电路设计经验_关于滤波电容、去耦电容、旁路电容作用

合集下载

去耦电容、旁路电容、滤波电容的选择和区别

去耦电容、旁路电容、滤波电容的选择和区别

区别去耦电容去除在期间切换时从⾼高配到配电⽹网中的RF能量量储能作⽤用,供局部化的直流电源,减少跨板浪涌电流在VCC 引脚通常并联⼀一个去耦电容,电容同交隔直将交流分量量从这个电容接地有源器器件在开关时产⽣生的⾼高频开关噪声江燕电源线传播,去耦电容就是提供⼀一个局部的直流给有源器器件,减少开关噪声在板上的传播并且能将噪声引导到地。

如果主要是为了了增加电源和地的交流耦合,减少交流信号对电源的影响,就可以称为去耦电容;旁路路电容从元件或电缆中转移出不不想要的共模 RF 能量量。

这主要是通过产⽣生 AC 旁路路消除⽆无意的能量量进⼊入敏敏感的部分,另外还可以提供基带滤波功能(带宽受限)。

在电路路中,如果电容起的主要作⽤用是给交流信号提供低阻抗的通路路,就称为旁路路电容;电⼦子电路路中,去耦电容和旁路路电容都是起到抗⼲干扰的作⽤用,电容所处的位置不不同,称呼就不不⼀一样了了。

对于同⼀一个电路路来说,旁路路(bypass)电容是把输⼊入信号中的⾼高频噪声作为滤除对象,把前级携带的⾼高频杂波滤除,⽽而去耦 (decoupling)电容也称退耦电容,是把输出信号的⼲干扰作为滤除对象。

滤波电容选择经过整流桥以后的是脉动直流,波动⽅方位很⼤大,后⾯面⼀一般⽤用⼤大⼩小两个电容⼤大电容⽤用来稳定输出,因为电容两端电压不不能突变,可以使输出平滑,⼩小电容⽤用来滤除⾼高频⼲干扰,使输出电压纯净,电容越⼩小,谐振频率越⾼高,可滤除的⼲干扰频率越⾼高容量量的选择⼤大电容,负载越重,吸收电流的能⼒力力越强,这个⼤大电容的容量量就要越⼤大⼩小电容,凭经验,⼀一般104 即可1、电容对地滤波,需要⼀一个较⼩小的电容并联对地,对⾼高频信号提供了了⼀一个对地通路路。

2、电源滤波中电容对地脚要尽可能靠近地。

3、理理论上说电源滤波⽤用电容越⼤大越好,⼀一般⼤大电容滤低频波,⼩小电容滤⾼高频波。

4、可靠的做法是将⼀一⼤大⼀一⼩小两个电容并联,⼀一般要求相差两个数量量级以上,以获得更更⼤大的滤波频段.滤波电容电源和地直接连接去耦电容1.为本集成电路路蓄能电容2.滤除该期间产⽣生的⾼高频噪声,切断其通过供电回路路进⾏行行传播的通路路3.防⽌止电源携带的噪声对电路路构成⼲干扰滤波电容的选⽤用原则在电源设计中,滤波电容的选取原则是: C≥2.5T/R其中: C 为滤波电容,单位为UF; T 为频率, 单位为Hz,R 为负载电阻,单位为Ω当然,这只是⼀一般的选⽤用原则,在实际的应⽤用中,如条件(空间和成本)允许,都选取C≥5T/R.PCB制版电容的选择⼀一般的10PF 左右的电容⽤用来滤除⾼高频的⼲干扰信号,0.1UF 左右的⽤用来滤除低频的纹波⼲干扰,还可以起到稳压的作⽤用。

旁路电容和去耦电容

旁路电容和去耦电容

旁路电容和去耦电容一、引言旁路电容和去耦电容是电子电路中常见的两种电容器应用。

它们在不同的场景下起到了重要的作用。

本文将从定义、原理、应用以及选型等方面对旁路电容和去耦电容进行详细介绍。

二、旁路电容1. 定义旁路电容,又称旁路电容器,是指将电容器连接在电路中,以提供低阻抗路径来滤除高频噪声的装置。

其作用是将高频信号引到地,使其不进入到灵敏的电路中,从而保证电路的正常工作。

2. 原理旁路电容的原理是利用电容器的阻抗与频率成反比的特性。

在高频信号下,电容器的阻抗较小,相当于一个短路,因此高频信号会优先通过电容器,而不会进入到灵敏的电路中。

而在低频信号下,电容器的阻抗较大,相当于一个开路,所以低频信号可以绕过电容器,进入到灵敏的电路中。

3. 应用旁路电容广泛应用于各种电子设备中,特别是在功放电路、滤波电路和信号处理电路中。

它可以有效地滤除电源中的高频噪声,提高电路的抗干扰能力,保证信号的准确传输。

此外,旁路电容还可以用于电源线路的滤波,降低电源波动对设备的影响。

4. 选型旁路电容的选型需要考虑电容值、耐压、耐温度等因素。

一般来说,电容值越大,对高频信号的旁路作用越好;耐压越高,适用范围越广;耐温度越高,适应环境的能力越强。

因此,在选型时需要根据具体的应用场景来选择合适的旁路电容。

三、去耦电容1. 定义去耦电容,又称绕行电容,是指将电容器连接在电路中,以提供低阻抗路径来平衡电压的装置。

其作用是将电源中的纹波电压补偿掉,保证电路的稳定工作。

2. 原理去耦电容的原理是利用电容器的阻抗与频率成反比的特性。

在电源中存在纹波电压时,电容器的阻抗较小,相当于一个短路,因此纹波电压会优先通过电容器,而不会进入到电路中。

而在直流信号下,电容器的阻抗较大,相当于一个开路,所以直流信号可以绕过电容器,进入到电路中。

3. 应用去耦电容广泛应用于各种电子设备中,特别是在功放电路、放大器电路和稳压电路中。

它可以有效地补偿电源中的纹波电压,提高电路的稳定性,保证信号的可靠传输。

电容器在电子电路中28种应用(电路图)

电容器在电子电路中28种应用(电路图)

电容器在电子电路中28种应用(电路图)1. 滤波电容滤波电容接在直流电压的正负极之间,以滤除直流电源中不需要的交流成分,使直流电平滑,通常采用大容量的电解电容,也可以在电路中同时并接其它类型的小容量电容以滤除高频交流电。

2.退耦电容退耦电容并接于放大电路的电源正负极之间,防止由电源内阻形成的正反馈而引起的寄生振荡。

3.旁路电容在交直流信号的电路中,将电容并接在电阻两端或由电路的某点跨接到公共电位上,为交流信号或脉冲信号设置一条通路,避免交流信号成分因通过电阻产生压降衰减。

4.耦合电容在交流信号处理电路中,用于连接信号源和信号处理电路或者作为两放大器的级间连接,用于隔断直流,让交流信号或脉冲信号通过,使前后级放大电路的直流工作点互不影响。

5.调谐电容连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。

6.衬垫电容它与谐振电路主电容串联的辅助性电容,调整它可使振荡信号频率范围变小,并能显著地提高低频端的振荡频率。

7.补偿电容补偿电容与谐振电路主电容并联的辅助性电容,调整该电容能使振荡信号频率范围扩大。

8.中和电容并接在三极管放大器的基极与发射极之间,构成负反馈网络,以抑制三极管极间电容造成的自激振荡。

9.稳频电容在振荡电路中,起稳定振荡频率的作用。

10.定时电容在RC时间常数电路中与电阻R串联,共同决定充放电时间长短的电容。

11.加速电容接在振荡器反馈电路中,使正反馈过程加速,提高振荡信号的幅度。

12.缩短电容在UHF高频头电路中,为了缩短振荡电感器长度而串联的电容。

13.克拉波电容在电容三点式振荡电路中,与电感振荡线圈串联的电容,起到消除晶体管结电容对频率稳定性影响的作用。

14.锡拉电容在电容三点式振荡电路中,与电感振荡线圈两端并联的电容,起到消除晶体管结电容的影响,使振荡器在高频端容易起振。

15.稳幅电容在鉴频器中,用于稳定输出信号的幅度。

16.预加重电容为了避免音频调制信号在处理过程中造成对分频量衰减和丢失,而设置的RC高频分量提升网络电容。

什么是旁路电容?什么是去耦电容?它们有什么区别和联系?

什么是旁路电容?什么是去耦电容?它们有什么区别和联系?

什么是旁路电容?什么是去耦电容?它们有什么区别和联系?一、旁路电容在电路中,如果希望将某一频率以上或全部交流成分的信号去掉,那么便可以使用滤波电容。

习惯上,通常将少部分只有滤波作用的电容器称为旁路电容器(Bypass Capacitors)或者傍路电容器。

例如,在晶体管的射极电阻或真空管的阴极电阻上并联的电容器,就被称为旁路电容(因为交流信号是经该电容器而进入接地端的);又如在电源电路中,除了数千微法的平滑滤波或反交联电容之外,通常也用零点几微法的高频电容来将高频旁路(实际上,此高频旁路电容也可被视为高频滤波及反交联电容)。

旁路电容的应用电路如下图所示。

二、去耦电容在电子电路中,经常会看到在集成电路的电源引脚附近有一个电解电容器,这个电容器就是去耦合电容器,简称去耦电容(Decoupling Capacitors),又称退耦电容器。

去耦电容器通常有两个作用:一个是蓄能;一个是去除高频噪声。

去耦电容器主要是去除高频,如RF信号的干扰。

干扰的进入方式是通过电磁辐射。

为什么说去耦电容具有蓄能的作用呢?举个简单的例子,我们就能很容易地明白了:我们可以把总电源看作一个水库,我们大楼内的家家户户都需要供水,这时,水不是直接来自于水库,那样距离太远啦,等水过来,我们已经渴的不行了,实际上我们用的水来自于大楼附近的水塔。

集成电路在工作的时候,其电流是不连续的,而且频率很高,而集成电路的电源引脚到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗也会很大(线路的电感影响非常大),这样会导致器件在需要电流的时候,不能及时供给,而去耦电容器可以弥补此不足,这也是为什么很多电路板在高频器件电源引脚处放置小电容的原因之一。

集成电路内部的开关在工作时产生的高频开关噪声将沿着电源线传播,去耦电容的主要功能就是提供一个局部的直流电源给集成电路,以减少开关噪声在电路板的传播并将噪声引导到地。

去耦电容器还可以防止电源携带的噪声对电路构成干扰,在设计电路时,去耦电容应放置在电源入口处,连线应尽可能短。

电容的9个作用与用途详解

电容的9个作用与用途详解

电容是电路设计中最为普通常用的器件,是无源元件之一,有源器件简单地说就是需能(电)源的器件叫有源器件, 无需能(电)源的器件就是无源器件。

电容也常常在高速电路中扮演重要角色。

电容的作用和用途,一般都有好多种。

如:在旁路、去藕、滤波、储能方面的作用;在完成振荡、同步以及时间常数的作用……下面来详细分析一下:1隔直流:作用是阻止直流通过而让交流通过。

2旁路(去耦):为交流电路中某些并联的元件提供低阻抗通路。

旁路电容:旁路电容,又称为退耦电容,是为某个器件提供能量的储能器件。

它利用了电容的频率阻抗特性(理想电容的频率特性随频率的升高,阻抗降低),就像一个水塘,它能使输出电压输出均匀,降低负载电压波动。

旁路电容要尽量靠近负载器件的供电电源管脚和地管脚,这是阻抗要求。

在画PCB时候特别要注意,只有靠近某个元器件时候才能抑制电压或其他输信号因过大而导致的地电位抬高和噪声。

说白了就是把直流电源中的交流分量,通过电容耦合到电源地中,起到了净化直流电源的作用。

如图C1为旁路电容,画图时候要尽量靠近IC1(图C1)去藕电容:去耦电容,是把输出信号的干扰作为滤除对象,去耦电容相当于电池,利用其充放电,使得放大后的信号不会因电流的突变而受干扰。

它的容量根据信号的频率、抑制波纹程度而定,去藕电容就是起到一个“电池”的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。

旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。

高频旁路电容一般比较小,根据谐振频率一般取 0.1F、0.01F 等;而去耦合电容的容量一般较大,可能是 10F 或者更大,依据电路中分布参数、以及驱动电流的变化大小来确定。

如图C3为去耦电容:(图C3)它们的区别:旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。

3耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路。

滤波电容旁路电容和去耦电容的作用和选择

滤波电容旁路电容和去耦电容的作用和选择

滤波电容百科名片储能电容的安装数字电路的电源线与回流线(地线)之间总要连接很多的电容器通常称为滤波电容。

目录简介选择作用编辑本段简介一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。

因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言n-35g的主滤波电容)。

低频滤波电容主要用于是电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。

当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。

因此在使用中会因电解液的频繁极化而产生较大的热量。

而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。

编辑本段选择滤波电容在开关电源中起著非常重要的作用,如何正确选择滤波电容,尤其是输出滤波电容的选择则是每个工程技术人员十分关心的问题。

50赫兹工频电路中使用的普通电解电容器,其脉动电压频率仅为100赫兹,充放电时间是毫秒数量级。

为获得更小的脉动系数,所需的电容量高达数十万微法,因此普通低频铝电解电容器的目标是以提高电容量为主,电容器的电容量、损耗角正切值以及漏电流是鉴别其优劣的主要参数。

而开关电源中的输出滤波电解电容器,其锯齿波电压频率高达数万赫兹,甚至是数十兆赫兹。

这时电容量并不是其主要指标,衡量高频铝电解电容优劣的标准是“阻抗- 频率”特性。

要求在开关电源的工作频率内要有较低的等效阻抗,同时对于半导体器件工作时产生的高频尖峰信号具有良好的滤波作用。

普通的低频电解电容器在万赫兹左右便开始呈现感性,无法满足开关电源的使用要求。

而开关电源专用的高频铝电解电容器有四个端子,正极铝片的两端分别引出作为电容器的正极,负极铝片的两端也分别引出作为负极。

电流从四端电容的一个正端流入,经过电容内部,再从另一个正端流向负载;从负载返回的电流也从电容的一个负端流入,再从另一个负端流向电源负端。

滤波电容、去耦电容、旁路电容作用及区别

滤波电容、去耦电容、旁路电容作用及区别

滤波电容、去耦电容、旁路电容作用电容在减小同步开关噪声起重要作用,而电源完整性设计的重点也在如何合理地选择和放置这些电容上。

各种各样的电容种类繁杂,但无论再怎么分类,其基本原理都是利用电容对交变信号呈低阻状态。

交变电流的频率f越高,电容的阻抗就越低。

旁路电容起的主要作用是给交流信号提供低阻抗的通路;去耦电容的主要功能是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地,加入去耦电容后电压的纹波干扰会明显减小;滤波电容常用于滤波电路中。

对于理想的电容器来说,不考虑寄生电感和电阻的影响,那么在电容设计上就没有任何顾虑,电容的值越大越好。

但实际情况却相差很远,并不是电容越大对高速电路越有利,反而小电容才能被应用于高频。

滤波电容:滤波电容用在电源整流电路中,用来滤除交流成分。

使输出的直流更平滑。

去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。

旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。

1.去耦电容蓄能作用的理解(1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。

而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。

你可以把总电源看作水库,我们大楼内的家家户户都需要供水,这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。

实际水是来自于大楼顶上的水塔,水塔其实是一个buffer 的作用。

如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。

而去耦电容可以弥补此不足。

这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一(在Vcc引脚上通常并联一个去耦电容,这样交流分量就从这个电容接地。

(2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。

电容有哪些作用和用途

电容有哪些作用和用途
因为lc调谐的振荡电路的谐振频率是lc的函数,我们发现振荡 电路的最大与最小谐振频率之比随着电容比的平方根变化。此处 电容比是指反偏电压最小时的电容与反偏电压最大时的电容之比。 因而,电路的调谐特征曲线(偏压一谐振频率)基本上是一条抛 物线。
整流:在预定的时间开或者关半闭导体开 关元件。
储能:储存电能,用于必须要的时候释放。
同理,在温度降低时,一个电容的容量在减小而另一个在增大,总的容量 基本不变,稳定了振荡频率,实现温度补偿目的。
计时:电容器与电阻器配合使用,确定电 路的时间常数。
输入信号由低向高跳变时,经过缓冲1后输入RC电路。电容充电的特性使 B点的信号并不会跟随输入信号立跳变,而是有一个逐渐变大的过程。当 变大到一定程度时,缓冲2翻转,在输出端得到了一个延迟的由低向高的跳 变。
时间常数:以常见的 RC 串联构成积分电路为例,当输入信号电压加在 输入端时,电容上的电压逐渐上升。而其充电电流则随着电压的上升而减小, 电阻R和电容C串联接入输入信号VI,由电容C输出信号V0,当RC (τ)数值与 输入方波宽度tW之间满足:τ》》tW,这种电路称为积分电路
调谐:对与频率相关的电路进行系统调谐 比如手机、收音机、电视机。
温度补偿:针对其它元件对温度的适应性不够 带来的影响,而进行补偿,改善电路的稳定性。
分析:由于定时电容的容量决定了行振荡器的振荡频率,所以要求定时电 容的容量非常稳定,不随环境湿度变化而变化,这样才能使行振荡器的振荡频 率稳定。因此采用正、负温度系数的电容释联,进行温度互补。
当工作温度升高时,Cl的容量在增大,而C2的容量在减小,两只电容并联 后的总容量为两只电容容量之和,由于一个容量在增大而另一个在减小,所以 总容量基本不变。
例如相机闪光灯,加热设备等等.(如今某些电容的储能水平己经接近锂电池的水准, 一个电容储存的电能可以供一个手机使用一天。

旁路电容和去耦电容作用和区别

旁路电容和去耦电容作用和区别

旁路电容和去耦电容作用和区别1. 引言在电子电路设计和高频电路中,旁路电容和去耦电容扮演着重要的角色。

它们被广泛应用于各种电子设备和电路中,起到稳定电压、抑制噪声和滤波的作用。

本文将介绍旁路电容和去耦电容的作用及其区别。

2. 旁路电容的作用旁路电容的作用是将高频信号从某些部件或节点旁路过去,以确保信号的稳定性和纯净性。

它通常与电源或地连接,将高频信号绕过感性元件,如电感或电源。

旁路电容可以消除感性元件对高频信号的阻抗,从而提高系统的性能。

旁路电容可以起到以下几个方面的作用: - 滤波作用:旁路电容能够对高频信号进行滤波,将噪声和干扰滤除,提高电路的信噪比。

- 提供稳定的电源:旁路电容能够提供电源电压的稳定性,减少电源噪声对电路的影响,保证电路正常工作。

- 改善信号传输:在传输线上,旁路电容可以抑制信号的反射和损耗,提高信号的传输效率和质量。

3. 旁路电容的选择和应用旁路电容的选择应根据具体的应用需求和电路特性进行。

重要的参数包括容值、耐压和温度系数等。

在电源旁路应用中,一般选择电解电容或固态电容,容值较大、耐压较高的电容。

而在高频应用中,通常选择钽电容或多层陶瓷电容,容值较小、频率响应较好的电容。

在实际应用中,旁路电容常被用于电源滤波、放大器的电源旁路、RF射频模块的旁路等场合。

4. 去耦电容的作用去耦电容是将电路中直流(DC)和交流(AC)分离的一种电容器。

它的作用是将直流信号绕开交流信号,保证电路中直流电压的稳定性,提供纯净的直流电源。

去耦电容通常被放置在集成电路(IC)的电源引脚处,将IC芯片的供电电压稳定到指定值,同时滤除电源中的噪声和纹波。

5. 去耦电容的选择和应用去耦电容的选择应根据芯片的需求和电源情况进行。

通常,去耦电容的容值要求较大,能够滤除更多的噪声和纹波。

常见的电容材料包括电解电容、陶瓷电容和铝电解电容等。

在高速数字电路中,去耦电容的选择要考虑芯片的工作频率和功耗等因素。

较高频率的应用需要选择具有较低等效串联电感和更低ESR(等效系列电阻)的陶瓷电容。

滤波电容 去耦电容

滤波电容 去耦电容

滤波电容去耦电容滤波电容和去耦电容是电子电路中常用的元件,它们在不同的电路中起到不同的作用。

本文将分别介绍滤波电容和去耦电容的原理、应用和选取方法。

一、滤波电容滤波电容是一种用于滤除电路中高频噪声的元件。

在电源电路中,滤波电容可以平滑电压的波动,保证电路中的直流电压稳定。

滤波电容的原理是利用其充放电特性来平滑电源电压。

当电源电压波动时,滤波电容可以吸收过多的电荷或释放电荷,以保持电路中的稳定电压。

在功放电路中,滤波电容可以滤除音频信号中的高频噪声,提高音频信号的纯净度。

滤波电容的选取需要考虑电路中的电流和频率要求。

一般来说,电流越大,所需的滤波电容越大;频率越高,所需的滤波电容越小。

此外,滤波电容的电压容量也需要根据电路中的电压要求来选择。

二、去耦电容去耦电容是一种用于消除电路中的交流信号的元件。

在放大器电路中,放大器的工作电流会引入交流信号,造成放大器的输出信号失真。

去耦电容的作用就是屏蔽这些交流信号,使得放大器的输出信号更加准确。

去耦电容的原理是通过阻隔交流信号的传输路径,只允许直流信号通过。

去耦电容通常与电源电容并联使用,将交流信号引流到地,从而保证放大器的工作电流不会引入输出信号中。

去耦电容的选取需要考虑放大器的工作频率范围和阻抗匹配。

一般来说,去耦电容的容值越大,抑制交流信号的效果越好。

滤波电容和去耦电容在电子电路中起到了重要的作用,它们能够提高电路的稳定性和信号质量。

在实际应用中,我们需要根据具体的电路要求来选择合适的滤波电容和去耦电容。

选取合适的容值和电压容量,可以提高电路的性能和可靠性。

总结起来,滤波电容和去耦电容是电子电路中常用的元件,它们分别用于滤除高频噪声和消除交流信号。

滤波电容通过充放电特性来平滑电压波动,保证电路中的稳定电压;而去耦电容通过阻隔交流信号的传输路径,消除放大器中的交流信号。

在选择滤波电容和去耦电容时,我们需要考虑电路的电流、频率和电压要求,以及容值和电压容量的匹配。

去耦和滤波

去耦和滤波
旁路:从元件或电缆中转移出不想要的共模RF能量。这主要是通过产生AC旁路消除无意的能量进入敏感的部分,另外还可以提供基带滤波功能(带宽受限)。
我们经常可以看到,在电源和地之间连接着去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰。
在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling)电容也称退耦电容,是把输出信号的干扰作为滤除对象。

其实没有区别,电容的使用始终按照其1/(jwc)的阻抗作用于电路,其容量大小完全是你要用到的频率是多少,显然频率w高,C可以小。去耦、滤波、隔直等等,没有本质上区别,仅仅只是目的不一样,叫法不一样。
滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。
去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。
3.在一个大的电容上还并联一个小电容的原因
大电容由于容量大,所以体积一般也比较大,且通常使用多层卷绕的方式制作,这就导致了大电容 的分布电感比较大(也叫等效串联电感,英文简称ESL)。大家知道,电感对高频信号的阻抗是很大的,所以,大电容的高频性能不好。而一些小容量电容则刚刚 相反,由于容量小,因此体积可以做得很小(缩短了引线,就减小了ESL,因为一段导线也可以看成是一个电感的),而且常使用平板电容的结构,这样小容量电 容就有很小ESL这样它就具有了很好的高频性能,但由于容量小的缘故,对低频信号的阻抗大。所以,如果我们为了让低频、高频信号都可以很好的通过,就采用一个大电容再并上一个小电容的方式。常使用的小电容为 0.1uF的瓷片电容,当频率更高时,还可并联更小的电容,例如几pF,几百pF的。而在数字电路中,一般要给每个芯片的电源引脚上并联一个0.1uF的 电容到地(这个电容叫做退耦电容,当然也可以理解为电源滤波电容,越靠近芯片越好),因为在这些地方的信号主要是高频信号,使用较小的电容滤波就可以了。

电容的全部作用

电容的全部作用

电容器在电力系统中是提高功率因数的重要器件;在电子电路中是获得振荡、滤波、相移、旁路、耦合等作用的主要元件。

电容耦合的作用是将交流信号从前一级传到下一级。

当然,耦合的方法还有直接耦合和变压器耦合的方法。

直接耦合效率最高,信号又不失真,但是,前后两级的工作点的调整复杂,相互牵连。

为了不使后一级的工作点不受前一级的影响,就必须在直流方面把前一级和后一级分开。

同时,又能使交流信号顺利的从前一级传给后一级,同时能完成这一任务的方法就是采用电容传输或变压器传输来实现。

它们都能传递交流信号和隔断直流,使前后级的工作点互不牵连。

但不同的是,用电容传输时,信号的相位要延迟一些,用变压器传输时,信号的高频成份要损失一些。

一般情况下,小信号传输时,常用电容作为耦合元件,大信号或强信号的传输,常用变压器作耦合元件。

滤波电容、去耦电容、旁路电容作用滤波电容用在电源整流电路中,用来滤除交流成分。

使输出的直流更平滑。

去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。

旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。

1.关于去耦电容蓄能作用的理解1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。

而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。

你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水,这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。

实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。

如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。

而去耦电容可以弥补此不足。

这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一(在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。

电容常见的几种作用

电容常见的几种作用

1.在电子电路中,退耦是什么意思?有起滤波作用的所谓滤波电阻吗?所谓退耦,既防止前后电路网络电流大小变化时,在供电电路中所形成的电流冲动对网络的正常工作产生影响。

换言之,退耦电路能够有效的消除电路网络之间的寄生耦合。

退耦滤波电容的取值通常为47~200μF,退耦压差越大时,电容的取值应越大。

所谓退耦压差指前后电路网络工作电压之差。

如下图为典型的RC退耦电路,R起到降压作用:大家看到图中,在一个大容量的电解电容C1旁边又并联了一个容量很小的无极性电容C2原因很简单,因为在高频情况下工作的电解电容与小容量电容相比,无论在介质损耗还是寄生电感等方面都有显著的差别(由于电解电容的接触电阻和等效电感的影响,当工作频高于谐振频率时,电解电容相当于一个电感线圈,不再起电容作用)。

在不少典型电路,如电源退耦电路,自动增益控制电路及各种误差控制电路中,均采用了大容量电解电容旁边并联一只小电容的电路结构,这样大容量电解电容肩负着低频交变信号的退耦,滤波,平滑之作用;而小容量电容则以自身固有之优势,消除电路网络中的中,高频寄生耦合。

在这些电路中的这一大一小的电容均称之为退耦电容。

还有些电路存在一些设置直流工作点的电阻,为消除其对于交流信号的耦合或反馈作用就需要在其上并联适当的电容来减少对交流信号的阻抗。

这些电容均起到退耦作用称之为退耦电容。

2.什么是旁路电容、去耦电容、滤波电容?作用是什么?滤波电容——用在电源整流电路中,用来滤除交流成分,使输出的直流更平滑。

去耦电容——用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。

旁路电容——用在有电阻连接时,接在电阻两端使交流信号顺利通过。

去耦电容的作用:去除在器件切换时从高频器件进入到配电网络中的RF能量。

去耦电容还可以为器件供局部化的DC电压源,它在减少跨板浪涌电流方面特别有用。

旁路电容的作用:从元件或电缆中转移出不想要的共模RF能量。

这主要是通过产生AC旁路消除无意的能量进入敏感的部分,另外还可以提供基带滤波功能(带宽受限)。

旁路电容去耦电容滤波电容

旁路电容去耦电容滤波电容

旁路电容去耦电容滤波电容以旁路电容去耦电容滤波电容为标题,本文将详细介绍旁路电容的作用、去耦电容的作用以及滤波电容的作用。

1. 旁路电容的作用旁路电容是指将电容器直接连接在电源或信号源的输出端与地之间,起到滤波作用。

旁路电容能够提供低阻抗路径,将高频噪声引流到地,从而降低电路的噪声水平。

旁路电容可以有效地抑制电源或信号源的高频噪声干扰,使电路工作更加稳定可靠。

2. 去耦电容的作用去耦电容是指在电路中使用电容器将直流信号与交流信号分离,起到去除直流偏置的作用。

去耦电容常常与旁路电容结合使用,可以使电路在提供稳定直流电源的同时,有效滤除交流噪声。

去耦电容能够提供低阻抗通路,将交流信号引流到地,使电路信号更加纯净,提高整体性能。

3. 滤波电容的作用滤波电容是指在电路中使用电容器对信号进行滤波处理。

滤波电容能够通过对不同频率的信号进行阻抗匹配,将所需的信号通过,而将不需要的信号滤除。

滤波电容可用于直流滤波、低频滤波和高频滤波等应用场景。

它能够提供低阻抗通路,将所需频率范围的信号传递,从而实现对特定频率信号的选择性放大或抑制。

旁路电容、去耦电容和滤波电容在电路设计中起到了重要的作用,能够提高电路的性能和稳定性。

它们的作用虽然有些相似,但在电路中的具体应用和作用机理有所不同。

为了更好地理解它们的作用,我们来看一个具体的应用场景:音频放大器。

在音频放大器电路中,旁路电容用于去除电源中的高频噪声,以提供稳定的供电;去耦电容则用于隔离直流信号和交流信号,确保音频信号的纯净度;滤波电容则用于对音频信号进行滤波处理,以消除杂散频率成分,提高音质。

在这个例子中,旁路电容通过提供低阻抗路径,将电源中的高频噪声引流到地,保证了供电的稳定性,避免了噪声对音频信号的干扰。

去耦电容则起到了隔离直流信号和交流信号的作用,确保音频信号的纯净度,避免了直流偏置对音频信号的影响。

而滤波电容则通过对音频信号进行滤波处理,消除杂散频率成分,提高音质。

电容在电路中的作用及电容滤波原理

电容在电路中的作用及电容滤波原理

电容在电路中的作用及电容滤波原理The manuscript was revised on the evening of 2021电容在电路中的作用及电容滤波原理电容器在电子电路中几乎是不可缺少的储能元件,它具有隔断直流、连通交流、阻止低频的特性。

广泛应用在耦合、隔直、旁路、滤波、调谐、能量转换和自动控制等电路中。

熟悉电容器在不同电路中的名称意义,有助于我们读懂电子电路图。

1、滤波电容:接在直流电源的正、负极之间,以滤除直流电源中不需要的交流成分,使直流电变平滑。

一般采用大容量的电解电容器或钽电容,也可以在电路中同时并接其他类型的小容量电容以滤除高频交流电。

2、去耦电容:幷接在放大电路的电源正、负极之间,防止由于电源内阻形成的正反馈而引起的寄生震荡。

3、耦合电容:接在交流信号处理电路中,用于连接信号源和信号处理电路或者作两放大器的级间连接,用以隔断直流,让交流信号或脉冲信号通过,使前后级放大电路的直流工作点互不影响。

4、旁路电容:接在交、直流信号的电路中,将电容并接在电阻两端或由电路的某点跨接到公共电位上,为交流信号或脉冲信号设置一条通路,避免交流信号成分因通过电阻产生压降衰减。

5、调谐电容:连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。

6、衬垫电容与谐振电容:主电容串联的辅助性电容,调整它可使振荡信号频率范围变小,幷能显着地提高低频端的振荡频率。

是当地选定衬垫电容的容量,可以将低端频率曲线向上提升,接近于理想频率跟踪曲线。

7、补偿电容:与谐振电路主电容并联的辅助性电容,调整该电容能使振荡信号频率范围扩大。

8、中和电容:并接在三极管放大器的基极与发射极之间,构成负反馈网络,以抑制三极管间电容造成的自激振荡。

9、稳频电容:在振荡电路中起稳定振荡频率的作用。

10、定时电容:在RC时间常数电路中与电阻R串联,共同决定充放电时间长短的电容。

11、加速电容:接在振荡器反馈电路中,使正反馈过程加速,提高振荡信号的幅度。

电容的作用

电容的作用

电容的作用作为无源元件之一的电容,其作用不外乎以下几种:1、应用于电源电路,实现旁路、去藕、滤波和储能的作用,下面分类详述之:1)旁路旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。

就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。

为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。

这能够很好地防止输入值过大而导致的地电位抬高和噪声。

地弹是地连接处在通过大电流毛刺时的电压降。

2)去藕去藕,又称解藕。

从电路来说,总是可以区分为驱动的源和被驱动的负载。

如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。

这就是耦合。

去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。

将旁路电容和去藕电容结合起来将更容易理解。

旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。

高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10uF或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。

旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。

这应该是他们的本质区别。

3)滤波从理论上(即假设电容为纯电容)说,电容越大,阻抗越小,通过的频率也越高。

但实际上超过1uF的电容大多为电解电容,有很大的电感成份,所以频率高后反而阻抗会增大。

有时会看到有一个电容量较大电解电容并联了一个小电容,这时大电容通低频,小电容通高频。

电容的作用就是通高阻低,通高频阻低频。

电容越大低频越容易通过,电容越大高频越容易通过。

退耦电容和旁路电容

退耦电容和旁路电容

退耦电容和旁路电容1. 引言在电子电路设计中,退耦电容和旁路电容是常见的两种电容器应用。

它们在电路中起到了重要的作用,用于提高电路的稳定性和性能。

本文将对退耦电容和旁路电容进行详细的介绍和探讨。

2. 退耦电容2.1 退耦电容的定义退耦电容是指在电源和负载之间串联的电容器,用于消除电源噪声对负载的影响。

它能够将电源中的高频噪声短路到地,从而保证负载电路的稳定工作。

2.2 退耦电容的作用退耦电容的主要作用是提供一个低阻抗路径,以滤除电源中的高频噪声。

高频噪声可能来自电源本身或其他干扰源,如开关电源、电磁辐射等。

退耦电容能够吸收这些噪声,防止其传播到负载电路中,从而保证负载电路的正常工作。

2.3 退耦电容的选择选择合适的退耦电容需要考虑以下几个因素: - 容值:退耦电容的容值应根据负载电路的功耗和工作频率来确定。

一般来说,容值越大,退耦效果越好,但也会增加成本和占用空间。

- 电压等级:退耦电容的电压等级应大于负载电路的最大工作电压,以避免电容器击穿。

- 电容器类型:退耦电容常用的类型有陶瓷电容、铝电解电容、钽电容等。

不同类型的电容器具有不同的特性,如ESR(等效串联电阻)、ESL(等效串联电感)等,需要根据具体应用选择合适的类型。

2.4 退耦电容的布局在实际应用中,退耦电容的布局也是需要注意的。

以下是一些建议: - 尽量靠近负载:退耦电容应尽量靠近负载电路,以最大限度地减少电源线的电阻和电感对退耦效果的影响。

- 多点布置:对于复杂的电路,可以采用多个退耦电容,分别布置在不同的地方,以提高整体的退耦效果。

- 地线布局:退耦电容的一端应连接到地,以形成一个低阻抗路径,将噪声引流到地。

3. 旁路电容3.1 旁路电容的定义旁路电容是指在电路中与负载并联的电容器,用于提供稳定的电压源。

它能够吸收电路中的瞬态电流,保持电路的稳定性。

3.2 旁路电容的作用旁路电容的主要作用是提供一个低阻抗路径,以吸收电路中的瞬态电流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于滤波电容、去耦电容、旁路电容作用
滤波电容用在电源整流电路中,用来滤除交流成分。

使输出的直流更滑。

去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。

旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。

1.关于去耦电容蓄能作用的理解
1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。

而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。

你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水,
这时候,水不是直接来自于水库,那样距离太远了,
等水过来,我们已经渴的不行了。

实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。

如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,
会导致器件在需要电流的时候,不能被及时供给。

而去耦电容可以弥补此不足。

这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一(在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。


2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。

去耦电容的主要功能就是提供
一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地
2.旁路电容和去耦电容的区别
去耦:去除在器件切换时从高频器件进入到配电网络中的RF能量。

去耦电容还可以为器件供局部化的DC电压源,它在减少跨板浪涌电流方面特别有用。

旁路:从元件或电缆中转移出不想要的共模RF能量。

这主要是通过产生AC旁路消除无意的能量进入敏感的部分,另外还可以提供基带滤波功能(带宽受限)。

我们经常可以看到,在电源和地之间连接着去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰。

在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。

对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(dec oupling)电容也称退耦电容,是把输出信号的干扰作为滤除对象。

高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。

数字电路中典型的去耦电容值是0.1μF。

这个电容的分布电感的典型值是5μH。

0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7M Hz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz 以上的噪声几乎不起作用。

1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些。

每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右。

最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感。

要使用钽电容或聚碳酸酯电容。

去耦电容的选用并不严格,可按C="1"/F,即10MHz取0.1μF,100M Hz取0.01μF。

补充:电容器选用及使用注意事项:
1,一般在低频耦合或旁路,电气特性要求较低时,可选用纸介、涤纶电容器;在高频高压电路中,应选用云母电容器或瓷介电容器;在电源滤波和退耦电路中,可选用电解电容器。

2,在振荡电路、延时电路、音调电路中,电容器容量应尽可能与计算值一致。

在各种滤波及网(选频网络),电容器容量要求精确;在退耦电路、低频耦合电路中,对同两级精度的要求不太严格。

3,电容器额定电压应高于实际工作电压,并要有足够的余地,一般选用耐压值为实际工作电压两倍以上的电容器。

4,优先选用绝缘电阻高,损耗小的电容器,还要注意使用环境。

相关文档
最新文档