程名称: CJ-1
2.勘察报告: 《岩土工程勘察报告》
二、设计依据
《建筑地基基础设计规范》 (GB50007-2002)
三、计算信息
1.几何参数:
基础宽度 b=2.000 m
基础长度 l=1.000 m
2.基础埋置深度 dh=0.500 m
3.荷载信息:
基础底面处的附加压力
Po=(F+G)/(b*l)-γi*d=(200.000+100.000)/(2.000*1.000)-10.000=140.000 kPa 地基承载力特征值 fak=90.000 kPa
4.地面以下土层参数:
四、计算地基最终变形量
1.确定△Z长度
根据基础宽度b=2.000 m,查表5.3.6得△Z=0.3 m
3.验算地基变形计算深度:
△Sn'≤0.025*∑△Si' 【5.3.6】
△Sn'/∑△Si'=0.5255/22.8833=0.0230≤0.025,满足要求。

4.确定沉降计算经验系数ψs
Es'=∑Ai/∑(Ai/Esi)=10.905MPa
po=140.000kPa fak=90.000kPa po≥fak
查表5.3.5,得ψs=0.707
5.计算地基最终变形量s
s=ψs*s'=ψs*∑[po*(Z i*αi-Z i-1*αi-1)/Esi] 【5.3.5】 =0.707*22.8833=16.182 mm。

地基土压缩模量及变形模量计算方法

地基土压缩模量及变形模量计算方法

地基土变形模量及压缩模量计算方法1.工程实例某建筑物地基基础因天然地基承载力不能满足设计要求,故本工程采用换填垫层法进行地基处理,垫层材料采用级配良好的无侵蚀性碎石土材料,换填范围基础边每边扩出不小于1米,换填厚度不小于2.0m,压实系数不小于0.97,换填后地基承载力特征值不小于160kPa。

2.变形模量及压缩模量计算方法载荷试验的变形模量E0(MPa)和压缩模量ES(MPa),可按下式计算:①变形模量计算公式:EO =IO(1-u2)pd/s②压缩模量计算公式:ES =EO/[1-2u2/(1-u)]其中:EO—变形模量MPa;ES—压缩模量MPa;I-刚性承压板的变形系数,圆形承压板取0.785,方形承压板取0.886,矩形承压板当长宽比l/b=l.2 时,取0.809,当l/b= 2.0时,取0.626,其余可计算求得,但l/b不宜大于2;μ-土的泊松比(碎石土取0.27,砂土取0.30,粉土取0.35,粉质黏土取0.38,黏土取0.42)d-承压板直径(1平方米圆形承压板:d=0.565×2=1.13m;1平方米方形承压板:d=1m;2平方米圆形承压板:d=0.8×2=1.6m;2平方方形:d=1.415m)p-p-s曲线线性段的压力(kPa)s-与p对应的沉降(mm)3.变形模量及压缩模量计算过程依据地基静载试验得出地基承载力特征160kPa对应沉降量s为7.5mm;故该试验点变形模量及压缩模量分别为:①变形模量E O =IO(1-u2)pd/s=[0.785(1-0.27×0.27)×160kPa×1.13m]/7.5mm=17.544MPa;②压缩模量E S =EO/[1-2u2/(1-u)]=17.544MPa/[(1-2×0.27×0.27)/(1-0.27)]=14.993MPa。

计算地基变形规定

计算地基变形规定

计算地基变形规定
1、传至基础底面的荷载效应应采纳正常使用极限状态下荷载效应的准永久组合,不应计入风荷载和地震作用;
2、对于砌体结构应由局部倾斜值掌握;对于框架结构和排架结构应由相邻柱基沉降差掌握;对于多层或高层建筑应由整体倾斜值掌握,必要时尚应掌握平均沉降量;
3、地面有大面积堆载或基础四周有局部堆载,沉降计算应计入地面沉降引起的附加沉降;
4、应考虑相邻基础荷载影响;当基础面积系数大于0.6时,可按基础外包面积计算基底附加压力;
5、当建筑物设有地下室且埋置较深时,应考虑基坑开挖后,地基土回弹再压缩引起的沉降值;
6、对高压缩性土地基,当基底附加压力大于地基土承载力特征值的0.75时,应猜测沉降变化趋势并掌握施工期间的加荷速率;
7、宜考虑上部结构、基础与地基共同作用进行变形计算。

1、传至基础底面的荷载效应应采纳正常使用极限状态下荷载效应的准永久组合,不应计入风荷载和地震作用;
2、对于砌体结构应由局部倾斜值掌握;对于框架结构和排架结构应由相邻柱基沉降差掌握;对于多层或高层建筑应由整体倾斜值掌握,必要时尚应掌握平均沉降量;
3、地面有大面积堆载或基础四周有局部堆载,沉降计算应计入地面沉降引起的附加沉降;
4、应考虑相邻基础荷载影响;当基础面积系数大于0.6时,可按基础外包面积计算基底附加压力;
5、当建筑物设有地下室且埋置较深时,应考虑基坑开挖后,地基土回弹再压缩引起的沉降值;
6、对高压缩性土地基,当基底附加压力大于地基土承载力特征值的0.75时,应猜测沉降变化趋势并掌握施工期间的加荷速率;
7、宜考虑上部结构、基础与地基共同作用进行变形计算。

地基变形计算技巧

地基变形计算技巧

地基变形计算技巧应用Excel 进行地基变形计算的技巧赵文廷一、概述国家标准《建筑地基基础设计规范》(GB500072—2002)规定:地基基础设计等级为甲级和乙级的建筑物应按地基变形设计,部分地基基础设计等级为丙级的建筑物应作地基变形验算。

国家标准《岩土工程勘察规范》(GB50021—2001)及国家行业标准《高层建筑岩土工程勘察规范》(JGJ72—2004 J366—2004)规定:岩土工程勘察应预测和评价天然地基变形量。

此外,对天然地基进行均匀性评价,也需要按地基变形计算方法确定钻孔的当量压缩模量。

因此,地基变形计算是岩土工程师必作的主要工作之一。

地基变形计算是一项较烦索的工作,以往手工计算,不仅重复工作量大,而且很容易出错。

如果采用电子表格进行地基变形计算,即可以提高计算效率,又可保证计算准性和精确性。

下面介绍一下应用Excel 进行地基变形计算的一些技巧。

二、地基变形计算原理及要求㈠ 地基变形计算原理地基变形计算方法有多种,国家现行标准《建筑地基基础设计规范》GB50007—2002(以下简称规范GB50007)规定:计算地基变形时,地基内的应力分布可采用各向同性均质线性变形体理论,其最终变形量可按下式计算:)(1110--=-='=∑i i i i n i sis s z z E p s s ααψψ 式中 s ——地基最终变形量(mm );s '——按分层总和法计算的地基变形量(mm ); 图一:地基沉降计算简图α系数 曲线s ψ——沉降计算经验系数,根据地基沉降观测资料及经验确定。

无地区经验时,可采用表1的数值;n ——地基变形计算深度范围内所划分的土层数(图一);0p ——对应于荷载效应准永久组合时,基础底面处的附加压力(kPa );si E ——基础底面下第i 层土的压缩模量(MPa ),应取土层自重压力至土层自重压力与附加压力之和压力段计算;i z 、1-i z ——基础底面至第i 土层、第1-i 土层底面的距离(m );i α、1-i α——基础底面计算点至第i 土层、第1-i 土层底面范围内平均附加应力系数,可按规范GB50007附录K 采用;s E ——地基变形计算深度范围内当量压缩模量(MPa ),应按下式计算:∑∑=sii i s E A AEi A ——第i 土层附加应力系数沿土层厚度的积分值(kN/m ),即:)(110---=i i i i i z z p A αα∑iA ——地基变形计算深度范围内所有土层的附加应力系数沿土层厚度的积分值之和(kN/m );∑si i E A ——按分层总和法计算出的地基变形量(mm ),即∑sii E A s '=。

《土力学与地基基础》第5章 地基变形计算

《土力学与地基基础》第5章 地基变形计算

2、密实砂土的压缩性小,当 发生相同压力变化△p时,而 相应的孔隙比变化△e就小, 因此曲线比较平缓。
压应力
因此,可以采用曲线的缓、陡程度来表示不同土样的压缩 性。
利用环刀中土样横截面积不变和土样受压前后土粒体 积不变的两个条件,求出土样压缩稳定后的孔隙比 (压缩后孔隙比变小):
设Vs=1,环刀横截面面积为A,则土样加荷 前体积V=H1×A=(1+e1)×Vs 即:A=(1+e1)×Vs/H1 加荷后 V′=H2×A=(1+e2)×Vs 即:A=(1+e2)×Vs/H2
加荷方式:
百分表
按 p=50、100、200、400kPa逐级
加荷。
试验结果:
P
P2
P3 荷载
e 孔隙比
1.0
P1
0.9
t
es
e0
e1 e2 s2
s1
0.8
s3 变形量
e3 土体厚度0.7
压应力
t
0.6
0 100 200 300 400 p(kPa)
压缩曲线(e-p曲线):
孔隙比
1、由于软黏土的压缩性大, 当压力发生变化△p时,则相 应的孔隙比变化△e也大,因 此曲线比较陡;
偏心荷载: pmax F G 1 6e
pm in
bl l
自重应力
d 填土
基底 黏土
i层 n层 岩石
(课本第78页)
3、计算步骤
F
地面
(4)计算基底附加压力;
h1 γ1、Es1
轴心荷载:
b
p0 p r0d
h2
γ2、Es2
偏心荷载:
hi γi、Esi
p p 0max

地基变形计算

地基变形计算

注:1. 本表数值为建筑物地基实际最终变形允许值;2. 有括号者仅适用于中压缩性土;3. l为相邻柱基的中心距离(mm);H g为自室外地面起算的建筑物高度(m);4. 倾斜指基础倾斜方向两端点的沉降差与其距离的比值;5. 局部倾斜指砌体承重结构沿纵向6m~10m内基础两点的沉降差与其距离的比值。

5.3.5 计算地基变形时,地基内的应力分布,可采用各向同性均质线性变形体理论。

其最终变形量可按下式进行计算:(5. 3. 5)式中:s——地基最终变形量(mm);s′——按分层总和法计算出的地基变形量(mm);ψs——沉降计算经验系数,根据地区沉降观测资料及经验确定,无地区经验时可根据变形计算深度范围内压缩模量的当量值(E s)、基底附加压力按表5.3.5取值;n——地基变形计算深度范围内所划分的土层数(图5.3.5);p0——相应于作用的准永久组合时基础底面处的附加压力(kPa);E si——基础底面下第i层土的压缩模量(MPa),应取土的自重压力至土的自重压力与附加压力之和的压力段计算;z i、z i-1——基础底面至第i层土、第i-1层土底面的距离(m);a i、a i-1——基础底面计算点至第i层土、第i-1层土底面范围内平均附加应力系数,可按本规范附录K 采用。

图5. 3. 5基础沉降计算的分层示意1—天然地面标高;2—基底标高;3—平均附加应力系数a曲线;4—i-1层;5—i层表5.3.5 沉降计算经验系数ψs5.3.6 变形计算深度范围内压缩模量的当量值(E s),应按下式计算:(5. 3. 5)式中:A i——第i层土附加应力系数沿土层厚度的积分值。

5.3.7 地基变形计算深度z n(图5. 3.5),应符合式(5..3 7)的规定。

当计算深度下部仍有较软土层时,应继续计算。

(5. 3. 7)式中:△s′i——在计算深度范围内,第i层土的计算变形值(mm);△s′n——在由计算深度向上取厚度为△z的土层计算变形值(mm),△z见图5.3.5并按表5.3.7确定。

地基变形计算

地基变形计算

•物理意义 把第一应力状态到第二应力状态旳变 形实途际径上从把曲弹线塑简性化变为形了简直化线为,了弹a 1性-2为变该形直了线。旳斜率。
•地基土按a 1-2分类 当取第一应力状态为100kPa,第二应力状态为
200kPa时,根据(GB50007)规范按下列原则分类:
压缩性分类 低压缩性土 中档压缩性土 高压缩性土
αi-1 p0
d
b
Zi
Zi-1
附加应力 曲线αp0
p b
△Z
p0
Zn 平均附加应 力曲线αp0
令:面积(红色+绿色)=A
z
z
则:A=
∫0σzdz=p0
∫αdz
0
• 引入一系数 α 则:
z
α = ∫αdz/Z
0
上式指明 α 是深度Z范围内附加应力系数α旳平均 值,所以称其为平均附加应力系数。
• 第i层旳沉降量:
(2)相对沉降法 按s/d取值。
0
p0.01 p01
pu1 p/kPa
S/b=
直线段
•fak =p0
0.01
•当pu<2 p0时,
取:fak = pu /2
缓变形曲线
陡降段
S/mm
•缓变形曲线fak不能按以上二种措施拟定时,当承 压板旳面积为0.25~0.50m2,可取s/b=0.01~0.015所 相应旳荷载,但其值不能不小于最大加载旳二倍。
e
Cc=(e1-e2)/(lg p1-lgp2)= (e1-e2)/lg( p1/p2)
e0
土旳回弹曲线
e1 e2
斜率
和再压缩曲线
Cc e0~e0` :残余变形,塑性变形
0
p1 p2

2《地基基础设计规范》GB50007-强条

2《地基基础设计规范》GB50007-强条

《地基基础设计规范》GB 50007-2011 【28条】● 3.O.2 根据建筑物地基基础设计等级及长期荷载作用下地基变形对上部结构的影响程度,地基基础设计应符合下列规定:1 所有建筑物的地基计算均应满足承载力计算的有关规定;2 设计等级为甲级、乙级的建筑物,均应按地基变形设计;3 设计等级为丙级的建筑物有下列情况之一时应作变形验算:1) 地基承载力特征值小于130kPa ,且体型复杂的建筑;2) 在基础上及其附近有地面堆载或相邻基础荷载差异较大,可能引起地基产生过大的不均匀沉降时;3) 软弱地基上的建筑物存在偏心荷载时;4) 相邻建筑距离近,可能发生倾斜时;5)地基内有厚度较大或厚薄不均的填土,其自重固结未完成时。

4 对经常受水平荷载作用的高层建筑、高耸结构和挡土墙等,以及建造在斜坡上或边坡附近的建筑物和构筑物,尚应验算其稳定性;5 基坑工程应进行稳定性验算;6 建筑地下室或地下构筑物存在上浮问题时,尚应进行抗浮验算。

● 3.O.5 地基基础设计时,所采用的作用效应与相应的抗力限值应符合下列规定:1 按地基承载力确定基础底面积及埋深或按单桩承载力确定桩数时,传至基础或承台底面上的作用效应应按正常使用极限状态下作用的标准组合;相应的抗力应采用地基承载力特征值或单桩承载力特征值;2 计算地基变形时,传至基础底面上的作用效应应按正常使用极限状态下作用的准永久组合,不应计入风荷载和地震作用。

相应的限值应为地基变形允许值;3 计算挡土墙、地基或滑坡稳定以及基础抗浮稳定时,作用效应应按承载能力极限状态下作用的基本组合,但其分项系数均为1.0。

4 在确定基础或桩基承台高度、支挡结构截面、计算基础或支挡结构内力、确定配筋和验算材料强度时,上部结构传来的作用效应和相应的基底反力、挡土墙土压力以及滑坡推力,应按承载能力极限状态下作用的基本组合,采用相应的分项系数。

当需要验算基础裂缝宽度时,应按正常使用极限状态作用的标准组合;5 基础设计安全等级、结构设计使用年限、结构重要性系数应按有关规范的规定采用,但结构重要性系数(γo) 不应小于1.0 。

土力学与地基基础第四节 地基变形及稳定性验算

土力学与地基基础第四节 地基变形及稳定性验算

1.2
MR — 抗滑力矩(kN m)
MS — 滑动力矩(kN m)
3.位于稳定土坡坡顶上的建筑物,当垂直于坡顶边缘 线的基础底面边长b≤3m时,其基础底面外边缘线至 坡顶的水平距离a应符合下列要求,但不得小于2.5m。
ቤተ መጻሕፍቲ ባይዱ
条形基础
矩形基础
a≥
3.5b d tanβ
a≥
2.5b d tanβ
当基础底面外边缘线至坡顶的水平距离a不满足 以上 要求时,需进行稳定安全系数的验算或设置挡土结构。 当
边坡坡角大于45度、坡高大于8m时,即使距离符合a要求, 也需进行边坡稳定性验算。
一、地基变形验算 地基变形验算的要求是:建筑物的地基变
形计算值不大于地基变形允许值即: S ≤ S
验算时,首先应根据建筑物的结构特点、安全使用 要求及地基的工程特性确定某一变形特征作为变形验
算的控制条件。
二、地基稳定性验算
在进行地基基础设计时,对经常受水平荷载作 用的高层建筑和高耸结构,承受水压力的挡土墙、 水、坝、桥台,以及建造在斜坡上的建(构)筑 物,尚验算其稳定性。
1.建筑地基丧失稳定的方式有: (1)倾覆; (2)沿基础底面滑动; (3)连同土体(包括可能存在的斜坡坡体)整体滑动。
2、在竖向和水平荷载作用下,地基内仅存在软土及其夹 层时,可能发生地基整体滑动失稳。其稳定性取决于最
危险的滑动面上诸力对滑动中心产生的抗滑力矩MR与滑 动力矩MS的相互关系:
MR ≥ MS

第4章 地基变形计算

第4章 地基变形计算
ES H
1
H1
a
下简单拉伸或压缩时的弹性模量相区别。
E s 亦称侧限压缩模量,以便与一般材料在无侧限条件
课后习题4-1
三、土的变形模量 土的压缩性指标,除从室内压缩试验测定外,还可以 通过现场原位测试取得。例如可以通过载荷试验或旁压试 验所测得的地基沉降(或土的变形)与压力之间近似的比例 关系,从而利用地基沉降的弹性力学公式来反算土的变形 模量。 (一)以载荷试验测定土的变形模量 地基土载荷试验是工程地质勘察工作中的一项原位 测试。试验前先在现场试坑中竖立 载荷架,使施加的荷 载通过承压板(或称压板)传到地层中去,以便测试岩、土 的力学性质, 包括测定地基变形横量,地基承载力以及 研究土的湿陷性质等。 图2-31所示两种千斤顶型式的载荷架,其构造一般 由加荷稳压装置,反力装置及观测装置三部分组成。
计算地基沉降量时,必须取得土的压缩性指标,在 一般工程中,常用不允许土样产生侧向变形(侧限条件)的 室内压缩试验来测定土的压缩性指标 。 二、压缩曲线和压缩性指标 (一)压缩试验和压缩曲线
为求土样压缩稳定后的孔隙比,利用受压前后土粒体 积不变和土样横截面积不变的两个条件,得出受压前后土 粒体积(见图2—25):
e1 e2 s H 1 e1
式中 H ——薄可压缩土层的厚度,m, e1 ——根据薄土层顶面处和底面处自重应力 c (即初始压力 p1 )的平均值从土的压缩曲线上查得的相 应的孔隙比; e2 ——根据薄土层的顶面处和底面处自重应力 c 平 均值与附加应力平均值 z (即压力增量 p ,此处近似等 于基底平均附加压力 p0 )之和(即总压应力p2 c z ), 从土的压缩曲线上得到的相应的孔隙比。 实际上,大多数地基的可压缩土层较厚而且是成层 的。下面讨论较厚且成层可压缩土层的沉降计算。

地基变形的计算方法

地基变形的计算方法

地基变形的计算方法地基变形是指地基在受到外部荷载作用时所发生的变形现象,它是土木工程中一个非常重要的问题。

地基变形的计算方法对于工程设计和施工具有重要意义。

本文将介绍地基变形的计算方法,希望能对相关领域的专业人士和学习者有所帮助。

首先,地基变形的计算方法需要考虑地基的类型和荷载的性质。

一般来说,地基可以分为浅基础和深基础两种类型。

浅基础包括桩基和板基,而深基础包括桩基和井基。

不同类型的地基在受到荷载作用时会产生不同的变形特征,因此需要采用不同的计算方法。

其次,对于浅基础而言,地基变形的计算方法一般采用弹性理论和塑性理论相结合的方法。

在计算地基的弹性变形时,可以采用弹性模量和泊松比等参数进行计算。

而在计算地基的塑性变形时,则需要考虑地基土的塑性特性和承载力等参数。

通过综合考虑地基的弹性和塑性特性,可以得到比较准确的地基变形计算结果。

对于深基础而言,地基变形的计算方法则需要考虑地基的侧向变形和竖向变形。

在计算地基的侧向变形时,需要考虑桩身的弯曲和扭转等变形特征。

而在计算地基的竖向变形时,则需要考虑桩基的承载力和沉降等参数。

通过综合考虑地基的侧向和竖向变形特征,可以得到比较准确的地基变形计算结果。

最后,需要指出的是,地基变形的计算方法不仅需要考虑地基本身的性质,还需要考虑荷载的性质和作用方式。

在实际工程中,地基受到的荷载可能是静载、动载或者温度荷载等不同类型的荷载。

这些不同类型的荷载对地基的变形特征会产生不同的影响,因此在进行地基变形的计算时需要综合考虑不同类型的荷载作用。

综上所述,地基变形的计算方法是一个复杂而又重要的问题。

通过综合考虑地基的类型、荷载的性质和作用方式,可以得到比较准确的地基变形计算结果。

希望本文所介绍的内容能对相关领域的专业人士和学习者有所帮助,谢谢阅读!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E0
E0
式2-8
z z (y x)
E0
E0
式2-9
侧限条件下,土体只能产生竖向压缩,侧向
应变 εx=εy=0 σx=σy=μσz / (1-μ) 式2-1015二来自载荷试验与土的变形模量(E0)
变形模量与压缩模量的关系 P35
式2-10代入2-9得:
z
1
22 1
z
E0
式2-11
由压缩模量ES定义式2-4结合2-11得:
本章以分层总和法、规范法、弹性力学公 式法为主。
8
2.2 土的压缩性
一、土的压缩试验及其参数
1.压缩试验 在土压力盒的侧限作用下,竖向逐级加荷pi,测 试各级荷载对应的稳定变形值,换算成相应的孔 隙比(孔隙比e:单位体积土体中孔隙体积Vv与 固体颗粒体积Vs之比)作e-p或e-lgp压缩曲线。 2.压缩性参数 ⑴压缩系数(a):压缩曲线上任两点间割线的 斜率。(kPa-1或MPa-1)
2.1 概述 如前述:建筑荷载→p0→σz→地基变形→基础沉降若:
地基软弱或荷载过大 过量的沉降 地基不均匀或荷载不均匀或相邻荷载影响
不均匀沉降
超过允许值
不安全
建筑类型、结构类型
变形允许值←
重要性、高度 使用要求
岩土工程师以规范形式给定。
地基土类别
计算值与允许值对比
地基变形←
p0 ( z )
水压力变化动 静水 水压 压力 力
中等
≥0.5

10
2.2 土的压缩性 一、土的压缩试验及其参数
⑵压缩指数(Cc)
e-lgp曲线上,直线段较
长。该直线段斜率即
为Cc。
Cc
lg
e1 e2 p2 lg
p1
a与c的关系:
a Cc lg(1 p ) (P33式2-3)
p
p1
11
2.2 土的压缩性 一、土的压缩试验及其参数
⑶压缩模量(Es) 压缩模量:土在侧限条件下受压时竖向应
第二章 地基变形
土具有压缩性 荷载作用 地基发生沉降
荷载大小 土的压缩特性
一致沉降 差异沉降 (沉降量) (沉降差)
建筑物上部结构产生附加应力
地基土厚度、结构
土的特点 (碎散、三相)
影响结构物的安全和正常使用
沉降具有时间效应-沉降速率
1
第二章 地基变形
2.1 概述 2.2 土的压缩性 * 2.3 基础最终沉降量 2.4 路基的沉降和位移(自学) * 2.5 地基变形与时间的关系
E 0
1
22 1
Es
即E0与Es之间的理论关系
K0=μ/(1-μ) 称土的静止土(或侧)压力系数;
定义为:侧限条件下土中水平有效应力与竖向
有效应力比。 雅克公式:K0=1-sinφ’ 其中φ’ 为土的有效内摩擦角。
16
2.3 分层总和法(单向压缩法之一) 一、计算原理
计算基础沉降量的分层总和法适用于各种地质条 件和荷载情况,计算指标便于测定,有多年的应 用经验。
形荷载板为0.79; E0—土的变形模量(kPa)。
14
二、载荷试验与土的变形模量(E0)
变形模量与压缩模量的关系 P34
变形模量指无侧限受压条件下,垂直压应力与 相应压缩应变之比,反应土的变形特性。
广义虎克定律:三向受力条件下土体应变为:
x x (y z)
式2-7
E0
E0
y y (x z)
水位(施工降水) 渗透
施工:开挖、回弹、临时荷载等
自重欠固结
6
按变形成因:从先至后依次发生
瞬时变形 (Sd ):一经加荷即产生的变 形(砂土压密、粘性土弹变 ) (主)固结(Sc ):(自由水)渗透固结所致 (粘性土排水、排气固结 ) 次固结(Ss ):结合水及颗粒蠕变所 致(饱和软粘土明显 )
总变形量:St=Sd+Sct+Sst
取直线段端点的p、s,用弹性公式,计算E0:
E0
pb (1 2 )
S
(P34式2-6)
变形模量(E0):在无侧限压力条件下岩土体的 竖向压应力与相应的竖向应变之比。
13
E0
pb (1 2)
S
即无侧限条件下
E0
z z
P—施加于荷载板上的荷载(kPa); S—与压力P相对应的沉降量(cm); b—试验荷载板的边长或直径(cm); μ—土的泊松比; ω—沉降影响系数,方形荷载板为0.88,圆
其中:
无粘性土 一般粘性土
软土
主要固结形式
Sd Sc Sc、Ss
工期内完成固结量/% 近100 20-80 5-20
一般:基础沉降量是指在σcz+σz作用下,地基主、次固结完成 时的最终沉降量(S∞)。 本章以主固结Sc为主,且以最终S∞为主。
7
2.1 概 述
计算方法:
单向压缩法:分层总和 法、规范法、 e - lgp法 三向变形效应法:斯凯 普勒法、黄文熙法、弹 性力学公式法 应力路线法
17
2.3 分层总和法(单向压缩法之一)
一、计算原理
Si
e1 e2 1 e1
hi

力与相应的压缩应变之比。
Es
z z
1 e1 a
e1—应力区间起始点的孔隙比。
Es越小(a越大),压缩性越高。
12
2.2 土的压缩性 二、载荷试验与土的变形模量(E0)
载荷试验在建筑场地现场进行,属于原位测试。
逐级竖向加荷pi,测试相应的变形稳定值Si,作psi曲线(载荷曲线 P34图2-3)。
将地基变形计算深度(或压缩层厚度)内的土层 分成薄层;
假定无侧向膨胀(单向压缩,可用a,Es); 分别求基础中轴线下各薄层的压缩量(若为大基
础或偏心荷载,则需计算轴线两侧端点的压缩量, 以便计算其倾斜度);
累加即得总的最终沉降量S∞。 设某薄层厚hi,则因Vv缩小而引起的压缩量Si(设
土粒不可压缩),可推得:
2
第二章 地基变形 2.1 概述
工程实例
问题: 沉降2.2米, 且左右两部分 存在明显的沉 降差。左侧建 筑物于1969年 加固。
墨西哥某宫殿
左部:1709年;右部:1622年;地基:20多米厚的粘土
2020/3/25
3
Kiss
由于沉降相互影响,两栋相邻的建筑物上部接触
4
基坑开挖,引起阳台裂缝 修建新建筑物:引起原有建筑物开裂 5
9
2.2 土的压缩性
一、土的压缩试验及其参数
a e1 e2 p2 p1
虽然,a越大,说明土的压缩
性越高,但a与M1、M2的位 置有关,是个变量。因而规
范以p1=100 kPa、p2=200 kPa 间的a1-2作为标准来评价土的 压缩性。
a1-2(MPa-1) <0.1
压缩性 低
0.1≤a1-2<0.5
相关文档
最新文档