材料力学-切应力计算(完整资料).doc
材料力学(第五版)扭转切应力
p
q
a’ b’
φ 圆轴两端面的
相对扭转角
M
d’
e
M
φ q R
e
c’
qq平面相对于pp的相对扭转 角为: d 圆轴表面的切应变γ 为:
p p
q
d c
p
a a
Rd a a d R ad dx dx
ρ
b
q
d R (a ) dx
b
现研究圆轴内部的切应变
圆轴内部的切应变
作 业
3-1
3-2
3-7
3-8
d G (c ) dx
0
0
d maxGR dx
R
三、静力关系
M
e
T dA ) (
A
T
代入: 得:
d G ( c ) dx
d 2 T G dA dx A
dA
令: 得:
IP dA
D
1
max
D2
扭转时切应力沿半径线性分布,圆心部分的 材料未能充分发挥作用。
例题
已知: P1=14kW,
P2= P3= P1/2=7 kW
n1= n2= 120r/min, z1=36, z3=12; d1=70mm, d 2 =50mm, d3=35mm
求:各轴横截面上的最大切应力。
P1=14kW, P2= P3=7 kW n1= n2= 120r/min
p
q
a’ b’
M
d’
e
M
e
c’
p
q
因为各圆周线大小、形状、间距都不变
2、沿同一圆周线上的切应力 大小相等
切应力公式推导
FN ζdA 0
A
(d) (e) (f)
M y zζ dA 0
A
M z yζdA M
A
FN ζdA 0
A
(d)
My
Mz
zζ dA 0 yζdA M
A
A
(e)
(f)
又
E
FN d A
A
E
A
yd A
ES z
M max 1 1 ql 2 2 103 42 4 103 N.m 8 8
例题5-2图
弯曲截面系数为
bh 2 1 Wz 0.14 0.212 0.103 10 2 m 3 6 6
例题6-2图
由于最大正应力应发生在最大弯 矩所在截面上,所以有 M max 4 10 3 max 3.88 10 6 Pa 3.88MPa [ ] Wz 0.103 10 2 所以满足正应力强度要求。
图6-2
4、根据表面变形情况,对纯弯曲变形下作出如下假设:
(1)平面假设 梁在纯弯曲时,其原来的横截面仍保持为平面,只是 绕垂直于弯曲平面(纵向平面)的某一轴转动,转动后的横 截面与梁弯曲后的轴线保持垂直。
(2)单向受力假设 梁的纵向纤维处于单向受力状态,且纵向纤维之间的相 互作用可忽略不计。
二、正应力公式的推导
ζ max M max ζ Wz
M max Wz ζ
M max Wz ζ
(3)确定许用荷载
例题6-2 一矩形截面简支木梁如图所示,已知l=4m,b=140mm, h=210mm,q=2kN/m,弯曲时木材的许用正应力[σ]=10Mpa,校核该梁的 强度。
(完整版)材料力学试题及答案
一、一结构如题一图所示。
钢杆1、2、3的横截面面积为A=200mm 2,弹性模量E=200GPa,长度l =1m 。
制造时3杆短了△=0。
8mm.试求杆3和刚性梁AB 连接后各杆的内力。
(15分)aalABC123∆二、题二图所示手柄,已知键的长度30 mm l =,键许用切应力[]80 MPa τ=,许用挤压应力bs[]200 MPa σ=,试求许可载荷][F 。
(15分)三、题三图所示圆轴,受eM 作用。
已知轴的许用切应力[]τ、切变模量G ,试求轴直径d 。
(15分)四、作题四图所示梁的剪力图和弯矩图。
(15分)五、小锥度变截面悬臂梁如题五图所示,直径2bad d =,试求最大正应力的位置及大小。
(10分)六、如题六图所示,变截面悬臂梁受均布载荷q 作用,已知q 、梁长l 及弹性模量E .试用积分法求截面A 的得分评分人F键40633400Aal bM eBd a a aqqaqa 2dbBda AF挠度w A 和截面C 的转角θC .(15分)七、如图所示工字形截面梁AB ,截面的惯性矩672.5610zI -=⨯m 4,求固定端截面翼缘和腹板交界处点a 的主应力和主方向。
(15分)一、(15分)(1)静力分析(如图(a))1N F2N F3N F图(a)∑=+=231,0N N N yF F F F(a)∑==31,0N N CF F M(b)(2)几何分析(如图(b))1l∆2l∆3l∆∆图(b)wql /3x lhb 0b (x )b (x )BAC 50kN AB0.75m303030140150zya∆=∆+∆+∆3212l l l(3)物理条件EA l F l N 11=∆,EA l F l N 22=∆,EAl F l N 33=∆ (4)补充方程∆=++EAlF EA l F EA l F N N N 3212 (c) (5)联立(a)、(b)、(c)式解得:kN FkN FF N N N 67.10,33.5231===二、(15分)以手柄和半个键为隔离体,S0, 204000OM F F ∑=⨯-⨯=取半个键为隔离体,bsS20F F F ==由剪切:S []s FA ττ=≤,720 N F = 由挤压:bs bs bs bs[][], 900N FF Aσσ=≤≤取[]720N F =.三、(15分)eABM M M +=0ABϕ=, A B M a M b ⋅=⋅得 e B a M M a b =+, e A b MM a b=+当a b >时 e316π ()[]M ad a b τ≥+;当b a >时 e316π ()[]M bd a b τ≥+。
材料力学公式汇总
word格式-可编辑-感谢下载支持材料力学常用公式1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)19.圆截面周边各点处最大切应力计算公式20.扭转截面系数,(a)实心圆(b)空心圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件?或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴表面某点的三个主应力,,33.三向应力状态最大与最小正应力,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径? ,41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A )42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.568.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的安全系数法72.压杆稳定性计算的折减系数法73.关系需查表求得。
材料力学剪切应力
2.板的
解:1.
剪 板切的FA强拉N 度伸
F 强(b度 2
d
)
Fs F
50103
例题3-1
50 10 3
(0.15 2 0.017 ) 0.01
A 4a 40.080.01
43 .1 10 6 43 .1MPa [ ]
15.7106 15.7MPa[]
13
d
一 连接件的强
度计算
单击此处添加小标题
G E
2(1 ) 表明3个常数只有2
个是独立的
单击此处添加小标题
3-2 纯剪切 切应 力互等定理 剪切胡克定律
21
小结
剪切变形的特点 剪切实用计算 纯剪切的概念 切应力互等定理 剪切胡克定理
3.挤压实用计算
22
3—3第、三6章、作8、业 10、
23
2-11 剪切
BRAND PLANING
商业产品部
1
2-11 剪 切
2 纯剪切 切应力互等定理 剪切胡克定律
3 剪切应变能
1 连接件的强度计算
2
一 连接件的强 度计算
剪切的工程实例
3
一 连接件 的强度计算
4
一 连接件 的强度计算
5
一 连接件的强度计算
螺栓连接 铆钉连接 销轴连接
6
一 连接件的强度计算
切应力强度条件: Fs
A
F 常由实验方法确定
8
一 连接件的强度计 算
Fbs Fbs
3.挤压的实用计算
假 得设 实应 用力 挤在 压挤 应压 力面公上式是均 匀bs 分 布FA的bbss
挤压强度条件:
常由实验方法确定
*注意挤压A面b面s 积d的计算
材料力学考试重点及其公式
外力偶矩传动轴所受的外力偶矩通常不是直接给出,而是根据轴的转速n 与传递的功率P 来计算。
当功率P 单位为千瓦(kW ),转速为n (r/min )时,外力偶矩为m).(N 9549e nPM =当功率P 单位为马力(PS ),转速为n (r/min )时,外力偶矩为m).(N 7024e nPM =2.5.2切应力计算公式横截面上某一点切应力大小为 p pT I ρτ=(3-12) 式中p I 为该截面对圆心的极惯性矩,ρ为欲求的点至圆心的距离。
圆截面周边上的切应力为 max tTW τ=(3-13) 式中p t I W R=称为扭转截面系数,R 为圆截面半径。
2.5.3 切应力公式讨论(1) 切应力公式(3-12)和式(3-13)适用于材料在线弹性范围内、小变形时的等圆截面直杆;对小锥度圆截面直杆以及阶梯形圆轴亦可近似应用,其误差在工程允许范围内。
(2) 极惯性矩p I 和扭转截面系数t W 是截面几何特征量,计算公式见表3-3。
在面积不变情况下,材料离散程度高,其值愈大;反映出轴抵抗扭转破坏和变形的能力愈强。
因此,设计空心轴比实心轴更为合理。
表3-3实心圆 (外径为d )432p d I π=316t d W π=空心圆 (外径为D , 内径为d )44(1)32p D I a π=-d a D=44(1)16t D W a π=-2.5.4强度条件圆轴扭转时,全轴中最大切应力不得超过材料允许极限值,否则将发生破坏。
因此,强度条件为[]max maxt T W ττ⎛⎫=≤⎪⎝⎭ (3-14) 对等圆截面直杆 []maxmaxt T W ττ=≤ (3-15)式中[]τ为材料的许用切应力。
3.1.1中性层的曲率与弯矩的关系1zMEI ρ=(3-16)式中,ρ是变形后梁轴线的曲率半径;E 是材料的弹性模量;E I 是横截面对中性轴Z 轴的惯性矩。
3.1.2横截面上各点弯曲正应力计算公式 ZMy I σ=(3-17) 式中,M 是横截面上的弯矩;Z I 的意义同上;y 是欲求正应力的点到中性轴的距离最大正应力出现在距中性轴最远点处 max max max max z zM My I W σ=∙= (3-18) 式中,max z z I W y =称为抗弯截面系数。
材料力学剪切力计算公式
材料力学剪切力计算公式材料力学剪切力计算是在剪切变形时计算所施加的剪切力的过程。
剪切力是指垂直于应力平面施加的力,它会导致物体内部的剪切变形。
在材料力学中,剪切力可以通过剪切应力和剪切区域的面积来计算。
下面将详细介绍材料力学中剪切力的计算公式。
在剪切力计算中,剪切应力是最基本的参数。
剪切应力(τ)是指均匀剪切力对剪切区域的作用,从而产生剪切变形。
剪切应力可以通过所施加的剪切力和剪切区域的面积来计算。
其公式可以写为:τ=F/A公式中,τ表示剪切应力,F表示施加的剪切力,A表示剪切区域的面积。
剪切力的计算依赖于施加的力的类型和材料的性质。
下面将根据不同的情况介绍剪切力的计算公式。
1.剪切力的计算公式-单向剪切当剪切力在单一方向上施加时,剪切力的计算相对简单。
其公式可以写为:F=τ*A公式中,F表示剪切力,τ表示剪切应力,A表示剪切区域的面积。
在实际应用中,可以通过实验测量剪切应力和剪切区域的面积,然后将它们代入计算公式,从而得到剪切力的值。
2.剪切力的计算公式-多向剪切当剪切力在多个方向上施加时,剪切力的计算较为复杂。
在这种情况下,需要考虑不同方向上的剪切应力,然后将其分解为各个方向的剪切力。
剪切力的计算公式可以根据剪切应力的分解来推导。
假设剪切力沿x、y和z方向施加,剪切面分别为xy、yz和zx平面。
利用数学向量的分解规则,可以得到剪切力的三个分量:F_x = τ_xy * A_xy * cos(θ_xy)F_y = τ_yz * A_yz * cos(θ_yz)F_z = τ_zx * A_zx * cos(θ_zx)公式中,Fx、Fy和Fz分别表示沿x、y和z方向的剪切力,τxy、τyz和τzx分别表示剪切面上的剪切应力,Axy、Ayz和Azx分别表示对应剪切面的面积,θxy、θyz和θzx分别表示剪切面与相应方向的夹角。
通过计算这三个分量的和,即可得到总剪切力。
F=√(F_x^2+F_y^2+F_z^2)通过上述计算公式,可以计算在多向剪切应力施加下的剪切力。
材料力学扭转切应力计算公式
材料力学扭转切应力计算公式材料的力学性质是表征其对外力作用的响应能力的重要指标。
扭转切应力是材料在受到扭转力矩作用时所产生的应力。
在许多工程和科学研究中,通过计算和测量扭转切应力可以获得材料的力学性能参数,如剪切模量和剪切强度等。
在材料力学中,扭转切应力计算公式主要有两种形式:切应力公式和剪切应力公式。
1.切应力公式:切应力(Shear Stress)指材料内部产生的由于外力而对于材料内部其中一剖面的剪切应力。
一般情况下,切应力可以采用切应力图形表示。
τ=T/S其中,τ是切应力,T是扭转力矩,S是截面积。
切应力的单位一般是帕斯卡(Pa)或兆帕(MPa)。
在实际应用中,我们常常会遇到不同形状的材料,如圆形、方形、矩形等。
对于这些不同形状的截面,切应力的计算公式也有所不同。
对于圆截面,切应力的计算公式为:τ=T/(π*r^2)对于矩形截面,切应力的计算公式为:τ=T/(b*h)其中,b是矩形截面的宽度,h是矩形截面的高度。
2.剪切应力公式:剪切应力(Shear Strain)是材料在受到剪切力作用时所产生的应变。
在扭转切应力的计算中,剪切应力是切应力的一个重要参数。
剪切应力的计算公式如下:γ=θ*h/l其中,γ是剪切应力,θ是材料的扭转角度,h是扭转试样的高度,l是扭转试样的长度。
剪切应力可以用来计算材料的剪切模量(Shear Modulus),剪切模量可以通过下式计算得到:G=τ/γ其中,G是剪切模量。
综上所述,材料力学扭转切应力计算公式主要有切应力公式和剪切应力公式,通过这些公式可以计算得到材料的扭转切应力、剪切模量等力学性能参数。
这些参数可以用于工程设计和科学研究中,帮助人们了解材料的力学性能和应用范围。
材料力学切应力计算
第四章 弹性杆横截面上的切应力分析§4-3梁横力弯曲时横截面上的切应力梁受横弯曲时,虽然横截面上既有正应力 σ,又有切应力 τ。
但一般情况下,切应力对梁的强度与变形的影响属于次要因素,因此对由剪力引起的切应力,不再用变形、物理与静力关系进行推导,而就是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面上的分布规律,然后根据平衡条件导出剪应力的计算公式。
1.矩形截面梁对于图4-15所示的矩形截面梁,横截面上作用剪力F Q 。
现分析距中性轴z 为y 的横线1aa 上的剪应力分布情况。
根据剪应力成对定理,横线1aa 两端的剪应力必与截面两侧边相切,即与剪力F Q 的方向一致。
由于对称的关系,横线1aa 中点处的剪应力也必与F Q 的方向相同。
根据这三点剪应力的方向,可以设想1aa 线上各点切应力的方向皆平行于剪力F Q 。
又因截面高度h 大于宽度b,切应力的数值沿横线1aa 不可能有太大变化,可以认为就是均匀分布的。
基于上述分析,可作如下假设:1)横截面上任一点处的切应力方向均平行于剪hj 力F Q 。
2)切应力沿截面宽度均匀分布。
基于上述假定得到的解,与精确解相比有足够的精确度。
从图4-16a 的横弯梁中截出dx 微段,其左右截面上的内力如图4-16b 所示。
梁的横截面尺寸如图4-16c 所示,现欲求距中性轴z 为y 的横线1aa 处的切应力 τ。
过1aa 用平行于中性层的纵截面11cc aa 自dx 微段中截出一微块(图4-16d)。
根据切应力成对定理,微块的纵截面上存在均匀分布的剪应力 τ'。
微块左右侧面上正应力的合力分别为1N 与2N ,其中图4-16图4-15*1I 1**z z A z A S I M dA I My dA N ===⎰⎰σ (4-29) *1II 2)()(**z z Az A S I dM M dA I y dM M dA N +=+==⎰⎰σ (4-30) 式中,*A 为微块的侧面面积,)(II I σσ为面积*A 中距中性轴为 1y 处的正应力,⎰=*1*A z dA y S 。
切应力计算
一、简介一般情况下横力作用弯曲时,梁横截面上既有正应力σ又有切应力τ图9-146直梁横力弯曲时横截面上的剪力F S与相应的切应力之间有如下静力学关系图9-147从竖直平面内弯曲的矩形截面梁可以判明:弯曲切应力τ在横截面上不可能是均匀的若在横截面上均匀分布而上下边缘处在与边缘垂直的方向上有切应力τ,那么按切应力互等定理,在梁的顶面和底面就有切应力τ',这与梁自由表面上不可能有任何应力相矛盾图9-148至于不在横截面上下边缘处的切应力τ,因为与之互等的切应力τ'在梁的纵截面上,它作为纵截面上切向分布内力的集度,当然可以存在图9-149事实上,木梁横力弯曲时的剪切破坏就发生在纵截面上(木材的顺纹抗剪强度远低于横纹抗剪抗度)直梁弯曲切应力的分析也是从分析与中性层平行的纵截面上的切应力τ'入手的 一般情况下,梁的强度由正应力控制,但有些情况下必须考虑切应力的影响,并按切应力进行强度校核例如在截面上有较大剪力F s作用而弯矩较小,梁的跨度短而截面较高,组合截面梁的腹板较薄等情况下都必须考虑切应力二、几个具体截面的切应力计算设梁的横截面为矩形,b为宽度,h为高度,且h>b,F s为横截面剪力图9-150对切应力分布做如下假设1)横截面上任一点切应力方向均与剪力F s平行2)距中性轴相等远处切应力大小相等求:横截面上任一点的切应力剪应力公式F s为横截面上的剪力I z为横截面对中性轴y的惯性矩b为横截面的宽度为切应力所在y处横线以外部分横截面面积对中性轴的静矩 横截面面积对中性轴的静矩为图9-151将静矩代入切应力计算公式得矩形横截面上切应力τ矩形截面高度(y轴)按2次抛物线规律变化图9-152在横截面上下边缘处τ=0;在中性轴上y=0处τ有最大值在y=0处将代入矩形截面切应力计算公式中,得故矩形截面梁横截面上最大切应力为平均切应力的1.5倍其他几种形状截面梁的截面切应力均在中性轴上达到最大值,其分别为工字形图9-153圆形薄壁圆环图9-154三、切应力强度条件弯曲切应力强度条件是。
材料力学(土木类)第四章 弯曲应力(4)
* N1
′ d FS = F
* FS S z τ 1′ = I zδ
FS h δ FS τ 1 = τ 1′ = × δη − = × η (h − δ ) I z δ 2 2 2 I z
δ
τ1max τmax O
τmax
FS τ1 = × η (h − δ ) 2I z
* FS S z FS τ= = I zb 2I z
h2 2 −y 4
τmax
O
(1) τ沿截面高度按二次抛物 线规律变化; 线规律变化; (2) 同一横截面上的最大切应 在中性轴处( 力τmax在中性轴处 y=0 ); ; (3)上下边缘处(y=±h/2), 上下边缘处( ± 上下边缘处 , 切应力为零。 切应力为零。
σ max ≤ [σ ]
G
τ τ
σ σ
H
梁上任意点G 平面应力状态, 梁上任意点 和H →平面应力状态, 平面应力状态 若这种应力状态的点需校核强度时不 能分别按正应力和切应力进行, 能分别按正应力和切应力进行,而必 须考虑两者的共同作用(强度理论)。 须考虑两者的共同作用(强度理论)。
ql2/8
横力弯曲梁的强度条件: 横力弯曲梁的强度条件:
Ⅱ、梁的切应力强度条件 发生在F 所在截面的中性轴处, 一般τmax发生在 S ,max所在截面的中性轴处,该位置 σ=0。不计挤压,则τmax所在点处于纯剪切应力状态。 所在点处于纯剪切应力 纯剪切应力状态 。不计挤压,
q E m G mH l/2 C D l F E
τmax
F
τmax
梁的切应力强度条件为
τ
y b
FS1 = ∫ τ d A ≥ 0.9 FS
材料力学 第2章应力集中 剪切与挤压
键的右侧的下半部分受到轴给键的作用力,合力大小F‘;
(3)、剪切面: 两组力的作用线交错的面;
A = bl
(4)、挤压面: 相互压紧的局部接触面;
Abs
=
hl 2
(5) 挤压应力
σ bs
=
F Abs
例 齿轮与轴由平键(b×h×L=20 ×12 ×100)连接,它传递的
扭矩m=2KNm,轴的直径d=70mm,键的许用剪应力为[τ]= 60M Pa ,许用挤压应力为[σbs]= 100M Pa,试校核键的强度。
h
L
AQ
b
m P
d
综上,键满足强度要求。
接头的强度计算 在铆钉钢板的接头中,有几种可能的破坏?
P P
可能造成的破坏: (1)因铆钉被剪断而使铆接被破坏;
(2)铆钉和板在钉孔之间相互挤压过大,而使铆接被 破坏;
(3)因板有钉孔,在截面被削弱处被拉断。
N1a − N3a = 0
Δl1
=
N 1l EA
Δl2
=
N2l EA
Δ与原长相比为无穷小;
Δl3
=
N3l EA
且由静力学关系得知 Δl1 = Δl3
3、协调关系 作协调图,确定各变形量之间的关系; 协调关系 Δ -⊿L2= ⊿L1
4、补充方程
Δ -⊿L2= ⊿L1 5、联立求解
Δ − N2l = N1l EA EA
A
B
由于在安装阶段,迫使杆件产生变形,
必定会在杆内 产生应力; 装配应力:
12
3
静不定结构中, 由于杆件的尺寸不准确, A
B
强行装配在一起,在未受载荷之前,杆内已产生应力。
即由于强行装配在一起而引起的应力。 装配应力的特点:
材料力学切应力公式
材料力学切应力公式
材料力学是研究材料在外力作用下的力学性能和变形规律的学科,而切应力则
是材料在受到剪切力作用时所产生的应力。
切应力公式是描述材料在受到剪切力作用时所产生的应力的数学表达式,它在材料力学中具有重要的理论和实际意义。
切应力公式可以用来描述材料在受到剪切力作用时所产生的应力大小和方向。
在材料力学中,切应力公式通常表示为τ = F/A,其中τ表示切应力,F表示受到
的剪切力,A表示受力面积。
这个公式表明,切应力的大小与受到的剪切力成正比,与受力面积成反比。
这也说明了在相同的剪切力作用下,受力面积越小,切应力就越大;受力面积越大,切应力就越小。
在实际工程中,切应力公式的应用十分广泛。
例如,在材料的强度设计中,需
要考虑材料在受到剪切力作用时的切应力大小,以确保材料在工程实践中不会发生过大的变形或破坏。
此外,在材料加工和制造过程中,也需要根据切应力公式来确定加工工艺和工艺参数,以保证材料加工的质量和效率。
除了描述切应力大小的公式外,还有一些其他与切应力相关的公式,例如切应
力的方向和分布规律。
这些公式在材料力学中也具有重要的意义,它们可以帮助工程师和科研人员更好地理解材料在受到剪切力作用时的力学行为,为材料的设计、选择和应用提供理论依据。
总之,材料力学切应力公式是描述材料在受到剪切力作用时所产生的应力的重
要数学表达式,它在材料力学理论和工程实践中具有重要的应用价值。
通过对切应力公式的深入研究和应用,可以更好地理解材料的力学性能和变形规律,为材料的设计、选择和应用提供理论支持。
材料力学公式大全
材料力学公式大全材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。
在工程设计和分析中,材料力学公式起着至关重要的作用。
下面为大家详细介绍一些常见的材料力学公式。
一、应力与应变1、正应力公式:轴向拉伸与压缩时,正应力$\sigma =\frac{F}{A}$,其中$F$ 是轴力,$A$ 是横截面面积。
圆轴扭转时,横截面上的切应力$\tau =\frac{T}{Ip}$,$T$ 是扭矩,$Ip$ 是极惯性矩。
2、线应变公式:轴向拉伸与压缩时,线应变$\epsilon =\frac{\Delta L}{L}$,$\Delta L$ 是长度的改变量,$L$ 是原长。
3、切应变公式:圆轴扭转时,切应变$\gamma =\frac{r\theta}{L}$,$r$ 是半径,$\theta$ 是扭转角,$L$ 是轴的长度。
二、胡克定律1、轴向拉伸与压缩时:$\sigma = E\epsilon$ ,其中$E$ 是弹性模量。
2、剪切胡克定律:$\tau = G\gamma$ ,$G$ 是剪切模量。
三、杆件的内力1、轴力$F_N$ :通过截面法求解,沿杆件轴线方向的内力。
2、扭矩$T$ :外力偶矩对杆件产生的内力。
3、剪力$F_Q$ 和弯矩$M$ :在梁的弯曲分析中,通过截面法求解。
四、梁的弯曲应力1、纯弯曲时的正应力:$\sigma =\frac{M y}{I_z}$,$y$ 是所求应力点到中性轴的距离,$I_z$ 是横截面对于中性轴的惯性矩。
2、横力弯曲时的正应力:需要考虑切应力的影响,进行修正。
五、梁的弯曲变形1、挠度$y$ 和转角$\theta$ 的计算公式:通过积分法或叠加法求解。
2、挠曲线近似微分方程:$EIz''= M(x)$。
六、组合变形1、拉(压)弯组合:分别计算拉伸(压缩)应力和弯曲应力,然后叠加。
2、弯扭组合:先计算弯曲应力和扭转切应力,然后根据强度理论进行强度校核。
建筑力学 材料力学 梁的应力
M y1 y2
2.5kNm A1
A3
RA 2.5kN ; RB 10.5kN
M C 2.5kNm(下拉、上压 )
M B 4kNm(上拉、下压)
G
A2
A4
画危面应力分布图,找危险点
-4kNm ○ ⊕ M 2.5kNm A1 A3 x
sA L
2
M C y2 2.5 88 28.2MPa 8 Iz 76310
[例4] 工字钢简支梁受力 如图a)所示,已知l=6 mm, FPl=12 kN,FP2=21 kN, 试选择工字钢的型号。 解 (1) 作弯矩图 作出的弯矩图 如图b)所示。由图中可知Mmax=36kN· m。 (2) 选择截面
Wz ≥
M max
钢的许用应力 s =160 MPa。
s
q=60kN/m B 2m 180 30 1 2 z 120 y + qL2 8 Mmax x
M max qL2 / 8 60 32 / 8 67.5kNm
求应力
bh3 1201803 Iz 1012 5.832105 m 4 12 12
h Wz I z / 6.48 10 4 m 3 2
120 x
求曲率半径
EI z 200 5.832 1 10 194.4m M1 60
M M1
+ qL2 8 Mmax
§6-2 梁的正应力强度及其应用
一、危险面与危险点分析: 一般截面,最大正应力发生在弯矩绝对值最大的截面的 上下边缘上。
s
M
s
s
二、正应力和剪应力强度条件:
M max s max s Wz
由此可见,全梁的最大拉应力为 s t max 39.3MPa ≤ s t ,
切应力的计算公式
切应力的计算公式切应力,这玩意儿在力学领域里可是个重要角色。
咱们先来聊聊它到底是啥。
简单说,切应力就是在物体的截面上,由于受到平行于截面的力的作用而产生的应力。
想象一下,你拿一把刀去切一块橡皮,橡皮被切开的那个面上所受到的力,就产生了切应力。
那切应力的计算公式是啥呢?这就得提到一个叫“τ”的符号,它就代表切应力。
公式是:τ = F / A 。
这里的“F”是平行于截面的力,“A”呢,则是受力的截面积。
比如说,咱们来假设这么一个场景。
有一根粗粗的钢管,工人师傅要把它截断。
在截断的过程中,师傅用的锯子施加了一个100 牛的力,而这个钢管被截断的截面面积是 0.1 平方米。
那按照咱们的公式,这时候的切应力就是τ = 100 ÷ 0.1 = 1000 帕斯卡。
再说说我曾经的一个小观察。
有一次我在车间里溜达,看到师傅们在加工零件。
那台巨大的车床呼呼地转着,车刀在金属棒上切削,发出刺耳的声音。
我就好奇地凑近去看,发现车刀和金属棒接触的地方,金属屑像小雪花一样纷纷扬扬地飘落。
这时候我就在想,这不就是切应力在起作用嘛!车刀施加的力让金属棒的截面产生了切应力,从而把多余的部分切掉。
回到咱们的切应力公式,这个公式看起来简单,但是应用起来可讲究着呢。
你得准确地测量出力和截面积,稍微有点偏差,算出来的切应力就可能不准。
而且不同的材料,能承受的切应力大小也不一样。
比如说,钢铁的强度高,能承受的切应力就大;而像塑料这类比较软的材料,能承受的切应力就小得多。
所以在设计机械零件或者建筑结构的时候,就得根据材料的特性,合理地计算切应力,确保不会因为受力过大而损坏。
在实际生活中,切应力的应用那可多了去了。
像汽车的传动轴、桥梁的支撑结构、飞机的零部件等等,都得考虑切应力的影响。
要是没算好,那后果可不堪设想。
总之,切应力的计算公式虽然简单,但是背后的学问可大着呢。
咱们得认真对待,才能让它为我们的生产和生活服务,保障各种结构的安全和稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此文档下载后即可编辑
第四章 弹性杆横截面上的切应力分析
§4-3梁横力弯曲时横截面上的切应力
梁受横弯曲时,虽然横截面上既有正应力 σ,又有切应力 τ。
但一般情况下,切应力对梁的强度和变形的影响属于次要因素,因此对由剪力引起的切应力,不再用变形、物理和静力关系进行推导,而是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面上的分布规律,然后根据平衡条件导出剪应力的计算公式。
1.矩形截面梁
对于图4-15所示的矩形截面梁,横截面上作用剪力F Q 。
现分析距中性轴z 为y 的横线1aa 上的剪应力分布情况。
根据剪应力成对定理,横线1aa 两端的剪应力必与截面两侧边相切,即与剪力F Q 的方向一致。
由于对称的关系,横线1aa 中点处的剪应力也必与F Q 的方向相同。
根据这三点剪应力的方向,可以设想1aa 线上各点切应力的方向皆平行于剪力F Q 。
又因截面高度h 大于宽度b ,切应力的数值沿横线1aa 不可能有太大变化,可以认为是均匀分布的。
基于上述分析,可作如下假设:
1)横截面上任一点处的切应力方向均平行于剪hj 力F Q 。
2)切应力沿截面宽度均匀分布。
基于上述假定得到的解,与精确解相比有足够的精确度。
从图4-16a 的横弯梁中截出dx 微段,其左右截面上的内力如图4-16b
图4-16
图4-15
所示。
梁的横截面尺寸如图4-16c 所示,现欲求距中性轴z 为y 的横线1aa 处的切应力 τ。
过1aa 用平行于中性层的纵截面11cc aa 自dx 微段中截出一微块(图4-16d )。
根据切应力成对定理,微块的纵截面上存在均匀分布的剪应力 τ'。
微块左右侧面上正应力的合力分别为1N 和2N ,其中
*
1I 1**
z
z
A
z
A S I M dA I My dA N ==
=⎰⎰σ
(4-29)
*
1II 2)()(*
*
z
z A
z A S I dM M dA I y dM M dA N +=+=
=⎰⎰σ
(4-30)
式中,*A 为微块的侧面面积,
)(II I σσ为面积*A 中距中性轴为 1y 处
的正应力,⎰=*
1*A z dA y S 。
由微块沿x 方向的平衡条件∑=0x ,得
21='-+-dx b N N τ
(4-31)
将式(4-29)和式(4-30)代入式(4-31),得
0*
='-bdx S I dM z z
τ 故 z
z
bI S dx dM *
=
'τ
因
ττ='=,Q F dx
dM
,
故求得横截面上距中性轴为 y 处横线上各点的剪
应力τ为
z
z
Q bI S F *=
τ
(4-32)
式(4-32)也适用于其它截面形式的梁。
式中,Q F 为截面上的剪力; z I 为整个截面对中性轴z 的惯性矩;b 为横截面在所求应
力点处的宽度;*
y S 为面积*A 对中性轴的静矩。
对于矩形截面梁(图4-17),可取1bdy dA =,于是
)4
(222
2111*
y h b dy by dA y S h y
A
z
-===⎰
⎰
这样,式(4-32)可写成
)4
(222
y h I F z Q -=τ
上式表明,沿截面高度剪应力 τ按抛物线规律变化(图4-17)。
在截面上、下边缘处,y=±2
h ,τ=0;在中性轴上,y=0,切应力值最大,其值为
A
F Q
23max =
τ (4-33)
式中A =bh ,即矩形截面梁的最大切应力是其平均剪应力的23倍。
2.圆形截面梁
在圆形截面上(图4-18),任一平行于中性轴的横线aa 1两端处,剪应力的方向必切于圆周,并相交于y 轴上的c 点。
因此,横线上各点剪应力方向是变化的。
但在中性轴上各点剪应力的方向皆平行于剪力F Q ,设为均匀分布,其值为最大。
由式(4-32)求得 A
Q
34max =τ (4-34)
式中24
d A π
=,
即圆截面的最大切应力为其平均切应力的34倍。
3.工字形截面梁
工字形截面梁由腹板和翼缘组成。
式(4-32)的计算结果表明,在翼缘上切应力很小,在腹板上切应力沿腹板高度按抛物线规律变化,如图4-19所示。
最大剪应力在中性轴上,其值为
Z
z Q dI S F max
max )(*=
τ
式中(S *z )m ax 为中性轴一侧截面
面积对中性轴的静矩。
对于轧制
图4-18
图4-19
图4-17
的工字钢,式中的max
*)(z z
S I 可以从
型钢表中查得。
计算结果表明,腹板承担的剪力约为(0.95~0.97)F Q ,因此也可用下式计算τm ax 的近似值
d
h F Q 1max ≈
τ
式中h 1为腹板的高度,d 为腹板的宽度。