七数培优竞赛讲座第讲 列方程解应用题设元的技巧
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一讲 列方程解应用题——设元的技巧
应用题联系生活实际,反映实际生活中的数量关系,列方程解应用题是从具体问题中抽象归纳出所需要的数量关系,根据数量间的关系,依照题意合理选择未知数、找出隐含的等量关系,列方程进行求解.
恰当地设元是列方程解应用题的关键步骤之一,设什么为元,需要根据具体问题的条件来确定.
对未知元的选择,有时可将要求的量设为未知元(即问什么设什么),称此为直接设元;有时需要将要求的量以外的其他量设为未知元(即所设的不是所求的,则更易找出符合题意的数量关系),称此为间接设元;有些应用题中隐含一些未知的常量,这些量对于求解无直接联系,但如果不指明这些量的存在,则难求其解,因此需把这些未知的常量设为参数,以便建立等量关系,称此为辅助设元.
【例1】 如图,是一块在电脑屏幕上出现的矩形色块图,由6个不同颜色的正方形组成,已知中间最小的一个正方形的边长为1,那么这个长方形色块图的面积为 . (济南市中考题)
思路点拨 要求长方形的面积需求出务正方形的边长,为便于求出长方形长与宽,故不宜直接设元,由于6个正方形边长有一定的依存关系,所以,可以从间接设某个正方形边长入手.
注: 列方程解应用题又一关键是:找寻能够表示应用题全部意义的相等关系,找寻相等关系的基本方法有:
(1)运用基本公式找寻相等关系; (2)从关键词中找寻基本关系;(3)运用不变量找寻相等关系;(4)对一种“量”,从不同的角度进行表述(即计算两次),得到相等关系.
【例2】一只小船从甲港到乙港逆流航行需2小时,水流速度增加一倍后,再从甲港到乙港航行需3小时,水流速度增加后,从乙港返回甲港需航行( ).
A .0.5小时
B .1小时
C . 1.,2小时
D .1.5小时
(2001年武汉市选拔赛试题)
思路点拨 要求从乙港返回甲港所需的时间,需求甲、乙两港的距离及顺水速度,考虑增设辅助未知数.
【例3】某音乐厅月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,
其中团体票占总票数的
3
2,若提前购票,则给予不同程度的优惠,在五月份内,团体票每张12元,共售出团体票数的53;零售票每张16元,共售出零售票数的—半,如果在六月份内,团体票按每张16元出售,并计划在六月份内售出全部余票,那么零售票应按每张多少元定价才能使这两个月的票款收入持平?
(北京市东城区中考题)
思路点拨 票款与票数、票价有关,既要用字母表示六月份零售价,又要用字母表示总票数.
【例4】 某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,求经销这种商品原来的利润率.
(全国初中联赛试题)
思路点拨 因售出价=进货价×(1+利润率),故还需设出进货价,利用售出价不变,辅助建立方程.
【例5】 有一片牧场,草每天都在匀速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草.设每头牛每天吃草的量是相等的,问:
(1) 如果放牧16头牛,几天可以吃完牧草?
(2) 要使牧草永远吃不完,至多放牧几头牛?
(全国通讯赛试题)
思路点拨 需要考虑草每天的增长量、每头牛每天的吃草量及牧场原有的草量之间的关系,故需增设一些辅助未知数,便于把这些关系表示出来.
注: 应用数学知识和方法解决实际问题是学习数学的重要目的之一.而列方程解应用题对初一同学来说是一个困难所在,学习列方程解应用题应注重两个方面:(1)促使综合型思维向分析型思维的转轨.从各个侧面分析列方程的来龙去脉,突破小学形成的固有的综合思维模式(从已知出发列综合算式求未知数,形成分析思维模式. (2)善于把应用题中的生活语言转换成数学语言.应留心生活,多看报刊杂志电视,注意生活常识的积累.有些应用题,它所涉及到的量比较多,量与量之间的关系也不明显,需增设一些表知敷辅助建立方程,辅助表知数的引入,在已知条件与所求结论之间架起了一座“桥梁”,对这种辅助未知量,并不能或不需求出,可以在解题中相消或相约,这就是我们常说的“设而不求”.
学力训练
1.一个6位数abcde 2的3倍等于9abcde ,则这个6位数等于 .
2.有人问一位老师:他教的班有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还剩不足六位学生正在操场踢足球.”则这个“特长班”共有学生 人.
3.一轮船从甲地到乙地顺流行驶需4小时,从乙地到甲地逆流行驶需6小时,有一木筏由甲地漂流至乙地,需 小时. ( “希望杯”邀请赛试题)
4.某种产品是由A 种原料x 千克、B 种原料y 千克混合而成,其中A 种原料每千克50元,B 种原料每千克40元,后来调价,A 种原料价格上涨l0%,B 种原料价格减少15%,经核算产品价格可保持不变,则y x :的值是( ).
A .32
B .65
C .56
D .34
55 5.从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,则切下的一块重量是( ).
A .5千克
B .6千克
C .7千克
D .8千克
6.某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费,已知某用户4月份的煤气费平均每立方米0.88元,那么,4月份这位用户应交煤气费( ).
A .60元
B .66元
C .75元
D .78元 (全国初中数学联赛试题)
7.某企业生产一种产品,每件成本价是400元,销售价为510元,本季度销售了m 件.为进一步扩大市场,该企业决定在降低销售价的同时降低生产成本,经过市场调研,预测下季度这种产品每件销售价降低4%,销售量将提高lo %,要使销售利润(销售利润=销售价一成本价)保持不变,该产品每件的成本价应降低多少元?
(陕西省中考题)
8.如图,几块大小不等的正方形纸片A 、B 、……,I ,无重叠地铺满了
一块长方形.已知正方形纸片E 的边长为7,求其余务正方形的边长.
9.某人购买钢笔和圆珠笔各若干支,钢笔的价格是圆珠笔价格的2倍,
付款时,发现所买两种笔的数量颠倒了,因此,比计划支出增加了50%,
则此人原计划购买钢笔与圆珠笔数量的比为 .
10.电影胶片绕在盘上,空盘的盘心直径为60毫米.现有厚度为0.15
毫米的胶片,它紧绕在盘上共有600圈,那么这盘胶片的总长度约为 米(π≈3.14). (江苏省竞赛题)
11.为使某项工程提前20天完成任务,需将原定工作效率提高25%,则原计划完成这项工程需要 天.
12.完成某项工程,甲、乙合做要2天,乙、丙合做要4天,丙、甲合做要2.4天,则甲单独完成此项工程需要的天数是( ).
A .2.8
B .3
C .6
D . 12
13.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 立方米的,按每立方米m 元水费收费;用水超过10立方米的,超过部分加倍收费.某职工某月缴水费16m ,则该职工这个月实际用水为( )立方米.
A .13
B .14
C .18
D .26
(广西省中考题)
14.某种商品若按标价的八折出售,可获利20%,若按原标价出售,可获利( ).
A .25%
B .40%
C .50%
D .66.7%
15.某水库共有6个相同的泄洪闸,在无上游洪水注入的情况下,打开一个水闸泄洪使水库水位以a 米/时匀速下降.某汛期上游的洪水在未开泄洪闸的情况下使水库水位以b 米/时匀速上升,当水库水位超警戒线^米时开始泄洪.