高中数学必修四《两角差的余弦公式》优秀教学设计

合集下载

人教A版必修四《两角差的余弦公式》教案及教学反思

人教A版必修四《两角差的余弦公式》教案及教学反思

人教A版必修四《两角差的余弦公式》教案及教学反思一、教学目标1.掌握余弦定理的两角差公式;2.能够通过两角差公式解决相关问题;3.培养学生运用数学方法解决实际问题的能力;4.培养学生基本的计算技能和思维能力。

二、教学重点难点教学重点:掌握余弦定理的两角差公式。

教学难点:能够通过两角差公式解决相关问题。

三、教学过程1. 导入教师通过学生已经掌握的知识,引出余弦定理的推导过程,激发学生的学习兴趣。

2. 讲解通过解释“两角差的余弦公式”的概念和应用,让学生了解余弦定理的两角差公式的基本形式和运用方法。

3. 练习通过讲解例题,带领学生一步一步地掌握余弦定理的两角差公式,培养学生对于公式的理解和灵活运用能力。

例如,教师可以通过如下例题的讲解来帮助学生掌握两角差公式:已知$\\tan A =\\frac{1}{3}$,$\\tan B=\\frac{1}{2}$,且$A−B=\\frac{π}{4}$,求$\\sin A$。

解析:设$A=\\alpha+B$,则$\\alpha=\\frac{π}{4}+B$。

由$\\tan A =\\frac{1}{3}$和$\\tan B=\\frac{1}{2}$得$\\frac{\\tan A}{\\tanB}=\\frac{2}{3}$。

又因为$\\tan(\\alpha+B)=\\frac{\\tan \\alpha+\\tan B}{1- \\tan \\alpha \\tanB}=\\frac{\\frac{1}{3}+\\frac{1}{2}}{1-\\frac{1}{6}}=1$,所以$\\alpha+B=kπ+\\frac{π}{4}$,其中k为整数。

又因为$0<B<\\frac{π}{2}$,所以$\\alpha$在$\\fr ac{π}{4}$和$\\frac{5π}{4}$之间。

由余弦定理的两角差公式可得:$\\cos(\\frac{π}{4})=\\cos(\\alpha-B)$$\\frac{1}{\\sqrt{2}}=\\cos\\alpha \\cosB+\\sin\\alpha \\sin B$$\\frac{1}{\\sqrt{2}}=(\\cos B+\\sinB)(\\frac{1}{3}\\cos B+\\frac{1}{2}\\sin B)$$2\\sqrt{2} =6\\cos^2B+8\\sin^2B+5\\sin B \\cos B$令$u=\\cos B$,则$2\\sqrt{2}=6u^2+8(1-u^2)+5u\\sqrt{1-u^2}$。

高中数学《两角差的余弦公式》教案和教案说明

高中数学《两角差的余弦公式》教案和教案说明

高中数学《两角差的余弦公式》教案和教案说明教案说明:本教案旨在帮助学生理解和掌握两角差的余弦公式,并能运用该公式解决相关问题。

通过本节课的学习,学生将能够:1. 理解两角差的余弦公式的定义和意义;2. 熟练掌握两角差的余弦公式的推导过程;3. 能够运用两角差的余弦公式解决实际问题。

教案内容:一、教学目标1. 理解两角差的余弦公式的定义和意义;2. 掌握两角差的余弦公式的推导过程;3. 能够运用两角差的余弦公式解决实际问题。

二、教学重点与难点1. 教学重点:两角差的余弦公式的定义和意义,推导过程;2. 教学难点:两角差的余弦公式的运用。

三、教学准备1. 教师准备:教材、教案、PPT、黑板、粉笔;2. 学生准备:课本、笔记本、文具。

四、教学过程1. 导入:引导学生回顾已学过的三角函数知识,为新课的学习做好铺垫;2. 讲解:讲解两角差的余弦公式的定义和意义,通过示例让学生理解公式的应用;3. 推导:引导学生通过图形和逻辑推理,推导出两角差的余弦公式;4. 练习:布置一些练习题,让学生运用两角差的余弦公式解决问题;五、课后作业1. 复习本节课所学内容,巩固两角差的余弦公式的理解和运用;2. 完成课后练习题,提高运用两角差的余弦公式解决问题的能力。

教学反思:在课后,教师应认真反思本节课的教学效果,针对学生的掌握情况,调整教学策略,以提高学生对两角差的余弦公式的理解和运用能力。

关注学生的学习反馈,及时解答学生的疑问,提高教学质量。

六、教学评价1. 课堂讲解:评价学生对两角差的余弦公式的理解程度,观察学生是否能清晰地解释公式的含义和应用;2. 练习题目:评估学生运用两角差的余弦公式解决问题的能力,检查解答的准确性;3. 课后作业:检查学生完成作业的情况,观察是否能正确运用公式并解决实际问题。

七、教学拓展1. 引导学生思考:两角差的余弦公式在实际生活中的应用,例如测量角度、建筑设计等;2. 介绍进一步的研究:引导学生探索更多关于三角函数的性质和公式,激发学生的学习兴趣。

高中数学必修四两角差的余弦公式教案

高中数学必修四两角差的余弦公式教案

3.1.1 两角差的余弦公式
【课题】:两角差的余弦公式
【学情分析】:《两角差的余弦公式》是高中数学必修4第三章《三角恒等变换》的的第一节。

《三角恒等变换》这一章是在学习了《三角函数》与《平面向量》的基础上学习的内容,是从实际出发,为了解决实际问题而准备的知识。

通过本章学习,要使学生在学习三角恒等变换的基本思想和方法的过程中,发展推理能力和运算能力,使学生体会三角恒等变换的工具性作用,掌握它们在数学中的一些应用。

而作为本章的第一节《两角差的余弦公式》,是本章学习的基础,推导公式的方法和思维过程都是非常重要的。

【教学目标】
1.知识与技能目标:能用单位圆上的三角函数线和向量方法探索得到两角差的余弦公式,并能进行简单的三角恒等变换;通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础。

2.过程与方法目标:通过公式的探究,使学生体验由简单到复杂的变换思想方法,让学生树立并学会研究性学习的方法,树立主动学习的意识;通过公式的运用,培养和提高运用已有知识分析问题和解决问题的能力,并从中反思方程思想、整体性思想和转化思想。

3.情感、态度与价值观目标:通过课堂互动营造亲切、活跃的课堂气氛,实施多元化评价,激励学生,使学生尝试成功,以提高学生的学习兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和合作交流的科学态度。

【教学重点】:通过探索得到两角差的余弦公式。

【教学难点】:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等。

【课前准备】:布置学生预习、准备课件。

人教版高中数学两角差的余弦公式教案和教案说明

人教版高中数学两角差的余弦公式教案和教案说明

人教版高中数学两角差的余弦公式教案和教案说明教案说明:本教案旨在帮助学生理解和掌握两角差的余弦公式,并能灵活运用到实际问题中。

通过本章的学习,学生将能够理解两角差的余弦公式的概念,学会如何运用该公式进行角度计算和问题求解。

教案内容:一、教学目标1. 了解两角差的余弦公式的定义和推导过程。

2. 学会运用两角差的余弦公式进行角度计算和问题求解。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学重难点1. 两角差的余弦公式的理解和推导。

2. 运用两角差的余弦公式解决实际问题。

三、教学准备1. 教师准备PPT或黑板,展示两角差的余弦公式。

2. 准备一些实际问题,用于学生练习和应用。

四、教学过程1. 引入:通过一些实际问题,引导学生思考如何计算两个角的差值。

2. 讲解:讲解两角差的余弦公式的定义和推导过程,让学生理解和掌握该公式。

3. 练习:让学生通过一些例题和练习题,运用两角差的余弦公式进行计算和解决问题。

4. 应用:让学生解决一些实际问题,运用两角差的余弦公式进行分析和求解。

五、教学评价1. 通过课堂讲解和练习,评价学生对两角差的余弦公式的理解和掌握程度。

2. 通过学生解决问题的能力,评价学生对两角差的余弦公式的应用能力。

教案总结:本章通过引入实际问题,讲解两角差的余弦公式,并进行练习和应用,旨在帮助学生理解和掌握该公式,并能够灵活运用到实际问题中。

通过本章的学习,学生将能够掌握两角差的余弦公式的概念和运用方法,提高他们在数学问题求解中的能力。

六、教学拓展1. 引导学生思考:两角差的余弦公式是否可以推广到其他三角函数?2. 探讨:如何将两角差的余弦公式应用于解决更复杂的问题,如三角函数的和差化积、积化和差等?3. 推荐学习资源:提供一些相关的书籍、网络教程或视频,供有兴趣深入研究的学生自学。

七、课堂小结1. 让学生回顾本节课所学的内容,总结两角差的余弦公式的定义、推导过程及应用。

2. 强调两角差的余弦公式在数学问题求解中的重要性,激发学生学习三角函数的兴趣。

高中数学3.1.1两角差的余弦公式教学设计新人教A版必修4

高中数学3.1.1两角差的余弦公式教学设计新人教A版必修4

3.1.1 两角差的余弦公式教学目标(1) 了解两角差的余弦公式的推导,能够借助单位圆,运用向量的方法,推导出公式;(2) 掌握其公式并能利用它解决简单的求值和证明问题;(3) 通过对公式的推导,感受知识间的相互联系,培养逻辑思维能力,树立创新和运用意识,提高数学素养.教学重难点重点:通过探索得到两角差的余弦公式难点:探索过程的组织和适当引导教学过程一、复习引入前面我们已经学习了特殊角的三角函数,请回答: 3sin 60=1cos 602= tan 603=2sin 45= 2cos 45= tan 451= 对于上述特殊角,我们可以通过简单的-+、运算得到一系列新的角,比如6045105+=、 604515-=等等,那么如何求出它们的三角函数值呢?问题:cos15的三角函数值是多少?因为604515-=,那么能否用60,45的三角函数值表示出cos15呢?cos15cos60cos 45sin 60sin 45=+二、新课我们将问题一般化, 对于任意的角,αβ, cos()cos cos sin sin αβαβαβ-=+都成立?下面我们运用向量的知识来探究.在平面直角坐标系xOy 内作单位圆O ,以Ox 为始边作角,αβ, 它们的终边与单位圆O 的交点分别为,A B . 则(cos ,sin ),(cos ,sin )OA OB ααββ==由数量积的坐标表示,有(cos ,sin )(cos ,sin )OA OB ααββ⋅=⋅cos cos sin sin αβαβ=+设OA 与OB 的夹角为θ,则||||cos cos cos cos sin sin OA OB OA OB θθαβαβ⋅=⋅==+ (**)注意:[0,]θπ∈下面关键就是找到θ和,αβ之间的关系。

由图(1)知,2k αβθπ=++;由图(2)知,2k αβθπ=-+,所以(2)k θβαπ=±-+所以cos cos()θβα=-,由 (**)得,cos()cos cos sin sin αβαβαβ-=+所以,对于任意的角,αβ,此公式给出了任意角,αβ的正弦、余弦值与其差角αβ-的余弦值之间的关系,称为差角的余弦公式,简记作()C αβ-。

《两角差的余弦公式》优质课教学设计

《两角差的余弦公式》优质课教学设计

高中数学人教A版必修4第三章《3.1.1两角差的余弦公式》(第一学时)教学设计一、教学目标:1. 通过对两角差的余弦公式的猜想和探究过程,培养学生通过交流,探索,发现和获得新知(二)新知探究在平面直角坐标系xOy 中内作单位圆O ,以Ox 为始边作角βα,,它们的终边与单位圆的交 点分别为B A ,,则()(),sin ,cos ,sin ,cos ββαα==OB OA 由向量数量积的坐标表示有:βαβαsin sin cos cos +=⋅OB OA 。

设向量OA 与OB 的夹角为θ,由向量数量积的定义有:θθcos ==⋅OB OA ,所以βαβαθsin sin cos cos cos +=。

已知()()Z k k Z k k ∈+=∈++=πθβαπθβα2-2或,所以()Z k k ∈±=-θπβα2,所以()θβαcos cos =-,又因为βαβαθsin sin cos cos cos +=,所以可知对任意角βα,,都有()βαβαβαsin sin cos cos cos +=-。

(三)巩固理解例1、利用差角余弦公式求o15cos 的值。

分析:本题关键是将o15角分成o45与o30的差或者分解成o60与o45的差,再利用两角差的余弦公式即可求解。

例2、已知,135cos ,,2,54sin -=⎪⎭⎫⎝⎛∈=βππααβ是第三象限角,求()βα-cos 的值。

分析:观察公式()βα-cos 与本题已知条件应先计算出αcos ,βsin ,再代入公式求值。

求βαsin ,cos 的值可借助于同角三角函数的平方关系,并注意βα,的取值范围来求解。

例3、求值(1)oooo35sin 65sin 35cos 65cos + (2)απααπαsin 3sin cos 3cos ⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+(3)oooo 40cos 110sin 50cos 110cos + (4)oooo42sin 78cos 42cos 12cos +为o50sin ,再逆向使用两角差余弦公,即可将原式化为o60cos ;对于(4),可先用诱导公式化o 78cos 为o 12sin ,再逆向使用两角差余弦公,即可将原式化为o 30cos 。

高中数学必修四《两角差的余弦公式》优秀教学设计

高中数学必修四《两角差的余弦公式》优秀教学设计

两角差的余弦公式教学设计(第一课时)【三维目标】1.知识与能力:理解两角和与差的余弦公式的推导过程,熟记两角和与差的余弦公式,运用两角和与差的余弦公式,解决相关数学问题。

2.过程与方法:培养学生严密而准确的数学表达能力;培养学生逆向思维和发散思维能力;培养学生的观察能力,逻辑推理能力和合作学习能力。

3.情感态度与价值观:通过观察、对比体会数学的对称美和谐美,培养学生良好的数学表达和思考的能力,学会从已有知识出发主动探索未知世界的意识及对待新知识的良好情感态度。

【教学重点】两角和与差的余弦公式的理解与灵活运用。

【教学难点】两角和与差的余弦公式的推导。

【教学过程】一创设情境,引入课题(1)问题1思考cos (60°-30°) =cos60°-cos30°吗?cos(60°+30 )=cos60°+cos30°吗?那么cos(α- β)=cos α - cos β吗?(2)我们已经学习了向量的数量积,请用数量积的知识完成下列练习:θo s =⋅ ),,11y x (=),22y x (= 则 2121y y x x +=⋅二 层层深入,得出结论。

问题2:(一)两角差的余弦公式 设),sin ,cos αα(=),sin ,cos ββ(= 则,βαβαsin sin cos cos b a +=⋅θ=⋅βαβαθsin sin cos cos cos +=∴如果],0[πβα∈-,那么βαθ-=。

故,βαβαβαsin sin cos cos )cos(+=-思考:当βα-任意角时,βαβαβαsin sin cos cos )cos(+=-吗? 由诱导公式总可以找到一个角都可转化)2,0[πθ∈,使)cos(cos βαθ-=。

综上所述,βαβαβαsin sin cos cos )-cos(+= ,对于任意的角βα,都成立。

三 自主探索,小试牛刀。

高中数学必修四《两角差的余弦公式》教学设计

高中数学必修四《两角差的余弦公式》教学设计

教学设计表格(不少于4000字)探索研究、引导归纳问题1:我们把α、β放到单位圆中,找到βα-,通过向量的数量积定义和坐标表示得到公式()=-βαcosβαβαsinsincoscos+问题2:在向量中βα-角的范围是?那么这个公式适用于βα-是任意角的情况吗?问题3:引导学生关注两个向量的夹角θ与βα-的联系与区别,并通过讨论弄清θπβα±=-k2;问题4:归纳出两角差的余弦公式()=-βαcosβαβαsinsincoscos+观察公式的结构特征。

1.让学生经历怎样用向量知识做出探索过程,学生构造向量→→OBOA.,让学生通过观察、联想到α、β终边与单位圆的交点()ααsin,cosA()ββsin,cosB,同时发现公式右边与数量积的坐标表示十分接近,进而联想→→•OBOA=+βαcoscosβαsinsin,最后得到结论。

2.让学生知道结论中α、β可以取任意角最终公式推广到一般性。

3.学生观察公式的结构特征“,CCSS符号相反”。

1.加强新旧知识的联系,体会数学的化归思想方法;2.通过探索数量积两种表示形式的过程,这样有助于“为什么想得到”和“怎样想到”,凸现数学思维的自然与合理,并突破思维难点,再现“有心栽花花不开,无心插柳柳成荫”这种真实的探究过程。

3.通过弄清θ与βα-,增强学生用数形结合、分类讨论的思想方法解问题的意识,感受数学思维的严谨性。

4.引导学生回顾与反思探究思路,记忆公式,强化思维发展。

巩固新知、理论迁移例1、求的值。

引导学生用和两种方法求解。

思考:如何求75sin?例2、已知54sin=α,),(2παπ∈,135cos-=β,β是第三象限角,求)cos(βα-的值。

例3、求+15cos60cos15sin60sin变式:求+15cos60cos75cos30cos课本127页练习1,2,3,4例1,引导学生用两种方法解答,又提出一个问题,让学生知道互余的两个角的正余弦值相等,为例3做铺垫。

两角差的余弦公式教案

两角差的余弦公式教案

两角差的余弦公式一、教材分析1、教材的地位和作用本节课教学内容是人教版《高中数学》必修4第三章3.1.1《两角和与差的余弦》(要三个课时),这是第一课时。

本节内容是三角函数公式的推广,它还涉及到平面向量的内容。

同时,它又是本节及其后面各节公式的“源头”。

因此,两角和与差的余弦公式起着承上启下的核心作用。

两角和与差的正弦、余弦、正切是本章的重要内容,是正弦线、余弦线和诱导公式等知识的延伸,是后继内容二倍角公式、和差化积、积化和差公式的知识基础,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有重要的支撑作用。

2、教学目标知识与技能:能够推导两角差的余弦公式,了解单角与复角三角函数间的联系,理解两角差的余弦公式,并且能够运用两角差的余弦公式求非特殊角的余弦。

过程与方法:通过猜想、探索等数学活动,发现并推导“两角差的余弦公式”,体会化归、数形结合等数学思想在数学当中的运用,学生树立联系与转化的辨证唯物主义观点,提高分析问题、解决问题的能力。

情感态度与价值观:通过创设问题情景,学生体验科学探索的过程,感受科学探索的乐趣,激励科学探索的勇气,培养学生的创新精神和激发学生的学习兴趣。

3、教学的重点和难点教学重点:通过探究得到两角差的余弦公式;教学难点:探索过程的组织和恰当引导。

二、教法与学法分析教法:启发引导学生自主学习,调动学生的积极性学法:积极主动探究问题三、教学流程1、提出问题,引入课题如图所示,一个斜坡的高为6m,斜坡的水平长度为8m,已知作用在物体上的力F 与水平方向的夹角为60°,且大小为10N ,在力F 的作用下物体沿斜坡运动了3m,求力F 作用在物体上的功W .解:co s(60)W F S F S β=⋅=⋅⋅︒-=30cos(60)β⋅︒-6m Sβ β 8m F提问:1)解决问题需要求什么?2)你能找到哪些与β有关的条件?3)能否利用这些条件求出)60cos(β-︒?2、分析问题,猜想结论要求()β-60cos ︒我们可以转化到求()βα-cos从特殊情况去猜测公式的结构形式令ββπβαπαcos )cos()cos(,-=-=-=则: 令ββπβαπαsin )2cos()cos(,2-=--=--=则:请同学们根据下表中数据,相互交流讨论,提出你的猜想.令︒=︒=30,120βα则:︒=︒-︒=-90cos )30120cos()cos(βα=0 学生思考、交流、猜想:我们的公式的形式应该与αcos ,βcos ,αsin ,βsin 均有关系?他们之间存在怎样的代数关系呢?会不会是“+”、“-”、“⨯”、“÷”?3、引导探究:研究三角函数问题,我们常用的一种方法就是利用单位圆,在单位圆中,角的余弦值可用余弦线来表示.我们先来讨论最简单的情况:βα、为锐角,且βα>方法一:(利用三角函数线)证明:在单位圆O 中,作α=∠OXP 1, 交单位圆于点1P ,作1P O P β∠=, y O P 1 βα-B αβc o s xM βs i n C α 1 P β1 A则βα-=∠XOP .过点P 作PM 垂直x 轴于M ,A OP PA 于点1⊥,过B OM AB A 于点作点⊥ ,过点C AB PC P 于点,作⊥,则:βcos =OA ,βsin =AP , 且α=∠=∠OX P PAC 1co s sin co s co s sin sin O M O B B M O B C PO A A P ααβαβα=+=+=+=+∴βαβαβαsin sin cos cos )cos(+=-(βα、为锐角,且βα>)提问:当αβ、取任意角的时候,结果又会怎样呢?大家思考一下. 方法二:(利用向量)启发思考:我们来仔细观察猜想的结构,等式的左边是差角的余弦,我们在什么地方见到过类似结构?证明:在平面直角坐标系xOy 内作单位圆O ,以Ox 为始边作角βα、,它们终边与单位圆O 的交点分别为A 、B ,则:OA =)sin ,(cos αα,OB =)sin ,(cos ββco s()||||(co s ,sin )(co s ,sin )O A O B O A O B αβααββ⋅-===αβαβsin sin cos cos +y-1 -1 1 1B )sin ,(cos ββ )sin ,(cos αα αβx 0∴)cos(βα-=αβαβsin sin cos cos + (0≤βα-≤π)公式称两脚差的余弦公式,简记作()βα-C4、运用结论,多方练习1)解决引例中的问题2)例:利用差角余弦公式求cos15°的值。

两角差的余弦公式教学设计及点评

两角差的余弦公式教学设计及点评

《两角差的余弦公式》教学设计教学设计说明一、教材地位及其作用恒等变换在数学中扮演着重要的角色,它的主要作用是化简.在数学中通过恒等变换,可以把复杂的关系用简单的形式表示出来.三角恒等变换在后续学习中具有重要的作用.而以本节课为起始课的第三章内容需要学习三角函数运算中蕴涵的恒等关系.由于和、差、倍之间存在的联系,和角、差角、倍角的三角函数之间必然存在紧密的内在联系,因而需要推出一个公式作为基础。

由于三角恒等变换的内容与三角函数没有直接的关系,因此现行的课改教材(人教A 版)安排学生学完三角函数后,先学习了平面向量,因此选择了运用向量方法推导公式βαβαβαsin sin cos cos )cos(+=-作为建立其它公式的基础,使得公式的得出成为一个纯粹的代数运算过程,降低了思考难度。

本节课的作用承前启后,非常重要。

二、学情分析与教学目标学生在前两章已经学习了同角三角函数的基本关系、诱导公式及平面向量,为探究两角差的余弦公式建立了良好的基础。

但学生的逻辑推理能力有限,要发现并证明公式C(α-β)有一定的难度,教师可引导学生通过合作交流,体会向量法的作用,探索两角差的余弦公式。

由于学生初次使用恒等变换去推理解答问题,分析问题的能力和逻辑推理的能力都有所欠缺,并且面对新问题如何运用已学知识和方法去解决存有困惑.但同时学生在学习新的一章知识时又都会充满好奇心,这对教学是非常有利的。

根据学生的认知结构和心理特点,我制定了本课的学习目标如下: 1.知识与技能(1)通过对两角差的余弦公式的推导,使学生体会应用向量解决数学问题的技能。

(2)通过公式的灵活应用,使学生掌握两角差的余弦公式的作用。

2.过程与方法(1)利用两角差的余弦公式推导过程,使学生体会向量在代数几何方面运用的方式方法。

(2)在公式的灵活运用过程中进一步培养学生分类讨论思想、转化和化归思想、数形结合思想。

3.情感态度与价值观通过引导学生主动参与、大胆猜想独立探索、激发学生学习兴趣,形成探究、证明、应用的获取知识的方式。

两角差的余弦公式教案

两角差的余弦公式教案

两角差的余弦公式教案教案:余弦公式的两角差1.教学目标:-学生能够理解两角差的概念和性质;-学生能够运用余弦公式求解两角差的值;-学生能够应用余弦公式解决实际问题。

2.教学重点:-余弦公式的概念和性质;-余弦公式的推导和运用;-实际问题的解答方法。

3.教学准备:-教学用书或其他参考资料;-教学投影仪或黑板;-纸板和彩色粉笔。

4.教学流程:步骤一:引入本课-通过举例,引导学生思考什么是两个角的差。

步骤二:讲解两角差的概念-在黑板上绘制一个平面直角坐标系,标出角A和角B。

-通过示意图,解释角A和角B的差是指从角A逆时针旋转到角B所需的旋转角度。

-引导学生观察并总结出两角差的概念。

步骤三:引入余弦公式-提问:“如何计算两个角的差?”-引导学生回顾正弦定理和余弦定理的内容。

-提醒学生可以通过推导余弦公式,来计算两个角的差。

步骤四:推导余弦公式-在黑板上绘制一个平面直角坐标系,标出角A和角B。

-让学生观察并总结出余弦公式的推导过程。

-引导学生将角A和角B的余弦用三角函数表示,并使用三角函数的定义进行推导。

步骤五:运用余弦公式-在黑板上绘制几个示意图,引导学生计算两个角的差。

-指导学生使用余弦公式计算两个角的差,并解释计算步骤。

步骤六:解决实际问题-提供一些实际问题,要求学生运用余弦公式进行求解。

-指导学生分析问题,建立数学模型,并通过计算求解问题。

步骤七:总结与归纳-从概念、推导、运用和实际问题的角度总结两角差的余弦公式。

-引导学生发现两角差的余弦公式的应用领域和重要性。

5.巩固练习:-在课后布置练习题,要求学生独立完成,并在下一堂课上进行讲解和答疑。

6.拓展延伸:-引导学生思考如何应用余弦公式计算多个角的差;-提出一些复杂的实际问题,让学生独立运用余弦公式解决。

7.课堂小结:-回顾本堂课的重点内容和难点;-强调同学们在课后复习并完成练习题。

8.参考资料:-教材或参考书中关于两角差的内容;-有关余弦公式和应用的相关资料和习题。

高中数学_3.1.1两角差的余弦公式教学设计学情分析教材分析课后反思

高中数学_3.1.1两角差的余弦公式教学设计学情分析教材分析课后反思

《两角差的余弦公式》教学设计277200课型:新授课一、学情分析(1)授课对象:高一年级的学生(2)学情分析:学生的数学表达能力和逻辑推理能力正处于高度发展阶段,有主动探索新知识的意识,对新知识充满探求的渴望。

在学习本课前,学生已学习了任意角三角函数的概念、平面向量的坐标表示及向量数量积的坐标表示,这为他们探究两角差的余弦公式建立了良好的知识基础。

二、教学内容分析这节内容是教材必修4的第三章《三角恒等变换》第一节,是高考的重要考点,历年高考必考内容。

教材在学生掌握了任意角的三角函数的概念、向量的坐标表示以及向量数量积的坐标表示的基础上,进一步研究用单角的三角函数表示的两角和与差的三角函数.“两角差的余弦公式”在教科书中采用了一种易于教学的推导方法,即先借助于单位圆中的三角函数线,推出α,β,α-β均为锐角时成立.对于α,β为任意角的情况,教材运用向量的知识进行了探究.同时,补充了用向量的方法推导过程中的不严谨之处,这样,两角差的余弦公式便具有了一般性。

三、教学模式、教学支持条件教学模式:诱导—学习---讨论---练习---评价教学支持条件:由于本节内容在公式的证明过程中要用到图形,而多媒体能直观、快捷地展示图形和内空的生成,故在讲授的过程中借助多媒体手段是一个不错的选择。

四、教学目标1、知识目标通过两角差的余弦公式的探究,让学生在初步理解公式的结构及其功能的基础上记忆公式,并用之解决简单的数学问题,为后面推导其他和(差)角公式打好基础。

2、能力目标通过利用同角三角函数变换及向量推导两角差的余弦公式,让学生体会利用联系的观点来分析问题,解决问题,提高学生逻辑推理能力和合作学习能力3、情感目标使学生经历数学知识的发现、创造的过程,体验成功探索新知的乐趣,获得对数学应用价值的认识,激发学生提出问题的意识以及努力分析问题、解决问题的激情。

五、教学重点、难点重点:通过探索得到两角差的余弦公式。

难点:探索过程的组织和适当引导。

两角差的余弦公式教案

两角差的余弦公式教案

两角差的余弦公式数应二班潘小强09290228一、教材分析本节课选自人教版.必修四.第三章第一节,是学习了第一章三角函数和第二章平面向量后的内容,其的中心任务是通过以知的向量和三角恒等变换知识,探索建立两角差的余弦公式,通过简单运用,使学生初步理解公式的结构.功能及其运用,同时本节内容也是第三章其他十个公式的推导基础。

二、教学目标1. 掌握两角差的余弦公式,并能用之解决简单的问题。

通过对公式的推导,对学生渗透探究思想、类比思想以及分类讨论思想。

2. 通过对公式的推导提高学生研究问题、分析问题、解决问题能力;体会公式探求中从特殊到一般的数学思想,同时渗透如上所说的多种数学思想。

3. 通过公式的推导与简单应用,激发学生求知欲,鼓励学生大胆尝试,敢于探索、创新的学习品质。

三、教学重难点重点:通过探索得到两角差的余弦公式,公式的灵活应用。

难点:两角差的余弦公式探索与证明。

四、教学过程1.创设情境提出问题前面我们学习了三角函数的诱导公式,同学们还记得吗(1) cos( π—β)=?(2) cos( 2π—β)=?那么再思考这样一个问题呢,当特殊角π和2π被一般角α取代,即(3) cos( α-β )=?2.探寻特例提出猜想大家猜想了多种可能,其中有同学猜想cos(α-β)=cosα-cosβcos(α-β)=sinα-sinβcos(α-β)=sinα-cosβcos(α-β)=cosα-sinβ那么这些结论是否成立?3.用多媒体验证猜想我们一起来用计算器验证(几何画板课件) ,在这里我们做与单位圆相交的两个角α,β,现在我们来一起模拟计算下大家猜想的几组结论。

首先任意取一组α,β角,模拟计算出 cos(α-β) cosα-cosβsinα- sinβ cosα-sinβ由结果推翻假设(反证法),那么cos(α-β)到底等于什么呢?现在我们来借助计算机的强大计算功能,由cos(α-β)的结果模拟可能的答案。

3.1.1两角差的余弦公式教案(示范课)

3.1.1两角差的余弦公式教案(示范课)

《3.1.1两角差的余弦公式》教案玉林高中数学科授课人:饶蔼一. 教材分析本节课选自人教A版高中数学必修4第三章《三角恒等变换》第一节课“3.1.1两角差的余弦公式”。

变换是数学的重要工具,而三角恒等变换处于三角函数知识与数学变换的结合点和交汇点,是前面所学三角函数知识的继续与发展,是培养学生推理能力和运算能力的重要素材。

两角差的余弦公式是“三角恒等变换”这一章的基础和出发点,公式的发现和证明是本节课的重点,也是难点。

教材选择两角差的余弦公式作为基础,其基本出发点是使公式的证明过程尽量简洁明了,易于学生理解和掌握,同时也有利于提高学生运用向量解决相关问题的意识和能力。

教材里面没有直接给出两角差的余弦公式,而是分探求结果、证明结果两步进行,从简单情况入手得出结果,有利于学生学会探究和思维的发展.由于本节课可以从不同的角度提出不同的问题,并且可以用不同的途径与方法解决问题,因此本节课为学生的思维发展提供了很好的空间和平台,教师要注意引导学生用观察、联想、对比、化归等方法分析问题,寻找解决问题的思路.二. 教学目标1. 知识与技能:通过让学生探索、猜想、发现并推导“两角差的余弦公式”,通过公式的简单应用,使学生初步理解公式的结构及其功能,并为建立其他和差公式打好基础.2. 过程与方法:在探究公式的过程中,逐步培养学生学会分析问题、解决问题、合作交流的能力;通过两角差的余弦公式的简单运用,掌握不同方法求值.3. 情感态度:通过课题背景的设计,增强学生的探究、应用意识,认识到数学来源于生活,激发学生的学习积极性.三.教学重、难点1. 重点:两角差余弦公式的探究、证明过程和公式的初步应用.2. 难点:探究过程的组织和适当引导.四.学情分析学生已经掌握了利用单位圆上点的坐标定义任意角的三角函数,也学习了同角三角函数式的变换;理解了平面向量及其运算的意义,并能用数量积表示两个向量的夹角,经历了用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,具有一定的推理能力、运算能力和解决实际问题的能力,但利用向量的数量积公式证明两角差的余弦公式时,学生容易犯思维不严谨、不严密的错误,教学时需要引导学生搞清楚两角差与相应向量夹角的联系与区别.五. 教法、学法1. 教法:问题驱动、引导发现、合作探究相结合的教学方法展开教学.2. 学法:课前预习、小组探究、反思小结等.六. 教学过程(一)创设情境,引入课题金城超市电梯长度约为8米,坡度(与地面夹角)约为30度,请问当我们上完电梯后,在水平方向上前进了多少米?设前进量为x 米,则3430cos 8=︒=x 米提问:当电梯坡度为45度时,其他不变,x 等于多少?答:2445cos 8=︒=x 米提问:当电梯坡度为15度时,此时x 又等于多少? 答:︒=15cos 8x 米问题1:︒15cos 等于多少?能否用特殊角三角函数值来表示?【设计意图】从学生的实际生活出发,自然地引出问题,培养学生把实际问题抽象为数学模型来解决的能力,让学生感知数学来源于生活,并应用于生活,激发学生的学习兴趣;(二)探究归纳,提出猜想问题2:对任意的βα,,βαβαcos cos )cos(-=-是否成立? 1. 思考:︒15能否用特殊角表示? 预案1:)3045cos(15cos ︒-︒=︒问:︒-︒=︒30cos 45cos 15cos 是否成立?为什么? 预案2:)4560cos(15cos ︒-︒=︒问:︒-︒=︒45cos 60cos 15cos 是否成立?为什么?【设计意图】让学生经历提出假设 证明假设的过程,知道要证明一个假设不成立,只需举出反例即可,即明白特殊与一般的辩证关系。

人教课标版高中数学必修4《两角差的余弦公式》教学设计

人教课标版高中数学必修4《两角差的余弦公式》教学设计

3.1.1 两角差的余弦公式一、教学目标(一)核心素养掌握用向量方法建立两角差的余弦公式. 在探究公式的过程中,逐步培养学生学会分析问题、解决问题的能力,培养学生学会合作交流的能力.(二)学习目标1.通过探索完成两角差余弦公式的推导2.通过公式的简单应用,使学生初步理解公式的结构及其功能,并为建立其他和(差)角公式打好基础.(三)学习重点通过探索得到两角差的余弦公式(四)学习难点探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题等等.二、教学设计(一)课前设计1.预习任务已知2cos45=,3cos30=,由此我们能否得到()cos15cos4530?=-=是不是等于cos45cos30-呢?如果不是,那cos15?=2.预习自测(1)下列式子中正确的个数是( )①cos(α-β)=cos α-cos β;②cos(α-β)=cos αcos β-sin αsin β;③cos(π2-α)=cos α;④cos(π2+α)=cos α.A.0 B.1 C.2D .3答案:A .解析:【知识点】两角差的余弦公式【解题过程】①②③④都错点拨:每个都配凑成标准两角差的余弦公式型.(2)计算12sin 60°+32cos 60°=________. 答案:32解析:【知识点】特殊角的三角函数值,两角差的余弦公式【解题过程】原式=sin 30°sin 60°+cos 30°cos 60°=cos(60°-30°)=cos 30°=32.点拨:先将常值换成三角函数型,在结合公式.(3)设α∈⎝ ⎛⎭⎪⎫0,π2,若sin α=35,则2cos ⎝ ⎛⎭⎪⎫α-π4=( ) A.75 B.15C .-75D .-15答案:A .解析:【知识点】两角差公式的展开形式【解题过程】∵α∈⎝ ⎛⎭⎪⎫0,π2,sin α=35,∴cos α=45. ∴2cos ⎝ ⎛⎭⎪⎫α-π4=2⎝ ⎛⎭⎪⎫cos αcos π4+sin αsin π4 =cos α+sin α=45+35=75.点拨:先求出需要的三角函数值,再套用公式.(二)课堂设计1.知识回顾(1)三角函数的定义(2)两个向量的数量积公式2.问题探究探究一●活动1在预习任务中我们提出的cos15?=,同学们发现它并不是直接将cos 45-cos30︒. 下面我们一起来探究一下两角差的余弦公式()cos ?αβ-=在第一章三角函数的学习当中我们知道,在设角α的终边与单位圆的交点为p ,cos α等于角α与单位圆交点的横坐标,也可以用角α的余弦线来表示,大家思考:怎样构造角β和角αβ-?(注意:要与它们的正弦线、余弦线联系起来.)【设计意图】通过已经学习过的三角函数线的基本定义,运用数形结合的思想,和学生一起探索出两角差的几何位置.●活动2我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?提示:1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?2、怎样利用向量的数量积的概念的计算公式得到探索结果?在证明公式之前先引导学生结合三角函数知识写出点A 、点B 的坐标.证明:在平面直角坐标系xOy 内作单位圆O ,以Ox 为 始边作角αβ、,其中,且[]0,αβ∈、πβα≥,它们的终边与单位圆O 的交点分别为A 、B ,则 (cos ,sin ),(cos ,sin )OA OB ααββ==由向量数量积的坐标表示,有:βαβαββααsin sin cos cos )sin ,(cos )sin ,(cos +=•=• 由[]π,0,∈βα,且βα≥知[]πβα,0∈-,那么向量OA 的夹角就是βα-,由数量积的定义,有 cos()cos()OA OB OA OB αβαβ•=-=-于是βαβαβαsin sin cos cos )cos(+=- (1) 由于我们前面的推导均是在[]0,αβ∈、π,且βα≥的条件下进行的,因此(1)式还不具备一般性.事实上,只要[]πβα,0∈-,βα-所表示的就是向量,OA OB 的夹角.(这一点可以结合图形作出说明.)但是,若[]πβα,0∉-,(1)式是否依然成立呢?当[]πβα,0∉-时,设与的夹角为θ,则cos cos OA OB OA OB θθ•==βαβαsin sin cos cos +=另一方面,θβπα++=k 2,于是,,2Z k k ∈+=-θπβα所以θβαcos )cos(=-也有βαβαβαsin sin cos cos )cos(+=-【设计意图】在探究公式的过程中,教材不要求学生做到一步到位.首先对角选择较为特殊的范围来进行探究,能让学生从整体上感知本节课所要探究的途径与目的,让大部分学生都参与到探究中来,避免部分学生一开始就感觉到困难,提不起向下探究的兴趣.探究二●活动①对任意的()cos cos cos sin sin αβαβαβαβ-=+、 ,注:1.公式中两边的符号正好相反(一正一负);2.式子右边同名三角函数相乘再加减,且余弦在前正弦在后;3.式子中α、β是任意的.【设计意图】和学生一起记忆新公式,并强调如何能准确熟练的记住. 探究三●活动1例1利用差角余弦公式求︒15cos【知识点】两角差的余弦公式 【解题过程】方法一:cos15cos(4530)cos 45cos30sin 45sin 30︒=︒-︒=︒︒+︒︒=方法二:cos15cos(6045)cos60cos45sin 60sin 45︒=︒-︒=︒︒+︒︒= 【思路点拨】先找到与15°相关的特殊角,而它的配凑有几种不同形式,都可以尝试用公式计算..同类型训练题:如何求︒75sin ?解析:【知识点】两角差的余弦,诱导公式.【数学思想】类比【解题过程】sin 75cos15︒=︒= 点拨:把没有学过的形式向已经学习过的转化,当然这个题同时也提出了两角和正弦公式.例2化简求值︒︒+︒︒20sin 80sin 20cos 80cos 1)(︒+︒15sin 2315cos 212)(【知识点】两角差的余弦公式的逆用【解题过程】︒︒+︒︒20sin 80sin 20cos 80cos 1)(2160cos )2080cos(=︒=︒-︒=(2)1=cos60sin 602︒=︒所以原式cos60cos15sin 60sin15cos(6015)︒︒+︒︒=︒-︒= 点拨:根据结构形式,把公式灵活应用,逆用公式,能将特殊值转化成角的三角函数值形式.答案:(1)12(2 同类型训练题:化简求值(1)cos cos(15)sin sin(15)x x x x +︒++︒(2)cos32cos77sin 32cos167︒︒-︒︒答案:(1(2 解析:【知识点】两角差的余弦公式的逆用【解题过程】cos cos(15)sin sin(15)cos(15)cos15x x x x x x +︒++︒=+︒-=︒(1)cos32cos77sin 32cos13cos32cos77sin 32sin 77=cos45︒︒+︒︒=︒︒+︒︒︒(2) 点拨:根据结构形式,把公式灵活应用,逆用公式,能将特殊值转化成角的三角函数值形式.●活动2例345sin ,(,),cos ,cos()5213πααπββαβ=∈=--已知是第三象限角,求的值 答案:3365- 解析:【知识点】同角三角函数关系,两角差的余弦公式 【解题过程】由⎪⎭⎫ ⎝⎛∈=ππαα,2,54sin ,得53sin 1cos 2-=--=αα又由ββ,135cos -=是第三象限角,得12sin 13β==- 所以βαβαβαsin sin cos cos )cos(+=-所以原式=354123351351365⎛⎫⎛⎫⎛⎫-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭点拨:先把公式中需要的单角的正弦和余弦值都求出来,此时要注意正负号的象限问题. 再套用两角差的余弦公式就可以了.同类型训练题:已知αβ、都是锐角,1411)cos(,71cos -=+=βαα,求 βcos 的值. 答案:1cos 2β=解析:【知识点】两角差的余弦公式,两角和的余弦公式,同角三角函数的关系【数学思想】类比归纳【解题过程】法一:由1cos ,0,72παα⎛⎫=∈ ⎪⎝⎭,得sin α=又由11cos()cos(())cos cos sin sin()=-14αβαβαβαβ+=--=+-所以111cos sin 714ββ⨯=-,同时22cos +sin 1ββ=联立得 1cos 2β=法二:由题知2παβπ⎛⎫+∈ ⎪⎝⎭,,所以sin()sin αβα+== 1cos cos[()]cos()cos sin()sin =2βαβααβααβα∴=+-=+++ 点拨:此题是对公式的活用,由学生讨论解决.此题一般有两种方法可以求解.一种方法是把)cos(βα+分解,此公式还没推导,但部分学生可能会把βα+看作βα)(--,然后用两角差的余弦公式分解,再结合同角三角函数的基本关系求解.这种方法虽然较繁,但却让学生在无意当中发现了两角和的余弦公式.另一种方法是把β看做两角差,即αβαβ-+=)(,这种方法显然计算要简单得多.通过不同方法的讲解,鼓励学生从不同的角度思考问题,并指引学生在考试中选择较为简便的方法解题.【设计意图】此题理解公式的基础练习,解此题需要思考使用公式前应作出的必要准备,要作出这些必要的准备,需要运用到同角三角函数的知识.解题时必须强调解决三角变换问题的基本要求:思维的有序性和表述的条理性.3.课堂总结知识梳理(1)了解两角差的余弦公式的推导过程;(2)熟练记忆公式和逆用形式;(3)能利用公式进行简单的化简和求值.重难点归纳(1)了解两角差的余弦公式的推导过程;(2)对公式的简单应用.(三)课后作业基础型 自主突破1.设(0,)2απ∈,若3sin 5α=,)4απ+=( ) A.15B.75C.75- D.15- 答案:A解析:【知识点】两角差的余弦公式 【解题过程】∵(0,)2απ∈,3sin 5α=,∴4cos 5α=,原式cos cos -+sin sin -44ααππ⎤⎥⎦()()=431cos sin 555αα-=-= 点拨:应用公式展开,将对应的函数值代入2.sin110sin 40cos 40cos 70+等于( ) A.12-C.12D.答案:B解析:【知识点】两角差的余弦公式的逆用,诱导公式【解题过程】原式cos 40cos 70sin 40sin(18070)=+-cos 40cos 70sin 40sin 70=+=3cos(4070)cos(30)-=-=点拨:先统一角的形式,使其与两角差的余弦公式形式一致,再用公式化简. 3.13sin10-的值是( ) A.1B.2C.4D.14 答案:C解析:【知识点】两角差的余弦公式,诱导公式 【解题过程】()()()()()()132cos10sin102cos103sin10=1sin10cos10sin10cos1022cos 60cos10sin 60sin10=1cos80cos10sin 80sin1022cos 6010=41cos 80102⎛⎫- ⎪-⎝⎭+⎡⎤-+-⎣⎦+--=-原式 点拨:先将特殊值化为具体三角函数,再将公式结构配凑成标准型4.sin 1212ππ-的值是( )B.D.-12 答案:B解析:【知识点】特殊角的三角函数值,两角差的余弦公式【解题过程】原式=12sin 12212⎫ππ--⎪⎪⎭=2cos 2cos 1264πππ⎛⎫-+=-= ⎪⎝⎭ 点拨:先将常数配凑成特殊角的三角函数值,并让整体符合两角差的余弦公式,再化简.5.已知3sin 5α=-,α是第四象限角,则sin 4πα⎛⎫- ⎪⎝⎭=____________.解析:【知识点】同角三角函数关系,两角差的余弦公式,诱导公式 【解题过程】由3sin 5α=-,α是第四象限角,得4cos 5α===, 于是有sin cos()cos cos sin sin 4444ππππαααα⎛⎫-=+=- ⎪⎝⎭4355⎛⎫=-- ⎪⎝⎭ 点拨:先求出需要的三角函数值,将正弦化成余弦形式,再结合两角差的余弦公式.能培养将未知的转化成已经学习过的知识的迁移能力.6.不满足sin αsin β=22-cos αcos β的一组α,β值是( )A .α=π2,β=π4B .α=2π3,β=5π12C .α=2π3,β=π12D .α=π4,β=π2答案:C解析:【知识点】两角差的余弦公式【解题过程】因为sin αsin β=22-cos αcos β,所以cos(α-β)=22,经检验C中的α,β不满足点拨:应用公式展开注意逆用.能力型 师生共研7.已知锐角αβ、满足4cos 5α=,1tan(=3αβ--),求cos β.解析:【知识点】同角的三角函数值的关系,两角差的余弦公式【解题过程】α为锐角,且4cos 5α=,得3sin 5α= 40,0,cos 225ππαβα<<<<= ∴22ππαβ-<-<又∵1tan(3αβ-=-) ∴cos()αβ-= 从而sin()tan()cos()αβαβαβ-=--=43cos cos[()]cos cos()+sin sin()(55βααβααβααβ=--=--=+⨯点拨:先求出单角的三角函数值,关键是能将所求角β利用已知的两个整体角αβα-、表示,在求角的时候注意角所在的象限及符号.8.若α为锐角,且cos α=255,则cos ⎝ ⎛⎭⎪⎫π4-α=________.答案:31010解析:【知识点】两角差的余弦公式【解题过程】由α为锐角,且cos α=255,可得sin α=55.于是cos ⎝ ⎛⎭⎪⎫π4-α=cos π4cos α+sin αsin π4=22×255+22×55=31010 点拨:应用公式展开注意逆用.探究型 多维突破9.已知sin sin sin 0,cos cos cos 0.αβγαβγ++=++=(1)求cos()αβ-的值;(2)若[0,3αβγ4π∈]、、,求sin()αβγ++的值. 答案:sin()sin 2αβγ++=π=0解析:【知识点】同角三角函数的关系,两角差的余弦公式【解题过程】(1)sin sin sin ,cos cos cos ,αβγαβγ+=-+=-22(sin sin )(cos cos )1,αβαβ+++=22cos()1,αβ+-=∴1cos()2αβ-=-. (2)由(1)同理得11cos(),cos()22βγαγ-=--=-, ∵[0,3αβγ4π∈]、、,由对称性,不防设03αβγ4π≥>>≥, 则03αβ4π<-<,03βγ4π<-<,03αγ4π<-≤, 又由(1)知3αβ2π-=,3βγ2π-=,3αγ4π-=,若0γ>,则33αγ4π4π=+>矛盾! ∴0γ=,有3β2π=,3α4π=, ∴sin()sin 2αβγ++=π=0.点拨:本着消元的思想,消掉γ进一步配凑出αβ-的整体角的余弦.利用对称思想构造已知角的表示形式,进一步推出矛盾.10.若cos(α-β)=55,cos 2α=1010,并且α、β均为锐角,且α<β,则α+β的值为( )A.π6B.π4C.3π4D.5π6答案:C解析:【知识点】两角差的余弦公式,配角【解题过程】∵0<α<β<π2,∴-π2<α-β<0,0<2α<π,∴由cos(α-β)=55,得sin (α-β)=-255,由cos 2α=1010,得sin 2α=31010.∴cos(α+β)=()cos 2ααβ--⎡⎤⎣⎦=cos 2αcos(α-β)+sin 2αsin(α-β)=1010×55+31010×⎝⎛⎭⎪⎫-255=-22. 又α+β∈(0,π),∴α+β=3π4.点拨:公式形式牢记,利用已知角配凑α+β自助餐 1.cos 110°cos 20°+sin 110°sin 20°= ( )A.122C.0答案:C解析:【知识点】两角差的余弦公式【解题过程】cos(11020)cos900︒-︒=︒=点拨:公式形式牢记,逆用. 2.2cos10sin 20cos 20-的值是( )C.1D.12答案:A解析:【知识点】两角差的余弦公式【解题过程】2cos10sin 20cos 20-2cos 3020sin 20=cos 20--()20点拨:角的拆分,要尽量统一角的形式结合特殊角三角函数值.3.已知A 、B 均为钝角,sin A =sin B =则A +B 的值为( ) A.74π B.54π4D.4π答案:A解析:【知识点】两角差的余弦公式,两角和的余弦公式.【解题过程】,,cos 22A B A B ππ<<π<<π∴==cos()cos cos sin sin =(A B A B A B +=-=724A B A B ππ<+<π∴+= 点拨:将两角和的余弦配成[]cos cos cos sin sin A B A B A B -=-(-)由此题也就推导出了两角和的余弦公式4.函数22sincos()336x x y π=++的图象中相邻两对称轴的距离是________. 答案:32π 解析:【知识点】两角差的余弦公式,三角函数图形性质.【解题过程】22222sincos cos sin sin cos cos sin sin 336363636x x x x x y ππππ=+-=+ 22cos(),3362/3x T ππ=-==π,相邻两对称轴的距离是周期的一半 点拨:先将函数式化简,要先用到两角和的余弦公式,学生可以通过上面的问题总结出公式,或者也可以将“和”转化为“差”在理解.再逆用两角差的公式收拢.5.若,22sin sin =+βα则cos cos αβ+的取值范围.答案:cos cos αβ≤+≤ 解析:【知识点】同角的三角函数关系,两角差的余弦公式【解题过程】令cos cos t αβ+=,则2221(sin sin )(cos cos ),2t αβαβ+++=+ 221322cos(),2cos()22t t αβαβ+-=+-=-2231722,,222t t t -≤-≤-≤≤≤≤点拨:整体换元的思想,利用同角三角函数的关系,构造两角差的余弦公式,结合函数思想将cos()αβ-表示成t 的函数,通过值域求出t 的范围.6.已知α,β∈[3π4,π],sin ()α+β=-35,sin (β-π4)=1213,则cos (α+π4)=________.答案:-5665解析:【知识点】同角的三角函数关系,两角差的余弦公式【解题过程】∵α,β∈[3π4,π].∴α+β∈[3π2,2π],β-π4∈[π2,3π4],又sin(α+β)=-35,sin (β-π4)=1213, ∴cos(α+β)=1-sin 2(α+β)=45,cos (β-π4)=-1-sin 2(β-π4)=-513.∴cos (α+π4)=cos[(α+β)-(β-π4)]=cos(α+β)cos (β-π4)+sin(α+β)sin (β-π4)=45×(-513 )+(-35 )×1213=-5665. 点拨:整体换元的思想,利用同角三角函数的关系,构造两角差的余弦公式.。

两角差的余弦公式详细教案

两角差的余弦公式详细教案

两角差的余弦公式详细教案第一章:两角差的余弦公式的引入1.1 教学目标理解两角差的余弦公式的概念掌握两角差的余弦公式的推导过程1.2 教学内容回顾角度的概念和单位引入两角差的概念引导学生思考如何表示两角差的余弦值1.3 教学方法使用图形和实例来引导学生理解两角差的余弦公式的概念通过推导过程培养学生的逻辑思维能力1.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式的理解程度第二章:两角差的余弦公式的推导2.1 教学目标掌握两角差的余弦公式的推导过程能够应用两角差的余弦公式进行计算2.2 教学内容介绍两角差的余弦公式的推导过程引导学生通过图形和实例理解两角差的余弦公式的推导过程2.3 教学方法使用图形和实例引导学生理解两角差的余弦公式的推导过程通过练习题培养学生的计算能力2.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式的推导过程的理解程度通过练习题评估学生的计算能力第三章:两角差的余弦公式的应用3.1 教学目标能够应用两角差的余弦公式解决实际问题能够应用两角差的余弦公式进行角度计算3.2 教学内容介绍两角差的余弦公式的应用方法引导学生通过实例理解两角差的余弦公式的应用方法3.3 教学方法使用实例引导学生理解两角差的余弦公式的应用方法通过练习题培养学生的应用能力3.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式的应用方法的理解程度通过练习题评估学生的应用能力第四章:两角差的余弦公式的拓展4.1 教学目标理解两角差的余弦公式的拓展内容能够应用两角差的余弦公式的拓展内容解决实际问题介绍两角差的余弦公式的拓展内容引导学生通过实例理解两角差的余弦公式的拓展内容4.3 教学方法使用实例引导学生理解两角差的余弦公式的拓展内容通过练习题培养学生的应用能力4.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式的拓展内容的理解程度通过练习题评估学生的应用能力第五章:总结与复习5.1 教学目标总结两角差的余弦公式的知识点巩固学生对两角差的余弦公式的理解和应用能力5.2 教学内容回顾两角差的余弦公式的概念、推导过程和应用方法通过练习题巩固学生的理解和应用能力5.3 教学方法使用练习题和讨论的方式巩固学生的理解和应用能力5.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式的理解程度通过练习题评估学生的应用能力第六章:两角差的余弦公式的图形解释理解两角差的余弦公式可以通过图形来解释学会使用图形来帮助记忆和理解两角差的余弦公式6.2 教学内容介绍两角差的余弦公式的图形解释方法通过图形展示两角差的余弦公式的推导过程6.3 教学方法使用图形和实例引导学生理解两角差的余弦公式的图形解释方法通过观察和分析图形,加深学生对两角差的余弦公式的理解6.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式的图形解释方法的理解程度第七章:两角差的余弦公式在不同角度下的应用7.1 教学目标学会在不同角度下应用两角差的余弦公式进行计算理解在不同角度下应用两角差的余弦公式时的注意事项7.2 教学内容介绍在不同角度下应用两角差的余弦公式的方法通过实例展示在不同角度下应用两角差的余弦公式进行计算的步骤7.3 教学方法使用实例引导学生理解在不同角度下应用两角差的余弦公式的方法通过练习题培养学生的计算能力通过提问和讨论的方式检查学生对在不同角度下应用两角差的余弦公式的理解程度通过练习题评估学生的计算能力第八章:两角差的余弦公式在实际问题中的应用8.1 教学目标学会将两角差的余弦公式应用于实际问题中培养学生的实际问题解决能力8.2 教学内容介绍两角差的余弦公式在实际问题中的应用方法通过实例展示两角差的余弦公式在实际问题中的解题步骤8.3 教学方法使用实例引导学生理解两角差的余弦公式在实际问题中的应用方法通过练习题培养学生的实际问题解决能力8.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式在实际问题中的应用程度通过练习题评估学生的实际问题解决能力第九章:两角差的余弦公式的推广9.1 教学目标理解两角差的余弦公式可以进行推广学会应用推广后的两角差的余弦公式解决问题9.2 教学内容介绍两角差的余弦公式的推广形式通过实例展示如何应用推广后的两角差的余弦公式解决问题9.3 教学方法使用实例引导学生理解两角差的余弦公式的推广形式通过练习题培养学生的应用能力9.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式的推广形式的理解程度通过练习题评估学生的应用能力第十章:总结与复习10.1 教学目标总结本节课所学的主要知识点巩固学生对两角差的余弦公式的理解和应用能力10.2 教学内容回顾本节课所学的两角差的余弦公式的概念、推导过程、应用和推广通过练习题巩固学生的理解和应用能力10.3 教学方法使用练习题和讨论的方式巩固学生的理解和应用能力10.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式的理解程度通过练习题评估学生的应用能力第十一章:两角差的余弦公式的综合应用11.1 教学目标能够综合运用两角差的余弦公式解决复杂角度问题培养学生的综合分析和解决问题的能力11.2 教学内容介绍两角差的余弦公式在解决复杂角度问题时的综合应用通过实例展示如何综合运用两角差的余弦公式解决实际问题11.3 教学方法使用实例引导学生综合运用两角差的余弦公式解决复杂角度问题通过练习题培养学生的综合应用能力11.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式综合应用的理解程度通过练习题评估学生的综合应用能力第十二章:两角差的余弦公式的逆用12.1 教学目标理解两角差的余弦公式可以进行逆用学会应用逆用后的两角差的余弦公式解决问题12.2 教学内容介绍两角差的余弦公式的逆用方法通过实例展示如何应用逆用后的两角差的余弦公式解决问题12.3 教学方法使用实例引导学生理解两角差的余弦公式的逆用方法通过练习题培养学生的应用能力12.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式的逆用方法的理解程度通过练习题评估学生的应用能力第十三章:两角差的余弦公式在三角函数变换中的应用13.1 教学目标理解两角差的余弦公式在三角函数变换中的应用学会应用两角差的余弦公式进行三角函数的变换13.2 教学内容介绍两角差的余弦公式在三角函数变换中的应用方法通过实例展示如何应用两角差的余弦公式进行三角函数的变换13.3 教学方法使用实例引导学生理解两角差的余弦公式在三角函数变换中的应用方法通过练习题培养学生的应用能力13.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式在三角函数变换中的应用程度通过练习题评估学生的应用能力第十四章:两角差的余弦公式在工程和科学计算中的应用14.1 教学目标理解两角差的余弦公式在工程和科学计算中的应用学会应用两角差的余弦公式解决工程和科学计算问题14.2 教学内容介绍两角差的余弦公式在工程和科学计算中的应用方法通过实例展示如何应用两角差的余弦公式解决工程和科学计算问题14.3 教学方法使用实例引导学生理解两角差的余弦公式在工程和科学计算中的应用方法通过练习题培养学生的应用能力14.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式在工程和科学计算中的应用程度通过练习题评估学生的应用能力第十五章:总结与复习15.1 教学目标总结本节课所学的主要知识点巩固学生对两角差的余弦公式的理解和应用能力15.2 教学内容回顾本节课所学的两角差的余弦公式的概念、推导过程、应用和拓展通过练习题巩固学生的理解和应用能力15.3 教学方法使用练习题和讨论的方式巩固学生的理解和应用能力15.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式的理解程度通过练习题评估学生的应用能力重点和难点解析重点:掌握两角差的余弦公式的概念、推导过程、应用方法和拓展内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.1两角差的余弦公式
一、教材分析
《两角差的余弦公式》是人教A 版高中数学必修4第三章《三角恒等变换》第一节《两角和与差的正弦、余弦和正切公式》第一节课的内容。

本节主要给出了两角差的余弦公式的推导,要引导学生主动参与,独立思索,自己得出相应的结论。

二、教学目标
1.引导学生建立两角差的余弦公式。

通过公式的简单应用,使学生初步理解公式的结构及其功能,并为建立其他和差公式打好基础。

2.通过课题背景的设计,增强学生的应用意识,激发学生的学习积极性。

3.在探究公式的过程中,逐步培养学生学会分析问题、解决问题的能力,培养学生学会合作交流的能力。

三、教学重点难点
重点 两角差余弦公式的探索和简单应用。

难点 探索过程的组织和引导。

四、学情分析
之前学习了三角函数的性质,以及平面向量的运算和应用,在此基础上,要考虑如何利用任意角αβ,的正弦余弦值来表示cos()αβ-,牢固的掌握这个公式,并会灵活运用公式进行下一节内容的学习。

五、教学方法
1.自主性学习法:通过自学掌握两角差的余弦公式.
2.探究式学习法:通过分析、探索、掌握两角差的余弦公式的过程.
3.反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距 六、课时安排:2课时 七、教学过程
(一)创设情景,揭示课题
以文峰塔高度测量为背景素材(见课件)引入问题。

并针对问题中的0cos15用计算器或不用计算器计算求值,以激趣激疑,导入课题。

问题:(1)能不能不用计算器求值 :0cos 45 ,0cos30 ,0cos15
(2)0
cos(4530)cos 45cos30-=-是否成立?
(3)如何用450和300求0cos15?
设计意图:由给出的背景素材,使学生感受数学源于生活,又应用于生活,唤起学生解决问题的兴趣,和抛出新知识引起学生的疑惑,在兴趣和疑惑中,激发学生的求知欲,引导学习方向。

(二)、研探新知 1.三角函数线法:
问:①怎样作出角α、β、αβ-的终边。

②怎样作出角αβ-的余弦线OM
③怎样利用几何直观寻找OM 的表示式。

设计意图:尽量用动画课件把探索过程展示出来,
加强对公式结构形式的认识。

(1) 设角α终边与单位圆地交点为P 1,1,POP POx
βα∠=∠=则(2) 过点P 作P M ⊥X 轴于点M ,那么OM 就是 αβ-的余弦线。

(3) 过点P 作P A ⊥OP 1于A ,过点A 作AB ⊥x 轴于B ,过点P 作PC ⊥AB 于C
那么
OA 表示
cos β
,AP 表示sin β,并且1
.PAC
POx α∠=∠= 于是 OM=OB+BM =OB+CP =OA cos α+AP sin α =cos cos sin sin βαβα+ 最后要提醒学生注意,公式推导的前提条件:
α、β、αβ-都是锐角,且αβ>
2.向量法:
问:①结合图形,应选哪几个向量,它们怎么表示?
② 怎样利用向量数量积的概念和计算公式得到结果。

③ 对探索的过程进一步严谨性的思考和处理,从而得到合理的科学结论。

设计意图:让学生经历利用向量知识解决一个数学问题的过程,体会向量方法解决数学问题的简洁性。

1.当(0,)αβπ-∈时
如图,(cos ,sin ),(cos ,sin )OB OA ββαα== 则cos cos sin sin OA OB αβαβ•=+
又OA OB •=||||cos()OA OB αβ-=cos()αβ- ∴cos()αβ-=cos cos sin sin αβαβ+ 2.当(0,)αβπ-∉时
思考:上面图中向量,OB OA 的夹角是怎样的?,范围是怎样的?
(αβ-,且αβ-(0,)π∈)正与向量夹角的范围相符,所以我们自然地列出了表达式OA OB •=
||||cos()OA OB αβ-,但是αβ-的范围可不可能超出(0,)π呢?
探究:将OA 旋转到下图的位置,显然此时αβ-已经不是向量,OB OA 的夹角, 在[0,2]π范围内,是向量夹角的补角. 我们设夹角为θ,则
θ+()αβ-=2k π
此时,OA OB •=||||cos OA OB θ=cos[2()]cos(
k παβα--=- ∴cos()αβ-=cos cos sin sin αβαβ+
综上,对任意角,αβ都有cos()αβ-=cos cos sin sin αβαβ+ 例1. 利用差角余弦公式求0
cos15的值
(求解过程让学生独立完成,注意引导学生多方向、多维度思考问题) 变式训练:利用两角差的余弦公式证明下列诱导公式: (1)ααπ
sin )2
cos(=-; (2)cos(2)cos παα-=
(三)、质疑答辩,排难解惑,发展思维 1.利用两角差的余弦公式,求0
cos 75,cos105 2.求值 0
000cos75
cos30sin 75sin 30+
3.cos75°cos15°-sin75°sin195°的值为( ) A .0 B.12 C.32 D .-12
(设计意图:通过变式训练,进一步加深学生对公式的理解和应用,体验公式既可正用、逆用,还可变
用.还可使学生掌握“变角”和“拆角”的思想方法解决问题,培养了学生的灵活思维品质,提高学生的数学交流能力,促进思维的创新。


(四)小结与作业布置
本节我们学习了两角和与差的余弦公式,要求同学们掌握公式()C αβ-的推导,能熟练运用公式()C αβ-,注意公式()C αβ-的逆用。

在解题过程中注意角α、β的象限,也就是符号问题,学会灵活运用.课下完成本
节的课后练习以及课后延展作业,课本137P 习题2.3.4
3.1.1两角差的余弦公式导学单
一、预习目标
预习《两角差的余弦公式》,体会两角差的余弦公式的推导过程 ,尤其是向量法的运用。

二、预习内容
阅读课本相关内容,并回答以下问题: 1. 三角函数线是如何定义的?
2. 观察右图思考下列问题 (1) 怎样作出角αβ-的余弦线? (2) 在△OAP 中为什么OA 表示
cos β
,AP 表
示sin β?
(3) 在△C AP 中为什么1
.PAC
POx α∠=∠=
(4) 如何用α、β正弦余弦表示OB 和CP?
3. 如何用向量求角的余弦?向量的夹角公式是什么?
4.
观察右图思考下列问题
(1)αβ-的余弦要求应选哪几个向量,它们怎么表示?
(2) 怎样利用向量数量积的概念和计算公式得到结果?
(3)向量的夹角范围是怎样的?
(4) 当(0,
)αβπ-∉时如何解决?
X。

相关文档
最新文档