《系统辨识第三章》PPT课件

合集下载

《系统辨识》Ppt01-2016-09-24

《系统辨识》Ppt01-2016-09-24

2004.10– 2006.03–2006.05 2006.12–2007.02 2008.05–2008.12 2009.01–2009.10
江南大学“太湖学者”特聘教授、 硕士生导师、 博士生导师 香港科技大学研究员, 中国香港 加拿大渥太华 卡尔顿大学 (Carleton University)研究员 加拿大渥太华 卡尔顿大学(Carleton University)访问教授 加拿大多伦多 瑞尔森大学 (Ryerson University)研究员 数学建模; 系统辨识; 参数估计; 过程控制
令矩阵范数 X
t
2
:= tr[XX T]. 定义二次损失函数
J (θ ) :=
j =1
[y (j ) − ϕT(j )θ ]2 = (Yt − Htθ )T(Yt − Htθ ) = Yt − Htθ 2,
T = −2Ht (Yt − Htθ ) T ˆ (t) = H TYt. Ht)θ = 0. =⇒ (Ht t
Ht−1 T = Ht Ht−1 + ϕ(t)ϕT(t) T − 1 ϕ (t) (5)
= P −1(t − 1) + ϕ(t)ϕT(t), ˆ (t) = (H THt)−1H TYt = P (t)H TYt = P (t)[H T Yt−1 + ϕ(t)y (t)] θ t t t t−1
T = P (t)[P −1(t − 1)P (t − 1)Ht −1 Yt−1 + ϕ(t)y (t)]
系统:
y (t) + a1y (t − 1) + a2y (t − 2) + · · · + any (t − n) = b1u(t − 1) + b2u(t − 2) + · · · + bnu(t − n) + v (t). (2)

03系统辨识及其在软测量技术中的应用

03系统辨识及其在软测量技术中的应用

3.2.1 一般最小二乘法
• 最小二乘求解:
最小二乘估计是在残差平方和准则函数极小意思下的最优 估计,即按照准则函数: 来确定估计值 。求J对 的偏导数并令其等于0,得:
即:
上式称为正则方程,当 计值:
非奇异时,可得最小二乘估
3.2.2 加权最小二乘法
• 如果准则函数取为加权函数,即:
其中
称为加权因子,对所有的k,
• 系统辨识是一种建立和确定模型的方法
模型是关于实际过程的本质的部分信息缩减成有用的 描述形式,是一种按照过程所作的近似描述
◆ ◆
建立数学模型的方法: - 机理建模法(白箱)
- 实验测试法(黑箱)——系统辨识
- 机理建模与实验测试相结合的方法(灰箱)
3.1.1 系统辨识的定义
• 系统辨识的定义(Zadeh1962):

3.1.3 系统辨识方法分类
• 不同辨识目的对模型和辨识的要求:
3.1.4 数学模型的分类
• 数学模型的分类方法有很多,通过对数学模型的分类, 有助于按照具体的应用目的确定一个合适的模型:
◆ ◆ ◆ ◆
从概率的角度分:确定性模型、随机性模型
按模型与时间的关系分:静态模型、动态模型
按时间刻度分:连续时间模型、离散时间模型 按参数与时间的关系分:定常模型、时变模型

3.1.3 系统辨识方法分类
• 在线辨识和离线辨识:
离线辨识要求被辨识对象从整个系统中分离出来,然 后将大量的输入输出数据存储起来,并按照一定的辨识 算法进行数据处理。

在线辨识通常不需要给被辨识对象施加特殊的输入, 而直接利用实际运行条件下被辨识对象的输入输出信息, 它不需要存储从过去到现在的全部输入输出信息,而是 在某个初始估计下启动,然后按照递推算法,随着新信 息的不断获得而不断修正估计值。

《系统辨识》课件

《系统辨识》课件
曲线逐渐上升到稳态值: y() const
可采用结构:
y(t)
G(s) K
y( )
Ts1
待估参数为:K,T
稳态增益: K y()
U0
将试验曲线标么化,即
y(t), y(t)
y()
t
y()1
26
第二章 过渡响应法和频率响应法
则标么化后响应:
y(t)
t
1e T
要确定 T ,只要一对观测数据:y*(t1),t1
G(s)T2s2K 2T s1es
先观察试验所得响应曲线的形状特征,据此判断,从模型类中确 定一种结构。然后进行参数估计,最后验证数据拟合程度,反复 多次,直至误差e(t)最小(验证数据拟合可只取若干点)。
25
第二章 过渡响应法和频率响应法
1)若阶跃响应曲线特征为: y (0 )my a (t)x ]0 [
理论建模的难点在于对有关学科知识及实际经验的掌 握,故不属于课程的讨论范围。
➢ 由于许多系统的机理和所处的环境越来越复杂,因 此,理论建模法的运用亦越来越困难,其局限性越 来越大, 需要建立新的建模方法。
➢ 在理论建模方法难以进行或难以达到要求的情况下,
系统辨识建模方法就幸运而生。
8
2、辨识建模法:
建立数学模型来预报。
4
第一章 概 述
2. 用于分析实际系统 工程上在分析一个新系统时,通常先进行数学仿真, 仿真的前提必须有数学模型。
3. 为了设计控制系统 目前,对被控系统的控制器的设计方法的选取,以及如 何进行具体的控制结构和参数的设计都广泛依赖于对 被控系统的理解及所建立的被控系统数学模型。
对于线性系统,脉冲响应,阶跃响应和方波响应之间
是可以相互转换的。

《系统辨识》课件

《系统辨识》课件

脉冲响应法
总结词
脉冲响应法是一种通过输入和输出数据 估计系统脉冲响应的非参数方法。
VS
详细描述
脉冲响应法利用系统对单位脉冲函数的响 应来估计系统的动态特性。通过观察系统 对脉冲输入的输出,可以提取出系统的传 递函数。这种方法同样适用于线性时不变 系统,且不需要知道系统的具体数学模型 。
随机输入响应法

线性系统模型具有叠加性和齐次性,即 多个输入产生的输出等于各自输入产生 的输出的叠加,且相同输入产生的输出
与输入的倍数关系保持不变。
线性系统模型可以通过频域法和时域法 进行辨识,频域法主要通过频率响应函 数进行辨识,时域法则通过输入和输出
数据直接计算系统参数。
非线性系统模型
非线性系统模型具有非叠加性和非齐次性,即多个输 入产生的输出不等于各自输入产生的输出的叠加,且 相同输入产生的输出与输入的倍数关系不保持不变。
递归最小二乘法
递归最小二乘法是一种在线参数估计方法,通过递归地更新参数估计值来处理动态系统。在系统辨识中,递归最小二乘法常 用于实时估计系统的参数。
递归最小二乘法的优点是能够实时处理动态数据,且对数据量较大的情况有较好的性能表现。但其对初始参数估计值敏感, 且容易陷入局部最优解。
广义最小二乘法
广义最小二乘法是一种改进的最小二乘法,通过考虑误差的 方差和协方差来估计参数。在系统辨识中,广义最小二乘法 常用于处理相关性和异方差性问题。
系统辨识
目录
• 系统辨识简介 • 系统模型 • 参数估计方法 • 非参数估计方法 • 系统辨识的局限性与挑战 • 系统辨识的应用案例
01
系统辨识简介
定义与概念
定义
系统辨识是根据系统的输入和输出数 据来估计系统动态特性的过程。

201110第三讲系统辨识建模法课件

201110第三讲系统辨识建模法课件
如果所确定的系统模型合适,则辨识结束。否则,改变系统的验 前模型结构,重新执行辨识过程,即执行第(4)步至第(8)步,直 到获得一个满意的模型为止。
19
系统辨识的基本方法和步骤
系统辨识中常用的误差准则
辨识有3个要素---数据、模型类和准则。辨识就是按 照一个准则在一组模型类中选择一个与数据拟合得最好的模 型。
持续激励:输入信号必须充分激励系统的所有模态;
输入信号的选择应能使给定问题的辨识模型精度最高。
在具体工程应用中,选择输入信号还应考虑以下因素: (1)输入信号的功率或幅值不宜过大,以免使系统工作 在非线性区,但也不应过小,以致信噪比太小,直接影响 辨识精度; (2)输入信号对系统的“净扰动”要小,即应使正负向 扰动机会几乎均等; (3)工程上要便于实现,成本25 低。
理想阶跃信号
理想阶跃信号:实际上阶跃信号具有上升空间成为带斜坡的阶跃 信号,数学上定义的阶跃信号上升空间为零,称为理想阶跃信号。
ut
0,t 1,t
0 0
理想阶跃信号的频谱:
Ujj1
幅频: 如图所示
U(j) 1( / ),, 00
2 带斜坡的阶跃信号
t/, t
x1(t)
1,
t
带斜坡的阶跃信号
9
(3)系统设计和控制 在工程设计中,必须掌握系统中所包括的所有部件的特性或者子
系统的特性,一项完善的设计,必须使系统各部件的特性与系统的总 体设计要求(如产量指标、误差、稳定性、安全性和可靠性等)相适 应。为此,需要建立数学模型,在设计中分析、考察系统各部分的特 性以及各部分之间的相互作用和它们对总体系统特性的影响。
辨识问题可以归结为用一个模型来表示客观系统(或将要 构造的系统)本质特征的一种演算,并用这个模型把对客观系统 的理解表示成有用的形式。

系统辨识课件方崇智

系统辨识课件方崇智

e
ˆ (假设的数学关系) f
系统的 实际输 出
(1)数学模型
• 数学模型和真实系统的区别
不可测干扰 可测 输入
u, d , f z
可测 输出
可测 输入
e
综合误差
ˆ (假设的数学关系) f
ˆ , e拟合u, z关系 u, z f
可测 输出
(1)数学模型
• 数学模型的两类形式及其用途
可测 输入
第6章 模型阶次辨识 内 容:Hankel矩阵法、F-Test定阶法。
第7章 系统辨识在实际中注意的问题
参考书:
1.方崇智、萧德云编著,《过程辨识》,清华大学出版社,北京 2.李言俊,张科编著,《系统辨识理论及应用》,国防工业出版社,北京 3.蔡季冰编著,《系统辨识》,北京理工大学出版社,北京
预修课程:自动控制原理,概率统计与随机过程
e
综合误差
可测 输出 •系统分析 •系统设计
ˆ (假设的数学关系) f
ˆ f
•预测(预测控制) •性能监测与故障诊断 •仿真
ˆ z
•在线估计和软测量 •模型评价与系统辨识
(1)数学模型
• 数学模型的近似性和外特性等价
u u
d f
e ˆ f u
z
近似性
ˆ f
ˆ z
d
u u
从黑箱角度出 发,外特性等价 (统计意义)
(1)设计辨识实验,获取实验数据
数据集是辨识的三要素之一
min J fˆ , K ( z (1)

z ( L), u(1)
u( L), )
数据集性质→影响辨识结果,u →数据集,因 此要设计辨识实验(重点设计u)
(1)设计辨识实验,获取实验数据

系统辨识与参数估计ppt课件

系统辨识与参数估计ppt课件
The obstacle using Modern Control Theory in practice : It is not easy to obtain a mathematic model of dynamic process, thus the theory deviates from the practice. 实际应用中的障碍:数学模型并不容易获得,造成理论与实际脱节
Selection of model structure: A suitable model structure is chosen using prior knowledge and trial and error. 模型结构:根据先验知识和试凑确定模型的结构。
Choice of the criterion to fit: A suitable cost function is chosen, which reflects how well the model fits the experimental data. 最优准则:选择能反应模型对实验数据拟合程度的目标函数。
Chapter 3 System Identification and Parameter Estimation
第三章 系统辨识与参数估计
3.1 Introduction 概述
3.1.1 What is the Model of Dynamic System? 什么是模型?
Theory model and experiment model 理论模型与实验模型
实验建模的特点:整体性、可用机理模型弥补(互补)
1
Chapter 3 System Identification and Parameter Estimation

系统辨识第3讲

系统辨识第3讲

《系统辨识》第3讲要点第2章 随机信号的描述与分析2.5 白噪声及其产生方法(Why and How ?)2.5.1 白噪声的概念(Why )● 白噪声过程(一系列不相关的随机变量组成的理想化随机过程)相关函数:)()(2τδστ=W R 谱密度:+∞<<∞-=ωσω2)(W S● 近似白噪声过程谱密度:⎩⎨⎧>≤=002,0,)(ωωωωσωW S (0ω为给定的远大于过程的截止频率)相关函数:τωτωπωστ0002sin )(⋅=W R ● 讨论白噪声时,还要涉及到白噪声的概率分布,服从正态分布的白噪声称为高斯白噪声。

n 维白噪声:一个n 维随机过程)(t W 满足:⎩⎨⎧=+=+=)()}()({)}(),({0)}({τδττQ t W t W E t W t W Cov t W E 其中Q 为正定常数矩阵,则称)(t W 为n 维白噪声过程。

● 白噪声序列白噪声序列是白噪声过程的离散形式。

如果序列)}({k W 满足: 相关函数: ,2,1,0,)(2±±==l l R l W δσ 则称为白噪声序列。

谱密度:2)()(σωω==∑∞-∞=-l l j WW e l RS2.5.2 表示定理与成形滤波器● 表示定理(某些特定的有色噪声可以由白噪声输入线性系统而生成) 设平稳噪声序列)}({k e 的谱密度)(ωe S 是ω的实函数,或是ωcos 的有理函数,那么必定存在一个渐近稳定的线性环节,使得如果环节的输入是白噪声序列,则环节的输出是谱密度为)(ωe S 的平稳噪声序列)}({k e 。

● 成形滤波器表示定理中所涉及到的线性环节称为成型滤波器。

白噪声)(k w)(k e可以证明:如果)}({k e 的谱密度)(ωe S 是ωcos 的有理函数,那么一定存在一个成型滤波器,它的脉冲传递函数为:d d c c n n n n z d z d z c z c z C z D z H -------++++++== 111111111)()()( 且)(),(11--z D z C 的根都在z 平面的单位圆内。

《系统辨识第三章》PPT课件

《系统辨识第三章》PPT课件

(N+1)时刻的估计输出值
之差。
第五十五页,共161页。
55
递推公式基本形成,但其中涉及矩阵求逆运算,即 为了避免求逆运算,由矩阵反演公式: 令
第五十六页,共161页。
56
最后,加权最小二乘递推算法归纳如下:
在上列式中,令
,得最小二乘递推算法。
第五十七页,共161页。
57
二、初值的确定
进行递推估计,必须设定初值
由于最小二乘法比较简单实用,而且又可与其他辨识
方法相组合,因此最小二乘辨识是一种基本的、重要的辨 识方法。
第四页,共161页。
4
§3-1 最小二乘法
一、最小二乘辨识方程
用最小二乘辨识技术辨识系统的数字模型的原理方 块图如下:
被辨识系统
测量装置
D/A
A/D
计算机
(最小二乘辨识 算法)
数学模型
第五页,共161页。
但由于简单实用,仍不失为一种好的参数估计方法,
为了克服最小二乘法的不足,在最小二乘法的基础
上,发展了辅助变量法和广义最小二乘法,但计算
量较大。
第三十一页,共161页。
31
例3-2 设有下列二阶系统
输入序列 为振幅等于1的伪随机二位式序列, 噪声 为零均值且方差为 可调正态 分布随机数序列。试说明最小二乘估计精度。
5
被辨识系统
测量装置
D/A
A/D
计算机
(最小二乘辨识算法)
数学模型
设被辨识系统的脉冲传递函数为
第六页,共161页。
6
则当存在观测误差 及建模误差时,相应的差分方程:
式中, 称为方程误差, 为模型参数向量;若令 代 表真实参数向量,显然有

系统辨识讲义

系统辨识讲义

一个极简单的参数方法例子
我们测得0—N采样时刻的输入输出数据,即
u (0), u (1)," , u ( N − 1), u ( N ) y (0), y (1)," , y ( N − 1), y ( N )
假定系统的模型属于如下的模型类:
y ( k ) + ay ( k − 1) = bu (k − 1) + v(k )
k =1
N
∂V (θ ) N = ∑ 2ay 2 (k − 1) + 2 y (k ) y (k − 1) − 2by (k − 1)u (k − 1) ∂a k =1 ∂V (θ ) N = ∑ 2bu 2 (k − 1) − 2 y (k )u (k − 1) − 2ay (k − 1)u (k − 1) ∂b k 等:子空间辨识
1990年代,为了克服PEM针对多变量系统辨识
时需要进行非线性优化,以及IV不能同时辨识 出噪声模型的缺点。Bart De Moor, Verhaegen 等提出了针对多变量系统的subspace identification methods。该类方法不是基于优化 某个criterion,主要用到矩阵的奇异值分解, 无需非线性优化,因而计算量较小。
1.2 模型
数学模型是用来描述系统行为的数学语
言。 非线性系统的数学模型是非线性状态方 程和输出方程。线性系统的数学模型可 以有多种相互等价的形式:状态空间方 程、传递函数、阶跃响应、差分方程等。
扰 动 输入
系统
输出
1.3 建模的两大类方法
机理分析法(first principles modeling)或称为白
何求取参数估计值。least-squares, prediction error, instrumental variable 参数估计算法的统计性质:无偏性、一致性。 如何验证所得模型的有效性?如何选择模型阶数?

《系统辨识第三章》课件

《系统辨识第三章》课件

系统辨识第三章 - PPT课 件
这个PPT课件将介绍系统辨识的基本概念和流程,以及应用举例和常用方法。
什么是系统辨识
系统辨识是一种将实际系统转化为数学模型的技术,以便深入研究系统的特 性和行为。通过对模型的参数估计和检验,可以对实际系统进行预测和控制。
系统辨识的基本流程
1
模型描述
2
将实际系统转化为数学模型,通常使
针对不同系统或者应用场景, 可以采用不同的方法进行辨识, 例如基于时间序列的方法用于 脑电图数据分析。
模型检验
1
残差分析
通过检查模型的残差序列来判断模型的适用性和准确度。
2
不同类型的模型检验方法
例如用于参数个数选择的AIC和BIC准则,以及拟合优度的R方值。
系统辨识的应用举例
机械结构系统的辨识
通过振动信号的观测和模型拟合,可对机械结构系统的弹性系数等进行辨识。
差分方程
用差分方程表示系统状态变量之间的关系,一般适用于离散的系统。
传递函数
用频域特性描述系统动态响应的函数,通常用于电子和控制领域。
参数估计方法
最小二乘法
通过最小化误差平方和来求解 模型参数,具有数值稳定性强 的优点。
极大似然法
系统辨识中的特殊方法
通过最大化似然函数来求解模 型参数,能够通过估计参数的 置信区间来评估模型的准确度。
电机的辨识
通过对电机转速、输出扭矩等信号进行观测和拟合,可对电机的电磁特性等进行辨识。
气压系统的辨识
通过对气压信号的观测和拟合,可对气压系统的动态响应曲线等进行辨识。
总结
系统辨识是一种强大的技术工具,可以帮助我们深入理解各类系统的本质和 行为特性。通过了解基本流程和方法,我们可以更好地应用系统辨识技术, 进行模型拟合、参数估计和模型检验,为实际问题提供解决方案。

神经网络与系统辨识

神经网络与系统辨识
第三章 神经网络与系统辨识
现代教育学家认为:在教学过程中,占中心地位的应 该是“学”而不是教,主张在教师指导下,由学生自己去 “发现”规律.自己去“研究”问题。教师的主要任务在 于启发而不在于讲解,教方法、教思路比一般地教知识、 教内容更重要。学生的主要任务在于思考,而不是单纯的 记忆,强调理解比单纯记忆更重要。 可以预言,未来的“文盲”将不再是目不识丁的人, 而是一些没有学会学习方法,不会自己钻研问题,没有 预见能力、分析能力的人。
T 1 K k 1 Pk 1 H k 1 Rk1
递推最小二乘法⑵
可用上面的公式进行递推计算,但必须知道xk和Pk的初值x0和 P0。如何设定初值请参阅有关文献。 最小二乘估计递推方法:新的估计值是由旧估值加上修正项构 成,而修正项正比于新观测值与期望的观测值之间的误差。这相当 于带有反馈校正的性质,当新观测值与期望观测值不符时,就要修 正,这是最小二乘估计递推公式的特点。
因为系统辨识技术涉及最优估计和优化计算,所以了 解和掌握它们的基本内容和最新发展是重要的。 后面作一些简介,再回到神经网络辨识方面的内容。
五、系统辨识原理框图⑴
传统辨识算法的基本原理是:通过建立系统依赖于 参数的模型,把辨识问题转化成对模型参数的估计问题
系统辨识原理框图⑵
系统辨识原理框图⑶
对系统的要求用一个 模型来体现,模型的输出 就是理想的响应。系统在 运行中,总是力求使被控 过程的动态与参考模型的 动态一致。通过调整被控 过程的某些参数,使得偏 差在某种意义下尽可能的 小。 被控过程不变,模型可调, 用广义误差来调正模型, 这样的模型就是辨识的结果。
输入/输出数据
能够量测到的 系统的 输入/输出数据 输入信号的选择: 必须能充分激励 系统的所有模态。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ˆLS
h
10
三、最小二乘估计 的求法
⒈ ˆLS 解法
ˆLS
由最小二乘辨识定义,求 的:
ˆLS
必要条件:
J ()
0
ˆLS
充分条件:
2 J ()
0 及
2
ˆ LS
J ()
0
ˆLS
Y
J()T ( Y )T(Y ) Y T Y T T Y Y T T T
h
11
由 于是得:
由充分条件:
2J() 2
2T0
与参数向量 无关。 θ
h
12
⒉ 解ˆL的S 唯一性
因 阵行数大于列数,T为 2n2方n阵。若 存 (T)1
在,则 T必ˆLS正定;反之,若 T 正定,则逆 必 (T)1
存在。因此, 必有解,且满足充分条件
2 J ( ) 2
0
与 无关,所以ˆLS解唯一。
h
13
⒊最小二乘法所需信息量与持续激励条件
☆ 3-6 适应最小二乘法
h
3
第三章 最小二乘辨识
用来进行系统参数辨识的最小二乘法,是一种经典的数据处理方法,最早的应用可追 溯到18世纪,高斯为了提高天体运动观测的准确性,曾应用了最小二乘法。
本章将介绍一般最小二乘法、加权最小二乘法、递推最小二乘法以及广义最小二乘法 等内容。
由于最小二乘法比较简单实用,而且又可与其他辨识方法相组合,因此最小二乘辨识 是一种基本的、重要的辨识方法。
表示为:
Y(N) Y Ub a(N,)
bn0
(N)(N, )
h
8
Y(N) Y Ub a(N,)
(N)(N,)
其中: Y(N)( 测R 量(向N量n) ,1)1
(测量
R (N n 1)2n
矩阵), R2n1为参数向量,而
Y R ( N n 1 ) n , U R ( N n 1 ) n , a R n 1 , b R n 1 , ( ,) N R ( N n 1 ) 1
(T 求解)1 。 H变换ˆ是LS一种不用求逆的 解法。
ˆLS
⒈ H变换阵Q的定义

Q R 方(N 阵n , 1 I为)(Nn 1 维) 单位阵,
h
4
§3-1 最小二乘法
一、最小二乘辨识方程
用最小二乘辨识技术辨识系统的数字模型的原理方块图如下:
被辨识系统
测量装置
D/A
u(k )
计算机
(最小二乘辨识 算法)
h数学模型
A/D
y(k )
5
被辨识系统
测量装置
D/A
A/D
u(k) 计 算 机
(最小二乘辨识算法)
数学模型
设被辨识系统的脉冲传递函数为
y(k )
UU YT TY Y
YTU UTU
由正定矩阵性质:T0,必须保证
UTU 0
——n阶持续激励条件
若输入序列u(k)采用随机序列或M序列,则满足 UTU;0
若输入序列u(k)采用常值序列,则 UTU奇异,不满足持
续激励条件。
h
15
例3-1 已知模型方程如下:
f(t)12t
测量值及测量时刻见下表
t(秒) 2
b10u(k1)b20u(k2) bn0u(kn)e(k,)
n
n
aiy(ki)biu(ki)e(k,)
i1
i1
式中,e(k,)称为方程误差,为模型参数向量;若令 0代 表真实参数向量,显然有
e(k,0)v(k) (观测误差)
h
7
令 kn,n1, ,(N数据窗口长度),如下矩阵方程成立:
aa1200
G (z)1 b 1 a 0 1 z 0 z 1 h 1 b 2 a 0 2 z 0 z 2 2 b n a 0n z0 z n nu y 6 ( (z z) )
则当存在观测误差 v (k )及建模误差时,相应的差分方程:
y(k)a10y(k1)a20y(k2) an0y(kn)
J () 2 T Y2 T ˆLS 0
TˆLSTY
——最小二乘的法方程
R ( N n 1 ) 2 n T R 2 n 2 n
如果 阵行数>列数,即
,且 满(N 秩 , n1)2n T
即 ran ( k T )2n则 (T存在),故1 解法为: ˆLS
ˆLS( T )1 TY
系统辨识基础
h
1
系统辨识
☆第一章 模型方法与辨识 ☆第二章 脉冲响应辨识 ☆第三章 最小二乘辨识 ☆第四章 极大似然辨识 ☆第五章 时间序列建模与随机逼近辨识 ☆第六章 模型阶次的辨识 ☆第七章 闭环系统辨识
h
2
第三章 最小二乘辨识
☆ 前言 ☆ 3-1 最小二乘法 ☆ 3-2 加权最小二乘法 ☆ 3-3 递推最小二乘法 ☆ 3-4 辅助变量法 ☆ 3-5 广义最小二乘法
y(n) y(n1) y(n2) y(0) u(n1) u(n2) u(0) e(n,)
y(n1) y(n)
y(N)
y(N1)
y(n1) y(1)
y(N2) y(Nn)
u(n) u(N1)
u(n1)
u(N2)
u(N u(1)n)abb12n000ee(n(N ,1,))
为向量方程误差.
h
9
二、最小二乘辨识定义 对于最小二乘辨识方程
Y (N ) (N ) (N ,)
寻求一个真实参数向量 的估计值 ,使表示0 方程误差平方和的ˆ性能指标
N
J()T (N , ) (N , ) e2(k, ) k n
取极小,则称 是最小二乘ˆ意义下, 的估值,表示为 。 0
2 4 5 8
5.47
1 9
T
1 2
1 4
1 5
1 8
1 9
T258 129800,
(T)1 1166 12980
28
5
ˆLS(T)1TY10..04095883
f(t)1.00580.49h 8t3
17
四、病态法方程的H(Householder)变换求解
法方程:
TˆLSTY
若参数众多,法方程常是病态的,不宜采用求逆
⑴信息量需求:
为保证 N n 12 n ,数据窗口N的取值应满足:
N3n1
其中n为被辨识系统的阶数。且需要 N个输入信息:u (0 )u ,(1 ) ,,u (N 1 ) (N+1)个输出(测量)信息:y(0 )y ,(1 ) , y(N )
h
14
⑵持续激励条件
ˆLS 有解 T0
Y U
TU YT TY
4
589
y(k) 2.01 2.98 3.50 5.02 5.47
试求 及 1 的最小二2乘估计 .
ˆLS
解:可按如下步骤求解
⑴信息量检验
N 5 , n 1 , 3 n 1 2 N 3 n S
ˆ
ˆˆ12
,
2.01 2.98 Y 3.50 , 5.02
1 1 1 1
相关文档
最新文档