中考数学二次函数由图像判断符号题目(大全)
2020中考数学专题复习 二次函数图像性质与系数关系专题
函数图像与系数关系一.选择题(共35小题)1.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.2.在同一坐标中,一次函数y=﹣kx+2与二次函数y=x2+k的图象可能是()A.B.C.D.3.小明将如图两水平线l1、l2的其中一条当成x轴,且向右为正方向;两条直线l3、l4的其中一条当成y轴,且向上为正方向,并在此坐标平面中画出二次函数y=ax2﹣2a2x+1的图象,则()A.l1为x轴,l3为y轴B.l2为x轴,l3为y轴C.l1为x轴,l4为y轴D.l2为x轴,l4为y轴4.已知a,b,c满足a+b+c=0,4a+c=2b,则二次函数y=ax2+bx+c(a≠0)的图象的对称轴为()A.直线x=1B.直线x=﹣1C.直线x=D.直线x=﹣5.抛物线y=(x+3)2﹣5的顶点为()A.(3,﹣5)B.(﹣3,5)C.(﹣3,﹣5)D.(3,5)6.关于函数y=﹣(x+2)2﹣1的图象叙述正确的是()A.开口向上B.顶点(2,﹣1)C.与y轴交点为(0,﹣1)D.对称轴为直线x=﹣27.函数y=﹣x2﹣4x﹣3图象顶点坐标是()A.(2,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)8.已知:二次函数y=ax2+c,当x=1时,﹣4≤y≤﹣2,当x=2时,﹣1≤y≤2,则当x =3时,y的取值范围为()A.≤y≤12B.≤y≤10C.≤y≤9D.1≤y≤99.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是()A.①②B.②③C.①③D.①②③④10.已知二次函数y=ax2+bx+c(a≠0),过(1,y1)(2,y2).①若y1>0时,则a+b+c>0②若a=b时,则y1<y2③若y1<0,y2>0,且a+b<0,则a>0④若b=2a﹣1,c=a﹣3,且y1>0,则抛物线的顶点一定在第三象限上述四个判断正确的有()个.A.1B.2C.3D.411.二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②3a+c<0;③a+b≥am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的有()个.A.2B.3C.4D.512.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b >0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1B.2C.3D.413.二次函数y=2(x+2)2﹣1的图象是()A.B.C.D.14.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取值时,x对应的函数值分别为y1,y2,若y1≠y2,取y1,y2中的较小值记为M,若y1=y2,记M=y1=y2,下列判断:①当x>2时,M=y1;②若M=2,则x=1.其中正确的有()A.①②B.①C.②D.无法判断15.已知一元二次方程ax2+bx+c=0两根为x1,x2,x2+x1=﹣,x2.x1=.如果抛物线y=ax2+bx+c经过点(1,2),若abc=4,且a≥b≥c,则|a|+|b|+|c|的最小值为()A.5B.6C.7D.816.已知抛物线y=ax2+bx+c与x轴交于(x1,0)、(x2,0)两点,且0<x1<1,1<x2<2与y轴交于(0,﹣2),下列结论:①2a+b>1;②a+b<2;③3a+b>0;④a<﹣1,其中正确结论的个数为()A.1个B.2个C.3个D.4个17.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示(1<x=h<2,0<x A<1).下列结论:①2a+b>0;②abc<0;③若OC=2OA,则2b﹣ac=4;④3a﹣c<0.其中正确的个数是()A.1个B.2个C.3个D.4个18.如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且OB =OC,下列结论:①b>1且b≠2;②b2﹣4ac<4a2;③a>;其中正确的个数为()A.0B.1C.2D.319.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1<y2,其中说法正确的是()A.①②B.②③C.①②④D.②③④20.抛物线y=ax2+bx+c的顶点为D(﹣1,﹣3),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则以下结论:①abc>0;②a+b+c<0;③a﹣c =3;④方程ax2+bx+c+3=0有两个相等的实根,其中正确的个数为()A.1B.2C.3D.421.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列四个结论中:①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0.错误的个数有()A.1个B.2个C.3个D.4个22.如图为二次函数y=ax2+bx+c(a≠0)的图象,对称轴是x=1,则下列说法:①b>0;②2a+b=0;③4a﹣2b+c>0;④3a+c>0;⑤m(ma+b)<a+b(常数m≠1).其中正确的个数为()A.2B.3C.4D.523.如图,二次函数y=ax2+bx+c图象的对称轴为x=1,则下列说法正确的有()①abc<0,②2a+b=0,③a﹣b+c>0,④若4a+2b+c>0.A.①②③B.②③④C.①②④D.①②③④24.如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①abc<0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤,你认为其中正确信息的个数有()A.2B.3C.4D.525.已知抛物线y=ax2+bx+c的图象如图所示,则下列结论:①abc>0;②a+b+c=2;③a <;④b>1.其中正确的结论是()A.①②B.②③C.③④D.②④26.已知二次函数y=ax2+bx+c的图象与x轴交于(x1,0),(x2,0)两点,且0<x1<1,1<x2<2,与y轴交于(0,﹣2),下列结论:①2a+b>1;②a+b<2;③3a+b>0;④a <﹣1.其中正确的个数为()A.1B.2C.3D.427.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A.4B.3C.2D.128.如图所示的是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是x=﹣1,有下列结论:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(﹣4,y2)是抛物线上两点,则y1>y2,其中结论正确的序号是()A.①②③B.①③④C.①②④D.②③④29.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,有如下结论:①abc<0;②a﹣b+c>0;③b2>4ac;④3a﹣2b+c<0,则正确的结论是()A.①②③B.①③④C.②③④D.①②③④30.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0),下列结论:①ab<0,②b2>4a,③0<b<1,④当x>﹣1时,y>0,其中正确结论的个数是()A.1个B.2个C.3个D.4个31.已知二次函数y=ax2+bx+c(a≠0)的图象如图,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0,其中结论正确有()个.A.2个B.3个C.4个D.5个32.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1B.2C.3D.433.如图是函数y=ax2+bx+c图象的一部分,图象与x轴正半轴交于点(3,0),对称轴为直线x=1,则下列结论:①b2>4ac;②当﹣1<x<3时,ax2+bx+c>0;③无论m为何实数,a+b≥m(ma+b);④若t为方程ax2+bx+c+1=0的一个根,则﹣1<t<3,其中正确的结论有()A.1个B.2个C.3个D.4个34.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④35.二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的有()A.①②③B.②④C.②⑤D.②③⑤二.填空题(共5小题)36.已知抛物线y=x2+ax+a的顶点的纵坐标为,且当x>﹣1时,y随x的增大而增大,则a的值为.37.函数y=x2+bx+c与y=x的图象如图所示,有以上结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的是(填序号).38.已知二次函数y=x2+2x+t2的图象经过点(﹣m,﹣1)和(m,n),则n的值为.39.若直线y=x+m与函数y=|x2﹣2x﹣3|的图象有四个公共点,则m的取值范围为.40.抛物线y=ax2+bx+c的部分图象如图所示,直线x=1为对称轴,以下结论①a<0,②b >0,③2a+b=0,④3a+c<0正确的有(填序号).参考答案与试题解析一.选择题(共35小题)1.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.【分析】本题可先由二次函数y=ax2+bx+c图象得到字母系数的正负,再与一次函数y =ax+b的图象相比较看是否一致.【解答】解:A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b <0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选:A.【点评】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.2.在同一坐标中,一次函数y=﹣kx+2与二次函数y=x2+k的图象可能是()A.B.C.D.【分析】根据一次函数和二次函数的解析式可得一次函数与y轴的交点为(0,2),二次函数的开口向上,据此判断二次函数的图象.【解答】解:由二次函数y=x2+k可知,抛物线开口向上,由一次函数y=﹣kx+2可知,直线与y轴的交点为(0,2),当k>0时,二次函数顶点在y轴正半轴,一次函数经过一、二、四象限;当k<0时,二次函数顶点在y轴负半轴,一次函数经过一、二、三象限.故选:A.【点评】此题主要考查了二次函数及一次函数的图象的性质,用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标.3.小明将如图两水平线l1、l2的其中一条当成x轴,且向右为正方向;两条直线l3、l4的其中一条当成y轴,且向上为正方向,并在此坐标平面中画出二次函数y=ax2﹣2a2x+1的图象,则()A.l1为x轴,l3为y轴B.l2为x轴,l3为y轴C.l1为x轴,l4为y轴D.l2为x轴,l4为y轴【分析】根据抛物线的开口向下,可得a<0,求出对称轴为:直线x=2a,则可确定l4为y轴,再根据图象与y轴交点,可得出l2为x轴,即可得出答案.【解答】解:∵抛物线的开口向下,∴a<0,∴抛物线与y轴的负半轴相交,∴l2为x轴,l4为y轴.故选:D.【点评】本题考查了二次函数的性质,开口方向由a确定,与y轴的交点由c确定,左同右异确定b的符号.4.已知a,b,c满足a+b+c=0,4a+c=2b,则二次函数y=ax2+bx+c(a≠0)的图象的对称轴为()A.直线x=1B.直线x=﹣1C.直线x=D.直线x=﹣【分析】根据a+b+c=0,4a+c=2b,可以求得a、b、c之间的关系,从而可以求得该函数的对称轴,本题得以解决.【解答】解:∵a+b+c=0,4a+c=2b,∴c=﹣2a,a=b,∵二次函数y=ax2+bx+c(a≠0),∴对称轴是直线x==,故选:D.【点评】本题考查二次函数的性质、二次函数的图象,解答本题的关键是明确题意,利用二次函数的性质解答.5.抛物线y=(x+3)2﹣5的顶点为()A.(3,﹣5)B.(﹣3,5)C.(﹣3,﹣5)D.(3,5)【分析】根据二次函数的顶点式容易得出其顶点坐标.【解答】解:∵y=(x+3)2﹣5,∴其顶点坐标为(﹣3,﹣5),故选:C.【点评】本题主要考查二次函数的顶点坐标,掌握二次函数的顶点式y=a(x﹣h)2+k 的顶点坐标为(h,k)是解题的关键.6.关于函数y=﹣(x+2)2﹣1的图象叙述正确的是()A.开口向上B.顶点(2,﹣1)C.与y轴交点为(0,﹣1)D.对称轴为直线x=﹣2【分析】根据题目中的函数图象和二次函数的性质可以判断各个选项中的说法是否正确,本题得以解决.【解答】解:∵函数y=﹣(x+2)2﹣1,∴该函数图象开口向下,故选项A错误,顶点坐标为(﹣2,﹣1),故选项B错误,当x=0时,y=﹣5,即该函数与y轴的交点坐标为(0,﹣5),故选项C错误,对称轴是直线x=﹣2,故选项D正确,故选:D.【点评】本题考查二次函数的性质、二次函数的图象,解答本题的关键是明确题意,利用二次函数的性质解答.7.函数y=﹣x2﹣4x﹣3图象顶点坐标是()A.(2,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)【分析】将二次函数的一般形式化为顶点式后即可直接说出其顶点坐标;【解答】解:∵y=﹣x2﹣4x﹣3=﹣(x2+4x+4﹣4+3)=﹣(x+2)2+1∴顶点坐标为(﹣2,1);故选:B.【点评】主要考查了二次函数的性质和求抛物线的对称轴和顶点坐标的方法.除去用配方法外还可用公式法.8.已知:二次函数y=ax2+c,当x=1时,﹣4≤y≤﹣2,当x=2时,﹣1≤y≤2,则当x =3时,y的取值范围为()A.≤y≤12B.≤y≤10C.≤y≤9D.1≤y≤9【分析】由当x=1时,﹣4≤y≤﹣2,当x=2时,﹣1≤y≤2,将y=ax2+c代入得到关于a、c的两个不等式组,再设x=3时y=9a+c=m(a+c)+n(4a+c),求出m、n的值,代入计算即可.【解答】解:由x=1时,﹣4≤y≤﹣2得,﹣4≤a+c≤﹣2…①由x=2时,﹣1≤y≤2得,﹣1≤4a+c≤2…②x=3时,y=9a+c=m(a+c)+n(4a+c)得,解得,故≤﹣(a+c)≤,﹣≤(4a+c)≤,∴≤y≤12.故选:A.【点评】本题考查了二次函数性质的运用,熟练解不等式组是解答本题的关键.9.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是()A.①②B.②③C.①③D.①②③④【分析】根据抛物线与x轴的交点坐标为(1,0)对①进行判断;根据对称轴方程为x =﹣=﹣1对②进行判断;根据抛物线的对称性得到抛物线与x轴的交点坐标为(﹣3,0)和(1,0),由此对③进行判断;根据抛物线与y轴的交点在x轴下方,得到c<0,而a+b+c=0,则a﹣2b+c=﹣3b,由b>0,于是可对④进行判断.【解答】解:∵x=1时,y=0,∴a+b+c=0,所以①正确;∵x=﹣=﹣1,∴b=2a,所以②错误;∵点(1,0)关于直线x=﹣1对称的点的坐标为(﹣3,0),∴抛物线与x轴的交点坐标为(﹣3,0)和(1,0),∴ax2+bx+c=0的两根分别为﹣3和1,所以③正确;∵抛物线与y轴的交点在x轴下方,∴c<0,而a+b+c=0,b=2a,∴c=﹣3a,∴a﹣2b+c=﹣3b,∵b>0,∴﹣3b<0,所以④错误.故选:C.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c).10.已知二次函数y=ax2+bx+c(a≠0),过(1,y1)(2,y2).①若y1>0时,则a+b+c>0②若a=b时,则y1<y2③若y1<0,y2>0,且a+b<0,则a>0④若b=2a﹣1,c=a﹣3,且y1>0,则抛物线的顶点一定在第三象限上述四个判断正确的有()个.A.1B.2C.3D.4【分析】①若y1>0时,当x=1时,y1=a+b+c,此时,确定不了y的值,∴a+b+c>0,正确;②若a=b时,即函数的对称轴是x=﹣,分两种情况,a=b>0,则y2>y1,否则,故y1<y2,故错误;③若y1<0,y2>0,即:a+b+c<0,4a+2b+c>0,而a+b<0,即:﹣2a<0,a>0,正确;④若b=2a﹣1,c=a﹣3,且y1>0,即:a+b+c>0,把b、c的值代入上式得:a>1,则b>1,c>﹣2,代入顶点坐标即可求解,正确.【解答】解:①若y1>0时,当x=1时,y1=a+b+c>0此时,正确;②若a=b时,即函数的对称轴是x=﹣,也确定不了y1、y2的大小,故y1<y2,错误;③若y1<0,y2>0,即:a+b+c<0,4a+2b+c>0,解得:﹣3a﹣b<0,而a+b<0,即:﹣2a<0,∴a>0,正确;④若b=2a﹣1,c=a﹣3,且y1>0,即:a+b+c>0,把b、c的值代入上式得:a>1,则b>1,c>﹣2,顶点的x坐标=﹣<0,顶点的y坐标==﹣2﹣<0,故顶点一定在第三象限,正确;故选:C.【点评】本题考查的是二次函数图象与系数的关系,涉及到函数基本性质、解不等式等相关知识,难度较大.11.二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②3a+c<0;③a+b≥am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的有()个.A.2B.3C.4D.5【分析】由抛物线开口方向得到a<0,利用抛物线的对称轴方程得到b=﹣2a>0,由抛物线与x轴的交点位置得到c>0,则可对①进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点在(﹣1,0)与(0,0)之间,所以当x=﹣1时,a﹣b+c<0,则可对④进行判断;把b=﹣2a代入可对②进行判断;利用二次函数的最值问题对③进行判断;把ax12+bx1=ax22+bx2进行变形得到(x1﹣x2)[a(x1+x2)+b]=0,从而得到a(x1+x2)+b=0,再利用b=﹣2a可对⑤进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与x轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线与x轴的一个交点在(2,0)与(3,0)之间,∴抛物线与x轴的另一个交点在(﹣1,0)与(0,0)之间,∴当x=﹣1时,y<0,即a﹣b+c<0,所以④错误;∴a+2a+c<0,即3a+c<0,所以②正确;∵x=1时,y有最大值,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵ax12+bx1=ax22+bx2,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,∴x1+x2=﹣=﹣=2,所以⑤正确.故选:B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置.也考查了二次函数的性质.12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b >0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1B.2C.3D.4【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选:D.【点评】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.13.二次函数y=2(x+2)2﹣1的图象是()A.B.C.D.【分析】先根据解析式确定抛物线的顶点坐标、对称轴,然后对图象进行讨论选择.【解答】解:∵a=2>0,∴抛物线开口方向向上;∵二次函数解析式为y=2(x+2)2﹣1,∴顶点坐标为(﹣2,﹣1),对称轴x=﹣2.故选:C.【点评】判断图象的大体位置根据:(1)根据a的正负确定开口方向;(2)根据顶点坐标或对称轴确定图象位于哪些象限.14.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取值时,x对应的函数值分别为y1,y2,若y1≠y2,取y1,y2中的较小值记为M,若y1=y2,记M=y1=y2,下列判断:①当x>2时,M=y1;②若M=2,则x=1.其中正确的有()A.①②B.①C.②D.无法判断【分析】若y1=y2,记M=y1=y2.首先求得抛物线与直线的交点坐标,利用图象可得当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;然后根据当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;即可求得答案.【解答】解:∵当y1=y2时,即﹣x2+4x=2x时,解得:x=0或x=2,∴当x>2时,利用函数图象可以得出y2>y1;∴①正确;∵如图:当0<x<2时,y1>y2;当M=2,2x=2,x=1;x>2时,y2>y1;当M=2,﹣x2+4x=2,x1=2+,x2=2﹣(舍去),∴使得M=2的x值是1或2+,∴②错误;【点评】此题主要考查了二次函数与一次函数综合应用.注意掌握函数增减性是解题关键,注意数形结合思想与方程思想的应用.15.已知一元二次方程ax2+bx+c=0两根为x1,x2,x2+x1=﹣,x2.x1=.如果抛物线y=ax2+bx+c经过点(1,2),若abc=4,且a≥b≥c,则|a|+|b|+|c|的最小值为()A.5B.6C.7D.8【分析】易知:b+c=2﹣a,bc=,可将b、c看做是一元二次方程x2﹣(2﹣a)x+=0的两实根,那么可根据△≥0,求得a的大致取值范围为a≥4.由于abc=4>0,且a ≥b≥c,则说明:①a、b、c均大于0,由于a≥4,如果三数均为正数,显然a+b+c>4≠2,因此不合题意.②a正,b、c为负,那么此时|a|+|b|+|c|=a﹣(b+c)=a﹣(2﹣a)=2a﹣2,根据得出的a的取值范围,即可求出|a|+|b|+|c|的最小值.【解答】解:∵a≥b≥c,若a<0,则b<0,c<0,a+b+c<0,与a+b+c=2矛盾,∴a>0;∵b+c=2﹣a,bc=,∴b,c是一元二次方程x2﹣(2﹣a)x+=0的两实根.∴△=(2﹣a)2﹣4×≥0,∴a3﹣4a2+4a﹣16≥0,即(a2+4)(a﹣4)≥0,故a≥4.∵abc>0,∴a,b,c为全大于0或一正二负.①若a,b,c均大于0,∵a≥4,与a+b+c=2矛盾;②若a,b,c为一正二负,则a>0,b<0,c<0,则|a|+|b|+|c|=a﹣b﹣c=a﹣(2﹣a)=2a﹣2,∵a≥4,故2a﹣2≥6当a=4,b=c=﹣1时,满足题设条件且使不等式等号成立.故|a|+|b|+|c|的最小值为6.【点评】本题主要考查了二次函数与一元二次方程的关系、韦达定理的应用及不等式的相关知识.16.已知抛物线y=ax2+bx+c与x轴交于(x1,0)、(x2,0)两点,且0<x1<1,1<x2<2与y轴交于(0,﹣2),下列结论:①2a+b>1;②a+b<2;③3a+b>0;④a<﹣1,其中正确结论的个数为()A.1个B.2个C.3个D.4个【分析】由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:如图:0<x1<1,1<x2<2,并且图象与y轴相交于点(0,﹣2),可知该抛物线开口向下即a<0,c=﹣2,①当x=2时,y=4a+2b+c<0,即4a+2b<﹣c;∵c=﹣2,∴4a+2b<2,∴2a+b<1,故①错误;②∵当x=1时,y>0,∴a+b+c>0,∵c=﹣2,∴a+b>2,故②错误;③∵0<x1<1,1<x2<2,∴1<x1+x2<3,又∵x1+x2=﹣,∴1<﹣<3,∴﹣a<b<﹣3a,∴3a+b<0,④∵0<x1x2<2,x1x2=<2,又∵c=﹣2,∴a<﹣1.故④正确.故选:A.【点评】本题考查了抛物线与x轴的交点及二次函数图象与系数的关系,根据图象找到所需的条件,同时利用根与系数的关系及不等式的性质是解题的基本思路.17.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示(1<x=h<2,0<x A<1).下列结论:①2a+b>0;②abc<0;③若OC=2OA,则2b﹣ac=4;④3a﹣c<0.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】①根据抛物线的开口向下即可得出a<0,再根据抛物线的对称轴在x=1和x =2之间即可得出b>﹣2a,①正确;②由b>﹣2a可得出b>0,再根据抛物线与y轴交于y轴负半轴可得出c<0,由此即可得出abc>0,②错误;③将A(﹣,0)代入抛物线解析式中,整理后可得出2b﹣ac=4,③正确;④根据抛物线的对称轴1<﹣<2可得出﹣2a<b<﹣4a,再由当x=1时y>0即可得出a+b+c>0,进而即可得出3a﹣c<0,④正确.综上即可得出结论.【解答】解:①∵抛物线的开口向下,∴a<0.∵抛物线的对称轴﹣>1,∴b>﹣2a,即2a+b>0,①成立;②∵b>﹣2a,a<0,∴b>0,∵抛物线与y轴的交点在y轴的负半轴,∴c<0,∴abc>0,②错误;③∵OC=2OA,∴A(﹣,0),∴ac2﹣bc+c=0,整理得:2b﹣ac=4,③成立;④∵抛物线的对称轴1<﹣<2,∴﹣2a<b<﹣4a,∵当x=1时,y=a+b+c>0,∴a﹣4a+c>0,即3a﹣c<0,④正确.综上可知正确的结论有3个.故选:C.【点评】本题考查了二次函数图象与系数的关系,根据二次函数的图象找出系数间的关系是解题的关键.18.如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且OB =OC,下列结论:①b>1且b≠2;②b2﹣4ac<4a2;③a>;其中正确的个数为()A.0B.1C.2D.3【分析】由根与系数的关系及二次函数y=ax2+bx+c的图象坐标逐一求判定即可.【解答】解:①∵OB=OC,∴C(0,c),B(﹣c,0)把B(﹣c,0)代入y=ax2+bx+c得0=ac2﹣bc+c,即0=ac2+c(1﹣b),∵a>0,∴1﹣b<0,即b>1,如果b=2,由0=ac2﹣bc+c,可得ac=1,此是△=b2﹣4ac=0,故b>1且b≠2正确,②∵a>0,b>0,c>0,设C(0,c),B(﹣c,0)∵AB=|x1﹣x2|<2,∴(x1+x2)2﹣4x1x2<4,∴(﹣)2﹣4×<4,即﹣<4,∴b2﹣4ac<4a2;故本项正确.③把B(﹣c,0)代入y=ax2+bx+c可得ac+1=b,代入y=ax2+bx+c得y=ax2+(ac+1)x+c=ax2+acx+x+c=ax2+x+acx+c=x(ax+1)+c(ax+1)=(x+c)(ax+1),解得x1=﹣c,x2=﹣,由图可得x1,x2>﹣2,即﹣>﹣2,∵a>0,∴<2,∴a>;正确.所以正确的个数是3个.故选:D.【点评】本题主要考查了二次函数图象与系数的关系.解题的关键是根与系数的灵活运用.19.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1<y2,其中说法正确的是()A.①②B.②③C.①②④D.②③④【分析】根据抛物线开口方向得到a>0,根据抛物线的对称轴得b=2a>0,则2a﹣b=0,则可对②进行判断;根据抛物线与y轴的交点在x轴下方得到c<0,则abc<0,于是可对①进行判断;由于x=2时,y>0,则得到4a+2b+c>0,则可对③进行判断;通过点(﹣5,y1)和点(,y2)离对称轴的远近对④进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确;∵x=2时,y>0,∴4a+2b+c>0,所以③错误;∵点(﹣5,y1)离对称轴要比点(,y2)离对称轴要远,∴y1>y2,所以④错误.故选:A.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异).抛物线与y轴交于(0,c).抛物线与x轴交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac <0时,抛物线与x轴没有交点.20.抛物线y=ax2+bx+c的顶点为D(﹣1,﹣3),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则以下结论:①abc>0;②a+b+c<0;③a﹣c =3;④方程ax2+bx+c+3=0有两个相等的实根,其中正确的个数为()A.1B.2C.3D.4【分析】抛物线开口向上a>0,对称轴在y轴左侧,b>0,抛物线和y轴负半轴相交,c <0,则abc<0,由抛物线与x轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=﹣1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(﹣3,0)和(﹣2,0)之间,所以当x=1时,y>0,则a+b+c>0;由抛物线的顶点为D(﹣1,﹣3)得a﹣b+c=﹣3,由抛物线的对称轴为直线x=﹣=﹣1得b=2a,所以a﹣c=3;根据二次函数的最大值问题,当x=﹣1时,二次函数有最大值为﹣3,即b2﹣4ac=12a,b2﹣4a(c+3)=b2﹣4ac﹣12a=0,所以说方程ax2+bx+c+3=0两个相等实数根.【解答】解:∵抛物线开口向上,∴a>0,∵对称轴在y轴左侧,∴b>0,∵抛物线和y轴负半轴相交,∴c<0,∴abc<0,故①错误;∵当x=1时,y>0,∴y=a+b+c>0,故②错误;∵抛物线的顶点为D(﹣1,﹣3)∴a﹣b+c=﹣3,∵抛物线的对称轴为直线x=﹣=﹣1得b=2a,把b=2a代入a﹣b+c=﹣3,得a﹣2a+c=﹣3,∴c﹣a=﹣3,∴a﹣c=3,故③正确;∵二次函数y=ax2+bx+c有最大值为﹣3,∴b2﹣4ac=12a,∴方程ax2+bx+c+3=0的判别式△=b2﹣4a(c+3)=b2﹣4ac﹣12a=0,∴方程ax2+bx+c+3=0有两个相等的实数根,故④正确;故选:B.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x 轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.21.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列四个结论中:①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0.错误的个数有()A.1个B.2个C.3个D.4个【分析】根据对称轴方程,抛物线开口方向、与y轴交点坐标位置确定a、b、c的负号,根据图象知x=﹣1与x=1时所对应的y的负号进行判断.【解答】解:如图所示,∵抛物线开口方向向下,∴a<0.又对称轴﹣1<x=﹣<0,∴b<0,且b>2a,则2a﹣b<0.故①正确;∵抛物线与y轴交于负半轴,∴c<0,∴abc<0.故②正确;如图所示,当x=1时,y<0,即a+b+c<0.故③正确;④如图所示,当x=﹣1时,y<0,即a﹣b+c<0.故④错误.综上所述,错误的个数是1.故选:A.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.22.如图为二次函数y=ax2+bx+c(a≠0)的图象,对称轴是x=1,则下列说法:①b>0;②2a+b=0;③4a﹣2b+c>0;④3a+c>0;⑤m(ma+b)<a+b(常数m≠1).其中正确的个数为()A.2B.3C.4D.5【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴x=1计算2a+b与偶的关系;再由根的判别式与根的关系,进而对所得结论进行判断.【解答】解:①由抛物线的开口向下知a<0,对称轴为x=﹣>0,则b>0,故本选项正确;②由对称轴为x=1,∴﹣=1,∴b=﹣2a,则2a+b=0,故本选项正确;③由图象可知,当x=﹣2时,y<0,则4a﹣2b+c<0,故本选项错误;④从图象知,当x=﹣1时,y=0,则a﹣b+c=0,∵b=﹣2a,∴a+2a+c=0,即3a+c=0,故本选项错误;⑤∵对称轴为x=1,∴当x=1时,抛物线有最大值,∴a+b+c>m2a+mb+c,∴m(ma+b)<a+b(常数m≠1),故本选项正确;故选:B.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.23.如图,二次函数y=ax2+bx+c图象的对称轴为x=1,则下列说法正确的有()①abc<0,②2a+b=0,③a﹣b+c>0,④若4a+2b+c>0.A.①②③B.②③④C.①②④D.①②③④【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:A、根据图示知,抛物线开口方向向上,则a>0.抛物线的对称轴x=﹣=1>0,则b<0.抛物线与y轴交与正半轴,则c>0,所以abc<0.故本选项正确;B、∵x=﹣=1,∴b=﹣2a,∴2a+b=0.故本选项正确;C、∵抛物线开口方向向上,与y轴交与正半轴,∴当x=﹣1时,y>0,即a﹣b+c>0.故本选项正确;D、由x=2时,y=4a+2b+c,由图象知:y=4a+2b+c>0,故本选项正确;故选:D.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.24.如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①abc<0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤,你认为其中正确信息的个数有()A.2B.3C.4D.5【分析】利用函数图象分别求出a,b,c的符号,进而得出x=1或﹣1时y的符号,进而判断得出答案.【解答】解:①∵图象开口向下,∴a<0,∵对称轴x=﹣=﹣,∴3b=2a,则a=b,∴b<0,∵图象与x轴交与y轴正半轴,∴c>0,∴abc>0,故选项①错误;选项⑤正确;②由图象可得出:当x=1时,y<0,∴a+b+c<0,故此选项正确;③当x=﹣1时,y=a﹣b+c>0,∴b﹣b+c>0,∴b+2c>0,故此选项正确;④当x=﹣时,y>0,∴a﹣b+c>0,∴a﹣2b+4c>0,故此选项正确.故正确的有4个.故选:C.【点评】此题主要考查了二次函数图象与系数的关系,正确得出a,b的关系以及x=1,﹣1时y的符号是解题关键.25.已知抛物线y=ax2+bx+c的图象如图所示,则下列结论:①abc>0;②a+b+c=2;③a <;④b>1.其中正确的结论是()A.①②B.②③C.③④D.②④【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①∵抛物线的开口向上,∴a>0,∵与y轴的交点为在y轴的负半轴上,∴c<0,∵对称轴为x=<0,∴a、b同号,即b>0,∴abc<0,故本选项错误;②当x=1时,函数值为2,∴a+b+c=2;故本选项正确;③∵对称轴x=>﹣1,解得:<a,∵b>1,∴a>,故本选项错误;④当x=﹣1时,函数值<0,即a﹣b+c<0,(1)又a+b+c=2,将a+c=2﹣b代入(1),2﹣2b<0,∴b>1故本选项正确;综上所述,其中正确的结论是②④;故选:D.【点评】二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号.(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.(4)b2﹣4ac的符号由抛物线与x轴交点的个数确定:2个交点,b2﹣4ac>0;1个交点,b2﹣4ac=0;没有交点,b2﹣4ac<0.(5)当x=1时,可确定a+b+c的符号,当x=﹣1时,可确定a﹣b+c的符号.(6)由对称轴公式x=,可确定2a+b的符号.26.已知二次函数y=ax2+bx+c的图象与x轴交于(x1,0),(x2,0)两点,且0<x1<1,1<x2<2,与y轴交于(0,﹣2),下列结论:①2a+b>1;②a+b<2;③3a+b>0;④a <﹣1.其中正确的个数为()A.1B.2C.3D.4【分析】由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:∵y轴交于点(0,﹣2),∴c=﹣2,∵0<x1<1,1<x2<2,x1•x2=,∴0<<2,∵c=﹣2,∴a<﹣1,④正确,∵函数y=ax2+bx+c的图象与x轴交于(x1,0),(x2,0)两点,且0<x1<1,1<x2<2,∴<﹣<,3a+b>0,③正确;∵二次函数y=ax2+bx+c的图象与x轴交于(x1,0),(x2,0)两点,且0<x1<1,1<x2<2,与y轴交于(0,﹣2),∴4a+2b+c<0,∴4a+2b<﹣c,即4a+2b<2,∴2a+b<1,①错误,又a+b+c>0,∴a+b>﹣c∵c=﹣2∴a+b>2,②错误,故选:B.【点评】本题考查了抛物线与x轴的交点及二次函数图象与系数的关系,根据图象找到所需的条件,同时利用根与系数的关系及不等式的性质是解题的基本思路.27.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A.4B.3C.2D.1【分析】由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac >0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B (x2,0),则OA=﹣x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c =0(a≠0)的两根,利用根与系数的关系得到x1•x2=,于是OA•OB=﹣,则可对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,。
二次函数的图象与性质大题(五大题型)—2024年中考数学(全国通用)解析版
二次函数的图象与性质大题(五大题型)通用的解题思路:题型一.二次函数的性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c (a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移|﹣|个单位,再向上或向下平移||个单位得到的.题型二.二次函数图象与系数的关系二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧.(简称:左同右异)③.常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac <0时,抛物线与x轴没有交点.题型三.待定系数法求二次函数解析式(1)二次函数的解析式有三种常见形式:①一般式:y=ax2+bx+c(a,b,c是常数,a≠0);②顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标;③交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0);(2)用待定系数法求二次函数的解析式.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.题型四.抛物线与x轴的交点求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x 的一元二次方程即可求得交点横坐标.(1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.(2)二次函数的交点式:y=a(x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).题型五.二次函数综合题(1)二次函数图象与其他函数图象相结合问题解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.(2)二次函数与方程、几何知识的综合应用将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.(3)二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.题型一.二次函数的性质(共3小题)1.(2024•石景山区校级模拟)在平面直角坐标系xOy 中,1(A x ,1)y ,2(B x ,2)y 是抛物线2(0)y x bx b =−+≠上任意两点,设抛物线的对称轴为直线x h =. (1)若抛物线经过点(2,0),求h 的值;(2)若对于11x h =−,22x h =,都有12y y >,求h 的取值范围;(3)若对于121h x h −+……,221x −−……,存在12y y <,直接写出h 的取值范围. 【分析】(1)根据对称轴2bx a=−进行计算,得2b h =,再把(2,0)代入2(0)y x bx b =−+≠,即可作答.(2)因为1(A x ,1)y ,2(B x ,2)y 是抛物线2(0)y x bx b =−+≠上的点,所以把11x h =−,22x h =分别代入,得出对应的1y ,2y ,再根据12y y >联立式子化简,计算即可作答;(3)根据121h x h −+……,221x −−……,存在12y y <,得出当221h −<−<−或者211h −<+<−,即可作答. 【解答】解:(1)抛物线的对称轴为直线x h =, 22b bh ∴=−=−, 即2b h =,∴抛物线22y x hx =−+,把(2,0)代入22y x hx =−+, 得0422h =−+⨯, 解得1h =;(2)由(1)知抛物线22y x hx =−+,1(A x ,1)y ,2(B x ,2)y 是抛物线22y x hx =−+上任意两点,221(1)2(1)1y h h h h ∴=−−+−=−,22(2)220y h h h =−+⨯=,对于11x h =−,22x h =,都有12y y >, 210h ∴−>,解得1h >或1h <−;(3)1(A x ,1)y ,2(B x ,2)y 是抛物线22y x hx =−+上任意两点,对于121h x h −+……,221x −−……,存在12y y <,且1(2,)h y −关于直线x h =的对称点为1(2,)h y +,1(1,)h y +关于直线x h =的对称点为1(1,)h y −,∴当221h −<−<−时,存在12y y <,解得01h <<,当221h −<+<−时,存在12y y <, 解得43h −<<−,当211h −<+<−时,存在12y y <, 解得32h −<<−,当211h −<−<−时,存在12y y <, 解得10h −<<,综上,满足h 的取值范围为41h −<<且0h ≠.【点评】本题考查了二次函数的图象性质、增减性,熟练掌握二次函数的图象和性质是解决本题的关键. 2.(2024•鹿城区校级一模)已知二次函数223y x tx =−++. (1)若它的图象经过点(1,3),求该函数的对称轴. (2)若04x ……时,y 的最小值为1,求出t 的值.(3)如果(2,)A m n −,(,)C m n 两点都在这个二次函数的图象上,直线2y mx a =+与该二次函数交于1(M x ,1)y ,2(N x ,2)y 两点,则12x x +是否为定值?若是,请求出该定值;若不是,请说明理由.【分析】(1)把(1,3)代入解析式求出12t =,再根据对称轴公式求出对称轴; (2)根据抛物线开口向下,以及0x =时3y =,由函数的性质可知,当4x =时,y 的最小值为1,然后求t 即可;(3)(2,)A m n −,(,)C m n 两点都在这个二次函数的图象上,有对称轴公式得出1m t −=,再令2232x tx mx a −++=+,并转化为一般式,然后由根与系数的关系求出122x x +=−.【解答】解:(1)将(1,3)代入二次函数223y x tx =−++,得3123t =−++, 解得12t =, ∴对称轴直线为21122t x t =−==−⨯; (2)当0x =时,3y =,抛物线开口向下,对称轴为直线x t =, ∴当x t =时,y 有最大值,04x ……时,y 的最小值为1,∴当4x =时,16831y t =−++=,解得74t =; (3)12x x +是定值,理由:(2,)A m n −,(,)C m n 两点都在这个二次函数的图象上, 212m mx t m −+∴===−, 1m t ∴−=,令2232x tx mx a −++=+, 整理得:22()30x m t x a +−+−=,直线2y mx a =+与该二次函数交于1(M x ,1)y ,2(N x ,2)y 两点, 1x ∴,2x 是方程22()30x m t x a +−+−=的两个根,122()2()21m t x x m t −∴+=−=−−=−是定值. 【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识,关键是掌握二次函数的性质. 3.(2024•拱墅区一模)在平面直角坐标系中,抛物线2(2)2y ax a x =−++经过点(2,)A t −,(,)B m p . (1)若0t =,①求此抛物线的对称轴;②当p t <时,直接写出m 的取值范围;(2)若0t <,点(,)C n q 在该抛物线上,m n <且5513m n +<−,请比较p ,q 的大小,并说明理由. 【分析】(1)①当0t =时,点A 的坐标为(2,0)−,将其代入函数解析式中解得1a =−,则函数解析式为抛物线的解析式为22y x x =−−+,再根据求对称轴的公式2bx a=−即可求解; ②令0y =,求出抛物线与x 轴交于(2,0)−和(1,0),由题意可得0p <,则点B 在x 轴的下方,以此即可解答; (2)将点A 坐标代入函数解析式,通过0t <可得a 的取值范围,从而可得抛物线开口方向及对称轴,根据点B ,C 到对称轴的距离大小关系求解.【解答】解:(1)①当0t =时,点A 的坐标为(2,0)−,抛物线2(2)2y ax a x =−++经过点(2,0)A −, 42(2)20a a ∴+++=,1a ∴=−,∴抛物线的解析式为22y x x =−−+, ∴抛物线的对称轴为直线112(1)2x −=−=−⨯−;②令0y =,则220x x −−+=, 解得:11x =,22x =−,∴抛物线与x 轴交于(2,0)−和(1,0),点(2,0)A −,(,)B m p ,且0p <, ∴点(,)B m p 在x 轴的下方,2m ∴<−或1m >.(2)p q <,理由如下:将(2,)t −代入2(2)2y ax a x =−++得42(2)266t a a a =+++=+,0t <, 660a ∴+<, 1a ∴<−,∴抛物线开口向下,抛物线对称轴为直线(2)1122a x a a −+=−=+, 1a <−,110a∴−<<, 1111222a ∴−<+<, m n <且5513m n +<−,∴1312102m n +<−<−, ∴点(,)B m p 到对称轴的距离大于点(,)C n q 到对称轴的距离,p q ∴<.【点评】本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.题型二.二次函数图象与系数的关系(共8小题)4.(2023•南京)已知二次函数223(y ax ax a =−+为常数,0)a ≠. (1)若0a <,求证:该函数的图象与x 轴有两个公共点. (2)若1a =−,求证:当10x −<<时,0y >.(3)若该函数的图象与x 轴有两个公共点1(x ,0),2(x ,0),且1214x x −<<<,则a 的取值范围是 .【分析】(1)证明240b ac −>即可解决问题. (2)将1a =−代入函数解析式,进行证明即可. (3)对0a >和0a <进行分类讨论即可.【解答】证明:(1)因为22(2)43412a a a a −−⨯⨯=−, 又因为0a <,所以40a <,30a −<, 所以24124(3)0a a a a −=−>,所以该函数的图象与x 轴有两个公共点. (2)将1a =−代入函数解析式得,2223(1)4y x x x =−++=−−+,所以抛物线的对称轴为直线1x =,开口向下. 则当10x −<<时,y 随x 的增大而增大, 又因为当1x =−时,0y =, 所以0y >.(3)因为抛物线的对称轴为直线212ax a−=−=,且过定点(0,3), 又因为该函数的图象与x 轴有两个公共点1(x ,0),2(x ,0),且1214x x −<<<, 所以当0a >时,230a a −+<, 解得3a >, 故3a >.当0a <时,230a a ++<,解得1a <−, 故1a <−.综上所述,3a >或1a <−. 故答案为:3a >或1a <−.【点评】本题考查二次函数的图象和性质,熟知二次函数的图象和性质是解题的关键.5.(2024•南京模拟)在平面直角坐标系xOy 中,点1(1,)y ,2(3,)y 在抛物线222y x mx m =−+上. (1)求抛物线的顶点(,0)m ; (2)若12y y <,求m 的取值范围;(3)若点0(x ,0)y 在抛物线上,若存在010x −<<,使102y y y <<成立,求m 的取值范围. 【分析】(1)利用配方法将已知抛物线解析式转化为顶点式,可直接得到答案; (2)由12y y <,得到221296m m m m −+<−+,解不等式即可; (3)由题意可知012032m m +⎧<⎪⎪⎨+⎪>⎪⎩或112132m m −+⎧<⎪⎪⎨−+⎪>⎪⎩,解不等式组即可.【解答】解:(1)抛物线222()y x mx m x m =−+=−. ∴抛物线的顶点坐标为(,0)m .故答案为:(,0)m ;(2)点1(1,)y ,2(3,)y 在抛物线222y x mx m =−+上,且12y y <, 221296m m m m ∴−+<−+,2m ∴<;(3)点0(x ,0)y 在抛物线上,存在010x −<<,使102y y y <<成立, ∴012032m m +⎧<⎪⎪⎨+⎪>⎪⎩或112132m m −+⎧<⎪⎪⎨−+⎪>⎪⎩,解得302m <<. 【点评】本题考查了二次函数与系数的关系,二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.6.(2024•北京一模)在平面直角坐标系中,已知抛物线23y ax bx =++经过点(2,3)a −. (1)求该抛物线的对称轴(用含有a 的代数式表示);(2)点(2,)M t m −,(2,)N t n +,(,)P t p −为该抛物线上的三个点,若存在实数t ,使得m n p >>,求a 的取值范围.【分析】(1)将点(2,3)a −代入抛物线23y ax bx =++中,然后根据二次函数的对称轴公式代入数值,即可得出答案;(2)分类讨论当0a >和0a <,利用数形结合以及二次函数的性质就可以得出a 的取值范围. 【解答】解(1)抛物线23y ax bx =++经过点(2,3)a −, ∴把(2,3)a −代入23y ax bx =++得2(2)233a a ab ⨯−−+=,22b a ∴=,2223y ax a x ∴=++,∴抛物线的对称轴222a x a a=−=−,答:抛物线的对称轴为:x a =−;(2)①当0a >时,抛物线开口方向向上,对称轴0x a =−<,在x 轴的负半轴上,所以越靠近对称轴函数值越小, ∴当0t <时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t ∴−<+,∴此时p m n >>与题干m n p >>相矛盾,故舍去, ∴当0t >时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t ∴−<+,∴此时m n <与题干m n p >>相矛盾,故舍去;②当0a <时,抛物线开口方向向下,对称轴0x a =−>,在x 轴的正半轴上,所以越靠近对称轴函数值越大, ∴当0t >时,点M 、N 分别在对称轴同侧时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t ∴−<+, .m n p >>,∴此时02a t <−<−,即20t a −<<,2t ∴>,∴当0t >时,点M 、N 分别在对称轴两侧时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t t ∴−<<+,p m n ∴>>与题干m n p >>相矛盾,故舍去,∴当0t <时,且点M 、N 分别在对称轴两侧时,(2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t t ∴−<<+,n m ∴>与题干m n p >>相矛盾,故舍去,当0t <时,且点M 、N 分别在对称轴同侧时, (2,)M t m −,(2,)N t n +,(,)P t p −在抛物线上,22t t t ∴−<<+,n m ∴>与题干m n p >>相矛盾,故舍去,答:a 的取值范围为20(2)t a t −<<>.7.(2024•张家口一模)某课外小组利用几何画板来研究二次函数的图象,给出二次函数解析式2y x bx c =++,通过输入不同的b ,c 的值,在几何画板的展示区内得到对应的图象.(1)若输入2b =,3c =−,得到如图①所示的图象,求顶点C 的坐标及抛物线与x 轴的交点A ,B 的坐标; (2)已知点(1,10)P −,(4,0)Q .①若输入b ,c 的值后,得到如图②的图象恰好经过P ,Q 两点,求出b ,c 的值;②淇淇输入b ,嘉嘉输入1c =−,若得到二次函数的图象与线段PQ 有公共点,求淇淇输入b 的取值范围.【分析】(1)将2b =,3c =−,代入函数解析式,进行求解即可; (2)①待定系数法进行求解即可;②将1c =−代入解析式,得到抛物线必过点(0,1)−,求出1x =−和4x =的函数值,根据抛物线与线段PQ 有公共点,列出不等式进行求解即可. 【解答】解:(1)2y x bx c =++,解:当2b =,3c =−时,2223(1)4y x x x =+−=+−, ∴顶点C 的坐标为:(1,4)−−;当0y =时,2230x x +−=,即(3)(1)0x x +−=, 解得:13x =−,21x =, (3,0)A ∴−,(1,0)B ;(2)①抛物线恰好经过P ,Q则:1101640b c b c −+=⎧⎨++=⎩,解得:54b c =−⎧⎨=⎩;②当1c =−时,21y x bx =+−, 当0x =时,1y =−, ∴抛物线过(0,1)−,当1x =−时,11y b b =−−=−,当点(1,)b −−在点P 上方,或与点P 重合时,抛物线与线段PQ 有公共点,即:10b −…, 解得:10b −…;当4x =时,1641415y b b =+−=+,当点(4,154)b +在点Q 上方,或与点Q 重合时,抛物线与线段PQ 有公共点,即:1540b +…,154b ≥−; 综上:10b −…或154b ≥−. 【点评】本题考查二次函数的综合应用.正确的求出函数解析式,熟练掌握二次函数的图象和性质是解题的关键.8.(2024•浙江模拟)设二次函数24(y ax ax c a =−+,c 均为常数,0)a ≠,已知函数值y 和自变量x 的部分对应取值如下表所示:(1)判断m ,n 的大小关系,并说明理由; (2)若328m n −=,求p 的值;(3)若在m ,n ,p 这三个数中,只有一个数是负数,求a 的取值范围.【分析】(1)根据所给函数解析式,可得出抛物线的对称轴为直线2x =,据此可解决问题. (2)根据(1)中发现的关系,可求出m 的值,据此即可解决问题. (3)根据m 和n 相等,所以三个数中的负数只能为p ,据此可解决问题. 【解答】解:(1)m n =.因为二次函数的解析式为24y ax c =+, 所以抛物线的对称轴为直线422ax a−=−=, 又因为1522−+=, 所以点(1,)m −与(5,)n 关于抛物线的对称轴对称, 故m n =.(2)因为m n =,328m n −=, 所以8m =.将(0,3)和(1,8)−代入函数解析式得:348c a a c =⎧⎨++=⎩,解得13a c =⎧⎨=⎩所以二次函数的解析式为243y x x =−+.将2x =代入函数解析式得,224231p =−⨯+=−.(3)由(1)知,m n =, 所以m ,n ,p 中只能p 为负数. 将(0,3)代入函数解析式得,3c =, 所以二次函数解析式为243y ax ax =−+. 将1x =−代入函数解析式得,53m a =+. 将2x =代入函数解析式得,43p a =−+.则430530a a −+<⎧⎨+≥⎩,解得34a >,所以a 的取值范围是34a >. 【点评】本题考查二次函数图象与系数的关系及二次函数图象上点的坐标特征,熟知二次函数的图象和性质是解题的关键.9.(2024•北京模拟)在平面直角坐标系xOy 中,抛物线2(26)1y x m x =+−+经过点1(,)m y −,2(,)m y ,3(2,)m y +.(1)若13y y =,求抛物线的对称轴; (2)若231y y y <<,求m 的取值范围. 【分析】(1)利用对称轴意义即可求解;(2m 的不等式组,解不等式组即可.【解答】解:(1)抛物线2(26)1y x m x =+−+经过点1(,)m y −,2(,)m y ,3(2,)m y +,13y y =, ∴该抛物线的对称轴为:直线22m m x −++=,即直线1x =; (2)当0m >时,可知点1(,)m y −,2(,)m y ,3(2,)m y +从左至右分布, 231y y y <<,∴232232m m m m m m ++⎧−<⎪⎪⎨−++⎪−>⎪⎩,解得12m <<; 当0m <时,3m m m ∴<−<−+,21y y ∴>,不合题意,综上,m 的取值范围是12m <<.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键.10.(2024•浙江模拟)在平面直角坐标系xOy 中,抛物线2(y ax bx c a =++,b ,c 为常数,且0)a ≠经过(2,4)A −−和(3,1)B 两点.(1)求b 和c 的值(用含a 的代数式表示);(2)若该抛物线开口向下,且经过(23,)C m n −,(72,)D m n −两点,当33k x k −<<+时,y 随x 的增大而减小,求k 的取值范围;(3)已知点(6,5)M −,(2,5)N ,若该抛物线与线段MN 恰有一个公共点时,结合函数图象,求a 的取值范围.【分析】(1)把(2,4)A −−和(3,1)B 代入2y ax bx c =++,即可求解;(2)先求出对称轴为:直线2x =,结合开口方向和增减性列出不等式即可求解; (3)分0a >时,0a <时,结合图象即可求解.【解答】解:(1)把(2,4)A −−和(3,1)B 代入2y ax bx c =++,得:424931a b c a b c −+=−⎧⎨++=⎩,解得:162b a c a =−⎧⎨=−−⎩;(2)抛物线经过(23,)C m n −,2,)m n −两点, ∴抛物线的对称轴为:直线237222m mx −+−==,抛物线开口向下,当33k x k −<<+时,y 随x 的增大而减小,32k ∴−…,即5k …; (3)①当0a >时,6x =−,5y …,即2(6)(1)(6)625a a a ⨯−+−⨯−−−…, 解得:1336a …,抛物线不经过点N ,如图①,抛物线与线段MN 只有一个交点,结合图象可知:1336a …;②当0a <时,若抛物线的顶点在线段MN 上时,则2244(62)(1)544ac b a a a a a−−−−−==,解得:11a =−,2125a =−, 当11a =−时,111112222(1)a −=−=⨯−, 此时,定点横坐标满足116222a−−……,符合题意; 当11a =−时,如图②,抛物线与线段MN 只有一个交点,如图③,当2125a =−时,11111312222()25a −=−=⨯−,此时顶点横坐标不满足116222a−−……,不符合题意,舍去; 若抛物线与线段MN 有两个交点,且其中一个交点恰好为点N 时,把(2,5)N 代入2(1)62y ax a x a =+−−−,得:252(1)262a a a =⨯+−⨯−−, 解得:54a =−,当54a =−时,如图④,抛物线和线段MN 有两个交点,且其中一个交点恰好为点N ,结合图象可知:54a <−时,抛物线与线段MN 有一个交点,综上所述:a 的取值范围为:1336a …或1a =−或54a <−.【点评】本题考查二次函数的性质和图象,根据题意画出图象,分类讨论是解题的关键.11.(2024•海淀区校级模拟)在平面直角坐标系xOy 中,点(0,3),1(6,)y 在抛物线2(0)y ax bx c a =++≠上. (1)当13y =时,求抛物线的对称轴;(2)若抛物线2(0)y ax bx c a =++≠经过点(1,1)−−,当自变量x 的值满足12x −……时,y 随x 的增大而增大,求a 的取值范围;(3)当0a >时,点2(4,)m y −,2(,)m y 在抛物线2y ax bx c =++上.若21y y c <<,请直接写出m 的取值范围.【分析】(1)当13y =时,(0,3),(6,3)为抛物线上的对称点,根据对称性求出对称轴;(2)把(0,3),(1,1)−−代入抛物线解析式得出a ,b 的关系,然后求出对称轴,再分0a >和0a <,由函数的增减性求出a 的取值范围;(3)先画出函数图象,再根据21y y c <<确定m 的取值范围. 【解答】解:(1)当13y =时,(0,3),(6,3)为抛物线上的对称点, 0632x +∴==, ∴抛物线的对称轴为直线3x =;(2)2(0)y ax bx c a =++≠过(0,3),(1,1)−−,3c ∴=,31a b −+=−, 4b a =+,∴对称轴为直线422b a x a a+=−=−,①当0a >时,12x −……时,y 随x 的增大而增大,∴412a a+−−…, 解得4a …,04a ∴<…;②当0a <时,12x −……时,y 随x 的增大而增大,∴422a a+−…, 解得45a −…, ∴405a −<…,综上:a 的取值范围是405a −<… 或04a <…;(3)点(0,3)在抛物线2y ax bx c =++上,3c ∴=,点2(4,)m y −,2(,)m y 在抛物线2y ax bx c =++上, ∴对称轴为直线422m mx m −+==−, ①如图所示:21y y c <<,6m ∴<且06232m +−>=, 56m ∴<<;②如图所示:21y y c <<,46m ∴−>, 10m ∴>,综上所述,m 的取值范围为56m <<或10m >.【点评】本题考查二次函数图象与系数的关系以及二次函数图象上点的坐标特征,关键是利用数形结合和分类讨论的思想进行解答.题型三.待定系数法求二次函数解析式(共3小题)12.(2024•保山一模)如图,抛物线2y ax bx c =++过(2,0)A −,(3,0)B ,(0,6)C 三点;点P 是第一象限内抛物线上的动点,点P 的横坐标是m ,且132m <<. (1)试求抛物线的表达式;(2)过点P 作PN x ⊥轴并交BC 于点N ,作PM y ⊥轴并交抛物线的对称轴于点M ,若12PM PN =,求m 的值.【分析】(1)将A ,B ,C 三点坐标代入函数解析式即可解决问题. (2)用m 表示出PM 和PN ,建立关于m 的方程即可解决问题. 【解答】解:(1)由题知,将A ,B ,C 三点坐标代入函数解析式得,4209306a b c a b c c −+=⎧⎪++=⎨⎪=⎩,解得116a b c =−⎧⎪=⎨⎪=⎩,所以抛物线的表达式为26y x x =−++.(2)将x m =代入抛物线得表达式得,26y m m =−++, 所以点P 的坐标为2(,6)m m m −++. 令直线BC 的函数解析式为y px q =+,则306p q q +=⎧⎨=⎩,解得26p q =−⎧⎨=⎩,所以直线BC 的函数解析式为26y x =−+. 因为132m <<,且抛物线的对称轴为直线12x =,所以12PM m =−. 又因为点N 坐标为(,26)m m −+,所以226(26)3PN m m m m m =−++−−+=−+. 因为12PM PN =, 所以211(3)22m m m −=−+,解得m =, 又因为132m <<,所以m =. 【点评】本题考查待定系数法求二次函数解析式及二次函数的图象和性质,熟知待定系数法及二次函数的图象和性质是解题的关键.13.(2024•东营区校级一模)如图,在平面直角坐标系xOy 中,直线28y x =−+与抛物线2y x bx c =−++交于A ,B 两点,点B 在x 轴上,点A 在y 轴上. (1)求抛物线的函数表达式;(2)点C 是直线AB 上方抛物线上一点,过点C 分别作x 轴,y 轴的平行线,交直线AB 于点D ,E .当38DE AB =时,求点C 的坐标.【分析】(1)根据一次函数解析式求出A ,B 两点坐标,再将A ,B 两点坐标代入二次函数解析式即可解决问题.(2)根据AOB ECD ∆∆∽得到CD 与OB 的关系,建立方程即可解决问题. 【解答】解:(1)令0x =得,8y =, 所以点A 的坐标为(0,8); 令0y =得,4x =, 所以点B 的坐标为(4,0);将A ,B 两点坐标代入二次函数解析式得,81640c b c =⎧⎨−++=⎩,解得28b c =⎧⎨=⎩,所以抛物线的函数表达式为228y x x =−++. (2)因为//CD x 轴,//CE y 轴, 所以AOB ECD ∆∆∽, 则CD DEOB AB=. 因为38DE AB =,4OB =, 所以32CD =. 令点C 坐标为2(,28)m m m −++, 则点D 坐标为21(2m m −,228)m m −++所以2211()222CD m m m m m =−−=−+,则213222m m −+=,解得1m =或3.当1m =时,2289m m −++=; 当3m =时,2285m m −++=; 所以点C 的坐标为(1,9)或(3,5).【点评】本题考查待定系数法求二次函数解析式及二次函数图象上点的坐标特征,熟知待定系数法及二次函数的图象和性质是解题的关键.14.(2024•南关区校级二模)已知二次函数2y x bx c =++的图象经过点(0,3)A −,(3,0)B .点P 在抛物线2y x bx c =++上,其横坐标为m .(1)求抛物线的解析式;(2)当23x −<<时,求y 的取值范围;(3)当抛物线2y x bx c =++上P 、A 两点之间部分的最大值与最小值的差为34时,求m 的值; (4)点M 在抛物线2y x bx c =++上,其横坐标为1m −.过点P 作PQ y ⊥轴于点Q ,过点M 作MN x ⊥轴于点N ,分别连结PM ,PN ,QM ,当PQM ∆与PNM ∆的面积相等时,直接写出m 的值. 【分析】(1)依据题意,将A 、B 两点代入解析式求出b ,c 即可得解;(2)依据题意,结合(1)所求解析式,再配方可得抛物线的最值,进而由23x −<<可以判断得解; (3)依据题意,分类讨论计算可以得解;(4)分别写出P 、Q 、M 、N 的坐标,PQM ∆与PNM ∆的面积相等,所以Q 到PM 的距离等于N 到PM 的距离,可得m 的值.【解答】解:(1)由题意,将(0,3)A −,(3,0)B 代入解析式2y x bx c =++得,3c =−,930b c ++=,2b ∴=−,3c =−,∴抛物线的解析式为223y x x =−−;(2)由题意,抛物线2223(1)4y x x x =−−=−−,∴抛物线223y x x =−−开口向上,当1x =时,y 有最小值为4−,当2x =−时,5y =;当3x =时,0y =, ∴当23x −<<时,45y −<…;(3)由题意得,2(,23)P m m m −−,(0,3)A −,①当0m <时,P 、A 两点之间部分的最大值为223m m −−,最小值为3−, 2323(3)4m m ∴−−−−=,解得:1m =−②当02m ……时,P 、A 两点之间部分的最大值为3−,最小值为223m m −−或4−, 显然最小值是4−时不合题意, ∴最小值为223m m −−, 233(23)4m m ∴−−−−=, 解得:32m =或12m =, 32m =时,P 、A 两点之间部分的最小值为4−,故舍去, ③当2m <时,P 、A 两点之间部分的最大值为223m m −−,最小值为4−, 2323(4)4m m ∴−−−−=,解得:1m =+,12+<,故舍去,综上,满足题意得m 的值为:1或12; (4)由题意得,2(1,4)M m m −−,(1,0)N m −,2(0,23)Q m m −−, 设PM y kx b =+,代入P 、M 两点, 2223(1)4mk b m m m k b m ⎧+=−−⎨−+=−⎩, 解得:1k =−,23b m m =−−,23PM y x m m =−+−−,PQM ∆与PNM ∆的面积相等,Q ∴到23PM y x m m =−+−−的距离与N 到23PM y x m m =−+−−的距离相等,Q 到23PM y x m m =−+−−的距离=,N 到23PMy x m m =−+−−的距离=, 2|||4|m m ∴−=−+,当2m <−时,24m m −=−,解得:m =,当20m −……时,24m m −=−,解得:m =,当02m <…时,24m m =−,解得:m =当2m <时,24m m =−,解得:m =综上,满足题意得m . 【点评】本题考查了二次函数,关键是注意分类讨论. 题型四.抛物线与x 轴的交点(共14小题)15.(2024•秦淮区校级模拟)已知函数2(2)2(y mx m x m =−−−为常数). (1)求证:不论m 为何值,该函数的图象与x 轴总有公共点.(2)不论m . (3)在22x −……的范围中,y 的最大值是2,直接写出m 的值. 【分析】(1)分两种情况讨论,利用判别式证明即可;(2)当1x =时,0y =,当0x =时,2y =−,即可得到定点坐标;(3)利用抛物线过两个定点,得到函数y 随x 增大而增大,代入解析式求出m 值即可. 【解答】解:(1)①当0m =时,函数解析式为22y x =−,此一次函数与x 轴有交点; ②当0m ≠时,函数解析式为2(2)2y mx m x =−−−,令0y =,则有2(2)20mx m x −−−=,△2222(2)4(2)44844(2)0m m m m m m m m =−−⨯−=−++=++=+…. ∴不论m 为何值,该函数的图象与x 轴总有公共点.(2)222(2)222()22y mx m x mx mx x m x x x =−−−=−+−=−+−, 当1x =时,0y =, 当0x =时,2y =−,∴不论m 为何值,该函数的图象经过的定点坐标是(1,0).(0,2)−故答案为:(1,0),(0,2)−,(3)若0m =,函数22y x =−,y 随x 增大而增大,当2x =时,2y =,与题干条件符; 当0m ≠时,函数2(2)2y mx m x =−−−是二次函数,①当0m >时,抛物线过(1,0),(0,2)−两点,当22x −……的范围中时,y 随x 的增大而增大, ∴当2x =时,2y =,即242(2)2m m =−−−,解得0m =(舍去).②当0m <时,抛物线过(1,0),(0,2)−两点,其增减性依旧是y 随x 的增大而增大和①相同.综上分析,0m =.【点评】本题考查了二次函数的图象与性质,熟练掌握二次函数的性质是解答本题的关键.16.(2024•柳州模拟)如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,B 点的坐标为(3,0),与y 轴交于点(0,3)C −,点D 为抛物线的顶点. (1)求这个二次函数的解析式; (2)求ABD ∆的面积【分析】(1)利用待定系数法求解即可; (2)先求出点A 和点D 坐标,再根据||2D ABD AB y S ∆⋅=解析求解即可.【解答】解:(1)将(3,0)B ,(0,3)C −代入2y x bx c =++得0933b c c =++⎧⎨=−⎩,解得23b c =−⎧⎨=−⎩,∴二次函数的解析式为:223y x x =−−;(2)将223y x x =−−配方得顶点式2(1)4y x =−−, ∴顶点(1,4)D −,在223y x x =−−中,当2230y x x =−−=时, 解得1x =−或3x =, (1,0)A ∴−,4AB ∴=, ∴||44822D ABD AB y S ∆⋅⨯===. 【点评】本题主要考查了抛物线与x 轴的交点,二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数解析式,熟练掌握二次函数的性质是解答本题的关键.17.(2024•安阳模拟)如图,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与抛物线21y x x =−+−的形状相同,且与x 轴交于点(1,0)−和(4,0).直线2y kx =+分别与x 轴、y 轴交于点A ,B ,交抛物线2y ax bx c =++于点C ,D (点C 在点D 的左侧). (1)求抛物线的解析式;(2)点P 是直线2y kx =+上方抛物线上的任意一点,当2k =时,求PCD ∆面积的最大值; (3)若抛物线2y ax bx c =++与线段AB 有公共点,结合函数图象请直接写出k 的取值范围.【分析】(1)根据题意直接求出二次函数解析式即可;(2)求出直线与抛物线的交点C ,D 坐标,过点P 作y 轴的平行线交CD 于点H ,交x 轴于点G ,设点P坐标为(m ,234)(12)m m m −++−<<,则点(,22)H m m +,求出PH ,由三角形的面积公式求出关于m 的函数解析式,再根据函数的性质求最值; (3)分0k >和0k <两种情况讨论即可.【解答】解:(1)抛物线2y ax bx c =++与抛物线21y x x =−+−的形状相同,1a ∴=−,抛物线2y ax bx c =++与x 轴交于点(1,0)−和(4,0), ∴抛物线的解析式为2(1)(4)34y x x x x =−+−=−++;(2)当2k =时,联立方程组22234y x y x x =+⎧⎨=−++⎩,解得10x y =−⎧⎨=⎩或26x y =⎧⎨=⎩, (1,0)C ∴−,(2,6)D ,过点P 作y 轴的平行线交CD 于点H ,交x 轴于点G ,如图,设点P 坐标为(m ,234)(12)m m m −++−<<, ∴点(,22)H m m +,2234(22)2PH m m m m m ∴=−++−+=−++,221331273(2)()22228PCD S PH m m m ∆∴=⨯=−++=−−+, 302−<,12m −<<, ∴当12m =时,S 有最大值,最大值为278. PCD ∴∆面积的最大值为278; (3)令0x =,则2y =, ∴点B 坐标为(0,2),令0y =,则20kx +=, 解得2x k=−,∴点A 坐标为2(k−,0), 若抛物线2y ax bx c =++与线段AB 有公共点, 当0k >时,如图所示,则21k−<−, 解得02k <<; 当0k <时,如图所示:则24k−>, 解得102k −<<;综上所述,k 的取值范围为02k <<或102k −<<.【点评】本题考查抛物线与x 轴的交点,待定系数法求函数解析式,二次函数图象上点的坐标特征,一次函数图象上点的坐标特征,二次函数的最值等知识,关键是对这些知识的掌握和运用.18.(2024•西湖区校级模拟)已知21()y ax a b x b =+++和22()(y bx a b x a a b =+++≠且0)ab ≠是同一直角坐标系中的两条抛物线.(1)当1a =,3b =−时,求抛物线21()y ax a b x b =+++的顶点坐标; (2)判断这两条抛物线与x 轴的交点的总个数,并说明理由;(3)如果对于抛物线21()y ax a b x b =+++上的任意一点(,)P m n 均有22n a b +….当20y …时,求自变量x 的取值范围.【分析】(1)把a ,b 的值代入配方找顶点即可解题;(2)分别令10y =,20y =,解方程求出方程的解,然后根据条件确定交点的个数即可解题;(3)现根据题意得到0a <,且24()224ab a b a b a−+=+,然后得到30b a =−>,借助图象求出不等式的解集即可.【解答】解:(1)当1a =,3b =−时,2221()23(1)4y ax a b x b x x x =+++=−−=−−, ∴顶点坐标为(1,4)−;(2)3个,理由为:令10y =,则2()0ax a b x b +++=, 即()(1)0ax b x ++=, 解得:1bx a=−,21x =−, 令20y =,则2()0bx a b x a +++=, 即()(1)0bx a x ++=, 解得:1ax b=−,21x =−, 又a b ≠且0ab ≠,∴两条抛物线与x 轴的交点总个数为3个;(3)抛物线21()y ax a b x b =+++上的任意一点(,)P m n 均有22n a b +…,0a ∴<,且24()224ab a b a b a−+=+,整理得:30b a =−>,∴22()y bx a b x a =+++的开口向上,且抛物线与x 轴交点的横坐标为113x =,21x =−, 如图所示,借助图象可知当13x …或1x −…时,20y ….【点评】本题考查二次函数的图象和性质,掌握配方法求顶点坐标,二次函数和一元二次方程的关系是解题的关键.19.(2024•三元区一模)抛物线23y ax bx =++与x 轴相交于点(1,0)A ,(3,0)B ,与y 轴正半轴相交于点C . (1)求抛物线的解析式;(2)点1(M x ,1)y ,2(N x ,2)y 是抛物线上不同的两点. ①当1x ,2x 满足什么数量关系时,12y y =; ②若12122()x x x x +=−,求12y y −的最小值. 【分析】(1)用待定系数法即可求解;(2)①若12y y =,则M 、N 关于抛物线对称轴对称,即可求解;②22121122121212(43)(43)()()4()y y x x x x x x x x x x −=−+−−+=+−+−,而12122()x x x x +=−,得到12y y −的函数表达式,进而求解.【解答】解:(1)设抛物线的表达式为:12()()y a x x x x =−−, 即2(1)(3)(43)y a x x a x x =−−=−+, 即33a =, 解得:1a =,故抛物线的表达式为:243y x x =−+;(2)如图,。
2024中考备考热点05 二次函数的图象及简单应用(8大题型+满分技巧+限时分层检测)
热点05 二次函数的图象及简单应用中考数学中《二次函数的图象及简单应用》部分主要考向分为五类:一、二次函数图象与性质(每年1道,3~4分)二、二次函数图象与系数的关系(每年1题,3~4份)三、二次函数与一元二次方程(每年1~2道,4~8分)四、二次函数的简单应用(每年1题,6~10分)二次函数是初中数学三中函数中知识点和性质最多的一个函数,也是中考数学中的重点和难点,考简答题时经常在二次函数的几何背景下,和其他几何图形一起出成压轴题;也经常出应用题利用二次函数的增减性考察问题的最值。
此外,二次函数的性质、二次函数与系数的关系、二次函数上点的坐标特征也是中考中经常考到的考点,都需要大家准确记忆二次函数的对应考点。
只有熟悉掌握二次函数的一系列考点,才能在遇到对应问题时及时提取有用信息来应对。
考向一:二次函数图象与性质【题型1 二次函数的图象与性质】满分技巧1. 对于二次函数y =ax 2+bx +c (a ≠0)的图象:形状:抛物线; 对称轴:直线ab x 2-=;顶点坐标:)442(2a b ac a b --,; 2、抛物线的增减性问题,由a 的正负和对称轴同时确定,单一的直接说y 随x 的增大而增大(或减小)是不对的,必须在确定a 的正负后,附加一定的自变量x 取值范围;3、当a>0,抛物线开口向上,函数有最小值;当a<0,抛物线开口向下,函数有最大值;而函数的最值都是定点坐标的纵坐标。
1.(2023•沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2023•兰州)已知二次函数y=﹣3(x﹣2)2﹣3,下列说法正确的是()A.对称轴为直线x=﹣2B.顶点坐标为(2,3)C.函数的最大值是﹣3D.函数的最小值是﹣33.(2023•陕西)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值C.最小值5D.最小值【题型2 二次函数图象上点的坐标特征】满分技巧牢记一句话,“点在图象上,点的坐标符合其对应解析式”,然后,和哪个几何图形结合,多想与之结合的几何图形的性质1.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为()A.﹣1B.﹣2C.﹣3D.﹣42.若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是()A.(m,n+1)B.(m+1,n)C.(m,n﹣1)D.(m﹣1,n)3.(2023•十堰)已知点A(x1,y1)在直线y=3x+19上,点B(x2,y2),C(x3,y3)在抛物线y=x2+4x ﹣1上,若y1=y2=y3,x1<x2<x3,则x1+x2+x3的取值范围是()A.﹣12<x1+x2+x3<﹣9B.﹣8<x1+x2+x3<﹣6C.﹣9<x1+x2+x3<0D.﹣6<x1+x2+x3<1【题型3 二次函数图象与几何变换】满分技巧1、二次函数的几何变化,多考察其平移规律,对应方法是:①将一般式转化为顶点式;②根据口诀“左加右减,上加下减”去变化。
中考数学复习---二次函数之二次函数综合知识点总结与练习题(含答案解析)
中考数学复习---二次函数之二次函数综合知识点总结与练习题(含答案解析) 知识点总结1. 二次函数与一元二次方程:①若二次函数()02≠++=a c bx ax y 与x 轴有两个交点⇔一元二次方程02=++c bx ax 有两个不相等的实数根⇔042>ac b −=∆。
②若二次函数()02≠++=a c bx ax y 与x 轴只有一个交点⇔一元二次方程02=++c bx ax 有两个相等的实数根⇔042=−=∆ac b 。
③若二次函数()02≠++=a c bx ax y 与x 轴没有交点⇔一元二次方程02=++c bx ax 没有实数根⇔042<ac b −=∆。
④若二次函数()02≠++=a c bx ax y 与直线m y =相交,则一元二次方程为m c bx ax =++2。
交点情况与方程的解的情况同与x 轴相交时一样。
2. 二次函数与不等式(组)若二次函数()02≠++=a c bx ax y 与一次函数()0≠+=k b kx y 存在交点,则不等式:b kx c bx ax +++>2的解集取二次函数图像在上方的部分所对应的自变量取值范围;b kx c bx ax +++<2的解集取二次函数图像在下方的部分所对应的自变量取值范围。
3. 二次函数的一些特殊的自变量的函数值:①当1=x 时所对应的函数值为c b a y ++=。
②当1−=x 时所对应的函数值为c b a y +−=。
③当2=x 时所对应的函数值为c b a y ++=24。
④当2−=x 时所对应的函数值为c b a y +−=24。
4. 对称轴的特殊值:①若对称轴为直线1=x 时,则02=+b a 。
②若对称轴为直线1−=x 时,则02=−b a 。
③判断b a +2与0的大小关系时,看对称轴与1=x 的位置关系。
④判断b a −2与0的大小关系时,看对称轴与1−=x 的位置关系。
练习题1、(2022•巴中)函数y =|ax 2+bx +c |(a >0,b 2﹣4ac >0)的图像是由函数y =ax 2+bx +c (a >0,b 2﹣4ac >0)的图像x 轴上方部分不变,下方部分沿x 轴向上翻折而成,如图所示,则下列结论正确的是( )①2a +b =0;②c =3;③abc >0;④将图像向上平移1个单位后与直线y =5有3个交点.A .①②B .①③C .②③④D .①③④【分析】根据函数图像与x 轴交点的横坐标求出对称轴为,进而可得2a +b =0,由图像可得抛物线y =ax 2+bx +c 与y 轴交点在x 轴下方,由抛物线y =ax 2+bx +c 的开口方向,对称轴位置和抛物线与y 轴交点位置可得abc 的符号,求出二次函数y =ax 2+bx +c 的顶点式,可得图像向上平移1个单位后与直线y =5有3个交点【解答】解:∵图像经过(﹣1,0),(3,0),∴抛物线y =ax 2+bx +c 的对称轴为直线x =1,∴﹣=1,∴b =﹣2a ,即2a +b =0,①正确.由图像可得抛物线y =ax 2+bx +c 与y 轴交点在x 轴下方,∴c<0,②错误.由抛物线y=ax2+bx+c的开口向上可得a>0,∴b=﹣2a<0,∴abc>0,③正确.设抛物线y=ax2+bx+c的解析式为y=a(x+1)(x﹣3),代入(0,3)得:3=﹣3a,解得:a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为(1,4),∵点(1,4)向上平移1个单位后的坐标为(1,5),∴将图像向上平移1个单位后与直线y=5有3个交点,故④正确;故选:D.2、(2022•资阳)如图是二次函数y=ax2+bx+c的图像,其对称轴为直线x=﹣1,且过点(0,1).有以下四个结论:①abc>0,②a﹣b+c>1,③3a+c<0,④若顶点坐标为(﹣1,2),当m≤x≤1时,y有最大值为2、最小值为﹣2,此时m的取值范围是﹣3≤m≤﹣1.其中正确结论的个数是()A.4个B.3个C.2个D.1个【分析】①:根据二次函数的对称轴,c=1,即可判断出abc>0;②:结合图像发现,当x=﹣1时,函数值大于1,代入即可判断;③:结合图像发现,当x=1时,函数值小于0,代入即可判断;④:运用待定系数法求出二次函数解析式,再利用二次函数的对称性即可判断.【解答】解:∵二次函数y=ax2+bx+c的图像,其对称轴为直线x=﹣1,且过点(0,1),∴,c=1,∴ab>0,∴abc>0,故①正确;从图中可以看出,当x=﹣1时,函数值大于1,因此将x=﹣1代入得,(﹣1)2⋅a+(﹣1)⋅b+c>1,即a﹣b+c>1,故②正确;∵,∴b=2a,从图中可以看出,当x=1时,函数值小于0,∴a+b+c<0,∴3a+c<0,故③正确;∵二次函数y=ax2+bx+c的顶点坐标为(﹣1,2),∴设二次函数的解析式为y=a(x+1)2+2,将(0,1)代入得,1=a+2,解得a=﹣1,∴二次函数的解析式为y=﹣(x+1)2+2,∴当x=1时,y=﹣2;∴根据二次函数的对称性,得到﹣3≤m≤﹣1,故④正确;综上所述,①②③④均正确,故有4个正确结论,故选A.3、(2022•黄石)已知二次函数y=ax2+bx+c的部分图像如图所示,对称轴为直线x=﹣1,有以下结论:①abc<0;②若t为任意实数,则有a﹣bt≤at2+b;③当图像经过点(1,3)时,方程ax2+bx+c ﹣3=0的两根为x1,x2(x1<x2),则x1+3x2=0,其中,正确结论的个数是()A.0 B.1 C.2 D.3【分析】利用抛物线开口方向得到a>0,利用抛物线的对称轴方程得到b=2a>0,利用抛物线与y轴的交点位置得到c<0,则可对①进行判断;利用二次函数当x=﹣1时有最小值可对②进行判断;由于二次函数y=ax2+bx+c与直线y=3的一个交点为(1,3),利用对称性得到二次函数y=ax2+bx+c与直线y=3的另一个交点为(﹣3,3),从而得到x1=﹣3,x2=1,则可对③进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣1,即﹣=﹣1,∴b =2a >0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc <0,所以①正确;∵x =﹣1时,y 有最小值,∴a ﹣b +c ≤at 2+bt +c (t 为任意实数),即a ﹣bt ≤at 2+b ,所以②正确;∵图像经过点(1,3)时,得ax 2+bx +c ﹣3=0的两根为x 1,x 2(x 1<x 2),∴二次函数y =ax 2+bx +c 与直线y =3的一个交点为(1,3),∵抛物线的对称轴为直线x =﹣1,∴二次函数y =ax 2+bx +c 与直线y =3的另一个交点为(﹣3,3),即x 1=﹣3,x 2=1,∴x 1+3x 2=﹣3+3=0,所以③正确.故选:D .4、(2022•日照)已知二次函数y =ax 2+bx +c (a ≠0)的部分图像如图所示,对称轴为x =23,且经过点(﹣1,0).下列结论:①3a +b =0;②若点(21,y 1),(3,y 2)是抛物线上的两点,则y 1<y 2;③10b ﹣3c =0;④若y ≤c ,则0≤x ≤3.其中正确的有( )A.1个B.2个C.3个D.4个【分析】由对称轴为x=即可判断①;根据点(,y1),(3,y2)到对称轴的距离即可判断②;由抛物线经过点(﹣1,0),得出a﹣b+c=0,对称轴x=﹣=,得出a=﹣b,代入即可判断③;根据二次函数的性质以及抛物线的对称性即可判断④.【解答】解:∵对称轴x=﹣=,∴b=﹣3a,∴3a+b=0,①正确;∵抛物线开口向上,点(,y1)到对称轴的距离小于点(3,y2)的距离,∴y1<y2,故②正确;∵经过点(﹣1,0),∴a﹣b+c=0,∵对称轴x=﹣=,∴a=﹣b,∴﹣b﹣b+c=0,∴3c=4b,∴4b﹣3c=0,故③错误;∵对称轴x=,∴点(0,c)的对称点为(3,c),∵开口向上,∴y≤c时,0≤x≤3.故④正确;故选:C.5、(2022•荆门)抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)和点(x0,y0),且c>0.有下列结论:①a<0;②对任意实数m都有:am2+bm≥4a﹣2b;③16a+c>4b;④若x0>﹣4,则y0>c.其中正确结论的个数为()A.1个B.2个C.3个D.4个【分析】根据抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)且c>0,即可判断开口向下,即可判断①;根据二次函数的性质即可判断②;根据抛物线的对称性即可判断③;根据抛物线的对称性以及二次函数的性质即可判断④.【解答】解:∵抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2),且c>0,∴抛物线开口向下,则a<0,故①正确;∵抛物线开口向下,对称轴为x=﹣2,∴函数的最大值为4a﹣2b+c,∴对任意实数m都有:am2+bm+c≤4a﹣2b+c,即am2+bm≤4a﹣2b,故②错误;∵对称轴为x=﹣2,c>0.∴当x=﹣4时的函数值大于0,即16a﹣4b+c>0,∴16a+c>4b,故③正确;∵对称轴为x=﹣2,点(0,c)的对称点为(﹣4,c),∵抛物线开口向下,∴若﹣4<x0<0,则y0>c,故④错误;故选:B.6、(2022•绵阳)如图,二次函数y=ax2+bx+c的图像关于直线x=1对称,与x轴交于A (x1,0),B(x2,0)两点.若﹣2<x1<﹣1,则下列四个结论:①3<x2<4;②3a+2b >0;③b2>a+c+4ac;④a>c>b,正确结论的个数为()A.1个B.2个C.3个D.4个【分析】根据二次函数的对称性,即可判断①;由开口方向和对称轴即可判断②;根据抛物线与x轴的交点以及x=﹣1时的函数的取值,即可判断③;根据抛物线的开口方向、对称轴,与y轴的交点以及a﹣b+c<0,即可判断④.【解答】解:∵对称轴为直线x=1,﹣2<x1<﹣1,∴3<x2<4,①正确,∵﹣=1,∴b=﹣2a,∴3a+2b=3a﹣4a=﹣a,∵a>0,∴3a+2b<0,②错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,由题意可知x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,∵a>0,∴b=﹣2a<0,∴a+c<0,∴b2﹣4ac>a+c,∴b2>a+c+4ac,③正确;∵抛物线开口向上,与y轴的交点在x轴下方,∴a>0,c<0,∴a>c,∵a﹣b+c<0,b=﹣2a,∴3a+c<0,∴c<﹣3a,∴b=﹣2a,∴b>c,所以④错误;故选:B.7、(2022•牡丹江)如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣2,并与x 轴交于A,B两点,若OA=5OB,则下列结论中:①abc>0;②(a+c)2﹣b2=0;③9a+4c <0;④若m为任意实数,则am2+bm+2b≥4a,正确的个数是()A.1 B.2 C.3 D.4【分析】根据函数图像的开口方向、对称轴、图像与y轴的交点即可判断①;根据对称轴x =﹣2,OA=5OB,可得OA=5,OB=1,点A(﹣5,0),点B(1,0),当x=1时,y =0即可判断②;根据对称轴x=﹣2,以及,a+b+c=0得a与c的关系,即可判断③;根据函数的最小值是当x=﹣2时,y=4a﹣2b+c,即可判断④;【解答】解:①观察图像可知:a>0,b>0,c<0,∴abc<0,故①错误;②∵对称轴为直线x=﹣2,OA=5OB,可得OA=5,OB=1,∴点A(﹣5,0),点B(1,0),∴当x=1时,y=0,即a+b+c=0,∴(a+c)2﹣b2=(a+b+c)(a+c﹣b)=0,故②正确;③抛物线的对称轴为直线x=﹣2,即﹣=﹣2,∴b=4a,∵a+b+c=0,∴5a+c=0,∴c=﹣5a,∴9a+4c=﹣11a,∵a >0,∴9a +4c <0,故③正确;④当x =﹣2时,函数有最小值y =4a ﹣2b +c ,由am 2+bm +c ≥4a ﹣2b +c ,可得am 2+bm +2b ≥4a ,∴若m 为任意实数,则am 2+bm +2b ≥4a ,故④正确;故选:C .8、(2022•烟台)二次函数y =ax 2+bx +c (a ≠0)的部分图像如图所示,其对称轴为直线x =﹣21,且与x 轴的一个交点坐标为(﹣2,0).下列结论:①abc >0;②a =b ;③2a +c =0;④关于x 的一元二次方程ax 2+bx +c ﹣1=0有两个相等的实数根.其中正确结论的序号是( )A .①③B .②④C .③④D .②③【分析】根据对称轴、开口方向、与y 轴的交点位置即可判断a 、b 、c 与0的大小关系,然后将由对称轴可知a =b .图像过(﹣2,0)代入二次函数中可得4a ﹣2b +c =0.再由二次函数最小值小于0,从而可判断ax 2+bx +c =1有两个不相同的解.【解答】解:①由图可知:a >0,c <0,<0,∴b >0,∴abc <0,故①不符合题意.②由题意可知:=﹣,∴b =a ,故②符合题意.③将(﹣2,0)代入y =ax 2+bx +c ,∴4a ﹣2b +c =0,∵a =b ,∴2a +c =0,故③符合题意.④由图像可知:二次函数y =ax 2+bx +c 的最小值小于0,令y =1代入y =ax 2+bx +c ,∴ax 2+bx +c =1有两个不相同的解,故④不符合题意.故选:D .9、(2022•广安)已知抛物线y =ax 2+bx +c 的对称轴为x =1,与x 轴正半轴的交点为A (3,0),其部分图像如图所示,有下列结论:①abc >0; ②2c ﹣3b <0; ③5a +b +2c =0;④若B (34,y 1)、C (31,y 2)、D (﹣31,y 3)是抛物线上的三点,则y 1<y 2<y 3.其中正确结论的个数有( )A .1B .2C .3D .4【分析】①正确,根据抛物线的位置,判断出a ,b ,c 的符号,可得结论;②③错误,利用对称轴公式,抛物线经过A (3,0),求出b ,c 与a 的关系,判断即可; ④正确.利用图像法判断即可.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴是直线x=1,∴1=﹣,∴b=﹣2a,∴b<0,∵抛物线交y轴于负半轴,∴c<0,∴abc>0,故①正确,∵抛物线y=ax2﹣2ax+c经过(3,0),∴9a﹣6a+c=0,∴c=﹣3a,∴2c﹣3b=﹣6a+6a=0,故②错误,5a+b+2c=5a﹣2a﹣6a=﹣3a<0,故③错误,观察图像可知,y1<y2<y3,故④正确,故选:B.10、(2022•辽宁)抛物线y=ax2+bx+c的部分图像如图所示,对称轴为直线x=﹣1,直线y=kx+c与抛物线都经过点(﹣3,0).下列说法:①ab>0;②4a+c>0;③若(﹣2,y 1)与(21,y 2)是抛物线上的两个点,则y 1<y 2;④方程ax 2+bx +c =0的两根为x 1=﹣3,x 2=1;⑤当x =﹣1时,函数y =ax 2+(b ﹣k )x 有最大值.其中正确的个数是( )A .2B .3C .4D .5【分析】利用图像的信息与已知条件求得a ,b 的关系式,利用待定系数法和二次函数的性质对每个结论进行逐一判断即可得出结论.【解答】解:∵抛物线的开口方向向下,∴a <0.∵抛物线的对称轴为直线x =﹣1,∴﹣=﹣1,∴b =2a ,b <0.∵a <0,b <0,∴ab >0,∴①的结论正确;∵抛物线y =ax 2+bx +c 经过点(﹣3,0),∴9a ﹣3b +c =0,∴9a ﹣3×2a +c =0,∴3a +c =0.∴4a+c=a<0,∴②的结论不正确;∵抛物线的对称轴为直线x=﹣1,∴点(﹣2,y1)关于直线x=﹣1对称的对称点为(0,y1),∵a<0,∴当x>﹣1时,y随x的增大而减小.∵>0>﹣1,∴y1>y2.∴③的结论不正确;∵抛物线的对称轴为直线x=﹣1,抛物线经过点(﹣3,0),∴抛物线一定经过点(1,0),∴抛物线y=ax2+bx+c与x轴的交点的横坐标为﹣3,1,∴方程ax2+bx+c=0的两根为x1=﹣3,x2=1,∴④的结论正确;∵直线y=kx+c经过点(﹣3,0),∴﹣3k+c=0,∴c=3k.∵3a+c=0,∴c=﹣3a,∴3k=﹣3a,∴k=﹣a.∴函数y=ax2+(b﹣k)x=ax2+(2a+a)x=ax2+3ax=a﹣a,∵a<0,∴当x=﹣时,函数y=ax2+(b﹣k)x有最大值,∴⑤的结论不正确.综上,结论正确的有:①④,故选:A.11、(2022•内蒙古)如图,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣1,0),抛物线的对称轴为直线x=1,下列结论:①abc<0;②3a+c=0;③当y>0时,x 的取值范围是﹣1≤x<3;④点(﹣2,y1),(2,y2)都在抛物线上,则有y1<0<y2.其中结论正确的个数是()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:根据函数的对称性,抛物线与x轴的另外一个交点的坐标为(3,0);①函数对称轴在y轴右侧,则ab<0,而c=3>0,故abc<0,故①正确,符合题意;②∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,∴3a+c=0.∴②正确,符合题意;③由图像知,当y>0时,x的取值范围是﹣1<x<3,∴③错误,不符合题意;④从图像看,当x=﹣2时,y1<0,当x=2时,y2>0,∴有y1<0<y2,故④正确,符合题意;故选:C.12、(2022•枣庄)小明在学习“二次函数”内容后,进行了反思总结.如图,二次函数y =ax2+bx+c(a≠0)图像的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图像他得出下列结论:①ab>0且c>0;②a+b+c=0;③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1;④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图像上,则y1<y2<y3;⑤3a+c<0,其中正确的结论有.(填序号,多选、少选、错选都不得分)【分析】由抛物线的对称轴的位置以及与y轴的交点可判断①;由抛物线过点(1,0),即可判断②;由抛物线的对称性可判断③;根据各点与抛物线对称轴的距离大小可判断④;对称轴可得b=2a,由抛物线过点(1,0)可判断⑤.【解答】解:∵抛物线对称轴在y轴的左侧,∴ab>0,∵抛物线与y轴交点在x轴上方,∴c>0,①正确;∵抛物线经过(1,0),∴a+b+c=0,②正确.∵抛物线与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,∴另一个交点为(﹣3,0),∴关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1,③正确;∵﹣1﹣(﹣2)<﹣1﹣(﹣4)<3﹣(﹣1),抛物线开口向下,∴y2>y1>y3,④错误.∵抛物线与x轴的一个交点坐标为(1,0),∴a+b+c=0,∵﹣=﹣1,∴b =2a ,∴3a +c =0,⑤错误.故答案为:①②③.13、(2022•内江)如图,抛物线y =ax 2+bx +c 与x 轴交于两点(x 1,0)、(2,0),其中0<x 1<1.下列四个结论:①abc <0;②a +b +c >0;③2a ﹣c >0;④不等式ax 2+bx +c >﹣1x c x +c 的解集为0<x <x 1.其中正确结论的个数是( )A .4B .3C .2D .1【分析】利用二次函数的图像和性质依次判断即可.【解答】解:∵抛物线开口向上,对称轴在y 轴右边,与y 轴交于正半轴, ∴a >0,b <0,c >0,∴abc <0,∴①正确.∵当x =1时,y <0,∴a +b +c <0,∴②错误.∵抛物线过点(2,0),∴4a+2b+c=0,∴b=﹣2a﹣,∵a+b+c<0,∴a﹣2a﹣+c<0,∴2a﹣c>0,∴③正确.如图:设y1=ax2+bx+c,y2=﹣x+c,由图值,y1>y2时,x<0或x>x1,故④错误.故选:C.14、(2022•鄂州)如图,已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图像顶点为P(1,m),经过点A(2,1).有以下结论:①a<0;②abc>0;③4a+2b+c=1;④x>1时,y随x的增大而减小;⑤对于任意实数t,总有at2+bt≤a+b,其中正确的有()A.2个B.3个C.4个D.5个【分析】①根据抛物线的开口方向向下即可判定;②先运用二次函数图像的性质确定a、b、c的正负即可解答;③将点A的坐标代入即可解答;④根据函数图像即可解答;⑤运用作差法判定即可.【解答】解:①由抛物线的开口方向向下,则a<0,故①正确;②∵抛物线的顶点为P(1,m),∴﹣=1,b=﹣2a,∵a<0,∴b>0,∵抛物线与y轴的交点在正半轴,∴c>0,∴abc<0,故②错误;③∵抛物线经过点A(2,1),∴1=a•22+2b+c,即4a+2b+c=1,故③正确;④∵抛物线的顶点为P(1,m),且开口方向向下,∴x>1时,y随x的增大而减小,即④正确;⑤∵a<0,∴at2+bt﹣(a+b)=at 2﹣2at ﹣a +2a=at 2﹣2at +a=a (t 2﹣2t +1)=a (t ﹣1)2≤0,∴at 2+bt ≤a +b ,则⑤正确综上,正确的共有4个.故选:C .15、(2022•达州)二次函数y =ax 2+bx +c 的部分图像如图所示,与y 轴交于(0,﹣1),对称轴为直线x =1.下列结论:①abc >0;②a >31;③对于任意实数m ,都有m (am +b )>a +b 成立;④若(﹣2,y 1),(21,y 2),(2,y 3)在该函数图像上,则y 3<y 2<y 1;⑤方程|ax 2+bx +c |=k (k ≥0,k 为常数)的所有根的和为4.其中正确结论有( )个.A .2B .3C .4D .5【分析】①正确,判断出a ,b ,c 的正负,可得结论;②正确.利用对称轴公式可得,b =﹣2a ,当x =﹣1时,y >0,解不等式可得结论; ③错误.当m =1时,m (am +b )=a +b ;④错误.应该是y 2<y 3<y 1,;⑤错误.当有四个交点或3个时,方程|ax 2+bx +c |=k (k ≥0,k 为常数)的所有根的和为4,当有两个交点时,方程|ax 2+bx +c |=k (k ≥0,k 为常数)的所有根的和为2.【解答】解:∵抛物线开口向上,∴a>0,∴抛物线与y轴交于点(0,﹣1),∴c=﹣1,∵﹣=1,∴b=﹣2a<0,∴abc>0,故①正确,∵y=ax2﹣2ax﹣1,当x=﹣1时,y>0,∴a+2a﹣1>0,∴a>,故②正确,当m=1时,m(am+b)=a+b,故③错误,∵点(﹣2,y1)到对称轴的距离大于点(2,y3)到对称轴的距离,∴y1>y3,∵点(,y2)到对称轴的距离小于点(2,y3)到对称轴的距离,∴y3>y2,∴y2<y3<y1,故④错误,∵方程|ax2+bx+c|=k(k≥0,k为常数)的解,是抛物线与直线y=±k的交点,当有3个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为3,当有4个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,当有2个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为2,故⑤错误,故选:A.。
中考数学点对点-二次函数问题(解析版)
二次函数问题专题知识点概述1.二次函数的概念:一般地,自变量x 和因变量y 之间存在如下关系: y=ax 2+bx+c(a≠0,a 、b 、c 为常数),则称y 为x 的二次函数。
抛物线)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2.二次函数y=ax 2 +bx+c(a ≠0)的图像与性质(1)对称轴:2b x a=- (2)顶点坐标:24(,)24b ac b a a-- (3)与y 轴交点坐标(0,c )(4)增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大;当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小。
3.二次函数的解析式三种形式(1)一般式 y=ax 2+bx+c(a ≠0).已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式 2()y a x h k =-+ 224()24b ac b y a x a a -=-+.已知图像的顶点或对称轴,通常选择顶点式。
y xO(3)交点式 12()()y a x x x x =--.已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式。
4.根据图像判断a,b,c 的符号(1)a 确定开口方向 :当a>0时,抛物线的开口向上;当a<0时,抛物线的开口向下。
(2)b ——对称轴与a 左同右异。
(3)抛物线与y 轴交点坐标(0,c )5.二次函数与一元二次方程的关系抛物线y=ax 2 +bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2 +bx+c=0(a ≠0)的根。
抛物线y=ax 2 +bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2 +bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点;24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点;24b ac -<0时,一元二次方程有不等的实根,二次函数图像与x 轴没有交点。
中考数学真题《二次函数图象性质与应用》专项测试卷(附答案)
中考数学真题《二次函数图象性质与应用》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(55题)一 、单选题1.(2023·甘肃兰州·统考中考真题)已知二次函数()2323y x =--- 下列说法正确的是( ) A .对称轴为2x =-B .顶点坐标为()2,3C .函数的最大值是-3D .函数的最小值是-32.(2023·广西·统考中考真题)将抛物线2y x 向右平移3个单位 再向上平移4个单位 得到的抛物线是( )A .2(3)4y x =-+B .2(3)4y x =++C .2(3)4y x =+-D .2(3)4y x =--3.(2023·湖南·统考中考真题)如图所示 直线l 为二次函数2(0)y ax bx c a =++≠的图像的对称轴,则下列说法正确的是( )A .b 恒大于0B .a b 同号C .a b 异号D .以上说法都不对4.(2023·辽宁大连·统考中考真题)已知抛物线221y x x =--,则当03x ≤≤时 函数的最大值为( )A .2-B .1-C .0D .25.(2023·四川成都·统考中考真题)如图,二次函数26y ax x =+-的图象与x 轴交于(3,0)A - B 两点 下列说法正确的是( )A .抛物线的对称轴为直线1x =B .抛物线的顶点坐标为1,62⎛⎫-- ⎪⎝⎭C .A B 两点之间的距离为5D .当1x <-时 y 的值随x 值的增大而增大6.(2023·河南·统考中考真题)二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限7.(2023·内蒙古通辽·统考中考真题)如图,抛物线()20y ax bx c a =++≠与x 轴交于点()()1020x ,,, 其中101x << 下列四个结论:①0abc < ①0a b c ++> ①230b c +< ①不等式22cax bx c x c ++<-+的解集为02x <<.其中正确结论的个数是( )A .1B .2C .3D .48.(2023·四川自贡·统考中考真题)经过23,()41,),(A b m B b c m -+-两点的抛物线22122y x bx b c =-+-+(x为自变量)与x 轴有交点,则线段AB 长为( ) A .10B .12C .13D .159.(2023·四川达州·统考中考真题)如图,拋物线2y ax bx c =++(,,a b c 为常数)关于直线1x =对称.下列五个结论:①0abc > ①20a b += ①420a b c ++> ①2am bm a b +>+ ①30a c +>.其中正确的有( )A .4个B .3个C .2个D .1个10.(2023·四川泸州·统考中考真题)已知二次函数223y ax ax =-+(其中x 是自变量) 当03x <<时对应的函数值y 均为正数,则a 的取值范围为( ) A .01a <<B .1a <-或3a >C .30a -<<或0<<3aD .10a -≤<或0<<3a11.(2023·四川凉山·统考中考真题)已知抛物线()20y ax bx c a =++≠的部分图象如图所示,则下列结论中正确的是( )A .<0abcB .420a b c -+<C .30a c +=D .20am bm a ++≤(m 为实数)12.(2023·四川南充·统考中考真题)抛物线254y x kx k =-++-与x 轴的一个交点为(,0)A m 若21m -≤≤,则实数k 的取值范围是( ) A .2114k -≤≤ B .k ≤214-或1k ≥ C .5k -≤≤98D .5k ≤-或k ≥9813.(2023·安徽·统考中考真题)已知反比例函数()0ky k x=≠在第一象限内的图象与一次函数y x b =-+的图象如图所示,则函数21y x bx k =-+-的图象可能为( )A .B .C .D .14.(2023·四川广安·统考中考真题)如图所示 二次函数2(y ax bx c a b c =++、、为常数 0)a ≠的图象与x 轴交于点()()3,0,1,0A B -.有下列结论:①0abc > ①若点()12,y -和()20.5,y -均在抛物线上,则12y y < ①50a b c -+= ①40a c +>.其中正确的有( )A .1个B .2个C .3个D .4个15.(2023·四川遂宁·统考中考真题)抛物线()20y ax bx c a =++≠的图象如图所示 对称轴为直线2x =-.下列说法:①0abc < ①30c a -> ①()242a ab at at b -+≥(t 为全体实数) ①若图象上存在点()11,A x y 和点()22,B x y 当123m x x m <<<+时 满足12y y =,则m 的取值范围为52m -<<-.其中正确的个数有( )A .1个B .2个C .3个D .4个16.(2023·四川眉山·统考中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴的一个交点坐标为()1,0 对称轴为直线=1x - 下列四个结论:①<0abc ①420a b c -+< ①30a c += ①当31x -<<时20ax bx c ++< 其中正确结论的个数为( )A .1个B .2个C .3个D .4个17.(2023·浙江宁波·统考中考真题)已知二次函数2(31)3(0)y ax a x a =-++≠ 下列说法正确的是( ) A .点(1,2)在该函数的图象上 B .当1a =且13x -≤≤时 08y ≤≤ C .该函数的图象与x 轴一定有交点D .当0a >时 该函数图象的对称轴一定在直线32x =的左侧 18.(2023·新疆·统考中考真题)如图,在平面直角坐标系中 直线1y mx n =+与抛物线223y ax bx =+-相交于点A B .结合图象 判断下列结论:①当23x -<<时 12y y > ①3x =是方程230ax bx +-=的一个解①若()11,t - ()24,t 是抛物线上的两点,则12t t < ①对于抛物线 223y ax bx =+- 当23x -<<时 2y 的取值范围是205y <<.其中正确结论的个数是( )A .4个B .3个C .2个D .1个19.(2023·山东东营·统考中考真题)如图,抛物线()20y ax bx c a =++≠与x 轴交于点A B 与y 轴交于点C 对称轴为直线=1x - 若点A 的坐标为()4,0-,则下列结论正确的是( )A .20a b +=B .420a b c -+>C .2x =是关于x 的一元二次方程()200ax bx c a ++=≠的一个根D .点()11,x y ()22,x y 在抛物线上 当121x x >>-时120y y <<20.(2023·四川乐山·统考中考真题)如图,抛物线2y ax bx c =++经过点(1,0)(,0)A B m -、 且12m << 有下列结论:①0b < ①0a b +> ①0a c <<- ①若点1225,,,33C y D y ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭在抛物线上,则12y y >.其中 正确的结论有( )A .4个B .3个C .2个D .1个21.(2023·湖南岳阳·统考中考真题)若一个点的坐标满足(),2k k 我们将这样的点定义为“倍值点”.若关于x 的二次函数()()212y t x t x s =++++(,s t 为常数 1t ≠-)总有两个不同的倍值点,则s 的取值范围是( ) A .1s <- B .0s < C .01s << D .10s -<<22.(2023·山东烟台·统考中考真题)如图,抛物线2y ax bx c =++的顶点A 的坐标为1,2m ⎛⎫- ⎪⎝⎭与x 轴的一个交点位于0合和1之间,则以下结论:①0abc > ①20b c +> ①若图象经过点()()123,,3,y y -,则12y y > ①若关于x 的一元二次方程230ax bx c ++-=无实数根,则3m <.其中正确结论的个数是( )A .1B .2C .3D .423.(2023·湖南·统考中考真题)已知0m n >> 若关于x 的方程2230x x m +--=的解为()1212,x x x x <.关于x 的方程2230x x n +--=的解为3434,()x x x x <.则下列结论正确的是( ) A .3124x x x x <<<B .1342x x x x <<<C .1234x x x x <<<D .3412x x x x <<<24.(2023·湖北随州·统考中考真题)如图,已知开口向下的抛物线2y ax bx c =++与x 轴交于点(60),对称轴为直线2x =.则下列结论正确的有( ) ①0abc < ①0a b c -+>①方程20cx bx a ++=的两个根为1211,26x x ==-①抛物线上有两点()11,P x y 和()22,Q x y 若122x x <<且124x x +>,则12y y <.A .1个B .2个C .3个D .4个25.(2023·浙江杭州·统考中考真题)设二次函数()()(0,,y a x m x m k a m k =--->是实数),则( ) A .当2k =时 函数y 的最小值为a - B .当2k =时 函数y 的最小值为2a - C .当4k =时 函数y 的最小值为a - D .当4k =时 函数y 的最小值为2a -26.(2023·湖南·统考中考真题)已知()()111222,,,P x y P x y 是抛物线243y ax ax =++(a 是常数 )0a ≠上的点 现有以下四个结论:①该抛物线的对称轴是直线2x =- ①点()0,3在抛物线上 ①若122x x >>-,则12y y > ①若12y y =,则122x x +=-其中 正确结论的个数为( )A .1个B .2个C .3个D .4个27.(2023·山东聊城·统考中考真题)已知二次函数()20y ax bx c a =++≠的部分图象如图所示 图象经过点()0,2 其对称轴为直线=1x -.下列结论:①30a c +> ①若点()14,y - ()23,y 均在二次函数图象上,则12y y > ①关于x 的一元二次方程21ax bx c ++=-有两个相等的实数根 ①满足22ax bx c ++>的x 的取值范围为20x -<<.其中正确结论的个数为( ).A .1个B .2个C .3个D .4个28.(2023·山东·统考中考真题)若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点” 如:(1,3),(2,6),(0,0)A B C --等都是三倍点” 在31x -<<的范围内 若二次函数2y x x c =--+的图象上至少存在一个“三倍点”,则c 的取值范围是( ) A .114c -≤< B .43c -≤<-C .154c -<<D .45c -≤<29.(2023·广东·统考中考真题)如图,抛物线2y ax c =+经过正方形OABC 的三个顶点A B C 点B 在y 轴上,则ac 的值为( )A .1-B .2-C .3-D .4-30.(2023·湖北·统考中考真题)拋物线2(0)y ax bx c a =++<与x 轴相交于点()()3010A B -,,,.下列结论: ①0abc < ①240b ac -> ①320b c += ①若点()()122P m y Q m y -,,,在抛物线上 且12y y <,则1m ≤-.其中正确的结论有( ) A .1个B .2个C .3个D .4个31.(2023·黑龙江齐齐哈尔·统考中考真题)如图,二次函数()20y ax bx c a =++≠图像的一部分与x 轴的一个交点坐标为()3,0 对称轴为直线1x = 结合图像给出下列结论: ①0abc > ①2b a = ①30a c +=①关于x 的一元二次方程220(0)ax bx c k a +++=≠有两个不相等的实数根①若点()1,m y ()22,y m -+均在该二次函数图像上,则12y y =.其中正确结论的个数是( )A .4B .3C .2D .132.(2023·湖北鄂州·统考中考真题)如图,已知抛物线()20y ax bx c a =++≠的对称轴是直线1x = 且过点()1,0- 顶点在第一象限 其部分图象如图所示 给出以下结论:①0ab < ①420a b c ++> ①30a c +>①若()11,A x y ()22,B x y (其中12x x <)是抛物线上的两点 且122x x +>,则12y y > 其中正确的选项是( )A .①①①B .①①①C .①①①D .①①①33.(2023·山东枣庄·统考中考真题)二次函数2(0)y ax bx c a =++≠的图象如图所示 对称轴是直线1x = 下列结论:①0abc < ①方程20ax bx c ++=(0a ≠)必有一个根大于2且小于3 ①若()1230,,,2y y ⎛⎫⎪⎝⎭是抛物线上的两点 那么12y y < ①1120a c +> ①对于任意实数m 都有()m am b a b +≥+ 其中正确结论的个数是( )A .5B .4C .3D .234.(2023·湖北十堰·统考中考真题)已知点()11,A x y 在直线319y x =+上 点()()2233,,,B x y C x y 在抛物线241y x x =+-上 若123y y y ==且123x x x <<,则123x x x ++的取值范围是( )A .123129x x x -<++<-B .12386x x x -<++<-C .12390x x x -<++<D .12361x x x -<++<35.(2023·湖北黄冈·统考中考真题)已知二次函数2(0)y ax bx c a =++<的图象与x 轴的一个交点坐标为(1,0)-对称轴为直线1x = 下列论中:①0a b c -+= ①若点()()()1233,,2,,4,y y y -均在该二次函数图象上,则123y y y << ①若m 为任意实数,则24am bm c a ++≤- ①方程210ax bx c +++=的两实数根为12,x x 且12x x <,则121,3x x <->.正确结论的序号为( )A .①①①B .①①①C .①①①D .①①36.(2023·四川·统考中考真题)已知抛物线2y ax bx c =++(a b c 是常数且a<0)过()1,0-和()0m ,两点 且34m << 下列四个结论:0abc >① 30a c +>② ③若抛物线过点()1,4,则213a -<<- ④关于x 的方程()()13a x x m +-=有实数根,则其中正确的结论有( )A .1个B .2个C .3个D .4个二 多选题37.(2023·湖南·统考中考真题)如图,抛物线2y ax bx c =++与x 轴交于点()3,0,则下列结论中正确的是( )A .0a >B .0c >C .240b ac -<D .930a b c ++=三 填空题38.(2023·内蒙古·统考中考真题)已知二次函数223(0)y ax ax a =-++> 若点(,3)P m 在该函数的图象上 且0m ≠,则m 的值为________.39.(2023·山东滨州·统考中考真题)要修一个圆形喷水池 在池中心竖直安装一根水管 水管的顶端安一个喷水头 使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高 高度为3m 水柱落地处离池中心3m 水管长度应为____________.40.(2023·湖南郴州·统考中考真题)抛物线26y x x c =-+与x 轴只有一个交点,则c =________.41.(2023·上海·统考中考真题)一个二次函数2y ax bx c =++的顶点在y 轴正半轴上 且其对称轴左侧的部分是上升的 那么这个二次函数的解析式可以是________.42.(2023·吉林长春·统考中考真题)2023年5月8日 C919商业首航完成——中国民商业运营国产大飞机正式起步.12时31分航班抵达北京首都机场 穿过隆重的“水门礼”(寓意“接风洗尘” 是国际民航中高级别的礼仪).如图① 在一次“水门礼”的预演中 两辆消防车面向飞机喷射水柱 喷射的两条水柱近似看作形状相同的地物线的一部分.如图① 当两辆消防车喷水口A B 的水平距离为80米时 两条水柱在物线的顶点H 处相遇 此时相遇点H 距地面20米 喷水口A B 距地面均为4米.若两辆消防车同时后退10米 两条水柱的形状及喷水口A ' B '到地面的距离均保持不变,则此时两条水柱相遇点H '距地面__________米.43.(2023·福建·统考中考真题)已知抛物线22(0)y ax ax b a =-+>经过()()1223,,1,A n y B n y +-两点 若,A B 分别位于抛物线对称轴的两侧 且12y y <,则n 的取值范围是___________.44.(2023·内蒙古赤峰·统考中考真题)如图,抛物线265y x x =-+与x 轴交于点A B 与y 轴交于点C 点()2,D m 在抛物线上 点E 在直线BC 上 若2DEB DCB ∠=∠,则点E 的坐标是____________.45.(2023·湖北武汉·统考中考真题)抛物线2y ax bx c =++(,,a b c 是常数 0c <)经过(1,1),(,0),(,0)m n 三点 且3n ≥.下列四个结论:①0b <①244ac b a -<①当3n =时 若点(2,)t 在该抛物线上,则1t >①若关于x 的一元二次方程2ax bx c x ++=有两个相等的实数根,则103m <≤. 其中正确的是________(填写序号).46.(2023·四川宜宾·统考中考真题)如图,抛物线2y ax bx c =++经过点()30A -,顶点为()1,M m - 且抛物线与y 轴的交点B 在()02-,和()03-,之间(不含端点),则下列结论:①当31x -≤≤时 0y ≤①当ABM 33 3a = ①当ABM 为直角三角形时 在AOB 内存在唯一点P 使得PA PO PB ++的值最小 最小值的平方为1893+其中正确的结论是___________.(填写所有正确结论的序号)四 解答题47.(2023·浙江宁波·统考中考真题)如图,已知二次函数2y x bx c =++图象经过点(1,2)A -和(0,5)B -.(1)求该二次函数的表达式及图象的顶点坐标.y≤-时请根据图象直接写出x的取值范围.(2)当248.(2023·浙江温州·统考中考真题)一次足球训练中小明从球门正前方8m的A处射门球射向球门的路线呈抛物线.当球飞行的水平距离为6m时球达到最高点此时球离地面3m.已知球门高OB为2.44m 现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式并通过计算判断球能否射进球门(忽略其他因素).(2)对本次训练进行分析若射门路线的形状最大高度均保持不变,则当时他应该带球向正后方移动多少米射门才能让足球经过点O正上方2.25m处?49.(2023·湖北武汉·统考中考真题)某课外科技活动小组研制了一种航模飞机.通过实验 收集了飞机相对于出发点的飞行水平距离x (单位:m )以 飞行高度y (单位:m )随飞行时间t (单位:s )变化的数据如下表. 飞行时间/s t 0 2 4 6 8 …飞行水平距离/m x 0 10 20 30 40 …飞行高度/m y 0 22 40 54 64 …探究发现:x 与t y 与t 之间的数量关系可以用我们已学过的函数来描述.直接写出x 关于t 的函数解析式和y 关于t 的函数解析式(不要求写出自变量的取值范围).问题解决:如图,活动小组在水平安全线上A 处设置一个高度可以变化的发射平台试飞该航模飞机.根据上面的探究发现解决下列问题.(1)若发射平台相对于安全线的高度为0m 求飞机落到安全线时飞行的水平距离(2)在安全线上设置回收区域,125m,5m ==MN AM MN .若飞机落到MN 内(不包括端点,M N ) 求发射平台相对于安全线的高度的变化范围.50.(2023·河北·统考中考真题)嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题 请解答这道题.如图,在平面直角坐标系中 一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出 并运动路线为抛物线21:(3)2C y a x =-+的一部分 淇淇恰在点(0)B c ,处接住 然后跳起将沙包回传 其运动路线为抛物线221:188n C y x x c =-+++的一部分.(1)写出1C 的最高点坐标 并求a c 的值(2)若嘉嘉在x 轴上方1m 的高度上 且到点A 水平距离不超过1m 的范围内可以接到沙包 求符合条件的n 的整数值.51.(2023·河南·统考中考真题)小林同学不仅是一名羽毛球运动爱好者 还喜欢运用数学知识对羽毛球比赛进行技术分析 下面是他对击球线路的分析.如图,在平面直角坐标系中 点A C 在x 轴上 球网AB 与y 轴的水平距离3m OA = 2m CA = 击球点P 在y 轴上.若选择扣球 羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+ 若选择吊球 羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现 上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近 请通过计算判断应选择哪种击球方式.52.(2023·内蒙古赤峰·统考中考真题)乒乓球被誉为中国国球.2023年的世界乒乓球标赛中中国队包揽了五个项目的冠军成绩的取得与平时的刻苦训练和精准的技术分析是分不开的.如图,是乒乓球台的截面示意图一位运动员从球台边缘正上方以击球高度OA为28.75cm的高度将乒乓球向正前方击打到对面球台乒乓球的运行路线近似是抛物线的一部分.乒乓球到球台的竖直高度记为y(单位:cm)乒乓球运行的水平距离记为x(单位:cm).测得如下数据:(1)在平面直角坐标系xOy中描出表格中各组数值所对应的点(),x y并画出表示乒乓球运行轨迹形状的大致图象(2)①当乒乓球到达最高点时与球台之间的距离是__________cm当乒乓球落在对面球台上时到起始点的水平距离是__________cm①求满足条件的抛物线解析式(3)技术分析:如果只上下调整击球高度OA乒乓球的运行轨迹形状不变那么为了确保乒乓球既能过网又能落在对面球台上需要计算出OA的取值范围以利于有针对性的训练.如图①.乒乓球台长OB为274cm 球网高CD 为15.25cm .现在已经计算出乒乓球恰好过网的击球离度OA 的值约为1.27cm .请你计算出乒乓球恰好落在对面球台边缘点B 处时 击球高度OA 的值(乒乓球大小忽略不计).53.(2023·浙江台州·统考中考真题)【问题背景】“刻漏”是我国古代的一种利用水流计时的工具.综合实践小组准备用甲 乙两个透明的竖直放置的容器和一根带节流阀(控制水的流速大小)的软管制作简易计时装置.【实验操作】综合实践小组设计了如下的实验:先在甲容器里加满水 此时水面高度为30cm 开始放水后每隔10min 观察一次甲容器中的水面高度 获得的数据如下表: 流水时间t /min 0 10 20 30 40水面高度h /cm (观察值) 30 29 28.1 27 25.8任务1 分别计算表中每隔10min 水面高度观察值的变化量.【建立模型】小组讨论发现:“0=t 30h =”是初始状态下的准确数据 水面高度值的变化不均匀 但可以用一次函数近似地刻画水面高度h 与流水时间t 的关系.任务2 利用0=t 时 30h = 10t =时 29h =这两组数据求水面高度h 与流水时间t 的函数解析式.【反思优化】经检验 发现有两组表中观察值不满足任务2中求出的函数解析式 存在偏差.小组决定优化函数解析式 减少偏差.通过查阅资料后知道:t 为表中数据时 根据解析式求出所对应的函数值 计算这些函数值与对应h 的观察值之差的平方和......记为w w 越小 偏差越小. 任务3 (1)计算任务2得到的函数解析式的w 值.(2)请确定经过()0,30的一次函数解析式 使得w 的值最小.【设计刻度】得到优化的函数解析式后 综合实践小组决定在甲容器外壁设计刻度 通过刻度直接读取时间. 任务4 请你简要写出时间刻度的设计方案.54.(2023·黑龙江·统考中考真题)如图,抛物线23y ax bx =++与x 轴交于()()3,0,1,0A B -两点 交y 轴于点C .(1)求抛物线的解析式.(2)拋物线上是否存在一点P 使得12PBC ABC S S = 若存在 请直接写出点P 的坐标若不存在 请说明理由.55.(2023·广东深圳·统考中考真题)蔬菜大棚是一种具有出色的保温性能的框架覆膜结构 它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架 上面覆上一层或多层保温塑料膜 这样就形成了一个温室空间.如图,某个温室大棚的横截面可以看作矩形ABCD 和抛物线AED 构成 其中3m AB = 4m BC = 取BC 中点O 过点O 作线段BC 的垂直平分线OE 交抛物线AED 于点E 若以O 点为原点 BC 所在直线为x 轴 OE 为y 轴建立如图所示平面直角坐标系.请回答下列问题:(1)如图,抛物线AED 的顶点()0,4E 求抛物线的解析式(2)如图,为了保证蔬菜大棚的通风性 该大棚要安装两个正方形孔的排气装置LFGT SMNR 若0.75m FL NR == 求两个正方形装置的间距GM 的长(3)如图,在某一时刻 太阳光线透过A 点恰好照射到C 点 此时大棚截面的阴影为BK 求BK 的长.参考答案一 单选题1.(2023·甘肃兰州·统考中考真题)已知二次函数()2323y x =--- 下列说法正确的是( ) A .对称轴为2x =-B .顶点坐标为()2,3C .函数的最大值是-3D .函数的最小值是-3 【答案】C【分析】根据二次函数的图象及性质进行判断即可.【详解】二次函数()2323y x =---的对称轴为2x = 顶点坐标为()2,3-①30-<①二次函数图象开口向下 函数有最大值 为=3y -①A B D 选项错误 C 选项正确故选:C.【点睛】本题考查二次函数的图象及性质 熟练掌握二次函数图象和性质是解题的关键.2.(2023·广西·统考中考真题)将抛物线2y x 向右平移3个单位 再向上平移4个单位 得到的抛物线是( )A .2(3)4y x =-+B .2(3)4y x =++C .2(3)4y x =+-D .2(3)4y x =--【答案】A【分析】根据“左加右减 上加下减”的法则进行解答即可.【详解】解:将抛物线2y x 向右平移3个单位 再向上平移4个单位 得到的抛物线的函数表达式为:2(3)4y x =-+. 故选:A .【点睛】本题考查了二次函数图象的平移 熟知二次函数图象平移的法则是解答此题的关键.3.(2023·湖南·统考中考真题)如图所示 直线l 为二次函数2(0)y ax bx c a =++≠的图像的对称轴,则下列说法正确的是( )A .b 恒大于0B .a b 同号C .a b 异号D .以上说法都不对【答案】C 【分析】先写出抛物线的对称轴方程 再列不等式 再分a<0 >0a 两种情况讨论即可.【详解】解:①直线l 为二次函数2(0)y ax bx c a =++≠的图像的对称轴①对称轴为直线>02b x a=-当a<0时,则>0b当>0a 时,则0b <①a b 异号故选:C .【点睛】本题考查的是二次函数的性质 熟练的利用对称轴在y 轴的右侧列不等式是解本题的关键.4.(2023·辽宁大连·统考中考真题)已知抛物线221y x x =--,则当03x ≤≤时 函数的最大值为( ) A .2-B .1-C .0D .2【答案】D 【分析】把抛物线221y x x =--化为顶点式 得到对称轴为1x = 当1x =时 函数的最小值为2- 再分别求出0x =和3x =时的函数值 即可得到答案.【详解】解:①()222112y x x x =--=--①对称轴为1x = 当1x =时 函数的最小值为2-当0x =时 2211y x x =--=- 当3x =时 232312y =-⨯-=①当03x ≤≤时 函数的最大值为2故选:D.【点睛】此题考查了二次函数的最值 熟练掌握二次函数的性质是解题的关键.5.(2023·四川成都·统考中考真题)如图,二次函数26y ax x =+-的图象与x 轴交于(3,0)A - B 两点 下列说法正确的是( )A .抛物线的对称轴为直线1x =B .抛物线的顶点坐标为1,62⎛⎫-- ⎪⎝⎭C .A B 两点之间的距离为5D .当1x <-时 y 的值随x 值的增大而增大【答案】C 【分析】待定系数法求得二次函数解析式 进而逐项分析判断即可求解.【详解】解:①二次函数26y ax x =+-的图象与x 轴交于(3,0)A - B 两点①0936a =--①1a =①二次函数解析式为26y x x =+-212524x ⎛⎫=+- ⎪⎝⎭ 对称轴为直线12x =- 顶点坐标为125,24⎛⎫-- ⎪⎝⎭ 故A B 选项不正确 不符合题意①10a => 抛物线开口向上 当1x <-时 y 的值随x 值的增大而减小 故D 选项不正确 不符合题意 当0y =时 260x x +-=即123,2x x =-=①()2,0B①5AB = 故C 选项正确 符合题意故选:C .【点睛】本题考查了二次函数的性质 待定系数法求二次函数解析式 抛物线与坐标轴的交点 熟练掌握二次函数的性质是解题的关键.6.(2023·河南·统考中考真题)二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【分析】根据二次函数图象的开口方向 对称轴判断出a b 的正负情况 再由一次函数的性质解答.【详解】解:由图象开口向下可知a<0 由对称轴b x 02a=-> 得0b >. ①一次函数y x b =+的图象经过第一 二 三象限 不经过第四象限.故选:D .【点睛】本题考查二次函数图象和一次函数图象的性质 解答本题的关键是求出a b 的正负情况 要掌握它们的性质才能灵活解题 此题难度不大.7.(2023·内蒙古通辽·统考中考真题)如图,抛物线()20y ax bx c a =++≠与x 轴交于点()()1020x ,,, 其中101x << 下列四个结论:①0abc < ①0a b c ++> ①230b c +< ①不等式22c ax bx c x c ++<-+的解集为02x <<.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【分析】根据函数图象可得出a b c 的符号即可判断① 当1x =时 0y <即可判断① 根据对称轴为12b x a=-> 0a >可判断① 21y ax bx c =++ 22c y x c =-+数形结合即可判断①. 【详解】解:①抛物线开口向上 对称轴在y 轴右边 与y 轴交于正半轴①000a b c ><>,,①0abc < 故①正确.①当1x =时 0y <①0a b c ++< 故①错误.①抛物线2y ax bx c =++与x 轴交于两点()()1020x ,,,其中101x << ①2021222b a ++<-< ①3122b a <-< 当322b a -<时 3b a >- 当2x =时 420y a bc =++=122b ac ∴=-- 1232a c a ∴-->- ①20a c ->①()234342220b c a c c a c a c +=--+=-+=--< 故①正确设21y ax bx c =++ 22c y x c =-+ 如图:由图得 12y y <时 02x << 故①正确.综上 正确的有①①① 共3个故选:C .【点睛】本题考查了二次函数的图象及性质 根据二次函数的图象及性质巧妙借助数学结合思想解决问题是解题的关键.8.(2023·四川自贡·统考中考真题)经过23,()41,),(A b m B b c m -+-两点的抛物线22122y x bx b c =-+-+(x 为自变量)与x 轴有交点,则线段AB 长为( )A .10B .12C .13D .15【答案】B【分析】根据题意 求得对称轴 进而得出1c b =- 求得抛物线解析式 根据抛物线与x 轴有交点得出240b ac ∆=-≥ 进而得出2b =,则1c = 求得,A B 的横坐标 即可求解. 【详解】解:①抛物线22122y x bx b c =-+-+的对称轴为直线1222b b x b a =-=-=⎛⎫⨯- ⎪⎝⎭①抛物线经过23,()41,),(A b m B b c m -+-两点 ①23412b bc b -++-= 即1c b =- ①22221122222y x bx b c x bx b b =-+-+=-+-+- ①抛物线与x 轴有交点①240b ac ∆=-≥ 即()22142202b b b ⎛⎫-⨯-⨯-+-≥ ⎪⎝⎭即2440b b -+≤ 即()220b -≤①2b = 1211c b =-=-=①23264,418118b b c -=-=-+-=+-=①()()41238412AB b c b =+---=--=故选:B .【点睛】本题考查了二次函数的对称性 与x 轴交点问题 熟练掌握二次函数的性质是解题的关键. 9.(2023·四川达州·统考中考真题)如图,拋物线2y ax bx c =++(,,a b c 为常数)关于直线1x =对称.下列五个结论:①0abc > ①20a b += ①420a b c ++> ①2am bm a b +>+ ①30a c +>.其中正确的有( )A .4个B .3个C .2个D .1个【答案】B 【分析】由抛物线的开口方向 与y 轴交点以及对称轴的位置可判断a b c 的符号 由此可判断①正确 由抛物线的对称轴为1x = 得到12b a-= 即可判断① 可知2x =时和0x =时的y 值相等可判断①正确 由图知1x =时二次函数有最小值 可判断①错误 由抛物线的对称轴为1x =可得2b a =- 因此22y ax ax c =-+ 根据图像可判断①正确.【详解】①①抛物线的开口向上0.a ∴>①抛物线与y 轴交点在y 轴的负半轴上0.c ∴< 由02b a->得 0b < 0abc ∴>故①正确 ①抛物线的对称轴为1x = ∴12b a-= ∴2b a =-∴20a b += 故①正确①由抛物线的对称轴为1x = 可知2x =时和0x =时的y 值相等.由图知0x =时 0y <①2x =时 0y <.即420a b c ++<.故①错误①由图知1x =时二次函数有最小值2a b c am bm c ∴++≤++2a b am bm ∴+≤+(a b m ax b +≤+)故①错误①由抛物线的对称轴为1x =可得12b a-= 2b a ∴=-①22y ax ax c =-+当=1x -时 23y a a c a c =++=+.由图知=1x -时0,y >30.a c ∴+>故①正确.综上所述:正确的是①①① 有3个故选:B .【点睛】本题主要考查了二次函数的图像与系数的关系 二次函数的对称轴及顶点位置.熟练掌握二次函数图像的性质及数形结合是解题的关键.10.(2023·四川泸州·统考中考真题)已知二次函数223y ax ax =-+(其中x 是自变量) 当03x <<时对应的函数值y 均为正数,则a 的取值范围为( )A .01a <<B .1a <-或3a >C .30a -<<或0<<3aD .10a -≤<或0<<3a 【答案】D【分析】首先根据题意求出对称轴212a x a -=-= 然后分两种情况:0a >和a<0 分别根据二次函数的性质求解即可.【详解】①二次函数223y ax ax =-+①对称轴212a x a-=-= 当0a >时①当03x <<时对应的函数值y 均为正数①此时抛物线与x 轴没有交点①()22430a a ∆=--⨯<①解得0<<3a当a<0时①当03x <<时对应的函数值y 均为正数①当3x =时 9630y a a =-+≥①解得1a ≥-①10a -≤<①综上所述当03x <<时对应的函数值y 均为正数,则a 的取值范围为10a -≤<或0<<3a .故选:D .【点睛】此题考查了二次函数的图象和性质 解题的关键是分两种情况讨论.11.(2023·四川凉山·统考中考真题)已知抛物线()20y ax bx c a =++≠的部分图象如图所示,则下列结论中正确的是( )A .<0abcB .420a b c -+<C .30a c +=D .20am bm a ++≤(m 为实数)【答案】C 【分析】根据开口方向 与y 轴交于负半轴和对称轴为直线1x =可得00a c ><, 20b a =-< 由此即可判断A 根据对称性可得当2x =-时 0y > 当=1x -时 0y = 由此即可判断B C 根据抛物线开口向上 对称轴为直线1x = 可得抛物线的最小值为a c -+ 由此即可判断D .【详解】解:①抛物线开口向上 与y 轴交于负半轴①00a c ><,①抛物线对称轴为直线1x = ①12b a-= ①20b a =-<。
中考数学二次函数由图像判断符号题目(大全)
二次函数判断符号问题大全1 函数y=ax + 1与y=ax 2+ bx + 1 (a 工0的图象可能是()大而增大;④a - b ■ C ::: 0,其中正确的个数() A . 4个B . 3个C . 2个D . 1个4、 二次函数y=ax 2+bx+c 的图象如图2所示,若点A (1, yj 、B (2, y ?)是它图象上的两点,贝V y i 与y 2的大小关系是( 、A . y 1 ::: y 2 B . y 1 = y 2 C . y 1 y 2 D .不能确定 5、 已知二次函数 y = ax 2 + bx + c (a 丰0)的图象如图所示,给出以下结论: ①a > 0.②该函数的图象关于直线 x =1对称•③当x 二-1或x 二3时,函数y 的值都等于0. 其中正确结论的个数是( 、A . 3 B . 2 C . 1 D . 02y = bx • b 2 -4ac 与反比例函数1Xo2、(3、 A .B .C .D .①ac 0 ;②方程ax 2 bx 0的两根之和大于 0 ;③y 随x 的增6、二次函数y =ax bx c的图象如图所示,则一次函数在同一坐标系内的图象大致为(①b ::: 0②c0③b 2-4ac 0④a-b ,c :::0,其中正确的个数有()A . 1个B . 2个C . 3个D . 4个2①b :::0②c 0③b -4ac 0④a-b ,c :::O ,其中正确的个数有(2已知二(a = 0 )的图象如图4所示,有下列四个结论:7 题图 8 题图 9 题图8、已知=次函数y = ax 2 +bx+c 的图象如图.则下列5 个代数式:ac , a+b+c , 4a — 2b+c ,2a+b , 2a — b 中,其值大于0的个数为(B 3C 、4D 、52已知二次函数y = ax bx c(a = 0 )的图象如图所示,有下列四个结论:2a +b + c则一次函数 y = bx • b -4ac 与反比例函数 y 二10、二次函数y =ax bx c 的图象如图所示,A . 在同一坐标系内的图象大致为B .x C.xD .211、小强从如图所示的二次函数y =ax bx c 的图象中,观察得出了下面五条信息:(1) a ::: 0 ; (2)c 1 ; ( 3)b 0 ; ( 4) a b c 0 ;( 5)a-b ・c 0.你认为其中正确信息的个数有A . 2个B . 3个C . 4个D . 5个能是()14、 二次函数y =ax 2 bx c 的图象如图6所示,则下列关系式不正确的是A . a v 0B. abc >0C. a b c > 0D. b 2 -4ac > 02J严:1 11 i/O ! 4\212、二次函数 y =ax bx c (a = 0)的图象如图所示,对称轴是直线x = 1,则下列四个结论错误.的是13、在同一直角坐标系中,函数2B . 2a b=0C . b -4ac 0D . a -b c 02y = mx m 和函数 y = -mx 2x 2(m 是常数,且m = 0 )的图象可12题图15、已知二次函数y =ax - bx - c的图象如图所示,有以下结论:① a b : 0:② b c 1 :③abc 0 :④4a -2b • c ::: 0 :⑤c - a 1其中所有正确结论的序号是()A .①②B .①③④C .①②③⑤D .①②③④⑤15题图216、二次函数 y =ax bx c(a =0)B . b :: 017、二次函数y 二ax 2 - bx c 的图象如图所示,则下列关系式中错误的是()D . b 2 -4ac ::0 C . c : 0)。
专题01 二次函数图象与系数a、b、c相关的判断问题-2022中考数学二次函数重点题型全国通用解析版
专题01 二次函数图象与系数a 、b 、c 相关结论的判断问题一、单选题1.(2021·山东烟台招远市中考一模)已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④30a c +<;⑤1c a ->.其中所有正确结论的序号是( )A .①②B .①③④C .①②③④D .①②③④⑤【答案】D【分析】 从抛物线的开口方向,对称轴,与坐标轴的交点,函数的增减性等去分析判断即可.【详解】∵从图象上看出,直线x =1与抛物线的交点位于第四象限,∴0a b c ++<,故①正确;∵从图象上看出,直线x = -1时,函数有最大值,y =a -b +c ,当x =0时,函数值为y =c =1,∴1a b c -+>,故②正确;∵-12b a=-<0, ∴ab >0,∵c =1,∴0abc >,故③正确;∵0a b c ++<,b =2a ,∴30a c +<,故④正确;∵1a b c -+>,b =2a ,∴1c a ->,故⑤正确.故选D .2.(2021·四川广安市中考真题)二次函数()20y ax bx c a =++≠的图象如图所示,有下列结论:①0abc >,②420a b c -+<,③()a b x ax b -≥+,④30a c +<,正确的有( )A .1个B .2个C .3个D .4个【答案】C【分析】 根据抛物线的开口方向,对称轴,与y 轴交点可得a ,b ,c 的符号,从而判断①;再根据二次函数的对称性,与x 轴的交点可得当x =-2时,y >0,可判断②;再根据x =-1时,y 取最大值可得a -b +c ≥ax 2+bx +c ,从而判断③;最后根据x =1时,y =a +b +c ,结合b =2a ,可判断④.【详解】解:∵抛物线开口向下,∴a <0,∵对称轴为直线x =-1,即12b a-=-, ∴b =2a ,则b <0,∵抛物线与y 轴交于正半轴,∴c >0,∴abc >0,故①正确;∵抛物线对称轴为直线x =-1,与x 轴的一个交点横坐标在0和1之间,则与x 轴的另一个交点在-2和-3之间,∴当x =-2时,y =4a -2b +c >0,故②错误;∵x =-1时,y =ax 2+bx +c 的最大值是a -b +c ,∴a -b +c ≥ax 2+bx +c ,∴a -b ≥ax 2+bx ,即a -b ≥x (ax +b ),故③正确;∵当x =1时,y =a +b +c <0,b =2a ,∴a +2a +c =3a +c <0,故④正确;故选:C .【点睛】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c ).3.(2021·广东肇庆市九年级月考)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,给出以下结论:①24b ac >;②0abc >;③20a b -=;④80a c +<;⑤930a b c ++<.其中结论正确的个数有( )A .1B .2C .3D .4【答案】C【分析】 观察抛物线与x 轴的交点情况即可对①作出判断;根据抛物线的开口方向、对称轴的位置及抛物线与y 轴的交点位置即可对②作出判断;根据抛物线的对称轴为直线x =1,即可对③作出判断;观察图象当x =-2时,y >0,从而可对④作出判断;观察图象当x =3时,y <0,从而可对⑤作出判断.【详解】抛物线与x 轴有两个交点,240b ac ∴->,即24b ac >,故①正确;抛物线开口向上,0a ∴>,对称轴在y 轴的右侧,0b ∴<,抛物线与y 轴交于负半轴,0c ∴<,0abc ∴>,故②正确;12b a-=, 20a b ∴+=,故③错误;2x =-时,0y >,420a b c ∴-+>,即80a c +>,故④错误;根据抛物线的对称性可知,当3x =时,0y <,930a b c ∴++<,故⑤正确,故选:C .【点睛】本题考查了二次函数的图象与性质,涉及数形结合;对于此类问题,一般是看抛物线的开口方向可确定a 的符号、看对称轴的位置可确定b 的符号、看抛物线与y 轴的交点位置确定c 的符号,看抛物线与x 轴交点的个数确定判别式的符号,根据函数图象可确定2ax bx c ++的符号.关键是熟练掌握二次函数的图象与性质.4.(2021·黑龙江牡丹江市中考真题)如图,抛物线y =ax 2+bx +c (a ≠0)的顶点为(1,n ),与x 轴的一个交点B (3,0),与y 轴的交点在(0,﹣3)和(0,﹣2)之间.下列结论中:①ab c >0;②﹣2<b 53<-;③(a +c )2﹣b 2=0;④2c ﹣a <2n ,则正确的个数为( )A .1B .2C .3D .4【答案】B【分析】 根据二次函数的图象和性质逐一进行判断即可【详解】解:∵抛物线y =ax 2+bx +c (a ≠0)的开口向上,∴a >0,∵抛物线线y =ax 2+bx +c (a ≠0)的顶点坐标为(1,n ),∴对称轴x =12b a-=, ∴b =-2a <0,∵抛物线与y 轴的交点在(0,﹣3)和(0,﹣2)之间∴-3<c <-2<0, ∴ab c>0;故①正确; ∵抛物线线x 轴的一个交点B (3,0),∴9a +3b +c =0,抛物线线x 轴的一个交点(-1,0),∵b =-2a∴c =32b , ∴-3<32b <-2, ∴﹣2<b 43<-,故②错误; ∵抛物线线x 轴的一个交点(-1,0),∴a -b +c =0,∴(a +c )2﹣b 2=(a +b +c )(a -b +c )=0,故③正确;∵a >0,∴-a <0∵b =-2a∴3a +2b =-a <0∴2c ﹣a >2(a +b +c ),∵抛物线y =ax 2+bx +c (a ≠0)的顶点为(1,n ),∴a +b +c =n ,∴2c ﹣a >2n ;故④错误;故选:B【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),明确以下几点:①二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;③常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).5.(2021·湖北荆门中考真题)抛物线2y ax bx c =++(a ,b ,c 为常数)开口向下且过点(1,0)A ,(,0)B m (21m -<<-),下列结论:①20b c +>;②20a c +<;③ (1)0a m b c +-+>;④若方程()(1)10a x m x ---=有两个不相等的实数根,则244ac b a -<.其中正确结论的个数是( )A .4B .3C .2D .1【答案】A【分析】根据已知条件可判断0c >,0a b <<,据此逐项分析解题即可.【详解】 解:抛物线开口向下0a ∴<把(1,0)A ,(,0)B m 代入2y ax bx c =++得200a b c am bm c ++=⎧⎨++=⎩2am bm a b ∴+=+20am bm a b ∴+--=(1)()0m am a b -++=21m -<<-0am a b ∴++=,(1)am c a m b ∴=+=-0c ∴>110m ∴-<+<10m +<11022m +∴-<< 1022b a∴-<-< 10b a∴>> 0a b ∴<<①220b c b a b b a +=--=->,故①正确;②220a c a a b a b +=--=-<,故②正确;③ (1)2230a m b c b c b a b b a +-+=-+=---=-->,故③正确;;④若方程()(1)10a x m x ---=有两个不相等的实数根,即2(1)10ax a m x am -++-=22(1)4(1)a m a am ∆=+--222(1)44a m a m a =+-+2244a b b a a a--=-⋅+ 22444b a ab a =+++24()4b a a b a =+++2440b ac a =-+>244ac b a ∴-<,故④正确,即正确结论的个数是4,故选:A .6.(2021·四川达州市中考真题)如图,已知抛物线2y ax bx c =++(a ,b ,c 为常数,0a ≠)经过点()2,0,且对称轴为直线12x =,有下列结论:①0abc >;②0a b +>;③4230a b c ++<;④无论a ,b ,c 取何值,抛物线一定经过,02c a ⎛⎫ ⎪⎝⎭;⑤2440am bm b +-≥.其中正确结论有( )A .1个B .2个C .3个D .4个【答案】D【分析】 ①根据图象开口向上,对称轴位置,与y 轴交点分别判断出a ,b ,c 的正负 ②根据对称轴公式2b x a =-,12x =判断,a b 的大小关系 ③根据2x =时,0y =,比较423a b c ++与0的大小;④根据抛物线的对称性,得到2x =与1x =-时的函数值相等结合②的结论判断即可⑤根据抛物线对称轴找到顶点坐标的纵坐标,比较任意一点与顶点的纵坐标值,即比较函数值的大小即可判断结论.【详解】①图象开口朝上,故0a > ,根据对称轴“左同右异”可知0b <,图象与y 轴交点位于x 轴下方,可知c <00abc ∴>故①正确; ②122b x a =-=得=-a b 0a b ∴+=故②错误;③2y ax bx c =++经过()2,0420a b c ∴++=又由①得c <04230a b c ∴++<故③正确;④根据抛物线的对称性,得到2x =与1x =-时的函数值相等∴ 当1x =-时0y =,即0a b c -+=a b =-20a c ∴+=即12c a=- ∴ 2y ax bx c =++经过,02c a ⎛⎫⎪⎝⎭,即经过(1,0)- 故④正确; ⑤当12x =时,1142y a b c =++, 当x m =时,2y am bm c =++ 0a > ∴ 函数有最小值1142a b c ++∴ 21142am bm c a b c ++≥++ 化简得2440am bm b +-≥,故⑤正确.综上所述:①③④⑤正确.故选D .【点睛】本题考查二次函数图象与性质,二次函数解析式中系数与图象的关系,结合图象逐项分析,结已知条件得出结论是解题的关键.7.(2021·广西福绵九年级期中)二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴为直线1x =,给出下列结论:①0abc >;②当2x >时,0y >;③80a c +>;④30a b +<,其中正确的结论有( )A .①②B .①③C .①③④D .②④【答案】B【分析】该函数开口方向向上,则a >0,由对称轴可知,b =−2a <0,与y 轴交点在y 轴负半轴,则c <0,再根据一些特殊点,比如x =1,x =−1,顶点等进行判断即可.【详解】 解:函数开口方向向上,0a ∴>,对称轴为直线1x =,即12b a-=, 20b a ∴=-<, 抛物线与y 轴交点在y 轴负半轴,0c ∴<,0abc ∴>,故①正确,由图象可知,当0x =时,0y c =<,由函数的对称性可知,2x =时,0y c =<,且当1x >时,y 随x 的增大而增大,故②错误,当2x =-时,420y a b c =-+>,即80a c +>,故③正确,320a b a b a a +=++=>,故④错误,综上,正确的是①③,故选:B .【点睛】本题主要考查二次函数图象与系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换是解题关键.8.(2021·山东日照中考真题)抛物线()20y ax bx c a =++≠的对称轴是直线1x =-,其图象如图所示.下列结论:①0abc <;②()()2242a c b +<;③若()11,x y 和()22,x y 是抛物线上的两点,则当1211x x +>+时,12y y <;④抛物线的顶点坐标为()1,m -,则关于x 的方程21ax bx c m ++=-无实数根.其中正确结论的个数是( )A .4B .3C .2D .1【答案】B【分析】 ①由图象开口方向,对称轴位置,与y 轴交点位置判断a ,b ,c 符号.②把2x =±分别代入函数解析式,结合图象可得22(4)(2)a c b +-的结果符号为负.③由抛物线开口向上,距离对称轴距离越远的点y 值越大.④由抛物线顶点纵坐标为m 可得2ax bx c m ++,从而进行判断21ax bx c m ++=-无实数根.【详解】 解:①抛物线图象开口向上,0a ∴>,对称轴在直线y 轴左侧,a ∴,b 同号,0b >,抛物线与y 轴交点在x 轴下方,0c ∴<,0abc ∴<,故①正确.②22(4)(2)(42)(42)a c b a c b a c b +-=+++-,当2x =时242ax bx c a c b ++=++,由图象可得420a c b ++>,当2x =-时,242ax bx c a c b ++=+-,由图象可得420a c b +-<,22(4)(2)0a c b ∴+-<,即22(4)(2)a c b +<,故②正确.③11|1||(1)|x x +=--,22|1||(1)|x x +=--,12|1||1|x x +>+,∴点1(x ,1)y 到对称轴的距离大于点2(x ,2)y 到对称轴的距离,12|y y ∴>,故③错误. ④抛物线的顶点坐标为(1,)m -,y m ∴,2ax bx c m ∴++,21ax bx c m ∴++=-无实数根.故④正确,综上所述,①②④正确,故选:B .【点睛】本题考查二次函数的图象的性质,解题关键是熟练掌握二次函数2(0)y ax bx c a =++≠中a ,b ,c 与函数图象的关系.9.(2021·山东枣庄中考真题)二次函数()20y ax bx c a =++≠的部分图象如图所示,对称轴为12x =,且经过点()2,0.下列说法:①0abc <;②20b c -+=;③420a b c ++<;④若11,2y ⎛⎫- ⎪⎝⎭,25,2y ⎛⎫ ⎪⎝⎭是抛物线上的两点,则12y y <;⑤()14b c m am b c +>++(其中12m ≠).正确的结论有( )A .2个B .3个C .4个D .5个【答案】B【分析】 先根据抛物线开口向下、与y 轴的交点位于y 轴正半轴0,0a c <>,再根据对称轴可得0b a =->,由此可判断结论①;将点()2,0代入二次函数的解析式可判断结论②③;根据二次函数的对称轴可得其增减性,由此可判断结论④;利用二次函数的性质可求出其最大值,由此即可得判断结论⑤.【详解】 解:抛物线的开口向下,与y 轴的交点位于y 轴正半轴,0,0a c ∴<>, 抛物线的对称轴为122b x a =-=, 0b a ∴=->, 0abc ∴<,则结论①正确;将点()2,0代入二次函数的解析式得:420a b c ++=,则结论③错误;将=-a b 代入得:20b c -+=,则结论②正确; 抛物线的对称轴为12x =, 32x ∴=和12x =-时的函数值相等,即都为1y , 又当12x ≥时,y 随x 的增大而减小,且3522<, 12y y ∴>,则结论④错误; 由函数图象可知,当12x =时,y 取得最大值,最大值为1111142424a b c b b c b c ++=-++=+, 12m ≠, 214b c am bm c +>++∴, 即1()4b c m am b c +>++,结论⑤正确; 综上,正确的结论有①②⑤,共3个,故选:B .【点睛】本题考查了二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题关键.10.(2021·山东日照九年级月考)如图,抛物线()20y ax bx c a =++≠与x 轴交于点()3,0-,其对称轴为直线12x =-,结合图象分析下列结论:①0abc >;②30a c +>;③当0x <时,y 随x 的增大而增大;④一元二次方程20cx bx a ++=的两根分别为113x =-,212x =;⑤若(),m n m n <为方程()()3230a x x +-+=的两个根,则3m <-且2n >,其中正确的结论有( )个.A .2B .3C .4D .5【答案】B【分析】根据题意和函数图象中的数据,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由函数图象可得,0a <,0b <,0c >, 则0abc >,故①正确;122b a -=-,得a b =, 3x =-时,930y a bc =-+=,60a c ∴+=,6c a ∴=-,33630a c a a a ∴+=-=->,故②正确; 由图象可知,当12x <-时,y 随x 的增大而增大,当102x -<<时,y 随x 的增大而减小,故③错误;抛物线2(0)y ax bx c a =++≠与x 轴交于点(3,0)-,其对称轴为直线12x =-,∴该抛物线与x 轴的另一个交点的坐标为(2,0), 20ax bx c ∴++=的两个根为13x =-,22x =, 211()0a b c x x ∴+⋅+=的两个根为13x =-,22x =,∴一元二次方程20cx bx a ++=的两根分别为113x =-,212x =,故④正确;该函数与x 轴的两个交点为(3,0)-,(2,0),∴该函数的解析式可以为(3)(2)y a x x =+-,当3y =-时,3(3)(2)a x x -=+-∴当3y =-对应的x 的值一个小于3-,一个大于2,∴若m ,()n m n <为方程(3)(2)30a x x +-+=的两个根,则3m <-且2n >,故⑤错误; 故选:B .【点睛】本题考查二次函数图象与系数的关系、根与系数的关系、抛物线与x 轴的交点、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.11.(2021·四川省宜宾市中考一模)二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-,对称轴为直线2x =,下列结论:①40a b +=;93a c b +>;③8720a b c ++>;④若点()13,A y -、点21,2B y ⎛⎫- ⎪⎝⎭、点37,2C y ⎛⎫ ⎪⎝⎭在该函数图象上,则132y y y <<;⑤若方程(1)(53a x x +-=-)的两根为1x 和2x ,且12x x <,则1215x x <-<<;⑥44a b b a+=-, 其中正确的结论有( )A .3B .4C .5D .6 【答案】A【分析】利用对称轴方程得到−2b a=2,则b =−4a ,于是可对①进行判断;利用x =−3时,y <0可对②进行判断;利用图象过点(−1,0)得到a −b +c =0,把b =−4a 代入得到c =−5a ,则8a +7b +2c =−30a ,然后利用a <0可对③进行判断;根据二次函数的性质,通过比较A 、B 、C 点到对称轴的距离的大小得到y 1<y 2<y 3.则可对④进行判断.根据抛物线的对称性得到抛物线与x 轴的另一个交点坐标为(5,0),则抛物线解析式为y =a (x +1)(x −5),所以方程a (x +1)(x −5)=−3的两根x 1和x 2为抛物线y =a (x +1)(x −5)与直线y =−3的交点的横坐标,于是结合函数图象可对⑤进行判断; 根据b =−4a ,可对⑥进行判断.【详解】解:∵抛物线的对称轴为直线x =−2b a=2, ∴b =−4a ,即4a +b =0,所以①正确;∵x =−3时,y <0,∴9a −3b +c <0,即9a +c <3b ,所以②错误;∵抛物线经过点(−1,0),∴a −b +c =0,而b =−4a ,∴a +4a +c =0,则c =−5a ,∴8a +7b +2c =8a −28a −10a =−30a ,∵a <0,∴8a +7b +2c >0,所以③正确;∵点A (−3,y 1)到直线x =2的距离最大、点C (72,y 3)到直线x =2的距离最小,抛物线开口向下,∴y 1<y 2<y 3.所以④错误.∵抛物线的对称轴为直线x =2,抛物线与x 轴的一个交点坐标为(−1,0),∴抛物线与x 轴的另一个交点坐标为(5,0),∴抛物线解析式为y =a (x +1)(x −5),∴方程a (x +1)(x −5)=−3的两根x 1和x 2为抛物线y =a (x +1)(x −5)与直线y =−3的交点的横坐标,∴x 1<−1<5<x 2;所以⑤正确;∵b =−4a , ∴()()4145a b b a +=-+-=-,故⑥错误; 故选A .【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左;当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:Δ>0时,抛物线与x 轴有2个交点;Δ=0时,抛物线与x 轴有1个交点;Δ<0时,抛物线与x 轴没有交点.12.(2021·黑龙江齐齐哈尔中考真题)如图,二次函数2(0)y ax bx c a =++≠图象的一部分与x 轴的一个交点坐标为()1,0,对称轴为1x =-,结合图象给出下列结论:①0a b c ++=;②20a b c -+<;③关于x 的一元二次方程20(a 0)++=≠ax bx c 的两根分别为-3和1;④若点()14,y -,()22,y -,()33,y 均在二次函数图象上,则123y y y <<;⑤()a b m am b -<+(m 为任意实数).其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C【分析】根据二次函数的图象及性质逐项分析即可判断.【详解】解:∵二次函数2(0)y ax bx c a =++≠图象的一部分与x 轴的一个交点坐标为()1,0, ∴当x =1时,0a b c ++=,故结论①正确;根据函数图象可知,当10x y =-<,,即0a b c -+<,对称轴为1x =-,即12b a -=-, 根据抛物线开口向上,得0a >,∴20b a =>,∴0a b c b -+-<,即20a b c -+<,故结论②正确;根据抛物线与x 轴的一个交点为()1,0,对称轴为1x =-可知:抛物线与x 轴的另一个交点为(-3,0),∴关于x 的一元二次方程20(a 0)++=≠ax bx c 的两根分别为-3和1,故结论③正确;根据函数图象可知:213y y y <<,故结论④错误;当x m =时,2()y am bm c m am b c =++=++,∴当1m =-时,()a b c m am b c -+=++,即()a b m am b -=+,故结论⑤错误,综上:①②③正确,故选:C .【点睛】本题主要考查二次函数图象与系数的关系,解题的关键是熟练掌握二次函数的性质,正确理解二次函数与方程的关系.二、填空题13.(2021·北京师大附中九年级月考)二次函数y =ax 2+bx +c 的图象如图所示,下列结论:①abc <0;②3a +c <0;③b 2﹣4ac >0;④16a +4b +c >0.其中正确结论的个数是:___.【答案】3【分析】根据二次函数图象的性质(开口方向、对称轴、与坐标轴交点以及特殊点的值),确定对应代数值的符号即可.【详解】解:图象开口方向向上,所以0a >, 对称轴为12b a-=,20b a =-< 图象与y 轴交点在x 轴下方,∴0c <∴0abc >,①错误;由图象可得,当1x =-时,0y <,即0a b c -+<,∴30a c +<,②正确;图象与x 轴有两个交点,∴240b ac ->,③正确;由图象可知,当2x =-时,0y >,又因为(2,)y -关于1x =对称的点为(4,)y∴当4x =时,0y >,即1640a b c ++>,④正确所以正确的个数为3故答案为3【点睛】此题考查了二次函数的图象与系数的关系,解题的关键是根据函数图象确定出对应代数值的符号.14.(2021·湖北新洲九年级月考)抛物线2y ax bx c =++的对称轴为直线1x =-,部分图象如图所示,下列判断中:①0abc >;②20a b -=;③240b ac ->;④420a b c ++>;其中判断正确的选项是____________.【答案】②③④【分析】利用抛物线开口方向得到a >0,利用抛物线的对称轴方程得到b =2a >0,利用抛物线与y 轴的交点位置得到c <0,则可对①进行判断;利用对称轴方程可对②判断;利用抛物线与x 轴交点个数可对③进行判断; 利用当x =2时,y >0,可对④判断.【详解】解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x =2b a-=−1, ∴b =2a >0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc <0,所以①错误;∵b =2a ,∴20a b -=,所以②正确;∵抛物线与x 轴有2个交点,∴Δ=240b ac ->,所以③正确;∵当x =2时,y >0,∴420a b c ++>,所以④正确.故答案是:②③④.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左;当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:Δ=b 2−4ac >0时,抛物线与x 轴有2个交点;Δ=b 2−4ac =0时,抛物线与x 轴有1个交点;Δ=b 2−4ac <0时,抛物线与x 轴没有交点.15.如图是二次函数2y ax bx c =++的图象的一部分;图象过点(3,0)A -,对称轴为1x =-,给出四个结论:①24b ac >;②20a b +=;③0a b c -+=;④5a b <.其中正确的是__________.(填序号)【答案】①④【分析】①由图象与x 轴有交点,对称轴为x =2b a-=﹣1,与y 轴的交点在y 轴的正半轴上,可以推出b 2﹣4ac >0,可对①进行判断;②由抛物线的开口向下知a <0,与y 轴的交点在y 轴的正半轴上得到c >0,由对称轴为x =2b a -=﹣1,可对②进行分析判断;③由x =﹣1时y 有最大值,由图象可知y ≠0,可对③进行分析判断;④把x =1,x =﹣3代入解析式得a +b +c =0,9a ﹣3b +c =0,两边相加整理得5a ﹣b =﹣c <0,即5a <b ,即可对④进行判断.【详解】①∵图象与x 轴有交点,对称轴为x =2b a-=﹣1,与y 轴的交点在y 轴的正半轴上, 又∵二次函数的图象是抛物线,∴与x 轴有两个交点, ∴b 2﹣4ac >0,即b 2>4ac ,故①正确;②∵抛物线的开口向下,∴a <0,∵与y 轴的交点在y 轴的正半轴上,∴c >0,∵对称轴为x =2b a-=﹣1, ∴2a =b ,∴2a +b =4a ,a ≠0,故②错误;③∵x =﹣1时y 有最大值,由图象可知y ≠0,故③错误;④把x =1,x =﹣3代入解析式得a +b +c =0,9a ﹣3b +c =0,两边相加整理得5a ﹣b =﹣c <0,即5a <b ,故④正确;故答案为:①④.【点睛】本题考查了二次函数的图象与系数的关系,解题关键是掌握二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定,要注意数形结合思想的运用.16.(2021·贵州黔东南中考真题)如图,二次函数()2=++0y ax bx c a ≠的函数图象经过点(1,2),且与x 轴交点的横坐标分别为1x 、2x ,其中 -1<1x <0,1<2x <2,下列结论:①0abc >;②20a b +<;③420a b c -+>;④当()12x m m =<<时,22am bm c <+-;⑤1b > ,其中正确的有 ___________.(填写正确的序号)【答案】②④⑤【分析】根据二次函数的开口方向、对称轴、与x 轴、y 轴的交点坐标以及过特殊点时系数a 、b 、c 满足的关系等知识进行综合判断即可.【详解】解:抛物线开口向下,a <0,对称轴在y 轴的右侧,a 、b 异号,因此b >0,与y 轴的交点在正半轴,c >0,所以abc <0,故①错误;对称轴在0~1之间,于是有0<-2b a<1,又a <0,所以2a +b <0,故②正确; 当x =-2时,y =4a -b +c <0,故③错误;当x =m (1<m <2)时,y =am 2+bm +c <2,所以am 2+bm <2-c ,故④正确;当x =-1时,y =a -b +c <0,当x =1时,y =a +b +c =2,所以-2b <-2,即b >1,故⑤正确; 综上所述,正确的结论有:②④⑤,故答案为:②④⑤.【点睛】本题考查了二次函数的图象和性质,不等式的性质等知识,掌握抛物线的所处的位置与系数a 、b 、c 满足的关系是正确判断的前提.17.(2021·山东泰安中考真题)如图是抛物线2y ax bx c =++的部分图象,图象过点(3,0),对称轴为直线1x =,有下列四个结论:①0abc >;②0a b c -+=;③y 的最大值为3;④方程210ax bx c +++=有实数根.其中正确的为________(将所有正确结论的序号都填入).【答案】②④【分析】根据二次函数的图象与性质对各项进行判断即可.【详解】解:∵抛物线的开口向下,与y 轴的交点在y 轴的正半轴,∴a <0,c >0,∵抛物线的对称轴为直线x =1, ∴﹣2b a=1,即b =﹣2a >0 ∴abc <0,故①错误;∵抛物线与x 轴的一个交点坐标为(3,0),∴根据对称性,与x 轴的另一个交点坐标为(﹣1,0),∴a ﹣b +c =0,故②正确;根据图象,y 是有最大值,但不一定是3,故③错误;由210ax bx c +++=得2=1ax bx c ++﹣,根据图象,抛物线与直线y =﹣1有交点,∴210ax bx c +++=有实数根,故④正确,综上,正确的为②④,故答案为:②④.【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数的图象与性质,会利用数形结合思想解决问题是解答的关键.18.(2021·山东济宁中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴的正半轴交于点A ,对称轴为直线1x =,下面结论:①0abc <;②20a b +=;③30a c +>;④方程()20y ax bx c a =++≠必有一个根大于1-且小于0.其中正确的是____(只填序号).【答案】①②④.【分析】根据题意和函数图象,可以判断各个小题中的结论是否成立.【详解】解:由图象可得,a <0,b >0,c >0,则abc <0,故①正确;∵-2b a=1, ∴b =-2a ,∴2a +b =0,故②正确;∵函数图象与x 轴的正半轴交点在点(2,0)和(3,0)之间,对称轴是直线x =1, ∴函数图象与x 轴的另一个交点在点(0,0)和点(-1,0)之间,故④正确;∴当x =-1时,y =a -b +c <0,∴y =a +2a +c <0,∴3a +c <0,故③错误;故答案为:①②④.19.(2021·湖北武汉市九年级月考)如图,二次函数()20y ax bx c a =++>的图象与x 轴交于两点()1,0x ,()2,0,其中101x <<,下列四个结论①0abc <;②20a c -<;③240a b c ++>;④44a b b a+<-,正确的序号是__________.【答案】①④【分析】根据抛物线开口向上,抛物线对称轴,抛物线与y 轴的交点可判断①正确;根据图象与x 轴交于两点(x 1,0),(2,0)和对称轴的位置可判断②错误;当x 12=时,y 的值为14a 12+b +c ,结合对称轴可判断③错误;根据对称轴12b a->;可得2a +b <0,变形可判断④正确; 【详解】解:①∵抛物线开口向上,∴a >0,∵抛物线对称轴在y 轴的右侧,∴b <0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc <0,所以①正确;②∵图象与x 轴交于两点(x 1,0),(2,0),其中0<x 1<1, ∴2021222b a ++-<<,∴1322b a -<<, 当322b a -<时,b >﹣3a , ∵当x =2时,y =4a +2b +c =0,∴b =﹣2a 12-c , ∴﹣2a 12-c >﹣3a , ∴2a ﹣c >0,故②错误;③当x 12=时,y 的值为14a 12+b +c , 给14a 12+b +c 乘以4,即可化为a +2b +4c , ∵抛物线的对称轴在1322b a -<<, ∴x 12=关于对称轴对称点的横坐标在32和52之间, 由图象可知在32和2之间y 为负值,2和52之间y 为正值, ∴a +2b +4c 与0的关系不能确定,故③错误; ④∵12b a->, ∴2a +b <0,∴(2a +b )2>0,4a 2+b 2+4ab >0,4a 2+b 2>﹣4ab ,∵a >0,b <0,∴ab <0, ∴2244a b ab+-<, 即44a b b a+-<, 故④正确.故答案:①④.20.(2021·湖北武汉市九年级月考)抛物线()20y ax bx c a =++≠与x 轴交于点()2,0-、()1,0x ,其中110x -<<,0c <,下列四个结论:①0abc >;②20a c -<;③()()30a b a b -->;④若m ,n (m n <)为关于x 的方程()()1210a x x x +-+=的两个根,则32m n -<+<-.其中正确的结论是______(填写序号).【答案】②④【分析】由题意可知,a <0,c <0,由对称轴可知得出b <0,故判断①;由当x =−2时,y =0和当x =−1时,y >0可以判断②;由当x =−1时,a −b +c >0和322b a -->,可以判断③;y =ax 2+bx +c =a (x +2)(x −x 1)向上平移1个单位得到,对称轴不变,可以判断④.【详解】解:∵抛物线()20y ax bx c a =++≠与x 轴交于点()2,0-、()1,0x ,其中110x -<<,0c <,∴抛物线的大致形状为∴a <0,对称轴2b a-<0, ∴b <0, ∴0abc <,故①错误;∵当2x =-时,0y =,即420a b c -+=①,当1x =-时,0y >,即0a b c -+>②,由①得:24b a c =+,把24b a c =+代入②×2得:2(4)+20a a c c -+>,整理得:2a c -<0,故②正确;当1x =-时,+a b c ->0,∴0a b c -->>, 又∵322b a -->, ∴30<-a b ,∴()(3)0a b a b --<,故③错误;∵1(2)()10a x x x +-+=,即y '为21(2)()y ax bx c a a x x =++=+-向上平移1个单位得到,∴12,m n x -<>, ∴3122m n +--<<, ∴32m n -+-<<,故④正确;故答案为:②④.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );△决定抛物线与x 轴交点个数:Δ=b 2−4ac >0时,抛物线与x 轴有2个交点;Δ=b 2−4ac =0时,抛物线与x 轴有1个交点;Δ=b 2−4ac <0时,抛物线与x 轴没有交点.。
二次函数图象与系数的关系(压轴题专项讲练)(解析版)—2024-2025学年九年级数学上册(浙教版)
二次函数图象与系数的关系数形结合思想:所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3所给的等式或代数式的结构含有明显的几何意义。
一、二次函数图象与系数的关系对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a 与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置.【典例1】如图,抛物线y=ax2+bx+c与x轴正半轴交于A,B两点,与y轴负半轴交于点C.若点B (4,0),则下列结论中:①abc>0②4a+b>0;③M(x1,y1)与N(x2,y2)是抛物线上两点,若0<x1<x2,则y1>y2;④若抛物线的对称轴是直线x=3,m为任意实数,则a(m―3)(m+3)<b(3―m);⑤AB≥3,则4b+3c>0,正确的个数是()A.5B.4C.3D.2本题考查了二次函数的图象和性质.根据图象可知,a<0,c<0,b>0,即可判断①结论;根据图象可得对称轴在直线x=2右侧,即―b2a>2,即可判断②结论;根据二次函数的增减性,即可判断③结论;根据对称轴,得出b=―6a,再利用作差法,即可判断④结论;根据抛物线与x轴的交点B(4,0),整理得出a =―4b+c 16,再根据AB ≥3,得到y =a +b +c ≥0,进而得出4b +5c ≥0,再结合c <0,即可判断⑤结论.根据图象得出二次函数表达式各系数符号是解题关键.解:∵抛物线开口线下,与y 轴交于负半轴,∴a <0,c <0,∵对称轴在x 轴正半轴,∴a 、b 异号,∴b >0,∴abc >0,①结论正确;∵抛物线与x 轴正半轴交于A 、B 两点,且点B (4,0),∴对称轴在直线x =2右侧,即―b 2a >2,∴2―<0,∴4a+b2a <0,∵a <0,∴4a +b >0,②结论正确;M (x 1,y 1)与N (x 2,y 2)是抛物线上两点,且0<x 1<x 2,∵0<x <―b 2a 时,y 随x 的增大而增大;x >―b2a 时,y 随x 的增大而减小;∴无法判断y 1和y 2的大小,③结论错误;∵抛物线的对称轴是直线x =3,∴―b 2a =3,即b =―6a ,∴ a (m ―3)(m +3)―b (3―m )=a (m ―3)(m +3)+6a (3―m )=a (m ―3)(m +3―6)=a (m ―3)2,∵a <0,(m ―3)≥0,∴a (m ―3)2≤0,∴ a (m ―3)(m +3)≤b (3―m ),④结论正确;∵抛物线与x 轴正半轴交于A 、B 两点,且点B (4,0),∴当x =4时,y =16a +4b +c =0,∴a =―4b+c 16,∵AB ≥3,∴点A 的横坐标0<x A ≤1,∴当x =1时,y =a +b +c ≥0;∴―4b+c 16+b +c ≥0,整理得:4b +5c ≥0,∴4b +3c ≥―2c ,∵c <0,∴2c >0,∴4b +3c >0,⑤结论正确;∴正确的结论有①②④⑤,共4个,故选:B .1.(2024·湖北宜昌·模拟预测)如图,已知二次函数y =ax 2+bx +c 的图象关于直线x =―1对称,与x 轴的一个交点在原点和(1,0)之间,下列结论错误的是( )A .abc <0B .b =2aC .4a ―2b +c >0D .a ―b ≤m (am +b )(m 为任意实数)【思路点拨】本题考查二次函数的图象与性质,数形结合是解题的关键.根据抛物线开口向上,对称轴,与y 轴交点位置,即可判断选项A ;根据抛物线对称轴即可判断选项B ;根据“对称轴为直线x =―1,0<x 1<1”可判断选项C ; 当x =―1时,y =ax 2+bx +c =a ―b +c 为最小值,据此可判断选项D.【解题过程】解:A.∵抛物线开口向上,∴a>0,∵对称轴为直线x=―1,=―1,∴―b2a∴b=2a>0,∵抛物线与y轴交于负半轴,∴c<0,∴abc<0,原题结论正确,故此选项不符合题意;B.∵对称轴为直线x=―1,=―1,∴―b2a∴b=2a,故选项正确,不符合题意;C.∵对称轴为直线x=―1,0<x2<1,∴―3<x1<―2,∴当x=―2时,y=4a―2b+c<0原题结论错误,故此选项符合题意;D.当x=―1时,y=ax2+bx+c=a―b+c为最小值,∴a―b+c≤am2+bm+c,∴a―b≤am2+bm,∴a―b≤m(am+b),原题结论正确,故此选项不符合题意.故选:C.2.(2024·黑龙江绥化·中考真题)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=―1,则下列结论中:>0②am2+bm≤a―b(m为任意实数)③3a+c<1①bc④若M(x1,y)、N(x2,y)是抛物线上不同的两个点,则x1+x2≤―3.其中正确的结论有()A.1个B.2个C.3个D.4个【思路点拨】本题考查了二次函数的图象与性质,根据抛物线的开口方向,对称轴可得a<0,b=2a<0即可判断①,x=―1时,函数值最大,即可判断②,根据x=1时,y<0,即可判断③,根据对称性可得x1+x2=―2即可判段④,即可求解.【解题过程】解:∵二次函数图象开口向下∴a<0∵对称轴为直线x=―1,=―1∴x=―b2a∴b=2a<0∵抛物线与y轴交于正半轴,则c>0<0,故①错误,∴bc∵抛物线开口向下,对称轴为直线x=―1,∴当x=―1时,y取得最大值,最大值为a―b+c∴am2+bm+c≤a―b+c(m为任意实数)即am2+bm≤a―b,故②正确;∵x=1时,y<0即a+b+c<0∵b=2a∴a+2a+c<0即3a+c<0∴3a+c<1,故③正确;∵M(x1,y)、N(x2,y)是抛物线上不同的两个点,∴M,N关于x=―1对称,∴x1+x22=―1即x1+x2=―2故④不正确正确的有②③故选:B3.(2024·四川眉山·中考真题)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(3,0),与y轴交于点B,对称轴为直线x=1,下列四个结论:①bc<0;②3a+2c<0;③ax2+bx≥a+b;④若―2<c<―1,则―83<a+b+c<―43,其中正确结论的个数为()A.1个B.2个C.3个D.4【思路点拨】此题考查了二次函数的图象和性质,数形结合是解题的关键,利用开口方向和对称轴的位置即可判断①,利用对称轴和特殊点的函数值即可判断②,利用二次函数的最值即可判断③,求出c=―3a,进一步得到1 3<a<23,又根据b=―2a得到a+b+c=a―2a―3a=―4a,即可判断④.【解题过程】解:①∵函数图象开口方向向上,∴a>0;∵对称轴在y轴右侧,∴a、b异号,∴b<0,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴bc>0,故①错误;②∵二次函数y=ax2+bx+c的图象与x轴交于点A(3,0),与y轴交于点B,对称轴为直线x=1,∴―b2a=1,∵b=―2a,∴x=―1时,y=0,∴a―b+c=0,∴3a+c=0,∴3a+2c<0,故②正确;③∵对称轴为直线x=1,a>0,∴y=a+b+c最小值,ax2+bx+c≥a+b+c,∴ax2+bx≥a+b,故③正确;④∵―2<c<―1,∴根据抛物线与相应方程的根与系数的关系可得x1x2=(―1)×3=―3=ca,∴c=―3a,∴―2<―3a<―1,∴13<a<23,∵b=―2a,∴a+b+c=a―2a―3a=―4a,∴―83<a+b+c<―43,故④正确;综上所述,正确的有②③④,故选:C4.(23-24九年级上·黑龙江哈尔滨·阶段练习)如图,抛物线y=ax2+bx+c经过点1,1,m,0,3,0,若c<0,则下列结论中错误的是()A.ab<0B.4ac―b2<4aC.3a+b<0D.点2+m,1必在该抛物线上【思路点拨】根据抛物线开口向下,与y轴交于负半轴,对称轴在y轴右边,可得a<0,c<0,b>0,即可判断A;将抛物线化为顶点式,由顶点在第一象限得到4ac―b24a>1,结合a<0即可判断B;由点3,0在抛物线上得到3a+b=―c3,再由c<0即可判断C;由抛物线的对称性即可判断D.【解题过程】解:∵抛物线开口向下,与y轴交于负半轴,对称轴在y轴右边,∴a<0,c<0,―b2a>0,∴b>0,∴ab<0,故A正确,不符合题意;∵y=ax2+bx+c=a x++4ac―b24a ,抛物线的顶点在第一象限,经过点1,1,对称轴为直线x=m+32>1,∴4ac―b24a>1,∵a<0,∴4ac―b2<4a,故B正确,不符合题意;∵抛物线y=ax2+bx+c经过点3,0,∴9a+3b+c=0,∴3a+b=―c3,∵c<0,∴―c3>0,∴3a+b=―c3>0,故C错误,符合题意;∵抛物线y=ax2+bx+c经过点1,1,m,0,3,0,∴对称轴为直线x=m+32,∵1+2+m2=m+32,∴1,1和2+m,1关于对称轴对称,∴点2+m,1必在该抛物线上,故D正确,不符合题意;故选:C.5.(23-24九年级上·河南周口·期末)抛物线y=ax²+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点坐标为(4,0),抛物线的对称轴是直线x=1.下列结论:①abc>0;②2a+b=0;③4a―2b+c=0;④方程ax²+bx+c=2有两个不相等的实数根;⑤若点A(m,n)在该抛物线上,则am²+bm+c≤a+b+c.其中正确的个数有()A.2个B.3个C.4个D.5个【思路点拨】由开口方向及与y轴的交点可判断,a<0,c>0,再根据“左同右异”的方法可判断b的符号,从而可判断可判断②;由图象得x2=4和对称轴可求x1=―2,可得抛物线与x的另一个交点为①;由对称轴x=―b2a(―2,0),代入即可判断③;设y1=2,则图象为过(0,2)且垂直于y轴的一条直线,并且与抛物线有两个交点,=a+b+c,即可判断⑤.可判断④;当x=1时,y最大【解题过程】解:由图得:a<0,c>0,∵对称轴在y轴右侧,∴b>0,∴abc<0,故①错误;∵抛物线的对称轴是直线x=1,∴―b=1,2a∴2a+b=0,故②正确;由图象得x 2=4,∴1―x 1=4―1解得:x 1=―2,∴抛物线与x 的另一个交点为(―2,0),∴a ×(―2)2+(―2)b +c =0,即:4a ―2b +c =0,故③正确;设y 1=2,则图象为过(0,2)且垂直于y 轴的一条直线,与抛物线有两个交点,∴方程ax²+bx +c =2有两个不相等的实数根;故④正确;∵抛物线的对称轴是直线x =1,且a <0,∴当x =1时,y 最大=a +b +c ,∴ am²+bm +c ≤a +b +c ,故⑤正确;综上所述:正确的有②③④⑤,共4个;故选:C .6.(23-24九年级上·山东菏泽·期末)如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,对称轴为x =12,且经过点(2,0).下列说法:①abc <0;②―2b +c =0;③4a +2b +c <0;④若―52,y 1y 2是抛物线上的两点,则y 1<y 2;⑤14b >m (am +b )(其中m ≠12),其中说法正确的是( )A .①②③B .①②④C .①②④⑤D .②③④⑤【思路点拨】本题考查了二次函数的图象与性质,图象与系数的关系,掌握二次函数的图象与性质是解题的关键.利用抛物线的开口方向、对称轴和与y轴的交点位置来判定①,利用抛物线与x轴的两个交点的坐标、结合一元二次方程根与系数的关系来判定②,把点(2,0)代入二次函数的解析式来判定③,观察图象可得:距离对称轴越近的点的纵坐标越大,据此判定④,根据二次函数的最大值判定⑤.【解题过程】解:∵抛物线开口向下,∴a<0,抛物线对称轴为x=―b2a =12,∴b=―a>0,抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;对称轴为x=12,且经过点(2,0),抛物线与x轴的另一个交点为(―1,0),∴一元二次方程ax2+bx+c=0的两个根为2和―1,∴2×(―1)=ca,整理,得c=―2a,∴―2b+c=2a+(―2a)=0,所以②正确;抛物线经过(2,0),∴当x=2时,y=0,∴4a+2b+c=0,所以③错误;∵a<0,∴距离对称轴越近的点的纵坐标越大,∵1 2―(―52)>52―12,∴y1<y2所以④正确;∵对称轴为x =12,∴当x =12时,y 有最大值,y 的最大值=14a +12b +c ,∴当x =m ≠12时,14a +12b +c >am 2+bm +c ,整理,得14a +12b >am 2+bm =m(am +b),∵b =―a ,即a =―b ,∴14a +12b =―14b +12b =14b ,即14b >m (am +b ),所以⑤正确.其中说法正确的是①②④⑤.故选:C .7.(23-24九年级上·黑龙江齐齐哈尔·期末)如图,抛物线y =ax 2+bx +c 与x 轴交于两点(x 1,0)、(2,0),其中0<x 1<1.下列四个结论:①abc <0;②a +b +c >0;③2a ―c >0;④点(―2,y 1),(4,y 2)都在抛物线上,则有y 1>y 2;⑤不等式ax 2+bx +c <―c x 1x +c 的解集为0<x <x 1.其中正确结论的个数是( )A .1B .2C .3D .4【思路点拨】本题考查了抛物线图像综合,根据抛物线开口向上,a >0;对称轴在原点的右边,―b 2a >0,得到b <0,c >0,判断abc <0;结合图像,a +b +c <0;根据对称轴,增减性,数形结合思想计算判断即可.【解题过程】解:∵抛物线开口向上,∴a >0;∵对称轴在原点的右边,―b 2a >0,∴b <0,∵抛物线与y 轴交点位于坐标轴上,∴c >0,∴abc <0;故①正确;结合图像,a +b +c <0;故②错误;∵抛物线y =ax 2+bx +c 与x 轴交于两点(x 1,0)、(2,0),其中0<x 1<1.∴1<x 1+22<32,4a +2b +c =0,∴1<―b 2a <32,2b =―c ―4a ,∴―3a <b <―2a ,2b =―c ―4a ,∴2b >―6a ,b +2a <0,∴―4a ―c >―6a ,∴2a ―c >0,故③正确;∵点(―2,y 1),(4,y 2)∴y 1=4a ―2b +c,y 2=16a +4b +c ,∴y 1―y 2=4a ―2b +c ―(16a +4b +c )=―6(2a +b ),∵b +2a <0,∴―6(2a +b )>0∴y 1>y 2;故④正确;设直线y =―cx 1x +c ,根据题意,直线经过点(x 1,0)和(0,c ),故直线y =―c x 1x +c 与y =ax 2+bx +c 的交点为点(x 1,0)和(0,c ),画草图如下,x+c的解集为0<x<x1.故不等式ax2+bx+c<―c x1故⑤正确;故选D.8.(23-24九年级上·江苏扬州·期末)已知二次函数y=ax2+bx+c(a≠0)图像的一部分如图所示,该函数图像经过点(5,0),对称轴为直线x=2.对于下列结论:①b>0;②a+c<b;③多项式ax2+bx+c 可因式分解为(x+1)(x―5);④无论m为何值时,代数式am2+bm―4a―2b的值一定不大于0.其中正确个数有()A.1个B.2个C.3个D.4个【思路点拨】=2可得抛物线与x轴的另一个交先根据图像的开口方向和对称轴可判断①;由抛物线的对称轴为x=x1+x22点为(―1,0),由此可判断②;根据抛物线与x轴的两个交点坐标可判断③;根据函数的对称轴为x=2可知x=2时y有最大值,由此可判断④.本题主要考查了二次函数的图像和性质,解题的关键是熟练掌握二次函数图像和系数的关系.【解题过程】解:∵抛物线开口向下,∴a<0,>0,∵对称轴为直线x=―b2a∴b>0,∴结论①正确;∵抛物线与x轴的一个交点为(5,0),且对称轴为直线x=2,由5+x 22=2,得x 2=―1,∴抛物线与x 轴的另一个交点为(―1,0),即当x =―1时,y =0,∴a ―b +c =0,∴a +c =b ,∴结论②错误;∵抛物线y =ax 2+bx +c 与x 轴的两个交点为(―1,0),(5,0),∴多项式ax 2+bx +c 可因式分解为a(x +1)(x ―5),∴结论③错误;∵对称轴为直线x =2,且函数开口向下,∴当x =2时,y 有最大值,由y =ax 2+bx +c 得,x =2时,y =4a +2b +c ,x =m 时,y =am 2+bm +c ,∴无论m 为何值时,am 2+bm +c ≤4a +2b +c ,∴am 2+bm ―4a ―2b ≤0∴结论④正确;综上:正确的有①④.故选:B9.(23-24九年级上·四川德阳·阶段练习)如图,抛物线y =ax 2+bx +c 与x 轴交于点A (―1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2)、(0,3)之间(包含端点).正确结论的个数是( )①当x >3时,y <0;②3a +b >0;③―1≤a ≤―23;④83≤n ≤4.A.1个B.2个C.3个D.4个【思路点拨】本题考查了二次函数的图象和性质,二次函数的图象与系数的关系;二次函数与一元二次方程的关系;熟练掌握二次函数的图象与系数之间的关系是解题的关键.①根据题意可得抛物线的对称轴为直线x=1,得到另一个交点坐标,结合函数图象即可对于①作出判断;②根据抛物线开口方向得出a<0,由对称轴x=―b求得b与a的关系,代入3a+b,即可判定3a+b的符2a,号;③根据二次函数与x轴的交点坐标即为对应一元二次方程的解,结合一元二次方程两根之积x1⋅x2=ca 得到c与a的关系,然后根据c的取值范围,利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解c,根据c的取值范围,利用不等式的性质来求得n的取值范围.析式得到n=a+b+c=43【解题过程】解:①∵抛物线y=ax2+bx+c的顶点坐标为(1,n),∴对称轴直线是x=1,∵抛物线y=ax2+bx+c与x轴交于点A(―1,0),∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图象可得,当x>3时,y<0;故①正确;②a<0;=1,∵对称轴x=―b2a∴b=―2a;∴3a+b=3a―2a=a<0,即3a+b<0;故②错误;③∵抛物线与x轴的两个交点坐标分别是(―1,0),(3,0),即方程ax2+bx+c=0的解是x1=―1和x2=3,∴x1⋅x2=―1×3=―3,=―3,即ca;则a=―c3∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴―1≤―c3≤―23;即―1≤a≤―23;故③正确;④∵a=―c3;b=―2a∴b=―2a=23c,∵抛物线y=ax2+bx+c的顶点坐标为(1,n),即n=a+b+c=43c∵2≤c≤3,∴8 3≤43c≤4,即83≤n≤4;故④正确;综上所述,正确的说法有①③④.故选:C.10.(23-24九年级下·广东广州·阶段练习)如图,二次函数y=ax²+bx+c(a≠0)的图象与x轴负半轴交于―12,0,对称轴为直线x=1.有以下结论∶①abc<0;②3a+c>0;③若点(―3,y1),(3,y2),(0,y3)均在函数图象上,则y1>y3>y2;④若方程a(2x+1)(2x―5)=1的两根为x1、x2,且x1<x2则x1<―1 2<52<x2;⑤点M,N是抛物线与x轴的两个交点,若在x轴下方的抛物线上存在一点P,使得,则a的范围为a≥23.其中结论正确的个数为()A.1个B.2个C.3个D.4个【思路点拨】本题考查二次函数的图象及性质,由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线对称性进行推理,进而对所得结论进行判断,熟练掌握二次函数的图象及性质,能从图象中获取信息是解题的关键.【解题过程】解:∵对称轴为直线x =1,函数图象与x 轴负半轴交于 ―12,0,∴x =―b 2a =1,∴b =―2a ,由图象可知 a >0,c <0,∴b =―2a <0,∴abc >0,故①错误;由图可知,当x =―1时,y =a ―b +c >0 ,∴a +2a +c >0,即3a +c >0,故②正确;∵点(―3,y 1),(3,y 2),(0,y 3)均在函数图象上,对称轴为直线x =1,开口向上,∴|―3―1|>|3―1|>|0―1|,则 y 1>y 2>y 3,故③错误;由抛物线对称性可知,抛物线与x ,0,∴抛物线解析式为:y =a x令a x ―=14,则a (2x +1)(2x ―5)=1,如图,作y =14,由图形可知x 1<―12<52<x 2 ,故④正确;由题意可知:M ,N 到对称轴的距离为32,当抛物线的顶点到x 轴的距离不小于 32时,在x 轴下方的抛物线上存在点P ,使得PM ⊥PN ,即4ac―b 24a ≤―32,∵y =a x =ax 2―2ax ―54a ,∴c =―54a ,b =―2a ,≤―32,解得:a ≥23,故⑤正确,综上可知②④⑤正确,共3个,故选:C .11.(23-24九年级下·山东烟台·期中)已知二次函数y =ax 2+bx +c(a ≠0),图象的一部分如图所示,该函数图象经过点(―2,0),顶点坐标为―12,m .对于下列结论:①abc <0;②a +b +c =0;③若关于x 的一元二次方程ax 2+bx +c ―3=0无实数根,则m <3;④am 2+bm <14(a ―2b ))(其中m ≠―12)﹔⑤若A (x 1,y 1)和B (x 2,y 2)均在该函数图象上,且x 1>x 2>1,则y 1>y 2.其中正确结论有( )A .②③④B .②③⑤C .②③D .④⑤【思路点拨】本题考查了二次函数的图象与性质、二次函数图象与直线交点问题,掌握二次函数图象与系数关系,二次根据抛物线与x 轴的一个交点(―2,0)以及其对称轴,求出抛物线与x 轴的另一个交点(1,0),利用待定系数法求函数解析式,再根据抛物线开口朝下,可得a <0,进而可得b <0,c >0,再结合二次函数的图象和性质逐条判断即可.【解题过程】解:∵抛物线开口方向向下,∴a <0,∵抛物线的对称轴为直线x =―12,∴―b 2a =―12∴b =a <0∵抛物线与抛物线与轴交点在正半轴上,∴c >0,∴abc >0,故①错误;∵抛物线的对称轴为直线x =―12,且抛物线与x 轴的一个交点坐标为(―2,0),∴抛物线与x 轴的另一个交点坐标为(1,0),把(1,0)代入y =ax 2+bx +c(a ≠0),可得:a +b +c =0,故②正确;∵关于x 的一元二次方程ax 2+bx +c ―3=0无实数根,∴二次函数y =ax 2+bx +c(a ≠0)的图象与直线y =3无交点,∵抛物线的顶点坐标为―12,m ,抛物线开口方向向下,∴m <3,故③正确;∵am 2+bm =am 2+am =a m +―14a ,14(a ―2b)=14(a ―2a)=―14a ,∴am 2+bm ―14(a ―2b)=a(m +12)2,又∵a <0,m ≠―12,∴a m <0,即am 2+bm <14(a ―2b)(其中m ≠―12),故④正确;∵抛物线的对称轴为直线x =―12,且抛物线开口朝下,∴可知二次函数,在x >―12时,y 随x 的增大而减小,∵x 1>x 2>1>―12,∴y 1<y 2,故⑤错误,正确的有②③④,故选:A .12.(2024·四川达州·三模)如图,函数y =ax 2+bx +c 的图象过点(―1,0)和(m,0),请思考下列判断:①abc <0;②4a +c <2b ;③b c +1m =1;④am 2+(2a +b )m +b +c <0;⑤|am +a |=确的结论有( )个.A .2B .3C .4D .5【思路点拨】本题考查了二次函数图象与系数的关系①利用图象信息即可判断;②根据x =―2时,y <0即可判断;③根据m 是方程ax 2+bx +c =0的根,结合两根之积―m = c a ,即可判断;④根据两根之和―1+m =― b a ,可得ma =a ―b ,可得am 2+(2a +b)m +b +c =2a ―b <0;⑤根据抛物线与x 轴的两个交点之间的距离,列出关系式即可判断.【解题过程】解:∵抛物线开口向下,∴a <0,∵抛物线交y 轴于正半轴,∴c >0,∵― b 2a >0,∴b >0,∴abc <0,故①正确,∵x =―2时,y <0,∴4a ―2b +c <0,即4a +c <2b ,故②正确,∵ y =ax 2+bx +c 的图象过点(―1,0)和(m,0),∴―1×m = c a ,am 2+bm +c =0,则am c =―1,∴ b c =0,∴ b c +1m =1,故③正确,∵―1+m =― ba ,∴―a +am =―b ,∵am2+(2a+b)m+b+c=am2+bm+c+2am+b=2a―2b+b=2a―b∵a<0,b>0∴2a―b<0,故④正确,对于ax2+bx+c=0,可得:x=由函数图象交点可知x=m或x=―1,∴m+1=,∴m+1=,∴|am+a|=⑤正确,故选:D.13.(23-24八年级下·云南·期末)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(―1,0)下列结论:①b2>4ac;②4a+b=0;③4a+c>2b;④―3b+c=0;⑤若顶点坐标为(2,4),则方程ax2 +bx+c=5没有实数根.其中正确的结论有()A.2个B.3个C.4个D.5个【思路点拨】本题主要考查二次函数与系数a,b,c相关代数式的判断问题,会利用对称轴求b与a的关系,以及二次函数与方程之间的转换,掌握根的判别式的熟练运用,是解题的关键.由抛物线的开口方向判断a<0,将点(―1,0)代入y=ax2+bx+c(a≠0),得a―b+c=0,由图象可得对称轴为x=2,可得b=―4a,代入上式可得c=―5a,再将五个结论分别分析即可由得到答案.【解题过程】解:将点(―1,0)代入y=ax2+bx+c(a≠0),∵图象可得二次函数y=ax2+bx+c(a≠0)的对称轴为x=2,开口向下,=2,a<0,∴―b2a即b=―4a>0,将b=―4a代入a―b+c=0,可得c=―5a>0.①∵b=―4a、c=―5a,∴b2=(―4a)2=16a2,4ac=4a×(―5a)=―20a2,∴16a2>―20a2,∴b2>4ac,故①正确.②∵b=―4a,∴4a+b=4a―4a=0,故②正确.③∵b=―4a、c=―5a,∴4a+c=4a―5a=―a,2b=―8a,∵a<0,∴―a<―8a,∴4a+c<2b,故③错误.④∵b=―4a、c=―5a,故―3b+c=―3×(―4a)―5a=12a―5a=7a,∵a<0,∴7a≠0,∴―3b+c≠0,故④错误.⑤将(2,4)代入y=ax2+bx+c(a≠0),即4a+2b+c=4,再将b=―4a、c=―5a代入上式,化简可得a=―2,∴b=―4a=8,c=―5a=10,将a=―2,b=8,c=10,代入则方程ax2+bx+c=5中,即―2x2+8x+5=0,根据根的判别式Δ=82―4×(―2)×5=104>0,可得方程ax2+bx+c=5没有两个不相同的实数根,故⑤错误.综上作述,正确的结论有两个,故选A.14.(23-24九年级上·湖北省直辖县级单位·阶段练习)抛物线y=ax2+bx+c经过点(―1,0),与y轴的交点在(0,―2)与(0,―3)之间(不包括这两点),对称轴为直线x=2.下列结论:①a+b+c<0;②若点M(0.5,y1)、N(2.5,y2)在图象上,则y1<y2;③若m为任意实数,则a(m2―4)+b(m―2)≥0;④―24≤5 (a+b+c)<―16.其中正确结论的序号为.【思路点拨】本题考查二次函数的图象与系数的关系,根据二次函数的性质;二次函数图象上点的坐标特征;一次函数图象上点的坐标特征逐一判断即可,解题的关键是熟练运用二次函数的图象与性质.【解题过程】解:∵二次函数y=ax2+bx+c(a≠0)的图象与x轴相交于点A(―1,0),对称轴为直线x=2,∴二次函数y=ax2+bx+c(a≠0)x轴相交于点A(―1,0),(5,0),∵二次函数与y轴的交点B(0,―2)与(0,―3)之间(不包括这两点),大致图象如图:当x=1时,y=a+b+c<0,故结论①正确;∵二次函数的对称轴为直线x=2,且a>0,2―0.5=1.5,2.5―2=0.5,∴y1>y2,故结论②不正确;∵x=2时,函数有最小值,∴am2+bm+c≥4a+2b+c(m为任意实数),∴a(m2―4)+b(m―2)≥0,故结论③正确;∵―b2a=2,∴b=―4a,∵一元二次方程ax2+bx+c=0的两根为―1和5,∴―1×5=ca,∴c=―5a,∵―3<c<―2,∴2 5<a<35,∴当x=1时,y=a+b+c=―8a,―245<―8a<―165,∴―24<5(a+b+c)<―16,故结论④正确;故答案为:①③④.15.(23-24九年级上·湖北武汉·阶段练习)已知二次函数y=ax2+bx+c(a≠0)的图象过点A(―2023,n),B(2024,n),M(―1,0),且交y轴的正半轴于点N,下列结论:①abc<0;②4a+2b+c=0;③若直线y=ax+d与抛物线只有一个公共点T(x T,y T),则x T=1;④抛物线上的两点P(x1,y1),Q(x2,y2),P在Q的左边,若x1+x2>2,则y1<y2;⑤b2―4ac<―4a,请将所有正确的序号填在横线上.【思路点拨】本题考查了二次函数图象与系数的关系及二次函数的性质,抛物线与x轴的交点,抛物线的对称性等知识点,根据二次函数的图象进行逐项分析即可,灵活运用有关知识来分析是解题的关键.【解题过程】解:∵图象过点A(―2023,n),B(2024,n),M(―1,0),∴抛物线对称轴为直线x=12,a―b+c=0,∴与x轴交于点(2,0),即有4a+2b+c=0,故②正确;∵交y轴的正半轴于点N,∴抛物线开口向下,∴a<0,c>0,b>0,则abc<0,故①正确;由抛物线对称轴为直线x=12,∴―b2a =12,则b=―a,∴代入a―b+c=0得:c=―2a,∴抛物线y=ax2―ax―2a,直线y=ax+d与抛物线只有一个公共点T(x T,y T),∴ax2―ax―2a=ax+d,整理得:ax2―2ax―2a―d=0∴(―2a)2―4a(―2a―d)=0,解得:d=―3a,∴直线y=ax―3a,代入得:x=1,∴x T=1,故③正确;∵抛物线上的两点P(x1,y1),Q(x2,y2),∴y1=ax12―ax1―2a,y2=ax22―ax2―2a,∴y1―y2=a(x1+x2)(x1―x2)―a(x1―x2)=a(x1―x2)(x1+x2―1),∵x1<x2,a<0,x1+x2>2,即y1―y2>0,∴y1>y2,故④错误;∵b2―4ac=(―a)2―4a×(―2a)=a2+8a2=9a2>0,∴b2―4ac<―4a错误,∴①②③正确;故答案为:①②③.16.(23-24九年级上·湖北武汉·阶段练习)已知二次函数y=ax2+bx+c(a<0)的图像与x轴交于不同两点,与y轴的交点在y轴正半轴,它的对称轴为直线x=1.有以下结论:①abc<0,②a+c>0,③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2,④设x1,x2是方程ax2+bx+c=0的两根,若am2+bm+c=p,则p(m―x1)(m―x2)≤0.其中正确的结论是(填入正确结论的序号).【思路点拨】由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判断b与0的关系,可判断①;通过取特殊值可判断②;根据抛物线的增减性可判断③;根据抛物线与x轴交点情况分三种情况进行讨论,可判断④.【解题过程】解:∵二次函数y=ax2+bx+c(a<0)的图像与y轴的交点在y轴正半轴,∴c>0,∵对称轴为直线x=1,=1,即b=―2a,∴―b2a∵a<0,∴b>0,∴abc<0,故结论①正确;当x=1+y=a(12―2a(1++c=a+c,即当x=1(a+c)与0的大小关系,故结论②错误;∵a<0,∴二次函数y=ax2+bx+c的图像开口向下,∴抛物线上的点离对称轴越远其函数值就越小,∵点P(x1,y1)和Q(x2,y2)在抛物线上,且x1<1<x2,x1+x2>2,∴x2―1>1―x1,即x2到1的距离大于x1到1的距离,∴y1>y2,故结论③正确;∵二次函数y=ax2+bx+c(a<0)的图像与x轴交于不同两点,设左边交点的横坐标为x1,右边交点的横坐标为x2,即x1<x2,如图所示,若m<x1,则p<0,m―x1<0,m―x2<0,∴p(m―x1)(m―x2)<0,若x1≤m<x2,则p≥0,m―x1≥0,m―x2<0,∴p(m―x1)(m―x2)≤0,若m≥x2,则p≤0,m―x1>0,m―x2≥0,∴p(m―x1)(m―x2)≤0,综上所述,p(m―x1)(m―x2)≤0,故结论④正确,∴正确的结论是①③④.故答案为:①③④.17.(23-24九年级上·山东威海·期末)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②9a+6b+c=0,③(4a+c)2<4b2;④方程cx2+bx+a=0的解为x1=1,x2=―1;3⑤a+b>m(am+b)(m≠1).其中正确的结论有(填序号).【思路点拨】本题考查的是二次函数的图象与性质,各项系数的符号与解析式的关系,根据图象先判断a<0,c>0,b>0,再结合函数的对称轴,最值,与坐标轴的交点,逐一分析判断即可.【解题过程】解:由图象可知:a<0,c>0,>0,∵―b2a∴b>0,∴abc<0,故①错误;=1,∵对称轴为x=―b2a∴b=―2a,∵a<0,c>0,∴9a+6b+c=9a―12a+c=c―3a>0,故②错误,∵抛物线与x轴的交点在―1与0之间,对称轴为x=1,另一个交点在2与3之间,∴当x=―2时,y=4a―2b+c<0,当x=2时,y=4a+2b+c>0,∴(4a―2b+c)(4a+2b+c)<0,∴(4a+c)2―4b2<0,∴(4a +c )2<4b 2,故③符合题意;∵二次函数y =ax 2+bx +c (a ≠0)当x =1时,有最大值,∴a +b +c >0,若方程cx 2+bx +a =0的解为x 1=1,则a +b +c =0,∴④错误;当x =1时,y 的值最大.此时,y =a +b +c ,而当x =m (m ≠1)时,y =am 2+bm +c ,∴a +b +c >am 2+bm +c ,∴a +b >am 2+bm ,即a +b >m (am +b ),故⑤正确;综上:正确的有③⑤,故答案为:③⑤.18.(23-24九年级上·山东烟台·期中)已知二次函数y =ax 2+bx +c(a ≠0),图象的一部分如图所示,该函数图象经过点(―2,0),对称轴为直线x =―12.对于下列结论:①abc <0;②b 2―4ac >0;③a +b +c =0;④am 2+bm <14(a ―2b)(其中m ≠―12);⑤若A (x 1,y 1)和B (x 2,y 2)均在该函数图象上,且x 1>x 2>1,则y 1>y 2.其中正确结论有 .(填写序号)【思路点拨】本题考查了二次函数的图象与性质.根据抛物线与x 轴的一个交点(―2,0)以及其对称轴,求出抛物线与x 轴的另一个交点(1,0),利用待定系数法得到b =a,c =―2a ,再根据抛物线开口朝下,可得a <0,进而可得b <0,c >0,即可得到③正确,①错误,根据抛物线与与x 轴两个交点可以判断出②正确,根据am 2+bm =a (m +12)2―14a ,14(a ―2b)=―14a ,a <0,m ≠―12,可以得到a(m +12)2<0,从而得到④正确;根据抛物线的对称性和增减性可以判断出⑤错误,问题得解.【解题过程】解:∵抛物线的对称轴为直线x =―12,且抛物线与x 轴的一个交点坐标为(―2,0),∴抛物线与x 轴的另一个交点坐标为(1,0),把(―2,0),(1,0)代入y =ax 2+bx +c(a ≠0),可得:4a ―2b +c =0a +b +c =0 ,解得b =a c =―2a ,∴a +b +c =a +a ―2a =0,故③正确;∵抛物线开口方向向下,∴a <0,∴b =a <0,c =―2a >0,∴abc >0,故①错误;∵抛物线与x 轴两个交点,∴当y =0时,方程ax 2+bx +c =0有两个不相等的实数根,∴b 2―4ac >0,故②正确;∵am 2+bm =am 2+am =a(m +12)2―14a ,14(a ―2b)=14(a ―2a)=―14a ,∴am 2+bm ―14(a ―2b)=a(m +12)2,又∵a <0,m ≠―12,∴a(m +12)2<0,即am 2+bm <14(a ―2b)(其中m ≠―12),故④正确;∵抛物线的对称轴为直线x =―12,且抛物线开口朝下,∴可知二次函数,在x >―12时,y 随x 的增大而减小,∵x 1>x 2>1>―12,∴y 1<y 2,故⑤错误,正确的有②③④,共3个,故答案为:②③④.19.(2024·四川德阳·中考真题)如图,抛物线y =ax 2+bx +c 的顶点A 的坐标为―13,n ,与x 轴的一个交点位于0和1之间,则以下结论:①abc>0;②5b+2c<0;③若抛物线经过点(―6,y1),(5,y2),则y1> y2;④若关于x的一元二次方程ax2+bx+c=4无实数根,则n<4.其中正确结论是(请填写序号).【思路点拨】本题考查了二次函数的图象与系数的关系,根的判别式,二次函数图象上点的坐标特征,解题的关键是掌握二次函数的图象与性质.①利用抛物线的顶点坐标和开口方向即可判断;②利用抛物线的对称轴求出a=32b,根据图象可得当x=1时,y=a+b+c<0,即可判断;③利用抛物线的对称轴,设(―6,y1),(5,y2)两点横坐标与对称轴的距离为d1,d2,求出距离,根据图象可得,距离对称轴越近的点的函数值越大,即可判断;④根据图象即可判断.【解题过程】解:①∵抛物线y=ax2+bx+c的顶点A的坐标为―13,n,∴―b2a =―13,∴b 2a =13>0,即ab>0,由图可知,抛物线开口方向向下,即a<0,∴b<0,当x=0时,y=c>0,∴abc>0,故①正确,符合题意;②∵直线x=―13是抛物线的对称轴,∴―b2a =―13,∴b 2a =13>0,∴a=32b由图象可得:当x=1时,y=a+b+c<0,b+c<0,即5b+2c<0,故②正确,符合题意;∴52是抛物线的对称轴,③∵直线x=―13设(―6,y1),(5,y2)两点横坐标与对称轴的距离为d1,d2,则d1=|―6―=173,d2=|5――=163,∴d2<d1,根据图象可得,距离对称轴越近的点的函数值越大,∴y1<y2,故③错误,不符合题意;④如图,∵关于x的一元二次方程ax2+bx+c=4无实数根,∴n<4,故④正确,符合题意.故答案为:①②④20.(23-24九年级上·湖北武汉·期中)抛物线y=ax2+bx+c(a,b,c为常数,c<0)经过(1,1),(m,0),>1;③当n=3时,若点(2,t)在该抛物线上,则(n,0)三点,且n≥3.下列四个结论:①b<0;②4ac―b24at>1;④若关于x的一元二次方程ax2+bx+c=x有两个相等的实数根,则0<m≤1,其中正确的是3(填序号即可).【思路点拨】①根据图象经过1,1,c<0,且抛物线与x轴的一个交点一定在3,0或3,0的右侧,判断出抛物线的开口向下,即a<0,再把1,1代入y=ax2+bx+c得a+b+c=1,即可判断①错误;>1,根②先得出抛物线的对称轴在直线x=1.5的右侧,得出抛物线的顶点在点1,1的右侧,得出4ac―b24a据4a<0,利用不等式的性质即可得出4ac―b2<4a,即可判断②正确;③先得出抛物线对称轴在直线x=1.5的右侧,得出1,1到对称轴的距离大于2,t到对称轴的距离,根据a<0,抛物线开口向下,距离抛物线的对称轴越近的函数值越大,即可得出③正确;④根据方程有两个相等的实数解,得出Δ=(b―1)2―4ac=0,把1,1代入y=ax2+bx+c得a+b+c=1,即1―b=a+c,求出a=c,根据根与系数的关系得出mn=ca =1,即n=1m,根据n≥3,得出1m≥3,求出m的取值范围,即可判断④正确.【解题过程】解:①图象经过1,1,c<0,即抛物线与y轴的负半轴有交点,如果抛物线的开口向上,则抛物线与x 轴的交点都在1,0的左侧,∵(n,0)中n≥3,∴抛物线与x轴的一个交点一定在(3,0)或(3,0)的右侧,∴抛物线的开口一定向下,即a<0,把1,1代入y=ax2+bx+c得:a+b+c=1,即b=1―a―c=1―(a+c),∵a<0,c<0,∴a+c<0,∴b>0,故①错误;②∵a<0,b>0,c<0,ca>0,∴方程ax2+bx+c=0的两个根的积大于0,即mn>0,∵n≥3,∴m>0,∴m+n2>1.5,即抛物线的对称轴在直线x=1.5的右侧,∴抛物线的顶点在点1,1的上方或者右上方,。
第13讲二次函数图象与性质(课件)-2025年中考数学一轮复习讲练测(全国通用)
第13讲
二次函数的图象与性质
目录
C
O
N
T
E
N
T
S
01
02
考情分析
知识建构
03
考点精讲
第一部分
考情分析
考点要求
新课标要求
二次函数的相 ➢ 通过对实际问题的分析,体会二次函
关概念
二次函数的图
象与性质
二次函数与各
项系数的关系
二次函数与方
程、不等式
命题预测
数的意义.
➢ 能画二次函数的图象,通过图象了解
b
时,二次函数取得最小值
2a
4ac−b2
4a
y
当x=x2时,二次函数取得最大值y2
x1
y2
y1
当 x= −
4ac−b2
4a
y
x1≤x≤x2
b
时,二次函数取得最大值
2a
O
x1 O
b
时,二次函数取得最小值
2a
O
x2
x
当x=x1时,二次函数取得最小值y1
考点二 二次函数的图象与性质
备注:自变量的取值为x1≤x≤x2时,且二次项系数a<0的最值情况请自行推导.
a<0
开口向下,顶点是最高点,此时y有最大值.
4ac−b2
【小结】二次函数最小值(或最大值)为0(k或
).
4a
增
在对称轴的左边y随x的增大而减小,在对称轴的右边y随x
a>0
减
性
的增大而增大.
在对称轴的左边y随x的增大而增大,在对称轴的右边y随x
a<0
的增大而减小.
2021年中考复习数学 专题训练:二次函数的图象及性质(含答案)
2021中考数学专题训练:二次函数的图象及性质一、选择题1. 在平面直角坐标系中,对于二次函数y=(x-2)2+1,下列说法中错误的是()A.y的最小值为1B.图象顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D.它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到2. 抛物线y=2(x-3)2+1的顶点坐标是()A. (3,1)B. (3,-1)C. (-3,1)D. (-3,-1)3. 已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:有下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(x2,3)是抛物线上的两点,则x1<x2.其中正确的个数是()A.2 B.3 C.4 D.54. 某人画二次函数y=ax2+bx+c的图象时,列出下表(计算没有错误):根据此表判断:一元二次方程ax2+bx+c=0的一个根x1满足下列关系式中的() A.3.2<x1<3.3 B.3.3<x1<3.4 C.3.4<x1<3.5 D.3.1<x1<3.25. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2>4ac;②abc<0;③2a +b-c>0;④a+b+c<0.其中正确的是()A.①④B.②④C.②③D.①②③④6. (2019•嘉兴)小飞研究二次函数y=–(x–m)2–m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=–x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当–1<x<2时,y随x的增大而增大,则m的取值范围为m≥2其中错误结论的序号是A.①B.②C.③D.④7. (2020·常德)二次函数的图象如图所示,下列结论:240b ac ->①;0abc <②;40a b +=③;420a b c -+>④.其中正确结论的个数是( )A .4B .3C .2D .18. (2020·湖北孝感)将抛物线:y =-2x +3向左平移1个单位长度,得到抛物线,抛物线与抛物线关于x 轴对称,则抛物线的解析式为( ) A.y =--2 B.y =-+2 C.y =-2 D.y =+2二、填空题9. 经过A (4,0),B (-2,0),C (0,3)三点的抛物线解析式是_____________.10. 如图所示,抛物线y =ax 2-3x +a 2-1经过原点,那么a 的值是________.11. 已知函数y =ax 2+c 的图象与函数y =-3x 2-2的图象关于x 轴对称,则a =________,c =________.12. (2019•天水)二次函数2y ax bx c =++的图象如图所示,若42M a b =+,=-.则M、N的大小关系为M__________N.(填“>”、“=”或“<”)N a b13. 如图,抛物线y=-x2+x+2与x轴相交于A,B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x 轴,与拋物线相交于P,Q两点,则线段PQ的长为.14. 如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.三、解答题15. 已知抛物线经过点A(1,0),B(0,3),且对称轴是直线x=2,求该抛物线的解析式.16. 把抛物线y=x2先向左平移1个单位长度,再向下平移4个单位长度,得到如图5-ZT -4所示的二次函数的图象.(1)求此二次函数的解析式;(2)在平移后的抛物线上存在一点M,使△ABM的面积为20,请直接写出点M的坐标.17. 如图,二次函数的图象与x轴交于A(-3,0),B(1,0)两点,交y轴于点C(0,3),点C,D是二次函数图象上的一对对称点,一次函数的图象过点B,D.(1)请直接写出点D的坐标;(2)求二次函数的解析式;(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.18. 如图1,把两个全等的Rt△AOB和Rt△COD方别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线的函数解析式;(2)点P为线段OC上的一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移的过程中与△COD重叠部分的面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.2021中考数学专题训练:二次函数的图象及性质-答案一、选择题1. 【答案】C[解析]根据二次函数的性质进行判断,由二次函数y=(x-2)2+1,得它的顶点坐标是(2,1),对称轴为直线x=2,当x=2时,函数的最小值是1,图象开口向上,当x≥2时,y的值随x值的增大而增大,当x<2时,y的值随x值的增大而减小,可由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到,所以选项C是错误的,故选C.2. 【答案】A【解析】∵抛物线y=a(x-h)2+k的顶点坐标是(h,k),∴y=2(x -3)2+1的顶点坐标是(3,1).3. 【答案】B[解析] 先根据二次函数的部分对应值在坐标系中描点、连线,由图象可以看出抛物线开口向上,所以结论①正确.由图象(或表格)可以看出抛物线与x轴的两个交点分别为(0,0),(4,0),所以抛物线的对称轴为直线x=2且抛物线与x轴的两个交点间的距离为4,所以结论②和④正确.由图象可以看出当0<x<4时,y<0,所以结论③错误.由图象可以看出当抛物线上的点的纵坐标为2或3时,对应的点均有两个,若A(x1,2),B(x2,3)是抛物线上两点,既有可能x1<x2,也有可能x1>x2,所以结论⑤错误.4. 【答案】B[解析] 从表格中的数据看,当3.2≤x≤3.5时,y随x的增大而增大,且x=3.3时,y=-0.17<0,x=3.4时,y=0.08>0,故y=0一定在3.3<x<3.4这个范围内取得,∴方程的根也在此范围内.故选B.5. 【答案】A[解析] ①因为图象与x轴有两个不同的交点,所以b2-4ac>0,即b2>4ac,故①正确.②图象开口向下,故a<0.图象与y轴交于正半轴,故c>0.因为对称轴为直线x=-1,所以-b2a=-1,所以2a=b,故b<0,所以abc>0,故②错误.③因为a<0,b<0,c>0,所以2a +b -c<0,故③错误.④当x =1时,y =a +b +c ,由图可得,当x =-3时,y<0.因为抛物线的对称轴为直线x =-1,所以由对称性可知,当x =1时,y<0,即a +b +c<0,故④正确.综上所述,①④正确,故选A.6. 【答案】C【解析】把(m ,–m+1)代入y=–x+1,–m+1=–m+1,左=右,故①正确; 当–(x –m)2–m+1=0时,x1=1m m -x2=1m m - 若顶点与x 轴的两个交点构成等腰直角三角形, 则1–m+(1–m)2+1–m+(1–m)2=4(1–m),即m2–m=0,∴m=0或1时,∴存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形;故②正确; 当x1<x2,且x1、x2在对称轴右侧时,∵–1<0,∴在对称轴右侧y 随x 的增大而减小,即y1>y2,故③错误; ∵–1<0,∴在对称轴左侧y 随x 的增大而增大, ∴m≥2,故④正确, 故选C .7. 【答案】B 【解析】本题考查了二次函数图像与系数的关系.∵抛物线与x 轴有两个交点,∴方程20ax bx c ++=有两个不相等的实数根,240b ac ∴->,故①正确,由图象知,抛物线的对称轴为直线2x =,22ba∴-=,40a b ∴+=,故③正确,由图象知,抛物线开口方向向下,0a ∴<.∵40a b +=,0b ∴>.∵抛物线与y 轴的交点在y 轴的正半轴上,0c ∴>.0abc ∴<,故②正确,由图象知,当2x =-时,0y <,420a b c ∴-+<,故④错误.综上所述,正确的结论有3个,因此本题选B .8. 【答案】A【解析】利用平移得性质“上加下减,左加右减”得抛物线得解析式:y =-2(x +1)+3,整理得y =+2,再利用关于x 轴对称的性质“横坐标不变,纵坐标互为相反数”得:y =--2.故选A. 二、填空题9. 【答案】y=-(x -4)(x +2)[解析]设抛物线解析式为y=a (x -4)(x +2),把C (0,3)代入上式得3=a (0-4)(0+2),解得a=-,故y=-(x -4)(x +2).10. 【答案】-1 [解析] 因为抛物线经过原点(0,0),所以a 2-1=0,即a =±1.因为抛物线的开口向下,所以舍去a =1.故a =-1.11. 【答案】3212. 【答案】<【解析】当1x =-时,0y a b c =-+>, 当2x =时,420y a b c =++<,()42M N a b a b -=+--()420a b c a b c =++--+<, 即M N <, 故答案为:<.13. 【答案】2[解析]当y=0时,-x 2+x +2=0,解得x 1=-2,x 2=4,∴点A 的坐标为(-2,0).当x=0时,y=-x 2+x +2=2,∴点C 的坐标为(0,2). 当y=2时,-x 2+x +2=2,解得x 1=0,x 2=2, ∴点D 的坐标为(2,2).设直线AD 的解析式为y=kx +b (k ≠0),将A (-2,0),D (2,2)代入y=kx +b ,得解得∴直线AD 的解析式为y=x +1.当x=0时,y=x +1=1,∴点E 的坐标为(0,1). 当y=1时,-x 2+x +2=1,解得x 1=1-,x 2=1+, ∴点P 的坐标为(1-,1),点Q 的坐标为(1+,1),∴PQ=1+-(1-)=2.14. 【答案】-2 [解析] 抛物线y =ax 2+bx 的顶点C 的坐标为(-b 2a ,-b24a).把x =-b 2a 代入y =ax 2,得点B 的坐标为(-b 2a ,b 24a ).在y =ax 2+bx 中,令y =0,则ax 2+bx =0,解得x 1=0,x 2=-b a ,∴A(-ba ,0).∵四边形ABOC 为正方形,∴BC =OA ,∴2·b 24a =-b a ,即b 2+2b =0.解得b =-2或b =0(不符合题意,舍去).三、解答题15. 【答案】解:∵抛物线的对称轴是直线x =2且经过点A(1,0),∴由抛物线的对称性可知,抛物线还经过点(3,0).设抛物线的解析式为y =a(x -1)(x -3).把(0,3)代入解析式,得3=3a ,∴a =1,∴y =(x -1)(x -3),即该抛物线的解析式为y =x2-4x +3.16. 【答案】解:(1)此二次函数的解析式为y =(x +1)2-4,即y =x2+2x -3.(2)∵当y =0时,x2+2x -3=0,解得x1=-3,x2=1,∴A(1,0),B(-3,0),∴AB =4. 设点M 的坐标为(m ,n).∵△ABM 的面积为20,∴12AB·|n|=20,解得n =±10. 当n =10时,m2+2m -3=10,解得m =-1+14或m =-1-14,∴点M 的坐标为(-1+14,10)或(-1-14,10);当n =-10时,m2+2m -3=-10,此方程无解.故点M 的坐标为(-1+14,10)或(-1-14,10).17. 【答案】解:(1)D(-2,3).(2)设二次函数的解析式为y=ax2+bx+c(a,b,c为常数,且a≠0),根据题意,得解得∴二次函数的解析式为y=-x2-2x+3.(3)x<-2或x>1.18. 【答案】(1)将A(1,2)、O(0,0)、C(2,1)分别代入y=ax2+bx+c,得2,0,42 1.a b cca b c++=⎧⎪=⎨⎪++=⎩解得32a=-,72b=,0c=.所以23722y x x=-+.(2)如图2,过点P、M分别作梯形ABPM的高PP′、MM′,如果梯形ABPM是等腰梯形,那么AM′=BP′,因此yA-y M′=yP′-yB.直线OC的解析式为12y x=,设点P的坐标为1(,)2x x,那么237(,)22M x x x-+.解方程23712()222x x x--+=,得123x=,22x=.x=2的几何意义是P与C重合,此时梯形不存在.所以21(,)33P.图2 图3(3)如图3,△AOB 与△COD 重叠部分的形状是四边形EFGH ,作EK ⊥OD 于K .设点A ′移动的水平距离为m ,那么OG =1+m ,GB ′=m .在Rt △OFG 中,11(1)22FG OG m ==+.所以21(1)4OFG S m ∆=+. 在Rt △A ′HG 中,A ′G =2-m ,所以111'(2)1222HG A G m m ==-=-. 所以13(1)(1)22OH OG HG m m m =-=+--=. 在Rt △OEK 中,OK =2 EK ;在Rt △EHK 中,EK =2HK ;所以OK =4HK . 因此4432332OK OH m m ==⨯=.所以12EK OK m ==. 所以211332224OEH S OH EK m m m ∆=⋅=⨯⋅=. 于是22213111(1)44224OFG OEH S S S m m m m ∆∆=-=+-=-++2113()228m =--+. 因为0<m <1,所以当12m =时,S 取得最大值,最大值为38.。
2023年中考数学--- a,b,c和二次函数图像的九种考法例题解析
2023年中考数学--- a ,b ,c 和二次函数图像的九种考法例题解析如图,二次函数的图像关于直线对称,与x 轴交于,两点,若考法解决方法本题结果①a,b,ca:二次函数图像开口向上时,a >0;开口向下,则a <0;b :和a 共同决定了函数对称轴的位置,“左同右异”,当对称轴在y 轴左侧时,a ,b 同号,当对称轴在y 轴右侧时,a ,b 异号。
c :c 为图像和y 轴交点的纵坐标。
a >0b <0c <0②b 2−4ac当图像和x 轴有两个交点时,b 2−4ac >0; 当图像和x 轴有一个交点时,b 2−4ac =0; 当图像和x 轴没有交点时,b 2−4ac <0。
b 2−4ac <0 ③a+b+c a-b+c 4a+2b+c 4a-2b+c 9a+3b+c 9a-3b+c 用特殊值进行判断:a+b+c 即为当x=1时的函数值; 4a-2b+c 即为当x=-2时的函数值。
a+b+c <0 a-b+c <0④3a+2b只有a ,b 时,用对称轴代换,消去一个未知数进行判断∵−b2a = 1,∴b=- 2а,∴3a +2b= 3a-4a= -a ,∵a >0,∴3a+2b<0⑤c+a 只有a ,c 或只有b ,c 时,先用对称轴代换,消去一个未知数,然后利用④中的结果判断结果∵a -b +c<0,∴a +c<b ,∵a >0, ∴b=-2a<0,∴a +c<0, ⑥b+2c若c 的系数不是1,可以先化成1再进行上述计算,或这把③中的某个式子中的c 的系数变成题里的形式。
∵−b 2a=1,∴2a =−b , ∵a+b +c<0,∴2a+2b +2c<0,-b+2b +2c<0,b +2c<0 ⑦am 2+bm 和a +b 的小小关系同时加上c ,am 2+bm+c ,a +b+c第一个式子是当x=m 时的函数值,第二个am 2+bm ≥a+b式子是当x=1时的函数值;由图可知,x=1时函数取最小值。
中考数学二次函数的图像与系数的关系(含答案)
二次函数的图像与系数的关系1. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b<0;②abc>0;③4a−2b+c>0;④a+c>0,其中正确结论的个数为( )A. 1个B. 2个C. 3个D. 4个2. 小明从如图所示的二次函数y = ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①ab > 0②a +b+c < 0 ③b+2c > 0 ④a-2b+4c > 0 ⑤ .你认为其中正确信息的个数有()A. 2个B. 3个C. 4个D. 5个3. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A. 1B. 2C. 3D. 44. 抛物线的部分图象如图所示,与x轴的一个交点坐标为,抛物线的对称轴是下列结论中:;;方程有两个不相等的实数根;抛物线与x轴的另一个交点坐标为;若点在该抛物线上,则.其中正确的有A. 5个B. 4个C. 3个D. 2个5. 已知二次函数y=ax2+bx+c的图象如图所示,OA=OC,则由抛物线的特征写出如下含有a、b、c三个字母的等式或不等式:① =﹣1;②ac+b+1=0;③abc>0;④a﹣b+c>0.其中正确的个数是()A. 4个B. 3个C. 2个D. 1个6. 抛物线C1:y1=mx2﹣4mx+2n﹣1与平行于x轴的直线交于A、B两点,且A点坐标为(﹣1,2),请结合图象分析以下结论:①对称轴为直线x=2;②抛物线与y轴交点坐标为(0,﹣1);③m>;④若抛物线C2:y2=ax2(a≠0)与线段AB恰有一个公共点,则a的取值范围是≤a<2;⑤不等式mx2﹣4mx+2n >0的解作为函数C1的自变量的取值时,对应的函数值均为正数,其中正确结论的个数有()A. 2个B. 3个C. 4个D. 5个7. 如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y2)是函数图象上的两点,则y1<y2;④﹣<a<﹣.其中正确结论有()A. 1个B. 2个C. 3个D. 4个8. 如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A. 1B. 2C. 3D. 49. 二次函数()的图像如图所示,下列结论:① ;②当时,y随x 的增大而减小;③ ;④ ;⑤ ,其中正确的个数是()A. 1B. 2C. 3D. 410. 如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有()A. 4个B. 3个C. 2个D. 1个11. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2﹣4ac>0 ②a>0 ③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的个数是()A. 2个B. 3个C. 4个D. 5个12. 二次函数(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>;④a-b+c>0;⑤若,且,则.其中正确的有().A. ①②③B. ②④C. ②⑤D. ②③⑤13. 如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A. 4个B. 3个C. 2个D. 1个14. 已知:二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论中:①abc>0;②2a+b<0;③a+b<m(am+b)(m≠1的实数);④(a+c)2<b2;⑤a>1.其中正确的项是()A. ①⑤B. ①②⑤C. ②⑤D. ①③④15. 如图,是二次函数y=ax2+bx+c的图象,对下列结论①ab>0,②abc>0,③ <1,其中错误的个数是()A. 3B. 2C. 1D. 016. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A. ①④B. ②④C. ①②③D. ①②③④17. 如图抛物线y=ax2+bx+c的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:①2b﹣c=2;②a= ;③ac=b﹣1;④ >0其中正确的个数有()A. 1个B. 2个C. 3个D. 4个18. 如图,已知抛物线y=ax2+bx+c(a<0)的对称轴为x=1,交x轴的一个交点为(x1,0),且﹣1<x1<0,有下列5个结论:①abc>0;②9a﹣3b+c<0;③2c<3b;④(a+c)2<b2;⑤a+b>m(am+b)(m≠1的实数)其中正确的结论有()A. 1个B. 2个C. 3个D. 4个19. 二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a﹣b+c>2.其中正确的结论的个数是()A. 1B. 2C. 3D. 420. 如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A. 1个B. 2个C. 3个D. 4个21. 已知:二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论中:①abc>0;②2a+b<0;③a+b<m(am+b)(m≠1的实数);④(a+c)2<b2;⑤a>1.其中正确的项是()A. ①⑤B. ①②⑤C. ②⑤D. ①③④22. 如图所示,二次函数的图象经过点和,下列结论中:①;②;③④;⑤;其中正确的结论有()个A. 2B. 3C. 4D. 523. 二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A. 4个B. 3个C. 2个D. 1个24. 已知抛物线y=ax2+bx+c的顶点为(-3,-6),有以下结论:①当a>0时,b2>4ac;②当a>0时,ax2+bx+c≥-6;③若点(-2,m) ,(-5,n) 在抛物线上,则m<n;④若关于x 的一元二次方程ax2+bx+c=-4的一根为-5,则另一根为-1.其中正确的是( )A. ①②B. ①③C. ②③④D. ①②④25. 如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A. ②④B. ①④C. ①③D. ②③答案解析部分一、单选题1.【答案】B【解析】【解答】①∵抛物线开口向下,∴a<0,∵−<1,∴2a+b<0,①正确;②抛物线与y轴交于正半轴,∴c>0,∵−>0,a<0,∴b>0,∴abc<0,②错误;③当x=−2时,y<0,∴4a−2b+c<0,③错误;x=±1时,y>0,∴a−b+c>0,a+b+c>0,∴a+c>0,④正确,故答案为:B【分析】根据抛物线的开口方向向下,得出a<0,由其对称轴直线小于1,得出不等式,根据不等式的性质变形不等式即可得出2a+b<0;抛物线与y轴交于正半轴,故c>0,根据抛物线的对称轴位于y轴的右侧可知a,b异号,从而得出b>0,故abc<0;由抛物线与x轴的交点坐标,可知:当x=−2时,y<0,即4a−2b+c<0;x=±1时,y>0,即a−b+c>0,a+b+c>0,将两式相加即可得出a+c>0。
中考数学解题技巧(7)巧取特殊值(二次函数图像信息题)
中考数学解题技巧(七)、巧取特殊值(二次函数图像信息题)(马铁汉)二次函数图像信息多选题,是运用图像信息进行推理,判断结论是否正确。
此类题的特点是,题干中,二次函数解析式含有参数,具有一般性;还会给出一些条件作限制,如告诉二次函数的对称轴位置、经过某些点、在指定区间范围内的增减性等;给出几个结论,让你判断它们中哪些结论是正确的。
常规方法推理需要很扎实的基本功,且需要大量的时间。
这里我们不妨取特殊值,验证结论是否正确,反正是选择题,找出其中的正确答案即可。
下面通过几个中考题,作简要介绍。
鉴赏题:1、(2022随州)10.如图,已知开口向下的抛物线与x轴交于点对称轴为直线.则下列结论正确的有(C)①;②;③函数的最大值为;④若关于x的方程无实数根,则.A.1个B.2个C.3个D.4个方法一、(推理判断)解:①× .②√对称轴,∴,∴③√由图形知,当时,。
∴,∴由②知由图形知当时,函数取最大值。
∴④√若关于x的方数无实数根,则∴∴故选C方法二、(取特殊值验证)解:针对题中取,则二次函数解析式可写成交点式,再变成一般式,然后验证四个结论是否正确:,①,∴结论错误。
②,∴结论正确。
③,最大值为,,∴结论正确。
④,化简为,无解。
∴结论正确。
故选C。
鉴赏题:2、(2022恩施)12.已知抛物线y=1x2―bx+c,2当时,;当时,下列判断:①;若,则b>32③已知点,在抛物线y=1x2―bx+c上,当时,;④若方程1x2―bx+c=0的两实数根为,,则x1+x2>3.其中正确的有个.( C )A. B. C. D.解:方法一:(取特殊值验证)针对题中②问题,取,得二次函数符合题中条件,如图1。
下面验证:①√,∴②√由取特殊值得知正确。
③√如图1所示。
④×这是在的前提下得出的结论,若没有这个前提呢,如图2所示这个结论就不一定正确了。
这是取特殊值的局限性。
所以针对题中条件和问题取特殊值判断时,要再三斟酌!方法二:(推理判断)①二次函数与x轴有两个交点,∴方程1x2―bx+c=0有两个不相等的实数根。
二次函数压轴:焦点与准线,动点面积,含参二次函数(原卷版)--2024年中考数学
二次函数压轴:焦点与准线,动点面积,含参二次函数【题型1】焦点与准线例题12-1例题12—2湘潭市·中考真题广东深圳·中考真题四川自贡·中考真题宜宾·中考真题山东滨州·中考真题2023·湖北鄂州中考真题2022·湖北鄂州中考真题【题型2】焦半径倒数和为定值广西南宁·中考真题【题型3】焦点弦为直径的圆与准线相切2023·湖南怀化中考真题湖南张家界·中考真题【题型4】动点运动时间与面积之间的函数图像判断2023·黑龙江齐齐哈尔中考真题2023·辽宁鞍山中考真题2023·黑龙江绥化中考真题2023·江苏南通中考真题2023·辽宁锦州中考真题2023·辽宁盘锦中考真题【题型5】求运动时间与面积之间的函数表达式2023·广东广州中考真题2022·吉林中考真题广东深圳·中考真题2023·辽宁大连中考真题2022·四川绵阳中考真题【题型6】解答题压轴题纯含参二次函数问题2023年浙江省绍兴市中考真题2023年浙江省嘉兴(舟山)市中考真题2023年浙江省丽水市中考真题2023年江苏省南通市中考真题2023年江苏省淮安市中考真题2022•北京中考真题2022•安顺中考真题2022•长沙中考真题2022•广州中考真题2022•贵阳中考真题2022•天津中考真题2022•嘉兴中考真题2022•杭州中考真题2022•连云港中考真题二次函数的焦点与准线我们已经知道二次函数的图像是抛物线,一种特别的曲线,其本身还具有这样的性质:抛物线上的任意一点到平面中某个定点和某条定直线的距离始终相等.这个点称为抛物线的焦点,这条直线称为抛物线的准线,本文将讨论一些与抛物线的焦点和准线相关的问题.焦点和准线属于高中内容,高中内容下放也是中考中所常见的.我们知道,二次函数的图像是抛物线,它也可以这样定义:若一个动点M (x ,y )到定点(0,)2p A 的距离与它到定直线2py =−的距离相等,则动点M 形成的图形就叫抛物线22(0).x py p =>结论1:对于抛物线2,y ax =焦点坐标为10,4a,准线为直线1.4y a=− 焦点一般用字母F 表示.而且实际题目中二次项系数很多时候是1,4只是为了焦点坐标便于计算. 至于形如2y ax bx c ++的抛物线可化为顶点式2(),y a x h k =−+然后通过由2y ax =平移来确定焦点和准线.结论2:如下图,FM ⊥FN .证明:设NPF α∠=,MQF β∠=,则180αβ+°,∴1190909022PFN QFMαβ°°°∠+∠=−+−=, ∴FM ⊥FN .结论3:取PQ 中点E ,作EH ⊥x 轴交x 轴于H 点,则PH ⊥QH .证明:倍长中线证两次全等.结论4:记MN 与y 轴交于点G ,11112PN OM PF QF FG+=+=.【题型1】焦点与准线例题12-1值.例题12—22.我们知道,二次函数的图像是抛物线,它也可以这样定义:若一个动点M (x ,y )到定点(0,)2p A 的距离与它到定直线2py =−的距离相等,则动点M 形成的图形就叫抛物线22(0).x py p =>(1)已知动点M (x ,y )到定点A (0,4)的距离与到定直线y =-4的距离相等,请写出动点M 形成的抛物线的解析式.(2)若点D 的坐标是(1,8),在(1)中求得的抛物线上是否存在点P ,使得PA +PD 最短?若存在,求出点P 的坐标,若不存在,请说明理由.湘潭市·中考真题3.如图,点P 为抛物线214y x =上一动点 (1)若抛物线214y x =是由抛物线21(2)14y x =+−通过图像平移得到的,请写出平移的过程;(2)若直线l 经过y 轴上一点N ,且平行于x 轴,点N 的坐标为(0,-1),过点P 作PM l⊥于M .①问题探究:如图一,在对称轴.上是否存在一定点F ,使得PM =PF 恒成立?若存在,求出点F 的坐标:若不存在,请说明理由.广东深圳·中考真题4.如图1,抛物线y =ax 2+bx +3(a ≠0)与x 轴交于A (-3,0)和B (1,0),与y 轴交于点C ,顶点(1)求解抛物线解析式;(2)如图2,过抛物线上任意一点M (m ,n )向直线l 四川自贡·中考真题5.如图,已知直线AB 与抛物线2:2C y ax x c =++相交于点A (-1,0)和点B (2,3)两点 (1)求抛物线C 函数表达式;(2)在抛物线C 的对称轴上是否存在定点F ,使抛物线C 上任意一点P 到点F 的距离等于到直线y =宜宾·中考真题6.在平面直角坐标系xOy 中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线14y x =与抛物线交于A 、B 两点,直线l 为y =-1. (1)求抛物线的解析式;(2)知00(,)F x y 为平面内一定点,M (m ,n )为抛物线上一动点,且点M 到直线l 的距离与 点M 到点F 的距离总是相等,求定点F 的坐标.山东滨州·中考真题2023·湖北鄂州中考真题2022·湖北鄂州中考真题的距离MN(该结论不需要证明),他们称:定点F为图象的焦点,定直线l为图象的准线,y【题型2】焦半径倒数和为定值广西南宁·中考真题10.如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B 两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.【题型3】焦点弦为直径的圆与准线相切2023·湖南怀化中考真题湖南张家界·中考真题12.如图,已知二次函数21(0,y ax a =+≠a 为实数)的图像过点A (-2,2),一次函数y =kx +b (k≠0,k 、b 为实数)的图像1经过点B (0,2). (1)求a 值并写出二次函数表达式; (2)求b 值;(3)设直线1与二次函数图像交于M ,N 两点,过M 作MC 垂直x 轴于点C ,试证明: MB =MC ;(4)在(3)的条件下,请判断以线段MN 为直径的圆与x 轴的位置关系,并说明理由.【题型4】动点运动时间与面积之间的函数图像判断2023·黑龙江齐齐哈尔中考真题13.如图,在正方形ABCD 中,4AB =,动点M ,N 分别从点A ,B 同时出发,沿射线AB ,射线BC的方向匀速运动,且速度的大小相等,连接DM ,MN ,ND .设点M 运动的路程为()04x x ≤≤,DMN 的面积为S ,下列图像中能反映S 与x 之间函数关系的是( )A .B .C .D .2023·辽宁鞍山中考真题运动过程中MN 分别交矩形的对角线,AC BD 于点E ,F ,以EF 为边在MN 左侧作正方形EFGH ,设正方形EFGH 与AOB 重叠部分的面积为S ,直线MN 的运动时间为t s ,则下列图象能大致反映S 与t 之间函数关系的是( )A.B.C.D.2023·黑龙江绥化中考真题15.如图,在菱形ABCD中,60∠=°,4AAB=,动点M,N同时从A点出发,点M以每秒2个−−向终点C运动;点N以每秒1个单位长度沿线段AD向终点D运动,单位长度沿折线A B C的面积为y个平当其中一点运动至终点时,另一点随之停止运动.设运动时间为x秒,AMN....2023·江苏南通中考真题16.如图,ABC 中,90C ∠=°,15AC =,20BC =.点D 从点A 出发沿折线A C B −−运动到点B停止,过点D 作DE AB ⊥,垂足为E .设点D 运动的路径长为x ,BDE △的面积为y ,若y 与x 的对应关系如图所示,则a b −的值为( )A .54B .52C .50D .482023·辽宁锦州中考真题17.如图,在Rt ABC △中,90ACB ∠=°,3AC =,4BC =,在DEF 中,5DEDF ==,8EF =,BC 与EF 在同一条直线上,点C 与点E 重合.ABC 以每秒1个单位长度的速度沿线段EF 所在直线向右匀速运动,当点B 运动到点F 时,ABC 停止运动.设运动时间为t 秒,ABC 与DEFA .B .C .D .2023·辽宁盘锦中考真题18.如图,在平面直角坐标系中,菱形ABCD 的顶点A 在y 轴的正半轴上,顶点B 、C 在x 轴的正半作MN y ∥轴,与菱形的另一边交于点N ,连接PM ,PN ,设点M 的横坐标为x ,PMN 的面积为y ,则下列图象能正确反映y 与x 之间函数关系的是( )A .B .C .D .2023·广东广州中考真题19.如图,在Rt ABC △中,90ACB ∠=°,10AB =,6AC =,点M 是边AC 上一动点,点D ,E 分别是AB ,MB 的中点,当 2.4AM =时,DE 的长是 .若点N 在边BC 上,且CN AM =,点F ,G 分别是MN ,AN 的中点,当 2.4AM >时,四边形DEFG 面积S 的取值范围是 .2022·吉林中考真题20.如图,在ABC 中,90ACB ∠=°,30A ∠=°,6cm =AB .动点P 从点A 出发,以2cm/s 的速度沿边AB 向终点B 匀速运动.以PA 为一边作120APQ ∠=°,另一边PQ 与折线AC CB −相交于点Q ,以PQ 为边作菱形PQMN ,点N 在线段PB 上.设点P 的运动时间为(s)x ,菱形PQMN 与ABC 重叠部分图形的面积为2()cm y .(1)当点Q 在边AC 上时,PQ 的长为 cm ;(用含x 的代数式表示) (2)当点M 落在边BC 上时,求x 的值;(3)求y 关于x 的函数解析式,并写出自变量x 的取值范围.广东深圳·中考真题为D .(1)求解抛物线解析式;(2)连接AD ,CD ,BC ,将△OBC 沿着x 轴以每秒1个单位长度的速度向左平移,得到O B C ′′′∆,点O 、B 、C 的对应点分别为点O ′,B ′,C ′,设平移时间为t 秒,当点O'与点A 重合时停止移动.记O B C ′′′∆与四边形AOCD 的重叠部分的面积为S ,请直接写出S 与时间t 的函数解析式;2023·辽宁大连中考真题22.如图1,在平面直角坐标系xOy 中,直线y x =与直线BC 相交于点A ,(),0P t 为线段OB 上一动点(不与点B 重合),过点P 作PD x ⊥轴交直线BC 于点D .OAB 与DPB 的重叠面积为S .S 关于t 的函数图象如图2所示.(1)OB 的长为_______________;OAB 的面积为_______________. (2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.2022·四川绵阳中考真题沿着A →D →B 的路线匀速运动,点F 沿着A →B →D 的路线匀速运动,当点E ,F 相遇时停止运【题型6】解答题压轴题纯含参二次函数问题2023年浙江省绍兴市中考真题24.已知二次函数2y x bx c =−++. (1)当4,3b c ==时, ①求该函数图象的顶点坐标. ②当13x −≤≤时,求y 的取值范围.(2)当0x ≤时,y 的最大值为2;当0x >时,y 的最大值为3,求二次函数的表达式.2023年浙江省嘉兴(舟山)市中考真题25.在二次函数223(0)y x tx t =−+>中, (1)若它的图象过点(2,1),则t 的值为多少? (2)当03x ≤≤时,y 的最小值为2−,求出t 的值:(3)如果(2,),(4,),(,)A m a B b C m a −都在这个二次函数的图象上,且3a b <<,求m 的取值范围.26.已知点(),0m −和()3,0m 在二次函数23,(y ax bx a b ++是常数,0)a ≠的图像上. (1)当1m =−时,求a 和b 的值;(2)若二次函数的图像经过点(),3A n 且点A 不在坐标轴上,当21m −<<−时,求n 的取值范围; (3)求证:240b a +=.2023年江苏省南通市中考真题27.定义:平面直角坐标系xOy 中,点(),P a b ,点(),Q c d ,若c ka =,d kb =−,其中k 为常数,且2023年江苏省淮安市中考真题2022·北京中考真题29.在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c(a>0)上,设抛物线的对称轴为直线x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围.2022·安顺中考真题30.在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点.例如:点(1,1),(12,12),(−√2,−√2),……都是和谐点.(1)判断函数y=2x+1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点(52,52).①求a,c的值;②若1≤x≤m时,函数y=ax2+6x+c+14(a≠0)的最小值为﹣1,最大值为3,求实数m的取值范围.2022·长沙中考真题31.若关于x的函数y,当t−12≤x≤t+12时,函数y的最大值为M,最小值为N,令函数h=MM−NN2,我们不妨把函数h称之为函数y的“共同体函数”.(1)①若函数y=4044x,当t=1时,求函数y的“共同体函数”h的值;②若函数y=kx+b(k≠0,k,b为常数),求函数y的“共同体函数”h的解析式;(2)若函数y=2xx(x≥1),求函数y的“共同体函数”h的最大值;(3)若函数y=﹣x2+4x+k,是否存在实数k,使得函数y的最大值等于函数y的“共同体函数“h 的最小值.若存在,求出k的值;若不存在,请说明理由.2022·广州中考真题32.已知直线l:y=kx+b经过点(0,7)和点(1,6).(1)求直线l的解析式;(2)若点P(m,n)在直线l上,以P为顶点的抛物线G过点(0,﹣3),且开口向下.①求m的取值范围;②设抛物线G与直线l的另一个交点为Q,当点Q向左平移1个单位长度后得到的点Q′也在G上时,求G在4mm5≤x≤4mm5+1的图象的最高点的坐标.2022·贵阳中考真题33.已知二次函数y=ax2+4ax+b.(1)求二次函数图象的顶点坐标(用含a,b的代数式表示);(2)在平面直角坐标系中,若二次函数的图象与x轴交于A,B两点,AB=6,且图象过(1,c),(3,d),(﹣1,e),(﹣3,f)四点,判断c,d,e,f的大小,并说明理由;(3)点M(m,n)是二次函数图象上的一个动点,当﹣2≤m≤1时,n的取值范围是﹣1≤n≤1,求二次函数的表达式.2022·天津中考真题34.已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A(﹣1,0)和点B.(Ⅰ)若b=﹣2,c=﹣3,①求点P的坐标;②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;(Ⅱ)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.2022·嘉兴中考真题35.已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O 的对称点在抛物线L1上,求m的值.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.2022·杭州中考真题36.设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.2022·连云港中考真题37.已知二次函数y=x2+(m﹣2)x+m﹣4,其中m>2.(1)当该函数的图象经过原点O(0,0),求此时函数图象的顶点A的坐标;(2)求证:二次函数y=x2+(m﹣2)x+m﹣4的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图象,使其顶点在直线y=﹣x﹣2上运动,平移后所得函数的图象与y轴的负半轴的交点为B,求△AOB面积的最大值.。
二次函数的图像与性质【十大题型】(原卷版)—2024年中考数学一轮复习【举一反三】系列(全国通用)
二次函数的图像与性质【十大题型】【题型1 根据二次函数解析式判断其性质】 (3)【题型2 二次函数y=ax 2+bx+c 的图象和性质】 (4)【题型3 二次函数平移变换问题】 (5)【题型4 根据二次函数的对称性求字母的取值范围】 (6)【题型5 根据二次函数的性质求最值】 (6)【题型6 根据二次函数的最值求字母的取值范围】 (7)【题型7 根据二次函数自变量的情况求函数值的取值范围】 (7)【题型8 根据二次函数的增减性求字母的取值范围】 (8)【题型9 二次函数图象与各项系数符号】 (8)【题型10 二次函数与三角形相结合的应用方法】 (11)【知识点 二次函数的图像与性质】1.定义:一般的,形如y =ax 2+bx +c (a .b .c 是常数,a ≠0)的函数叫做二次函数。
其中x 是自变量,a .b .c 分别是函数解析式的二次项系数.一次项系数.常数项。
二次函数解析式的表示方法(1)一般式:y =ax 2+bx +c (其中a ,b ,c 是常数,a ≠0);(2)顶点式:y =a (x -h )2+k (a ≠0),它直接显示二次函数的顶点坐标是(h ,k );(3)交点式:y =a (x -x 1)(x -x 2)(a ≠0),其中x 1,x 2是图象与x 轴交点的横坐标 .注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -³时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.2.二次函数的图象是一条抛物线。
当a >0时,抛物线开口向上;当a <0时,抛物线开口向下。
|a |越大,抛物线的开口越小;|a |越小,抛物线的开口越大。
y =ax 2y =ax 2+k y =a (x -h )2y =a (x -h )2+k y =ax 2+bx +c 对称轴y 轴y 轴x =h x =h abx 2-=(0,0)(0,k )(h ,0)(h ,k )⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22顶点a >0时,顶点是最低点,此时y 有最小值;a <0时,顶点是最高点,此时y 有最大值。
中考数学二次函数专题训练50题(含参考答案)
中考数学二次函数专题训练50题含答案一、单选题1.二次函数y =﹣2x 2﹣1图象的顶点坐标为( ) A .(0,0)B .(0,﹣1)C .(﹣2,﹣1)D .(﹣2,1)2.下列函数图象不属于中心对称图形的是( ) A .20222023yxB .220222023yx x C .2023y =- D .2022xy =-3.下列关系式中,属于二次函数的是( )A .22y x =-B .y =C .31y x =-D .1y x=4.若抛物线2(2)(2)=-≠y a x a 开口向上,则a 的取值范围是( ) A .2a <B .2a >C .a<0D .0a >5.已知点1(4)y -,、2(1)y -,、353y ⎛⎫⎪⎝⎭,都在函数245y x x =--+的图象上,则123y y y 、、的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .312y y y >> 6.在平面直角坐标系中,将抛物线221y x x =+-,绕原点旋转180°,所得到的抛物线的函数关系式是( ) A .221y x x =-+ B .221y x x =--- C .221y x x =-+-D .221y x x =-++7.已知二次函数2y ax bx c =++的图象经过原点和第一、二、三象限,则( ) A .0,0,0a b c >>> B .0,0,0a b c <<= C .0,0,0a b c <D .0,0,0a b c >>=8.二次函数241y mx x =-+有最小值3-,则m 等于( ) A .1B .1-C .1±D .12±9.已知点 A (−1,a ),B (1,b ),C (2,c )是抛物线 y = -2x + 2x 上的三点,则 a ,b ,c 的大小关系为( ) A .a>c>bB .b>a>cC .b>c>aD .c>a>b10.如图1,在矩形ABCD 中,动点E 从A 出发,沿AB →BC 方向运动,当点E 到达点C时停止运动,过点E作FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是25,则矩形ABCD的面积是()A.235B.5C.6D.25411.如图,已知直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,则①abc、①a﹣b+c、①a+b+c、①2a﹣b、①3a﹣b,其中是负数的有()A.1个B.2个C.3个D.4个12.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7B.y=(x+4)2+7C.y=(x﹣4)2﹣25D.y=(x+4)2﹣2513.若二次函数y=(x﹣k)2+m,当x≤2时,y随x的增大而减小,则k的取值范围是()A.k=2B.k>2C.k≥2D.k≤214.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:则方程ax2+bx+3=0的根是()A.0或4B.1或3C.-1或1D.无实根15.二次函数图像如图所示,下列结论:①0abc >,①20a b +=,①,①方程20ax bx c ++=的解是-2和4,①不等式20ax bx c ++>的解集是24-<<x ,其中正确的结论有( )A .2个B .3个C .4个D .5个16.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,有下列5个结论:①abc <0,①3a ﹣b =0,①a +b +c =0,①9a ﹣3b +c <0,①b 2﹣4ac >0.其中正确的有( )A .①①①B .①①①C .①①①D .①①17.将抛物线y=2x2向右平移1个单位后,得到的抛物线的表达式是( ) A .y=2(x+1)2B .y=2(x ﹣1)2C .y=2x2﹣1D .y=2x2+118.如图为二次函数y=ax 2+bx+c 的图象,在下列说法中:①ac <0;①2a ﹣b=0;①当x >1时,y 随x 的增大而增大;①方程ax 2+bx+c=0的根是x 1=﹣1,x 2=3;①30a c +=;①对于任意实数m ,2am bm a b +≥+总是成立的.正确的说法有( )A .2B .3C .4D .519.如图是二次函数21y ax bx c =++,反比例函数2my x=在同一直角坐标系的图象,若y 1与y 2交于点A (4,yA ),则下列命题中,假命题是( )A .当x >4时,12y y >B .当1x <-时,12y y >C .当12y y <时,0<x <4D .当12y y >时,x <020.如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,对称轴为x =12, 且经过点(2,0),下列结论正确的是( )A .abc >0B .2-4ac<0bC .a+b=1D .当x >2或x <-1时,y <0二、填空题21.写出一个函数的表达式,使它满足:①图象经过点(1,1);①在第一象限内函数y 随自变量x 的增大而减少,则这个函数的表达式为__________. 22.抛物线()269y x =-++的顶点坐标是______. 23.抛物线244y x x =+-的对称轴是直线______. 24.抛物线y =-(x -1)2-2的顶点坐标是________.25.二次函数210y ax bx a =+≠-()的图象经过点(1,1),则代数式1a b --的值为______. 26.将抛物线2yx 向左平移2个单位后,得到的抛物线的解析式是______;27.若抛物线2y ax bx c =++与直线4y =的公共点的坐标是(1,4),(5,4),则这条抛物线的对称轴是直线____________.28.抛物线 245y x x =-+,当34x -≤≤时,y 的取值范围是___________ 29.已知二次函数21y mx x =+-的图象与x 轴有两个交点,则m 的取值范围是______.30.如图,抛物线2=23y x x --与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,过点B ,C 作一条直线l . (1)ABC ∠的度数是______;(2)点P 在线段OB 上,且点P 的坐标为()2,0,过点P 作PM x ⊥轴,交直线l 于点N ,交抛物线于点M ,则线段MN 的长为______.31.如图,一段抛物线:y =﹣x (x ﹣3)(0≤x≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;如此进行下去,直至得C 13.若P (37,m )在第13段抛物线C 13上,则m =_____.32.二次函数y =2x 2的图象向左平移2个单位长度,再向下平移5个单位长度后得到的图象的解析式为_____.33.如图,直角梯形OABC 的直角顶点是坐标原点,边OA ,OC 分别在x 轴,y 轴的正半轴上.OA ①BC ,D 是BC 上一点,BD =14OA AB =3,①OAB =45°,E ,F 分别是线段OA ,AB 上的两个动点,且始终保持①DEF =45°.设OE =x ,AF =y ,则y 与x 的函数关系式为_____.34.已知某抛物线上部分点的横坐标x ,纵坐标y 的对应值如下表:那么该抛物线的顶点坐标是_____.35.已知点A(-3,m)在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点的坐标为________.36.若二次函数()22212y x m x m m =-+-+-的图象关于y 轴对称,则m 的值为:________.此函数图象的顶点和它与x 轴的两个交点所确定的三角形的面积为:________.37.二次函数y=ax 2+bx+c (a ,b ,c 为常数,且a≠0)中的x 与y 的部分对应值如表下列结论:①ac <0; ①当x >1时,y 的值随x 值的增大而减小; ①当2x =时,5y =; ①3是方程ax 2+(b ﹣1)x+c=0的一个根. 其中正确的结论是_________(填正确结论的序号).38.如图所示,已知二次函数()20y ax bx c a =++≠的部分图象,下列结论中:0abc >①; 40a c +>②;③若t 为任意实数,则有2a bt at b -≥+; ④若函数图象经过点()2,1,则311222a b c ++=;⑤当函数图象经过()2,1时,方程210ax bx c ++-=的两根为1x ,212()x x x <,则1228x x -=-.其中正确的结论有______.39.如图,正方形ABCD 的边长为4,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 上的动点,且AE =BF =CG =DH .则四边形EFGH 面积的最小值为___.40.如图,已知二次函数2y x 2x 3=-++的图象与y 轴交于点A ,MN 是该抛物线的对称轴,点P 在射线MN 上,连结PA ,过点A 作AB AP ⊥交x 轴于点B ,过A 作AC MN ⊥于点C ,连结PB ,在点P 的运动过程中,抛物线上存在点Q ,使QAC PBA ∠∠=,则点Q 的横坐标为______.三、解答题41.已知抛物线y =x 2+(b -2)x +c 经过点M (-1,-2b ). (1)求b +c 的值.(2)若b =4,求这条抛物线的顶点坐标.42.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x ≤14)之间的函数关系式,并求出第几天时销售利润最大?43.我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“D 函数”,其图象上关于原点对称的两点叫做一对“D 点”根据该约定,完成下列各题.(1)在下列关于x 的函数中,是“D 函数”的,请在相应题目后面的括号中打“√”,不是“D 函数”的打“×”,my x=(0m ≠)(_______);31y x =-(_______);2y x =(_______).(2)若点A (1,m )与点B (n ,4-)是关于x 的“D 函数”2y ax bx c =++(0a ≠)的一对“D 点”,且该函数的对称轴始终位于直线1x =的右侧,求a ,b ,c 的值或取值范围;(3)若关于x 的“D 函数”223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=;①()()2230c b a c b a +-++<;求该“D 函数”截x 轴得到的线段长度的取值范围.44.(1)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A 为全程25km 的普通道路,路线B 包含快速通道,全程30km ,走路线B 比走路线A 平均速度提高50%,时间节省6min ,求走路线B 的平均速度;(2)如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)i =1:0.75,山坡坡底C 点到坡顶D 点的距离CD =50m ,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,求居民楼AB 的高度.(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)(3)已知飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣32t2,求在飞机着陆滑行中最后4s滑行的距离.45.已知二次函数222y x x k=-+++与x轴的公共点有两个.求:()1求k的取值范围;()2当1k=时,求抛物线与x轴的公共点A和B的坐标及顶点C的坐标;()3观察图象,当x取何值时0y>?46.如图,抛物线245y x x=-++与x轴交于点A和点B,与y轴交于点C.(1)求出A、B、C三点的坐标;(2)将抛物线245y x x=-++图像x轴上方部分沿x轴向下翻折,保留抛物线与x轴的交点和x轴下方图像,得到的新图像记作M,图像M与直线y t=恒有四个交点,从左到右四个交点依次记为D,E,F,G.若以EF为直径作圆,该圆记作图像N.①在图像M上找一点P,使得PAB的面积为3,求出点P的坐标;①当图像N与x轴相离时,直接写出t的取值范围.47.如图,在△ABC 中,AB=4,D 是AB 上的一点(不与点A、B 重合),DE①BC,交AC 于点E.设△ABC 的面积为S,△DEC 的面积为S'.(1)当D是AB中点时,求SS'的值;(2)设AD=x,SS'=y,求y与x的函数表达式,并写出自变量x的取值范围;(3)根据y的范围,求S-4S′的最小值.48.如图1,在平面直角坐标系中,抛物线y=﹣38x2+34x+3与x轴交于点A和点B,A在B的左侧,与y轴交于点C,点P为直线BC上方抛物线上一动点.(1)求直线BC的解析式;(2)过P作PM①x轴,交BC于M,当PM﹣CM的值最大时,求P的坐标和PM﹣CM的最大值;(3)如图2,将该抛物线向右平移1个单位,得到新的抛物线y1,过点P作直线BC 的垂线,垂足为E,作y1对称轴的垂线,垂足为F,连接EF,请直接写出当PEF是以PF为腰的等腰三角形时,点P的横坐标.49.如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B.求:(1)点A 、B 的坐标;(2)抛物线的函数表达式;(3)若点M 是该抛物线对称轴上的一点,求AM+BM 的最小值及点M 的坐标; (4)在抛物线对称轴上是否存在点P ,使得以A 、B 、P 为顶点的三角形为等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.50.如图所示,抛物线2y ax bx c =++的图象过(03)A ,,()10B -,,0(3)C ,三点,顶点为P .(1)求抛物线的解析式;(2)设点G 在y 轴上,且OGB OAB ACB ∠+∠=∠,求AG 的长;(3)若//AD x 轴且D 在抛物线上,过D 作DE BC ⊥于E ,M 在直线DE 上运动,点N 在x 轴上运动,是否存在这样的点M 、N 使以A 、M 、N 为顶点的三角形与APD △相似若存在,请求出点M 、N 的坐标.参考答案:1.B【分析】根据二次函数的解析式特点可知其图象关于y 轴对称,可得出其顶点坐标.【详解】解:①221y x =-- ,①其图象关于y 轴对称,①其顶点在y 轴上,当0x =时,1y =-,所以顶点坐标为(0,﹣1),故选择:B.【点睛】本题主要考查二次函数的顶点坐标,掌握二次函数y=ax 2+c 的图象关于y 轴对称是解题的关键.2.B【分析】分别根据一次函数图象,二次函数图象,常数函数的图象的对称性分析判断即可得解.【详解】解:A .直线20222023y x 是轴对称图形,也是中心对称图形,故本选项不符合题意;B .抛物线220222023y x x 是轴对称图形,不是中心对称图形,故本选项符合题意;C .直线2023y =-是轴对称图形,也是中心对称图形,故本选项不符合题意;D .直线2022x y =-是轴对称图形,也是中心对称图形,故本选项不符合题意. 故选:B .【点睛】本题考查了二次函数图象,一次函数图象,常数函数的图象,熟记各图形以及其对称性是解题的关键.3.A【分析】根据二次函数的定义进行解答即可.【详解】22y x =-符合二次函数的定义,故A 符合题意;y B 不符合题意; 31y x =-是一次函数,故C 不符合题意;1y x=中含自变量的代数式不是整式,不符合二次函数的定义,故D 不符合题意;故选A【点睛】本题考查了二次函数的定义,掌握二次函数的一般形式()20y ax bx c a =++≠是解题的关键.4.B【分析】根据抛物线的开口向上,可得20a ->,进而即可求得a 的取值范围.【详解】解:①抛物线2(2)(2)=-≠y a x a 开口向上,①20a ->即2a >故选B【点睛】本题考查了二次函数2y ax =图象的性质,掌握0a >时,抛物线的开口向上是解题的关键.5.C【分析】根据函数解析式求出对称轴,在根据函数的性质求解即可;【详解】解:①245y x x =--+,①函数图像的对称轴是直线422x -=-=--,图象的开口向下, ①当<2x -时,y 随x 的增大而增大, 点353y ⎛⎫ ⎪⎝⎭,关于对称轴的对称点是⎛⎫- ⎪⎝⎭317,3y , ①17413-<-<-, ①213y y y >>;故选:C .【点睛】本题主要考查了二次函数图象上点的坐标特征,掌握二次函数图象的性质是解题的关键.6.D【分析】先求出抛物线的顶点坐标,再根据旋转求出旋转后的抛物线顶点坐标,然后根据顶点式写出抛物线的解析式即可.【详解】解:①()222112y x x x =+-=+-,①抛物线的顶点坐标为()1,2--,①将抛物线221y x x =+-,绕原点旋转180︒后顶点坐标变为()1,2,1a =-,①旋转后的函数关系式为()221221y x x x =--+=-++.故选:D .【点睛】本题主要考查了求抛物线的解析式,关于原点对称的两个点的坐标特点,解题的关键是求出旋转后抛物线的顶点坐标和a 的值.7.D【详解】试题分析:由题意得,二次函数经过原点可知,,又只经过第一,二,三象限,画图可知抛物线开口向上,对称轴在轴的负半轴,综合可知,故选D.考点:二次函数的对称轴及开口方向综合问题.8.A【分析】根据二次函数的最值公式列式计算即可得解.【详解】①二次函数241y mx x =-+有最小值3-, ①41634m m-=-, 解得1m =.故选A .9.C【分析】根据二次函数的性质得到抛物线y =-x 2+2x 的开口向下,对称轴为直线x =1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:①抛物线y =-x 2+2x =-(x -1)2+1,①抛物线y =-x 2+2x 的开口向下,对称轴为直线x =1,而A (-1,a )离直线x =1的距离最远,B (1,b )在直线x =1上,①b >c >a ,故选:C .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.10.B【分析】易证△CFE ∽△BEA ,可得CF CE BE AB=,根据二次函数图象对称性可得E 在BC 中点时,CF 有最大值,列出方程式即可解题.【详解】若点E 在BC 上时,如图∵∠EFC +∠AEB =90°,∠FEC +∠EFC =90°,∴∠CFE =∠AEB ,∵在△CFE 和△BEA 中,90CFE AEB C B ︒∠=∠⎧⎨∠=∠=⎩, ∴△CFE ∽△BEA ,由二次函数图象对称性可得E 在BC 中点时,CF 有最大值,此时CF CE BE AB=,BE =CE =x ﹣52,即525522x y x -=-, ∴225()52y x =-, 当y =25时,代入方程式解得:x 1=32(舍去),x 2=72, ∴BE =CE =1,∴BC =2,AB =52, ∴矩形ABCD 的面积为2×52=5; 故选B . 【点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E 为BC 中点是解题的关键.11.B【分析】根据抛物线的开口方向,对称轴,与y 轴的交点判定系数符号,及运用一些特殊点解答问题.【详解】由抛物线的开口向下可得:a <0,根据抛物线的对称轴在y 轴左边可得:a ,b 同号,所以b <0,根据抛物线与y轴的交点在正半轴可得:c > 0,直线x =-1是抛物线y = ax 2+bx +c (a ≠0)的对称轴,所以-b 2a=-1,可得b =2a ,由图知,当x =-3时y <0,即9a -3b +c < 0,所以9a -6a +c =3a +c <0,因此①abc >0;①a -b +c =a -2a +c =c -a > 0;①a +b +c = a +2a +c =3a +c < 0;①2a -b =2a - 2a = 0;①3a -b =3a - 2a = a <0所以①①小于0,故负数有2个,故答案选B.【点睛】本题主要考查了结合图形判断抛物线方程的系数,解本题的要点在于熟知抛物线的基本性质.12.C【分析】直接利用配方法进而将原式变形得出答案.【详解】y =x 2-8x -9=x 2-8x +16-25=(x -4)2-25.故选C .【点睛】此题主要考查了二次函数的三种形式,正确配方是解题关键.13.C【详解】试题分析:根据二次函数的增减性可得:当x≤k 时,y 随x 的增大而减小,则k≥2.考点:二次函数的性质14.B【分析】将(0,2)(3,-1)(4,2)代入到二次函数y =ax 2+bx +c 中,分别求出a 、b 的值,即可求出方程的解.【详解】由题意得:29311642c a b c a b c =⎧⎪++=-⎨⎪++=⎩解得:142a b c =⎧⎪=-⎨⎪=⎩①方程230ax bx ++=为2430x x -+=(1)(3)0x x --=解得:121,3x x ==故选B【点睛】本题考查二次函数抛物线与坐标轴的交点以及待定系数法函数解析式和一元二次方程求解,熟练掌握相关知识点是解题关键.15.C【详解】试题分析: ①抛物线开口向上,①0a >,①抛物线对称轴为直线2b x a =-=1,①0b <,①抛物线与y 轴交点在x 轴下方,①0c <,①0abc >,所以①正确; ①2b x a=-=1,即2b a =-,①20a b +=,所以①正确; ①抛物线与x 轴的一个交点为(﹣2,0),而抛物线对称轴为直线x=1,①抛物线与x 轴的另一个交点为(4,0),①当3x =时,0y <,①,所以①错误. ①抛物线与x 轴的两个交点为(﹣2,0),(4,0),①方程20ax bx c ++=的解是-2和4,①①正确;由图像可知:不等式20ax bx c ++>的解集是24-<<x ,①①正确.①正确的答案为:①①①①.故选C .考点:二次函数图象与系数的关系.16.B【分析】根据二次函数的图像和性质逐一进行判断即可【详解】解:①抛物线开口朝下,①a <0,①对称轴x =3-22b a=- ①b =3a <0,①3a ﹣b =0,故①正确;①抛物线与y 轴的交点在x 轴的上方,①c >0,①abc >0,故①错误;①抛物线的对称轴x =3-2,与x 轴的一个交点为(-4,0), ①抛物线与x 轴的一个交点为(1,0),①a +b +c =0,故①正确;根据图象知道当x =-3时,y =9a -3b +c >0,故①错误;根据图象知道抛物线与x 轴有两个交点,①b 2-4ac >0,故①正确.①正确答案为:①①①.故选:B【点睛】此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.17.B【分析】可根据二次函数图象左加右减,上加下减的平移规律进行解答.【详解】二次函数y=2x 2的图象向右平移1个单位,得:y=2(x-1)2,故选B .【点睛】本题考查了函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.18.D【分析】根据二次函数系数与图像性质,二次函数与方程,二次函数与不等式之间的关系判断每一个结论,从而得出答案.【详解】①由图像可知,抛物线的开口向上,①a >0,①抛物线与y 轴的交点为在y 轴的负半轴上,①c <0,①ac <0,故此选项正确;①由图像可知,对称轴为x=1, ①12b x a=-=, ①-b=2a ,①2a+b=0,故此选项错误;①当x >1时,y 随x 的增大而增大,故此选项正确;①由图像可知,方程ax 2+bx+c=0的根是x 1=﹣1,且对称轴为x=1, ①1212x x +=, ①2122(1)3x x =-=--=,故此选项正确;①由①可知,12133c x x a==-⨯=-, 3c a ∴=-,30a c ∴+=,故此选项正确;①由图像可知,抛物线的顶点坐标为(1,)a b c ++,∴当x=1时,二次函数y=ax 2+bx+c 有最小值a+b+c ,∴2ax bx c a b c ++≥++,当x=m 时,则有2am bm c a b c ++≥++,∴2am bm a b +≥+,故此选项正确;①正确的说法有①①①①①共5个.故选:D .【点睛】本题考查了二次函数的图像与性质、方程、不等式之间的知识点,要掌握如何利用图像上的信息确定字母系数的范围,并记住特殊值的特殊用法,如x=1,x=-1时对应的y 值是解题的关键.19.D【分析】结合图形、利用数形结合思想解答.【详解】由函数图象可知,当x >4时,y 1>y 2,A 是真命题;当x <-1时,y 1>y 2,C 是真命题;当y 1<y 2时,0<x <4,C 是真命题;y 1>y 2时,x <0或x >4,D 是假命题;故选D .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.20.D【分析】根据抛物线开口方向、对称轴位置、抛物线与y 轴交点位置求得a 、b 、c 的符号;根据对称轴求出b=-a ;把x=2代入函数关系式,结合图象判断函数值与0的大小关. .【详解】:①二次函数的图象开口向下,①a<0,①二次函数的图象交y 轴的正半轴于一点,①c>0,①对称轴是直线x=12,①−2b a =12, ①b=−a>0,①abc<0.故A 错误;①抛物线与x 轴有两个交点,①b 2-4ac>0, 故B 错误①b=−a ,①a+b=0,故C 错误;故答案选D【点睛】本题考查的知识点是二次函数图像与系数的关系,解题的关键是熟练的掌握二次函数图像与系数的关系.21.1y x= 【分析】根据反比例函数、一次函数以及二次函数的性质作答. 【详解】解:该题答案不唯一,可以为1y x=等. 故答案为:1y x =. 【点睛】本题考查的是反比例函数、一次函数以及二次函数的性质,熟知函数的增减性是解答此题的关键.22.()6,9-【分析】直接根据顶点式解析式写出顶点坐标即可.【详解】解:()269y x =-++的顶点为()6,9-, 故答案为:()6,9-.【点睛】本题考查了抛物线顶点式解析式的顶点坐标,解题关键是理解抛物线()()20y a x h k a =-+≠的顶点坐标为()h k ,. 23.2x =-【分析】将题目的解析式化为顶点式,即可得到该抛物线的对称轴,本题得以解决.【详解】解:①抛物线2244(2)8y x x x =+-=+-,①该抛物线的对称轴是直线2x =-,故答案为:2x =-.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.24.(1,-2)【分析】对于二次函数的顶点式()2y a x h k =-+,顶点坐标为()h k ,. 【详解】由y =-(x -1)2-2,根据顶点式的坐标特点可知,顶点坐标为()12-,故答案为:()12-,. 【点睛】本题考查了抛物线的顶点式及顶点坐标;对于二次函数的顶点式()2y a x h k =-+,顶点坐标为()h k ,,掌握顶点式是解题的关键.25.-1【详解】①二次函数y=ax2+bx−1(a≠0)的图象经过点(1,1),①a+b−1=1,①a+b=2,①1−a−b=1−(a+b)=1−2=−1.故答案为-1.26.()22y x =+或244y x x =++【分析】根据函数的平移规律:左加右减;上加下减即可求解.【详解】解:①抛物线2y x 向左平移2个单位,①平移后抛物线的解析式为()22y x =+故答案为:()22y x =+【点睛】本题考查了抛物线的平移变换,熟练掌握抛物线的平移规律是解题的关键. 27.x =3【分析】因为点(1,4),(5,4)的纵坐标都为4,所以可判定是一对对称点,把两点的横坐标代入公式x =122x x +求解即可.【详解】解:抛物线2y ax bx c =++与直线4y =的公共点的坐标是(1,4),(5,4), ①两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x =1532+=,即x =3. 故答案为:3.【点睛】本题考查抛物线与x 轴的平行线交点问题.掌握抛物线的性质,会利用关于对称轴对称的两点坐标求对称轴是解题关键.28.126y ≤≤【分析】先化为顶点式,然后根据二次函数的性质求解即可.【详解】解:①2245(2)1y x x x =-+=-+,①抛物线开口向上,对称轴为直线=2x ,函数有最小值1,当3x =-时,26y =,当=4x 时, 5.y =,①当34x -≤≤时,y 的取值范围是126y ≤≤;故答案为:126y ≤≤.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.29.14m >-且0m ≠ 【分析】根据题意可得0m ≠,且判别式0∆>,求解不等式即可.【详解】解:①二次函数21y mx x =+-的图象与x 轴有两个交点①0m ≠,且判别式240b ac ∆=->①14(1)0m ∆=-⨯⨯->,0m ≠ 解得14m >-且0m ≠ 故答案为:14m >-且0m ≠ 【点睛】此题考查了二次函数的定义以及二次函数与x 轴交点问题,掌握二次函数的定义以及性质是解题的关键.30. 45°; 2【分析】(1)分别求出A,B,C 的坐标,得到OB OC =,故可求解;(2)先求出直线l 的解析式,再得到M,N 的坐标即可求解.【详解】(1)当0y =时,2230x x --=,解得11x =-,23x =,①点A 在点B 的左侧, ①点A 坐标为()1,0-,点B 坐标为()3,0.当0x =时,=3y -,①点C 坐标为()0,3-,①OB OC =,①=45ABC ∠︒.(2)设直线l 的函数表达式为y kx b =+,根据题意得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩, ①直线l 的函数表达式为3y x =-;当2x =时,31=-=-y x ,①点N 的坐标为2,1;当2x =时,22232433=--=--=-y x x ,①点M 的坐标为()2,3-;①()132=---=MN .故答案为:45°;2.【点睛】此题主要考查二次函数与一次函数综合,解题的关键是求出各点坐标. 31.m=2【分析】根据图像的旋转变化规律及二次函数的平移规律得出平移后的解析式,进而即可求值.【详解】①一段抛物线:y =﹣x (x ﹣3)(0≤x≤3),①点O (0,0),A 1(3,0)①将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;如此进行下去,直至得C 13.①C 13的解析式与x 轴的坐标为(36,0)、(39,0)①C 13的解析式为:y =﹣(x -36)(x -39)当x =37时,m=y =﹣1×(﹣2)=2故答案为:2【点睛】本题主要考查二次函数的平移规律,解题的关键是得出二次函数平移后的解析式.32.y =2(x+2)2﹣5【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】由“左加右减”的原则可知,将二次函数y =2x 2的图象向左平移2个单位长度所得抛物线的解析式为:y =2(x+2)2,即y =2(x+1)2;由“上加下减”的原则可知,将抛物线y =2(x+2)2向下平移5个单位长度所得抛物线的解析式为:y =2(x+2)2﹣5,即y =2(x+2)2﹣5.故答案为:y =2(x+2)2﹣5.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.33.213y x x =【分析】首先过B 作x 轴的垂线,设垂足为M ,由已知易求得OA Rt①ABM 中,已知①OAB 的度数及AB 的长,即可求出AM 、BM 的长,进而可得到BC 、CD 的长,再连接OD ,证①ODE ①①AEF ,通过得到的比例线段,即可得出y 与x 的函数关系式.【详解】解:过B 作BM ①x 轴于M .在Rt①ABM 中,①AB =3,①BAM =45°,①AM =BM =2, ①BD =14OA ,OA ∴=,①BC =OA﹣AM =,CD =BC ﹣BD ,①D ,3OD ∴== . 连接OD ,则点D 在①COA 的平分线上,所以①DOE =①COD =45°.又①在梯形DOAB 中,①BAO =45°,①由三角形外角定理得:①ODE =①DEA ﹣45°,又①AEF =①DEA ﹣45°,①①ODE=①AEF ,①①ODE ①①AEF ,OE OD AF AE∴= 即x y =①y 与x 的解析式为:213y x =-.故答案为:213y x =-.【点睛】本题主要考查二次函数的应用,掌握相似三角形的判定及性质是解题的关键.34.(1,﹣4)【分析】根据二次函数的对称性求得对称轴,进而根据表格的数据即可得到抛物线的顶点坐标.【详解】①抛物线过点(0,﹣3)和(2,﹣3),①抛物线的对称轴方程为直线x=022+=1,①当x=1时,y=﹣4,①抛物线的顶点坐标为(1,﹣4);故答案为(1,﹣4).【点睛】本题考查了二次函数的性质,掌握二次函数的对称性是解题的关键.35.(-1,7)【详解】先根据抛物线上点的特点求出点A的坐标,再利用抛物线的对称性即可得出答案.解:把点A(-3,m)代y=x2+4x+10得,m=(-3)2+4×(-3)+10=7,①点A(-3,7),①对称轴42 22ba-=-=-,①点A(-3,7)关于对称轴x=2的对称点坐标为(-1,7).故答案为(-1,7).36.11【分析】由图象关于y轴对称可知对称轴为x=0,由此可求解m的值;代入m值后,分别求解抛物线与x 轴的两个交点以及与y 轴的交点,利用三角形面积公式计算三角形面积.【详解】①图象关于y 轴对称,①对称轴为x=0, ①()211022m b m a --=-=-=- 解得m=1,代入原方程得:21y x =-+当y=0时,210x -+=,x=±1,当x=0时,y=1,则S △=2112⨯=. 【点睛】本题考查了二次函数对称轴及其与x 、y 轴的交点.37.①①①.【详解】试题解析:①x =-1时y =-1,x =0时,y =3,x =1时,y =5,①1{35a b c c a b c -+-++===,解得1{33a b c -===,①y =-x 2+3x +3,①ac =-1×3=-3<0,故①正确;对称轴为直线x =-33212=⨯-(), 所以,当x >32时,y 的值随x 值的增大而减小,故①错误; 当x =2时,y =-4+4+3=3;故①正确.方程为-x 2+2x +3=0,整理得,x 2-2x -3=0,解得x 1=-1,x 2=3,所以,3是方程ax 2+(b -1)x +c =0的一个根,正确,故①正确.综上所述,结论正确的是①①①.【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键.38.①①①【分析】根据二次函数的开口方向、对称轴、顶点坐标以及二次函数与一元二次方程的关系综合进行判断即可.【详解】解:由抛物线开口向上,因此0a >, 对称轴是直线12b x a=-=-,因此a 、b 同号,所以0b >, 抛物线与y 轴的交点在负半轴,因此0c <. ,所以0abc <,故①不正确; 由对称轴12b x a=-=-可得2b a =, 由图象可知,当1x =时,0y a b c =++>,即20a a c ++>,30a c ∴+>,又0a >,40a c ∴+>,因此①正确;当=1x -时,y a b c =-+最小值,∴当()1x t t =≠-时,2a b c at bt c -+<++,即2a bt at b -<+,x t ∴=(t 为任意实数)时,有2a bt at b -≤+,因此①不正确;函数图象经过点()2,1,即421a b c ++=,而2b a =,231a b c ∴++=,311222a b c ∴++=, 因此①正确;当函数图象经过()2,1时,方程21ax bx c ++=的两根为1x ,212()x x x <,而对称轴为=1x -, 14x ∴=-,22x =,122448x x ∴-=--=-,因此①正确;综上所述,正确的结论有:①①①,故答案为:①①①.【点睛】本查二次函数的图象和性质,掌握二次函数图象的开口方向、对称轴、顶点坐标与系数a 、b 、c 的关系以及二次函数与一元二次方程的根的关系是正确判断的前提. 39.8【分析】由已知可证明①AHE ①①BEF ①①CFG ①①DGH (SAS ),再证明四边形EFGH 是正方形,设AE =x ,则AH =DG =BE =CF =4﹣x ,在Rt①EAH 中,由勾股定理得EH 2=x 2+(4﹣x )2,所以S 四边形EFGH =EH 2=2(x ﹣2)2+8,可知当x =2时,S 四边形EFGH 有最小值8,【详解】解:设AE =x ,则AE =BF =CG =DH =x ,①正方形ABCD ,边长为4,①AH =DG =BE =CF =4﹣x ,①A =①B =①C =①D =90°①①AHE ①①BEF ①①CFG ①①DGH (SAS ),①①AEH +①BEF =90°,①EFB +①GFC =90°,①FGC +①HGD =90°,①①HEF =①EFG =①FGH =90°,①EF =EH =HG =FG ,①四边形EFGH 是正方形,在Rt ①EAH 中,EH 2=AE 2+AH 2,即EH 2=x 2+(4﹣x )2,①S 四边形EFGH =EH 2=2x 2﹣8x +16=2(x ﹣2)2+8,当x =2时,S 四边形EFGH 有最小值8,故答案为:8.【点睛】本题主要考查了全等三角形的性质与判定,正方形的性质和二次函数的实际应用,解题的关键在于能够熟练掌握相关知识进行求解.40.53【分析】通过作辅助线,连接CO ,过点Q 作AC 的垂线交AC 延长线于点D ,先证明AOB 与ACP 相似,得到ABP AOC ∠∠=,再证QDA 与CAO 相似,设出点Q 的坐标,通过相似比即可求出点Q 坐标.【详解】如图,连接CO ,过点Q 作AC 的垂线交AC 延长线于点D ,。
中考数学复习考点题型专题练习2---《二次函数图像选择题综合》(含答案)
∴a﹣b+c≤ma2+bm+c(m 为任意实数), ∴a﹣b≤m(am+b)(m 为实数),所以④错误; ∵抛物线与 x 轴有 2 个交点, ∴△=b2﹣4ac>0, 即 4ac﹣b2<0,所以⑤正确. 故选:D. 5.解:∵抛物线开口向上, ∴a>0, ∵抛物线的对称轴在 y 轴的右侧, ∴b<0, ∵抛物线与 y 轴的交点在 x 轴下方, ∴c<0, ∴abc>0, ∴①的结论错误; ∵抛物线过点(﹣1,0)和(m,0),且 1<m<2,
A.2
B.3
C.4
D.5
参考答案
1.解:①由图象可知:a>0,c<0, ∴ac<0,故①错误; ②由图象可知:x=﹣1 时,y=a﹣b+c>0,故②错误; ③由于抛物线与 x 轴有两个交点, ∴△=b2﹣4ac>0,故③正确; ④由于对称轴可知:﹣ <1, ∴2a+b>0,故④正确; ⑤当 x>﹣ 时,y 随着 x 的增大而增大,故⑤错误; 故选:B.
B.将(﹣1,0)代入解析式得 a﹣b+c=0,由 x=﹣ =﹣1 知 b=2a,则 a﹣2a+c=0,
整理得 a=c,此选项正确;
中考数学复习之二次函数常考66种题型专题1 二次函数的图象与性质(一)(含答案及解析)
专题22.1 二次函数的图象与性质(一)-重难点题型【题型1 判断二次函数的个数】【例1】(2020秋•太康县期末)下列函数:①y=3−√3x2;②y=2x2;③y=x(3﹣5x);④y=(1+2x)(1﹣2x),是二次函数的有()A.1个B.2个C.3个D.4个【变式1-1】(2020•涡阳县一模)已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2x2﹣x﹣1;⑤y=ax2+bx+c,其中二次函数的个数为()A.1B.2C.3D.4【变式1-2】(2020秋•扬州期末)下列函数是关于x的二次函数的有()①y=x(2x﹣1);②y=1x2;③y=√32x2−1;④y=ax2+2x(a为任意实数);⑤y=(x﹣1)2﹣x2;⑥y=√x2+x+1.A.2个B.3个C.4个D.5个【变式1-3】(2020秋•广汉市期中)观察:①y=6x2;②y=﹣3x2+5;③y=200x2+400x+200;④y=x3﹣2x;⑤y=x2−1x+312;⑥y=(x+1)2﹣x2.这六个式子中,二次函数有.(只填序号)【题型2 利用二次函数的概念求字母的值】【例2】(2020秋•沙坪坝区校级月考)若函数y=(a+1)x|a2+1|是关于x的二次函数,则a 的值为.【变式2-1】(2020秋•肃州区期末)如果函数y=(k﹣3)x k2−3k+2+kx+1是二次函数,则k的值是.【变式2-2】(2020秋•江油市校级月考)函数y=(m2﹣3m+2)x2+mx+1﹣m,则当m=时,它为正比例函数;当m=时,它为一次函数;当m时,它为二次函数.【变式2-3】(2020秋•新昌县校级月考)已知函数y=(m2+m)x m2−2m+2.(1)当函数是二次函数时,求m的值;;(2)当函数是一次函数时,求m的值..【题型3 二次函数的一般形式】【例3】(2020秋•防城区期中)设a,b,c分别是二次函数y=﹣x2+3的二次项系数、一次项系数、常数项,则()A.a=﹣1,b=3,c=0B.a=﹣1,b=0,c=3C.a=﹣1,b=3,c=3D.a=1,b=0,c=3【变式3-1】(2020秋•遂溪县校级期中)关于函数y=(500﹣10x)(40+x),下列说法不正确的是()A.y是x的二次函数B.二次项系数是﹣10C.一次项是100D.常数项是20000【变式3-2】(2020春•肇东市期末)已知二次函数y=1﹣5x+3x2,则二次项系数a=,一次项系数b=,常数项c=.【变式3-3】(2020秋•新昌县期末)若二次函数y=(2x﹣1)2+1的二次项系数为a,一次项系数为b,常数项为c,则b2﹣4ac0(填写“>”或“<”或“=”)【题型4 根据实际问题列二次函数(销售类)】【例4】(2020秋•硚口区期中)某商品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查反映;如调整价格,每涨价1元,每星期要少卖出10件.则每星期售出商品的利润y(单位:元)与每件涨价x(单位:元)之间的函数关系式是()A.y=300﹣10x B.y=300(60﹣40﹣x)C.y=(300+10x)(60﹣40﹣x)D.y=(300﹣10x)(60﹣40+x)【变式4-1】(2020秋•朝阳期中)某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨2元,月销售量就减少10千克.设每千克涨x元,月销售利润为y元,则y与x的函数关系式为()A.y=(50+x﹣40)(500﹣10x)B.y=(x+40)(10x﹣500)C.y=(x﹣40)[500﹣5(x﹣50)]D.y=(50+x﹣40)(500﹣5x)【变式4-2】(2020春•西湖区校级月考)某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.【变式4-3】(2020•诸城市一模)某厂生产某种零件,该厂为鼓励销售商订货,提供了如下信息:①每个零件的成本价为40元;②若订购量不超过100个,出厂价为60元;若订购量超过100个时,每多订1个,订购的全部零件的出厂单价就降低0.02元;③实际出厂单价不能低于51元.根据以上信息,解答下列问题:(1)当一次订购量为个时,零件的实际出厂单价降为51元.(2)设一次订购量为x个时,零件的实际出厂单价为P元,写出P与x的函数表达式.(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂价﹣成本).【题型5 根据实际问题列二次函数(面积类)】【例5】(2020•平阳县一模)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m宽的门,已知计划中的建筑材料可建围墙(不包括门)的总长度为50m.设饲养室长为xm,占地面积为ym2,则y关于x的函数表达式是()A.y=﹣x2+50x B.y=−12x2+24xC.y=−12x2+25x D.y=−12x2+26x【变式5-1】(2020秋•沙坪坝区校级期中)如图,某农场拟建一间矩形奶牛饲养室,打算一边利用房屋现有的墙(墙足够长),其余三边除大门外用栅栏围成,栅栏总长度为50m,门宽为2m.若饲养室长为xm,占地面积为ym2,则y关于x的函数表达式为()A.y=−12x2+26x(2≤x<52)B.y=−12x2+50x(2≤x<52)C.y=﹣x2+52x(2≤x<52)D.y=−12x2+27x﹣52(2≤x<52)【变式5-2】(2020秋•思明区校级期中)如图,某小区进行绿化改造,矩形花园的一边由墙AB和一节篱笆BF构成,另三边由篱笆ADEF围成,篱笆总长40米,墙AB长16米,若BF=x米,花园面积是S平方米,则S关于x的函数关系式是:.【变式5-3】(2020秋•东营期中)如图,某农场要盖一排三间长方形的羊圈,打算一面利用旧墙,其余各面用木材围成栅栏,该计划用木材围成总长24m的栅栏,设面积为s(m2),垂直于墙的一边长为x(m)米.则s关于x的函数关系式:(并写出自变量的取值范围)【题型6 根据实际问题列二次函数(几何类)】【例6】(2020•西湖区校级模拟)在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,若a+b=5,则Rt△ABC的面积S关于边长c的函数关系式为()A.S=25−c24B.S=25−c22C.S=25−c2D.S=25+c24【变式6-1】(2020秋•翼城县期末)如图,在Rt△ABO中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得的阴影部分的面积为S,则S与t之间的函数关系式为()A.S=t(0<t≤3)B.S=12t2(0<t≤3)C.S=t2(0<t≤3)D.S=12t2﹣1(0<t≤3)【变式6-2】(2021•江夏区模拟)如图,在△ABC中,AB=AC,BC=6,E为AC边上的点且AE=2EC,点D在BC边上且满足BD=DE,设BD=y,S△ABC=x,则y与x的函数关系式为()A.y=1810x2+52B.y=4810x2+52C.y=1810x2+2D.y=4810x2+2【变式6-3】(2020秋•孝感期末)如图,正方形ABCD的边长是4,E是AB上一点,F是AD延长线上的一点,BE=DF.四边形AEGF是矩形,矩形AEGF的面积y与BE的长x 的函数关系是.答案及解析专题1 二次函数的图象与性质(一)-重难点题型还需使实际问题有意义.【题型1 判断二次函数的个数】【例1】(2020秋•太康县期末)下列函数:①y=3−√3x2;②y=2x2;③y=x(3﹣5x);④y=(1+2x)(1﹣2x),是二次函数的有()A.1个B.2个C.3个D.4个【分析】利用二次函数定义进行分析即可.【解答】解:①y=3−√3x2;③y=x(3﹣5x);④y=(1+2x)(1﹣2x),是二次函数,共3个,故选:C.【点评】此题主要考查了二次函数定义,关键是掌握判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.【变式1-1】(2020•涡阳县一模)已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2x2﹣x﹣1;⑤y=ax2+bx+c,其中二次函数的个数为()A.1B.2C.3D.4【分析】根据二次函数定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数进行分析即可.【解答】解:②④是二次函数,共2个,故选:B.【点评】此题主要考查了二次函数的定义,关键是掌握y=ax2+bx+c(a、b、c是常数,a ≠0)是二次函数,注意a≠0这一条件.【变式1-2】(2020秋•扬州期末)下列函数是关于x的二次函数的有()①y=x(2x﹣1);②y=1x2;③y=√32x2−1;④y=ax2+2x(a为任意实数);⑤y=(x﹣1)2﹣x2;⑥y=√x2+x+1.A.2个B.3个C.4个D.5个【分析】根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数进行分析可得答案.【解答】解:是关于x的二次函数的有①③故选:A.【点评】此题主要考查了二次函数定义,判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.【变式1-3】(2020秋•广汉市期中)观察:①y=6x2;②y=﹣3x2+5;③y=200x2+400x+200;④y=x3﹣2x;⑤y=x2−1x+312;⑥y=(x+1)2﹣x2.这六个式子中,二次函数有.(只填序号)【分析】根据二次函数的定义可得答案.【解答】解:这六个式子中,二次函数有:①y=6x2;②y=﹣3x2+5;③y=200x2+400x+200;故答案为:①②③.【点评】本题主要考查的是二次函数的定义,熟练掌握二次函数的概念是解题的关键.【题型2 利用二次函数的概念求字母的值】【例2】(2020秋•沙坪坝区校级月考)若函数y=(a+1)x|a2+1|是关于x的二次函数,则a 的值为.【分析】根据二次函数定义可得|a2+1|=2且a+1≠0,求解即可.【解答】解:∵函数y=(a+1)x|a2+1|是关于x的二次函数,∴|a2+1|=2且a+1≠0,解得a=1,故答案为:1.【点评】本题考查的是二次函数的定义,二次函数的定义:一般地,形如y=ax2+bx+c (a、b、c是常数,a≠0)的函数,叫做二次函数.【变式2-1】(2020秋•肃州区期末)如果函数y=(k﹣3)x k2−3k+2+kx+1是二次函数,则k的值是.【分析】利用二次函数定义可得k2﹣3k+2=2,且k﹣3≠0,再解出k的值即可.【解答】解:由题意得:k2﹣3k+2=2,且k﹣3≠0,解得:k=0,故答案为:0.【点评】此题主要考查了二次函数定义,关键是掌握形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.【变式2-2】(2020秋•江油市校级月考)函数y=(m2﹣3m+2)x2+mx+1﹣m,则当m=时,它为正比例函数;当m=时,它为一次函数;当m时,它为二次函数.【分析】首先解方程,进而利用正比例函数、一次函数与二次函数的定义得出答案.【解答】解:m2﹣3m+2=0,则(m﹣1)(m﹣2)=0,解得:m1=1,m2=2,故m≠1且m≠2时,它为二次函数;当m=1或2时,它为一次函数,当m=1时,它为正比例函数;故答案为:1;1或2;m≠1且m≠2【点评】此题主要考查了一次函数与二次函数的定义,正确解方程是解题关键.【变式2-3】(2020秋•新昌县校级月考)已知函数y=(m2+m)x m2−2m+2.(1)当函数是二次函数时,求m的值;;(2)当函数是一次函数时,求m的值..【分析】(1)这个式子是二次函数的条件是:m2﹣2m+2=2并且m2+m≠0;(2)这个式子是一次函数的条件是:m2﹣2m+2=1并且m2+m≠0.【解答】解:(1)依题意,得m2﹣2m+2=2,解得m=2或m=0;又因m2+m≠0,解得m≠0或m≠﹣1;因此m=2.(2)依题意,得m2﹣2m+2=1解得m=1;又因m2+m≠0,解得m≠0或m≠﹣1;因此m=1.【点评】本题主要考查一次函数与二次函数的定义与一般形式.【题型3 二次函数的一般形式】【例3】(2020秋•防城区期中)设a,b,c分别是二次函数y=﹣x2+3的二次项系数、一次项系数、常数项,则()A.a=﹣1,b=3,c=0B.a=﹣1,b=0,c=3C.a=﹣1,b=3,c=3D.a=1,b=0,c=3【分析】根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项作答.【解答】解:二次函数y=﹣x2+3的二次项系数是a=﹣1,一次项系数是b=0,常数项是c=3;故选:B.【点评】此题主要考查了二次函数的定义,关键是注意在找二次项系数,一次项系数和常数项时,不要漏掉符号.【变式3-1】(2020秋•遂溪县校级期中)关于函数y=(500﹣10x)(40+x),下列说法不正确的是()A.y是x的二次函数B.二次项系数是﹣10C.一次项是100D.常数项是20000【分析】根据形如y=ax2+bx+c是二次函数,可得答案.【解答】解:y=﹣10x2+100x+20000,A、y是x的二次函数,故A正确;B、二次项系数是﹣10,故B正确;C、一次项是100x,故C错误;D、常数项是20000,故D正确;故选:C.【点评】本题考查了二次函数的定义,化成二次函数的一般式是解题关键.【变式3-2】(2020春•肇东市期末)已知二次函数y=1﹣5x+3x2,则二次项系数a=,一次项系数b=,常数项c=.【分析】根据二次函数的定义,可得答案.【解答】解:二次函数y=1﹣5x+3x2,则二次项系数a=3,一次项系数b=﹣5,常数项c=1,故答案为:3,﹣5,1.【点评】本题考查了二次函数的定义,熟记二次函数的定义是解题关键.【变式3-3】(2020秋•新昌县期末)若二次函数y=(2x﹣1)2+1的二次项系数为a,一次项系数为b,常数项为c,则b2﹣4ac0(填写“>”或“<”或“=”)【分析】根据二次函数的解析式得出a,b,c的值,再代入b2﹣4ac计算,判断与0的大小即可.【解答】解:∵y=(2x﹣1)2+1,∴a=4,b=﹣4,c=2,∴b2﹣4ac=16﹣4×4×2=﹣16<0,故答案为<.【点评】本题考查了二次函数的定义以及各项系数,掌握a,b,c的确定是解题的关键.(1)理解题意:找出实际问题中的已知量和変量(自变量,因变量),将文字或图形语言转化为数学语言;(2)分析关系:找到已知量和变量之间的关系,列出等量关系式;(3)列函数表达式:设出表示变量的字母,把等量关系式用含字母的式子替换,将表达式写成用自变量表示的函数的形式.【题型4 根据实际问题列二次函数(销售类)】【例4】(2020秋•硚口区期中)某商品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查反映;如调整价格,每涨价1元,每星期要少卖出10件.则每星期售出商品的利润y(单位:元)与每件涨价x(单位:元)之间的函数关系式是()A.y=300﹣10x B.y=300(60﹣40﹣x)C.y=(300+10x)(60﹣40﹣x)D.y=(300﹣10x)(60﹣40+x)【分析】由每件涨价x元,可得出销售每件的利润为(60﹣40+x)元,每星期的销售量为(300﹣10x),再利用每星期售出商品的利润=销售每件的利润×每星期的销售量,即可得出结论.【解答】解:∵每涨价1元,每星期要少卖出10件,每件涨价x元,∴销售每件的利润为(60﹣40+x)元,每星期的销售量为(300﹣10x),∴每星期售出商品的利润y=(300﹣10x)(60﹣40+x).故选:D.【点评】本题考查了根据实际问题列二次函数关系式,根据各数量之间的关系,找出y 与x之间的函数关系式.【变式4-1】(2020秋•朝阳期中)某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨2元,月销售量就减少10千克.设每千克涨x元,月销售利润为y元,则y与x的函数关系式为()A.y=(50+x﹣40)(500﹣10x)B.y=(x+40)(10x﹣500)C.y=(x﹣40)[500﹣5(x﹣50)]D.y=(50+x﹣40)(500﹣5x)【分析】直接利用销量×每千克利润=总利润,得出函数关系式即可.【解答】解:设每千克涨x元,月销售利润为y元,则y与x的函数关系式为:y=(50+x﹣40)(500﹣5x).故选:D.【点评】此题主要考查了根据实际问题列函数关系式,正确表示出销量是解题关键.【变式4-2】(2020春•西湖区校级月考)某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.【分析】(1)当售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,y=260﹣x,50≤x≤80,当如果售价超过80元后,若再涨价,则每涨1元每月少卖3件,y=420﹣3x,80<x≤140,(2)由利润=(售价﹣成本)×销售量列出函数关系式,【解答】解:(1)当50≤x≤80时,y=210﹣(x﹣50),即y=260﹣x,当80<x≤140时,y=210﹣(80﹣50)﹣3(x﹣80),即y=420﹣3x.则{y=260−x(50≤x≤80)y=420−3x(80<x<140);(2)由题意可得,W=﹣x2+300x﹣10400(50≤x≤80),W=﹣3x2+540x﹣16800(80<x<140).【点评】本题主要考查二次函数的应用,根据题意列出函数关系式是解决本题的关键.【变式4-3】(2020•诸城市一模)某厂生产某种零件,该厂为鼓励销售商订货,提供了如下信息:①每个零件的成本价为40元;②若订购量不超过100个,出厂价为60元;若订购量超过100个时,每多订1个,订购的全部零件的出厂单价就降低0.02元;③实际出厂单价不能低于51元.根据以上信息,解答下列问题:(1)当一次订购量为个时,零件的实际出厂单价降为51元.(2)设一次订购量为x个时,零件的实际出厂单价为P元,写出P与x的函数表达式.(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂价﹣成本).【分析】(1)由题意设每个零件的实际出厂价恰好降为51元时,一次订购量为x 个,则x =100+60−510.02=550进而得出答案; (2)前100件单价为P ,当进货件数大于等于550件时,P =51,则当100<x <550时,P =60﹣0.02(x ﹣100)=62−x50得到P 为分段函数,写出解析式即可; (3)设销售商的一次订购量为x 个时,工厂获得的利润为L 元,表示出L 与x 的函数关系式,然后令x =500,1000即可得到对应的利润.【解答】解:(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 个,则x =100+60−510.02=550, 根据实际出厂单价不能低于51元,因此,当一次订购量为大于等于550个时,每个零件的实际出厂价恰好降为51元. 故答案为:≥550;(2)当0<x ≤100时,P =60当100<x <550时,P =60﹣0.02(x ﹣100)=62−x 50当x ≥550时,P =51所以P ={60(0<x ≤100)62−x 50(100<x <550)51(550≤x);(3)设销售商的一次订购量为x 个时,工厂获得的利润为L 元, 则L =(P ﹣40)x ={20x(0<x ≤100)22x −x 250(100<x <500)当x =500时,L =22×500−500250=6000(元);当x =1000时,L =(51﹣40)×1000=11000(元),因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元.【点评】本小题主要考查了二次函数的应用以及分段函数的应用,注意利用自变量取值范围得出函数解析式是解题关键.【题型5 根据实际问题列二次函数(面积类)】【例5】(2020•平阳县一模)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m 宽的门,已知计划中的建筑材料可建围墙(不包括门)的总长度为50m .设饲养室长为xm ,占地面积为ym 2,则y 关于x 的函数表达式是( )A .y =﹣x 2+50xB .y =−12x 2+24xC .y =−12x 2+25xD .y =−12x 2+26x【分析】根据题意表示出矩形的宽,再利用矩形面积求法得出答案. 【解答】解:设饲养室长为xm ,占地面积为ym 2,则y 关于x 的函数表达式是:y =x •12(50+2﹣x )=−12x 2+26x .故选:D .【点评】此题主要考查了根据实际问题列二次函数关系式,正确表示出矩形的宽是解题关键.【变式5-1】(2020秋•沙坪坝区校级期中)如图,某农场拟建一间矩形奶牛饲养室,打算一边利用房屋现有的墙(墙足够长),其余三边除大门外用栅栏围成,栅栏总长度为50m ,门宽为2m .若饲养室长为xm ,占地面积为ym 2,则y 关于x 的函数表达式为( )A .y =−12x 2+26x (2≤x <52) B .y =−12x 2+50x (2≤x <52) C .y =﹣x 2+52x (2≤x <52)D .y =−12x 2+27x ﹣52(2≤x <52)【分析】直接根据题意表示出垂直与墙饲养室的一边长,再利用矩形面积求法得出答案.【解答】解:y关于x的函数表达式为:y=12(50+2﹣x)x=−12x2+26x(2≤x<52).故选:A.【点评】此题主要考查了根据实际问题列二次函数关系,正确表示出另一边长是解题关键.【变式5-2】(2020秋•思明区校级期中)如图,某小区进行绿化改造,矩形花园的一边由墙AB和一节篱笆BF构成,另三边由篱笆ADEF围成,篱笆总长40米,墙AB长16米,若BF=x米,花园面积是S平方米,则S关于x的函数关系式是:.【分析】根据题意分别表示出长方形的长与宽进而得出答案.【解答】解:由题意可得:S=(16+x)•40−x−16−x2=(16+x)(12﹣x)=﹣x2﹣4x+192.故答案为:S=﹣x2﹣4x+192.【点评】此题主要考查了根据实际问题抽象出二次函数关系式,正确表示出矩形的长与宽是解题关键.【变式5-3】(2020秋•东营期中)如图,某农场要盖一排三间长方形的羊圈,打算一面利用旧墙,其余各面用木材围成栅栏,该计划用木材围成总长24m的栅栏,设面积为s(m2),垂直于墙的一边长为x(m)米.则s关于x的函数关系式:(并写出自变量的取值范围)【分析】先根据栅栏的总长度24表示出三间羊圈与旧墙平行的一边的总长为(24﹣4x),再根据长方形的面积公式表示即可得到s关于x的函数关系式;找到关于x的两个不等式:24﹣4x>0,x>0,解之即可求出x的取值范围.【解答】解:根据题意可知,三间羊圈与旧墙平行的一边的总长为(24﹣4x),则:s=(24﹣4x)x=﹣4x2+24x由图可知:24﹣4x>0,x>0,所以x的取值范围是0<x<6,故答案为:s=﹣4x2+24x(0<x<6).【点评】此题主要考查了结合实际问题列二次函数解析式.本题中主要涉及的知识点有:二次函数的表示方法,自变量取值范围的解法,找到关于x的不等式.【题型6 根据实际问题列二次函数(几何类)】【例6】(2020•西湖区校级模拟)在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,若a+b=5,则Rt△ABC的面积S关于边长c的函数关系式为()A.S=25−c24B.S=25−c22C.S=25−c2D.S=25+c24【分析】直接利用直角三角形的性质结合完全平方公式得出S与c的关系.【解答】解:∵∠C=90°,BC=a,AC=b,AB=c,∴a2+b2=c2,∵Rt△ABC的面积S,∴S=12ab,∵a+b=5,∴(a+b)2=25,∴a2+b2+2ab=25,∴c2+4S=25,∴S=25−c2 4.故选:A.【点评】此题主要考查了根据实际问题列二次函数关系式,正确掌握直角三角形的性质是解题关键.【变式6-1】(2020秋•翼城县期末)如图,在Rt△ABO中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得的阴影部分的面积为S,则S与t之间的函数关系式为()A.S=t(0<t≤3)B.S=12t2(0<t≤3)C.S=t2(0<t≤3)D.S=12t2﹣1(0<t≤3)【分析】Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t之间的函数关系式.【解答】解:如图所示,∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=12×OD×CD=12t2(0<t≤3),即S=12t2(0<t≤3).故选:B.【点评】本题主要考查的是二次函数解析式的求法,解题的关键是能够找到题目中的有关面积的等量关系,难度不大.【变式6-2】(2021•江夏区模拟)如图,在△ABC中,AB=AC,BC=6,E为AC边上的点且AE=2EC,点D在BC边上且满足BD=DE,设BD=y,S△ABC=x,则y与x的函数关系式为()A.y=1810x2+52B.y=4810x2+52C.y=1810x2+2D.y=4810x2+2【分析】过A作AH⊥BC,过E作EP⊥BC,则AH∥EP,由此得出关于x和y的方程,即可得出关系式.【解答】解:过A作AH⊥BC,过E作EP⊥BC,则AH∥EP,∴HC=3,PC=1,BP=5,PE=13AH,∵BD=DE=y,∴在Rt△EDP中,y2=(5﹣y)2+PE2,∵x=6AH÷2=3AH,∴y2=(5﹣y)2+(19x)2,∴y=1810x2+52,故选:A.【点评】此题主要考查了根据实际问题列二次函数关系式的知识,关键是根据等腰三角形的性质进行分析,难度适中.【变式6-3】(2020秋•孝感期末)如图,正方形ABCD的边长是4,E是AB上一点,F是AD延长线上的一点,BE=DF.四边形AEGF是矩形,矩形AEGF的面积y与BE的长x 的函数关系是.【分析】设BE的长度为x(0≤x<4),则AE=4﹣x,AF=4+x,根据矩形的面积即可得出y关于x的函数关系式,此题得解.【解答】解:设BE的长度为x(0≤x<4),则AE=4﹣x,AF=4+x,∴y=AE•AF=(4﹣x)(4+x)=16﹣x2.故答案为:y=16﹣x2(0≤x<4).【点评】本题考查了根据实际问题列二次函数关系式,根据矩形的面积找出y关于x的函数关系式是解题的关键.。
2020年中考数学复习 二次函数y=ax2+bx+c的符号 专项练习(含答案)
二次函数y=ax 2+bx+c 中a 、b 、c 符号的确定第一部分 知识梳理我们知道抛物线2y ax bx c =++的三要素是:开口方向、对称轴、顶点.只要知道了抛物线的开口方向、对称轴、顶点,就可进一步研究抛物线的其他性质。
一、在抛物线2y ax bx c =++(0a ≠)中开口方向、对称轴、顶点是由a 、b 、c 来决定的。
1、抛物线的开口方向由a 的符号来决定:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.2、对称轴:平行于y 轴(或重合)的直线记作2b x a=-.特别地,y 轴记作直线0=x . 3、顶点坐标:),(ab ac a b 4422-- 4、顶点决定抛物线的位置,几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.二、抛物线c bx ax y ++=2中,c b a ,,与函数图像的关系可概括为:1 、二次项系数a二次函数2y ax bx c =++(0a ≠)中,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.⑴ 当0a >时,抛物线开口向上。
⑵ 当0a <时,抛物线开口向下。
(3)a 的越大开口越小,反之,a 的越小开口越大2一次项系数ba 、b 共同决定了抛物线的对称轴的位置.⑴ a 、b 同号时,02b a -<,对称轴 2b x a=- 在y 轴左侧; ⑵ a 、b 异号时, 02b a ->,对称轴2b x a=-在y 轴右侧; (3)b=0时,对称轴为y 轴(x=0)3、常数项c 与y 轴交点(0,c )的位置⑴ 当0c >时,与y 轴交于正半轴; ⑵ 当0c <时,与y 轴交于负半轴⑶ 当0c =时,与y 轴的交点为坐标原点(0,0)反之也成立。
因此可以通过抛物线的开口方向、对称轴、顶点来确定a 、b 、c 的符号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数判断符号问题大全
1、函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )
2、抛物线的图象如图所示,根据图象可知,抛物线的解析式可能..是( )A 、y=x 2
-x-2 B 、y=12
1
212++-
x C 、y=12
1
212+--
x x D 、y=22++-x x 3、已知二次函数2
(0)y ax bx c a =++≠的图象如图所示,则下列结论:
0ac >①;②方程20ax bx c ++=的两根之和大于0;y ③随x 的增
大而增大;④0a b c -+<,其中正确的个数()A .4个 B .3个 C .2个 D .1个
3题图 4题图 5题图
4、二次函数c bx ax y ++=2的图象如图2所示,若点A (1,y 1)、B (2,y 2)是它图象上的两点,则y 1与y 2的大小关系是(
)A .21y y < B .21y y = C .21y y > D .不能确定
5、已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,给出以下结论:
①a >0.②该函数的图象关于直线1x =对称. ③当13x x =-=或时,函数y 的值都等于0. 其中正确结论的个数是( ) A .3 B .2 C .1 D .0
6、二次函数2
y ax bx c =++的图象如图所示,则一次函数2
4y bx b ac =+-与反比例函数a b c
y x
++=在同一坐标系内的图象大致为( )
x
y
O
1
B .
C .
D . 1
1
1
1
x
o
y
y
o
x
y
o
x
x
o
y
O
7、已知二次函数2
y ax bx c =++(0a ≠)的图象如图4所示,有下列四个结论:
20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有( )
A .1个
B .2个
C .3个
D .4个
7题图 8题图 9题图 8、已知=次函数y =ax 2
+bx+c 的图象如图.则下列5个代数式:ac ,a+b+c ,4a -2b+c , 2a+b ,2a -b 中,其值大于0的个数为( ) A .2 B 3 C 、4 D 、5
9、已知二次函数2
y ax bx c =++(0a ≠)的图象如图所示,有下列四个结论:
20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有( )
A .1个
B .2个
C .3个
D .4个
10、二次函数2
y ax bx c =++的图象如图所示,则一次函数2
4y bx b ac =+-与反比例函数a b c y x
++=在同一坐标系内的图象大致为( )
1
O y
3
1-
1
O x
y
y
x
O y
x
O B .
y
x
O A .
y
x
O y x
O y x
O
B .
y x
O A .
y
x
O
11、小强从如图所示的二次函数2
y ax bx c =++的图象中,观察得出了下面五条信息:(1)0a <;(2) 1c >;
(3)0b >;(4) 0a b c ++>; (5)0a b c -+>. 你认为其中正确信息的个数有 A .2个 B .3个 C .4个 D .5个
12题图
12、二次函数2
(0)y ax bx c a =++≠的图象如图所示,对称轴是直线1x =,则下列四个结论错误..的是( ) A .0c > B .20a b += C .2
40b ac -> D .0a b c -+> 13、在同一直角坐标系中,函数y mx m =+和函数2
22y mx x =-++(m 是常数,且0m ≠)的图象可.能.
是( )
14、二次函数c bx ax y ++=2的图象如图6所示,则下列关系式不正确的是
A .a <0
B.abc >0
C.c b a ++>0
D.ac b 42->0
15、已知二次函数2
y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③
0abc >;④420a b c -+<;⑤1c a ->其中所有正确结论的序号是( )
A .①②
B . ①③④
C .①②③⑤
D .①②③④⑤
1
21
1O
1
x
y 11题图
15题图
16、二次函数)0(2
≠++=a c bx ax y 的图象如图,下列判断错误的是 ( )
A .0<a
B .0<b
C .0<c
D .042
<-ac b
17、二次函数c bx ax y ++=2的图象如图所示,则下列关系式中错误..的是( ) 2
1
1
1-
O x
y
(17题图)
1
1 1-
O
x
y
第16题图
y
x
O
1
-1。