初一数学期中考试压轴题-初一数学期中考试题及答案

合集下载

初一数学度中压轴题:找规律运算题

初一数学度中压轴题:找规律运算题

初一数学度中压轴题:找规律运算题
初一数学期中压轴题:找规律运算题小编整理了关于初一数学期中压轴题:找规律运算题,供同学们参考练习!
【一】【考点】等比数列
【北京四中期中】
观察以下图中每一个大三角形中白色三角形的排列规律,那么第5个大三角形中白色三角形有________个.
【答案】121
【规律】1+3+3+3+34
【二】【考点】等差数列的变形
【北京八中期中】
观察下面所给的一列数:0,6,-6,18,-30,66,,那么第9个数是______
【答案】-510
【规律】相邻两项的差:+6,-12,+24,-48,+96,-192
【三】【考点】平方数列的变形
【五中分校期中】
如下图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,那么第n个图形需要黑色棋子的个数是______
【答案】〔n+1〕-1或n〔n+2〕
【规律】
①4-1,9-1,16-1,25-1,36-1
②1*3=3;2*4=8;3*5=15;4*6=24
【四】【北京四中期中】
如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,那么摆第6个图案需要枚棋子,摆第n个图案需要________枚棋子.
初一数学期中考试压轴题»»»
初一数学期中考试卷初一数学期中压轴题:绝对值化简求值初一数学期中压轴题:有理数概念和计算初一数学期中压轴题:代数式化简求值初一数学期中压轴题:列方程解应用题。

初一上册数学期中压轴题

初一上册数学期中压轴题

初一上册数学期中压轴题题目一:分数的加减法小明有一个含有水的容器,容器的总容积是3升。

他先倒入了2/3升的水,然后又倒入了1/5升的水。

请问,现在容器中有多少升水?解答:首先,我们将2/3升和1/5升的两个分数转化为相同的分母。

2/3升可以转化为10/15升,1/5升可以转化为3/15升。

接下来,我们将这两个分数相加得到:10/15 + 3/15 = 13/15升。

所以,现在容器中有13/15升的水。

题目二:多项式的展开将多项式 (3x + 4y)^2 展开,并化简结果。

解答:根据二次方展开公式,我们可以将多项式展开为:(3x + 4y)^2 = (3x)^2 + 2 * (3x) * (4y) + (4y)^2。

化简结果后得到:9x^2 + 24xy + 16y^2。

所以,(3x + 4y)2展开后的结果为9x2 + 24xy + 16y^2。

题目三:线段的中点坐标在坐标平面上,给出线段AB的两个端点坐标A(3, 4)和B(7, 2),求线段AB的中点坐标。

解答:线段的中点坐标可以通过将两个端点的x坐标和y坐标求平均得到。

对于线段AB的中点坐标,x坐标为(3 + 7)/2 = 5,y坐标为(4 + 2)/2 = 3。

所以,线段AB的中点坐标为(5, 3)。

题目四:等差数列的求和给定等差数列的首项是5,公差是3,求该等差数列的前20项的和。

解答:对于等差数列,我们可以使用求和公式来计算前n项的和。

求和公式为Sn = (n/2) * (a1 + an),其中Sn表示前n项的和,a1表示首项,an表示第n项。

根据题目给出的信息,等差数列的首项a1是5,公差是3,所以第20项an =a1 + (n - 1) * 公差 = 5 + (20 - 1) * 3 = 5 + 57 = 62。

代入求和公式,前20项的和Sn = (20/2) * (5 + 62) = 10 * 67 = 670。

所以,该等差数列的前20项的和为670。

初一数学期中考试压轴题【呕心沥血整理版】

初一数学期中考试压轴题【呕心沥血整理版】

初一数学期中考试压轴题:探索类附加题【难度】★★★★☆【考点】有理数计算、分数拆分、方程思想【清华附中期中】解答题:有8个连续的正整数,其和可以表示成7个连续的正整数的和,但不能表示为3个连续的正整数的和,求这8个连续的正整数中最大数的最小值.(4分)【解析】设这八个连续正整数为:n,n+1……n+7;和为8n+28可以表示为七个连续正整数为:k,k+1……k+6;和为7k+21所以8n+28=7k+21,k=(8n+7)/7=n+1+n/7,k是整数所以n=7,14,21,28……当n=7时,八数和为84=27+28+29,不符合题意,舍当n=14时,八数和为140,符合题意【答案】最大数最小值:21【难度】★★★★★【考点】倒数的定义、有理数计算、分类讨论思想【人大附中期中】已知x,y是两个有理数,其倒数的和、差、积、商的四个结果中,有三个是相等的,(1)填空:x与y的和的倒数是;(2)说明理由。

【解析】设x,y的倒数分别为a,b(a≠0,b≠0,a+b≠a-b),则a+b,a-b,ab,a/b中若有三个相等,ab=a/b,即b²=1,b=±1分类如下:①当a+b=ab=a/b时:如果b=1,无解;如果b=—1,解得a=0.5②当a—b=ab=a/b时:如果b=1,无解;如果b=—1,解得a=-0。

5所以x、y的倒数和为a+b=—0。

5,或-1。

5【难度】★★★★☆【考点】绝对值化简【101中学期中】将1,2,3,…,100这100个自然数,任意分成50组,每组两个数,现将每组中的两个数记为a,b,代入中〈=”" p=”” style="max—width: 100%; border: 0px;”>进行计算,求出结果,可得到50个值,则这50个值的和的最小值为____【解析】绝对值化简得:当a≥b时,原式=b;当a所以50组可得50个最小的已知自然数,即1,2,3,4 (50)【答案】1275【老杨改编】这50个值的和的最大值为____【解析】因为本质为取小运算,所以100必须和99一组,98必须和97一组,最后留下的50组结果为:1,3,5,7……99=2500 【难度】★★★★☆【考点】有理数计算【清华附中期中】在数1,2,3,4……1998,前添符号“+”或“—”,并依次运算,所得可能的最小非负数是多少?(6分)【解析】最小的非负数为“0”,但是1998个正数中有999个奇数,999个偶数,他们的和或者差结果必为奇数,因此不可能实现“0”可以实现的最小非负数为“1”,如果能实现结果“1”,则符合题意相邻两数差为1,所以相邻四个数可以和为零,即n-(n+1)—(n+2)+n+3=0从3,4,5,6……1998共有1996个数,可以四个连续数字一组,和为零【答案】—1+2+3—4-5+6+7……+1995—1996-1997+1998=1【老杨改编】在数1,2,3,4……n,前添符号“+”或“-”,并依次运算,所得可能的最小非负数是多少?【解析】由上面解析可知,四个数连续数一组可以实现为零如果n=4k,结果为0;(四数一组,无剩余)如果n=4k+1,结果为1;(四数一组,剩余首项1)如果n=4k+2,结果为1;(四数一组,剩余首两项-1+2=1)如果n=4k+3,结果为0;(四数一组,剩余首三项1+2—3=0)初一数学期中考试压轴题:列方程解应用题【难度】★★★☆☆【考点】表格阅读题,列一元一次方程解应用题【五中分校期中】某校初一甲、乙两班共103人(其中甲班人数多于乙班人数,每班人数均在100以内)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?【解析】(1)节省=486—103*4=74元(2)设甲班有x人,则乙班有(103—x)人103*4.5=463。

初一数学期中压轴题:代数式化简求值_题型归纳

初一数学期中压轴题:代数式化简求值_题型归纳

初一数学期中压轴题:代数式化简求值_题型归纳初一数学期中压轴题:代数式化简求值小编整理了关于初一数学期中压轴题:代数式化简求值,赶紧来练习一下吧,为期中考试打下坚实基础!一、【考点】整体法求值、数形结合思想、加减法计算【师大附中期中】已知a-b=3,b-c=4,c-d=5,则(a-c)(d-b)=【解析】方法①(代数法:整体思想)a-c=(a-b)+(b-c)=3+4=7;b-d=(b-c)+(c-d)=4+5=9;d-b=-9原式=7*(-9)=-63方法②(几何法:借助数轴)如图:易得a-c=7,d-b=-9,原式=-63【答案】-63二、【考点】整体法求值、有理数加减法计算【清华附中期中】已知(2x-1)5=ax5+bx4+cx+dx+ex+f(a,b,c,d,e,f为常数),则b+d=_______【解析】令x=1得,1=a+b+c+d+e+f①令x=-1得,-243=-a+b-c+d-e+f②令x=0得,-1=f①+②得:2b+2d+2f=-242b+d+f=-121b+d=-120【答案】-120三、【考点】整体法求值、二元一次方程组【五中分校期中】如果四个有理数满足下列等式a+bc=-1,2b-a=5,2a+b=2d,3a+bc=5,求:abcd的值.【解析】a+bc=-1①,2b-a=5②,2a+b=2d③,3a+bc=5④由①、④解得:a=3,bc=-4把a=3代入②得:b=4把a=3、b=4代入③得:d=5所以abcd=3(-4)5= - 60【答案】-60四、【考点】整体代入化简求值【清华附中期中】已知x+y=6,xy=4,代数式的值是__________。

【解析】原式=(xy+y+xy+2x)/xy=[(x+y)y+(xy+2)x]/xy=(6y+6x)/4=9【答案】9五、【考点】整体法求值【北京四中期中】已知:a为有理数,a+a+a+1=0,求1+a+a+a++a2012的值。

期中解答题压轴必刷常考题七年级数学下学期期中期末满分必刷常考压轴题人教版

期中解答题压轴必刷常考题七年级数学下学期期中期末满分必刷常考压轴题人教版

解答题压轴必刷常考题【压轴题题必考】1.(安溪)如图,将一条数轴在原点O和点B处各折一下,AO∥BC,得到一条“折线数轴”.图中点A表示﹣20,点B表示20,点C表示36.动点M从点A出发,以2个单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点N从点C出发,以1个单位/秒的速度沿着“折线数轴”的负方向运动,从点B运动到点O期间的速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.(1)填空:点A和点C在数轴上相距56个单位长度;(2)当t为何值时,点M与点N相遇?(3)当t为何值时,M、O两点在数轴上相距的长度与N、B两点在数轴上相距的长度相等.【答案】(1)56 (2)t=(3)t的值为4或13或22或34【解答】解:(1)∵点A表示﹣20,点C表示36,∴点A和点C在数轴上相距36﹣(﹣20)=56(个单位长度),故答案为:56;(2)由题意知,N从C到B需16s,M从A到O需10s,∴M、N在OB段相遇,根据题意得:20+(t﹣10)+16+2(t﹣16)=56,解得t=,答:t为时,点M与点N相遇;(3)分四种情况:①当点M在AO上,点N在CB上时,OM=20﹣2t,BN=16﹣t,∴20﹣2t=16﹣t,解得t=4,②当M在OB上,N在CB上时,OM=t﹣10,BN=16﹣t,∴t﹣10=16﹣t,解得t=13,③当M在OB上,N在OB上时,OM=t﹣10,BN=2(t﹣16),∴t﹣10=2(t﹣16),解得t=22,④当M在BC上,N在OA上时,20+2(t﹣30)=20+(t﹣26),解得t=34,综上所述,t的值为4或13或22或34时,M、O两点在数轴上相距的长度与N、B两点在数轴上相距的长度相等.2.(朝阳)将一副三角板中的两块直角三角尺的直角顶点C按如图1方式叠放在一起,其中∠A=60°,∠D=30°,∠E=∠B=45°.(1)若∠1=25°,则∠2的度数为;(2)直接写出∠1与∠3的数量关系:;(3)直接写出∠2与∠ACB的数量关系:;(4)如图2,当∠ACE<180°且点E在直线AC的上方时,将三角尺ACD固定不动,改变三角尺BCE的位置,但始终保持两个三角尺的顶点C重合,这两块三角尺是否存在一组边互相平行?请直接写出∠ACE角度所有可能的值.【答案】(1)65°(2)∠1=∠3;(3)∠2+∠ACB=180°(4)30°或45°或120°或135°或165°.【解答】解:(1)∵∠1=25°,∠ACD=90°,∴∠2=∠ACD﹣∠1=65°,故答案为:65°;(2)∵∠1+∠2=∠ACD=90°,∠2+∠3=∠BCE=90°,∴∠1+∠2=∠2+∠3,∴∠1=∠3,故答案为:∠1=∠3;(3)∵∠ACD=∠BCE=90°,∴∠ACB+∠2=∠1+∠2+∠3+∠2=∠ACD+∠BCE=180°,即∠2+∠ACB=180°,故答案为:∠2+∠ACB=180°;(4)存在,①当BC∥AD时,∵BC∥AD,∴∠BCD=∠D=30°,∴∠ACB=90°+30°=120°,∴∠ACE=∠ACB﹣∠BCE=120°﹣90°=30°;②当BE∥AC时,如图,∵BE∥AC,∴∠ACE=∠E=45°;③当AD∥CE时,如图,∵AD∥CE,∴∠DCE=∠D=30°,∴∠ACE=90°+30°=120°;④当BE∥CD时,如图,∵BE∥CD,∴∠DCE=∠E=45°,∴∠ACE=∠ACD+∠DCE=135°;⑤当BE∥AD时,如图,过点C作CF∥AD,∵BE∥AD,CF∥AD,∴BE∥AD∥CF,∴∠ECF=∠E=45°,∠DCF=∠D=30°,∴∠DCE=30°+45°=75°,∴∠ACE=90°+75°=165°.综上所述:当∠ACE=30°或45°或120°或135°或165°时,有一组边互相平行.故答案为:30°或45°或120°或135°或165°.3.(淇县)如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°(两直线平行,同旁内角互补)∵AB∥CD,EF∥AB,∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)∴∠EPD+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.【答案】(1)∠BPD=∠B+∠D(2)∠BPD=∠B﹣∠D.【解答】解:(1)∠BPD=∠B+∠D.理由:如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D;(2)如图(3):∠BPD=∠D﹣∠B.理由:∵AB∥CD,∴∠1=∠D,∵∠1=∠B+∠P,∴∠D=∠B+∠P,即∠BPD=∠D﹣∠B;如图(4):∠BPD=∠B﹣∠D.理由:∵AB∥CD,∴∠1=∠B,∵∠1=∠D+∠P,∴∠B=∠D+∠P,即∠BPD=∠B﹣∠D.4.(西乡塘)如图,已知DC∥FP,∠1=∠2,∠DEF=30°,∠AGF=70°,FH平分∠EFG.(1)求证:DC∥AB;(2)求∠PFH的度数.【答案】(1)略(2)∠PFH的度数为20°【解答】解:(1)∵DC∥FP,∴∠C=∠2,又∵∠1=∠2,∴∠C=∠1,∴DC∥AB;(2)∵DC∥FP,DC∥AB,∠DEF=30°,∴∠DEF=∠EFP=30°,AB∥FP,又∵∠AGF=70°,∴∠AGF=∠GFP=70°,∴∠GFE=∠GFP+∠EFP=70°+30°=100°,又∵FH平分∠EFG,∴∠GFH=∠GFE=50°,∴∠PFH=∠GFP﹣∠GFH=70°﹣50°=20°.答:∠PFH的度数为20°.5.(海勃湾)如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN 上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ 平分∠EPK,求∠HPQ的度数.【答案】(1)AB∥CD(2)PF∥GH(3)∠HPQ的度数为45°【解答】解:(1)AB∥CD,理由如下:∵∠1与∠2互补,∴∠1+∠2=180°,又∵∠1=∠AEF,∠2=∠,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∵∠PHK=∠HPK,∴∠PKG=2∠HPK.又∵GH⊥EG,∴∠KPG=90°﹣∠PKG=90°﹣2∠HPK.∴∠EPK=180°﹣∠KPG=90°+2∠HPK.∵PQ平分∠EPK,∴.∴∠HPQ=∠QPK﹣∠HPK=45°.答:∠HPQ的度数为45°.6.(黔江)(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由;(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,若∠F AD=60°,∠ABC=40°,求∠BED的度数;(3)如图3,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,若∠F AD=α,∠ABC=β,请你求出∠BED的度数(用含α,β的式子表示).【答案】(1)成立(2)∠BED=50°(3)【解答】解:(1)成立,理由:如图1中,作EF//AB,则有EF//CD,∴∠1=∠BAE,∠2=∠DCE∴∠AEC=∠1+∠2=∠BAE+∠DCE;(2)如图2,过点E作EH//AB,∵AB//CD,∠F AD=60°,∴∠F AD=∠ADC=60°,∵DE平分∠ADC,∠ADC=60°,∴,∵BE平分∠ABC,∠ABC=40°,∴,∵AB//CD,∴AB//CD//EH,∴∠ABE=∠BEH=20°,∠CDE=∠DEH=30°,∴∠BED=∠BEH+∠DEH=50°.(3)如图3,过点E作EG//AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=β,∠ADC=∠F AD=α,∴,,∵AB//CD,∴AB//CD//EG,∴,,∴.7.(拱墅)小明同学在完成七年级下册数学第1章的线上学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由.(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,若∠F AD=50°,∠ABC=40°,求∠BED的度数.【答案】(1)∠AEC=∠BAE+∠DCE.(2)∠BED=45°【解答】解:(1)∠AEC=∠BAE+∠DCE成立,理由:过点E作EF∥AB,如图,∵EF∥AB,∴∠A=∠AEF.∵EF∥AB,AB∥CD,∴FE∥CD.∴∠C=∠CEF.∵∠AEC=∠AEF+∠CEF,∴∠AEC=∠BAE+∠DCE.(2)过点E作EH∥AB,如图,由(1)的结论可得:∠BED=∠ABE+∠EDC,∵BE平分∠ABC,∠ABC=40°,∴∠ABE=∠ABC=20°.∵∠F AD=50°,AB∥CD,∴∠ADC=∠F AD=50°.∵DE平分∠ADC,∴∠EDC=∠ADC=25°.∴∠BED=20°+25°=45°.8.(宜兴)如图①,已知PQ∥MN,且∠BAM=2∠BAN.(1)填空:∠PBA=°;(2)如图(1)所示,射线AM绕点A开始顺时针旋转至AN便立即按原速度回转至AM 位置,射线BP绕点B开始顺时针旋转至BQ便立即按原速度回转至BP位置.若AM转动的速度是每秒2度,BP转动的速度是每秒1度,若射线BP先转动30秒,射线AM才开始转动,在射线BP到达BQ之前,射线AM转动几秒,两射线互相平行?(3)如图(2),若两射线分别绕点A,B顺时针方向同时转动,速度同题(2),在射线AM到达AN之前,若两射线交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.【答案】(1)120(2)AM转动30秒或110秒(3)∠BAC=2∠BCD【解答】解:(1)∵∠BAM=2∠BAN,∠BAM+∠BAN=180°,∴∠BAM=120°.∵PQ∥MN,∴∠PBA=∠BAM=120°.故答案为:120;(2)设射线AM转动t秒,两射线互相平行,当0<t<90时,如图,AM′和BP′为经过t秒后AM,BP旋转的位置,则∠MAM′=2t°,∠PBP′=(t+30)°,∵PQ∥MN,∴∠BM′A=∠MAM′=2t°,∵AM′∥BP′,∴∠AM′B=∠PBP′.∴2t=t+30.解得:t=30;当90<t<150时,如图,AM′和BP′为经过t秒后AM,BP旋转的位置,则∠MAM′=(360﹣2t)°,∠PBP′=(t+30)°,∵PQ∥MN,∴∠BM′A=∠MAM′=2t°,∵AM′∥BP′,∴∠AM′B=∠PBP′.∴360﹣2t=t+30.解得:t=110.综上所述,当射线AM转动30秒或110秒时,两射线互相平行.(3)∠BAC与∠BCD的数量关系不会发生变化,∠BAC=2∠BCD.理由:设射线AM,BP转动时间为m秒,∴∠BAC=(2m﹣120)°,∠ABC=(120﹣t)°,∴∠ACB=180°﹣(2m﹣120)°﹣(120﹣m)°=(180﹣m)°.∵∠ACD=120°,∴∠BCD=120°﹣(180﹣m)°=(m﹣60)°.∵2m﹣120=2(m﹣60),∴∠BAC=2∠BCD.∴∠BAC与∠BCD的数量关系不会发生变化,∠BAC=2∠BCD.9.(仁寿)如图①.已知AM∥CN,点B为平面内一点,AB⊥BC于点B,过点B作BD⊥AM于点D,设∠BCN=α.(1)若α=30°,求∠ABD的度数;(2)如图②,若点E、F在DM上,连接BE、BF、CF,使得BE平分∠ABD、BF平分∠DBC,求∠EBF的度数;(3)如图③,在(2)问的条件下,若CF平分∠BCH,且∠BFC=3∠BCN,求∠EBC 的度数.【答案】(1)30°(2)45°(3)97.5°.【解答】解:(1)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α=30°,∴∠HBC=90°﹣∠BCN=60°.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=30°;(2)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α,∴∠HBC=90°﹣α.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=α.∵BE平分∠ABD,∴∠DBE=∠ABE=α.∵∠HBC=90°﹣α,∴∠DBC=180°﹣∠HBC=90°+α.∵BF平分∠DBC,∴∠DBF=∠CBF=∠DBC=45°+α.∴∠EBF=∠DBF﹣∠DBE=45°+α﹣α=45°;(3)∵∠BCN=α,∴∠HCB=180°﹣∠BCN=180°﹣α.∵CF平分∠BCH,∴∠BCF=∠HCF=∠HCB=90°﹣α.∵AM∥CN,∴∠DFC=∠HCF=90°﹣α.∵∠BFC=3∠BCN,∴∠BFC=3α.∴∠DFB=∠DFC﹣∠BFC=90°﹣α.由(2)知:∠DBF=45°+α.∵BD⊥AM,∴∠D=90°.∴∠DBF+∠DFB=90°.∴45°+α+90°﹣α=90°.解得:α=15°.∴∠FBC=∠DBF=45°+α=52.5°.∴∠EBC=∠FBC+∠EBF=52.5°+45°=97.5°.10.(邵东)点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B 两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:(1)如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA=|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|(2)如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|(3)如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA =|b|+|a|=a+(﹣b)=|a﹣b|回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=.(2)数轴上表示2和﹣4A和B之间的距离AB=.(3)数轴上表示x和﹣2的两点A和B之间的距离AB=| ,如果AB=2,则x的值为.(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为.【答案】(1)AB=|a﹣b|(2)6 (3)0或﹣4 (4)5【解答】解:(1)综上所述,数轴上A、B两点之间的距离AB=|a﹣b|;(2)数轴上表示2和﹣4的两点A和B之间的距离AB=2﹣(﹣4)=2+4=6;(3)数轴上表示x和﹣2的两点A和B之间的距离AB=|x+2|,如果AB=2,则x的值为0或﹣4;(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为5.故答案为:(1)|a﹣b|;(2)6;(3)|x+2|;0或﹣4;(4)511.(广安)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,例如:数轴上表示﹣1与﹣2的两点间的距离=|﹣1﹣(﹣2)|=﹣1+2=1;而|x+2|=|x﹣(﹣2)|,所以|x+2|表示x与﹣2两点间的距离.利用数形结合思想回答下列问题:(1)数轴上表示﹣2和5两点之间的距离.(2)若数轴上表示点x的数满足|x﹣1|=3,那么x=.(3)若数轴上表示点x的数满足﹣4<x<2,则|x﹣2|+|x+4|=.【答案】(1)76(2)﹣2或4(3)6【解答】解:(1)根据题意知数轴上表示﹣2和5两点之间的距离为5﹣(﹣2)=7,故答案为:7;(2)∵|x﹣1|=3,即在数轴上到表示1和x的点的距离为3,∴x=﹣2或x=4,故答案为:﹣2或4;(3)∵|x﹣2|+|x+4|表示在数轴上表示x的点到﹣4和2的点的距离之和,且x位于﹣4到2之间,∴|x﹣2|+|x+4|=2﹣x+x+4=6,故答案为:6.12.(兴宁)如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是3个单位长度,长方形ABCD的长AD是6个单位长度,长方形EFGH的长EH是10个单位长度,点E在数轴上表示的数是5.且E、D两点之间的距离为14.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是.(2)若线段AD的中点为M,线段EH上一点N,EN=EH,M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒,原点为O.当OM=2ON时,求x的值.(3)若长方形ABCD以每秒2个单位的速度向右匀速运动,长方形EFGH固定不动,设长方形ABCD运动的时间为t(t>0)秒,两个长方形重叠部分的面积为S,当S=12时,求此时t的值.【答案】(1)15;﹣15(2)或.(3)t的值为9或13.【解答】解:(1)由题意可得,点H在数轴上表示的数为:5+10=15;点A在数轴上表示的数为:5﹣14﹣6=﹣15.故答案为:15;﹣15.(2)∵点M是线段AD的中点,∴点M表示的数为5﹣14﹣=﹣12,又∵EN=EH,∴点N在数轴上表示的数为:5+(15﹣5)=,由题意可得,x秒时,点M在数轴上表示的数为:﹣12+4x,点N在数轴上表示的数为:﹣3x,∴OM=|4x﹣12|,ON=|3x﹣|,∵OM=2ON,∴|4x﹣12|=2|3x﹣|∴4x﹣12=2(3x﹣)或4x﹣12=﹣2(3x﹣),解得x=或x=.故答案为:或.(3)当CD与EF重合时,所用时间为=7秒,由题意得:AD与EH重合的部分为=4,如图1所示,设长方形ABCD从EF运动到AD与EH重叠部分为4时,所用的时间为t1秒,∴t1==2,∴第一次重叠面积为12时,时间t为2+7=9(秒);当AD与EH重叠部分为4时,如图2所示,设长方形ABCD从EF运动到AD与EH重叠部分为4时,所用的时间为t2秒,∴t2==6,∴第二次重叠面积S=12时,时间t为6+7=13(秒);∴当长方形ABCD与长方形EFGH重叠部分的面积为12时,t的值为9或13.13.(宣化)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示﹣,设点B所表示的数为m.(1)实数m的值是;(2)求|m+1|+|m﹣1|的值;(3)在数轴上还有C、D两点分别表示实数c和d,且有|2c+d|与互为相反数,求2c﹣3d的平方根.【答案】(1)2﹣(2)2 (3)±4.【解答】解:(1)m=﹣+2=2﹣;(2)∵m=2﹣,则m+1>0,m﹣1<0,∴|m+1|+|m﹣1|=m+1+1﹣m=2;答:|m+1|+|m﹣1|的值为2.(3)∵|2c+d|与互为相反数,∴|2c+d|+=0,∴|2c+d|=0,且=0,解得:c=﹣2,d=4,或c=2,d=﹣4,①当c=﹣2,d=4时,所以2c﹣3d=﹣16,无平方根.②当c=2,d=﹣4时,∴2c﹣3d=16,∴2c﹣3d的平方根为±4,答:2c﹣3d的平方根为±4.14.(锦江)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,如图2,点A、B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;如图3,当点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;如图4,当点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|.回答下列问题:(1)数轴上表示1和6的两点之间的距离是数轴上表示2和﹣3的两点之间的距离是.(2)数轴上若点A表示的数是x,点B表示的数是﹣4,则点A和B之间的距离是,若|AB|=3,那么x为.(3)当x是时,代数式|x+2|+|x﹣1|=7.(4)若点A表示的数﹣1,点B与点A的距离是10,且点B在点A的右侧,动点P、Q 同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒个单位长度,求运动几秒后,B、P、Q三点中,有一点恰好是另两点所连线段的中点?(请写出必要的求解过程).【答案】(1)5,5(2)﹣1或﹣7 (3)﹣4或3 (4)运动或或5秒【解答】解:(1)数轴上表示1和6的两点之间的距离是|6﹣1|=5,数轴上表示2和﹣3的两点之间的距离是|2﹣(﹣3)|=5.(2)数轴上若点A表示的数是x,点B表示的数是﹣4,则点A和B之间的距离是|x+4|,若|AB|=3,则|x+4|=3,解得x=﹣1或﹣7.(3)当x>1时,|x+2|+|x﹣1|=x+2+x﹣1=7,2x=6,x=3,当x<﹣2时,|x+2|+|x﹣1|=﹣x﹣2+1﹣x=7,﹣2x=8,x=﹣4,当﹣2≤x≤1时,|x+2|+|x﹣1|=x+2+1﹣x=3≠7,∴当x=﹣4或3时,代数式|x+2|+|x﹣1|=7.(4)设运动t秒后,有一点恰好是另两点所连线段的中点,由题意,得①点B为线段PQ中点时,,解得,②点P为线段BQ中点时,,解得,③点Q为线段BP中点时,,解得t=5.答:运动或或5秒后,B、P、Q三点中,有一点恰好是另两点所连线段的中点.15.(宣化)阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能完全地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分.请解答下列问题:(1)求出+2的整数部分和小数部分;(2)已知:10+=x+y,其中x是整数,且0<y<1,请你求出(x﹣y)的相反数.【答案】(1)3,﹣1 (2)﹣14【解答】解:(1)∵1<<2,∴3<+2<4,∴+2的整数部分是1+2=3,+2的小数部分是﹣1;(2)∵2<<3,∴12<10+<13,∴10+的整数部分是12,10+的小数部分是10+﹣12=﹣2,即x=12,y=﹣2,∴x﹣y=12﹣(﹣2)=12﹣+2=14﹣,则x﹣y的相反数是﹣14.16.(靖江)在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),则称点Q是点P的“a阶派生点”(其中a为常数,且a≠0).例如:点P(1,4)的“2阶派生点”为点Q(2×1+4,1+2×4),即点Q(6,9).(1)若点P的坐标为(﹣1,5),则它的“3阶派生点”的坐标为;(2)若点P的“5阶派生点”的坐标为(﹣9,3),求点P的坐标;(3)若点P(c+1,2c﹣1)先向左平移2个单位长度,再向上平移1个单位长度后得到了点P1.点P1的“﹣4阶派生点”P2位于坐标轴上,求点P2的坐标.【答案】(1)(2,14)(2)(﹣2,1);(3)(0,﹣15)或(,0).【解答】解:(1)3×(﹣1)+5=2;﹣1+3×5=14,∴点P的坐标为(﹣1,5),则它的“3级派生点”的坐标为(2,14).故答案为:(2,14);(2)设点P的坐标为(a,b),由题意可知,解得:,∴点P的坐标为(﹣2,1);(3)由题意,P1(c﹣1,2c),∴P1的“﹣4阶派生点“P2为:(﹣4(c﹣1)+2c,c﹣1﹣8c),即(﹣2c+4,﹣7c﹣1),∵P2在坐标轴上,∴﹣2c+4=0或﹣7c﹣1=0,∴c=2或c=﹣,∴P2(0,﹣15)或(,0).17.(黄山)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1),①在点E(0,3),F(3,﹣3),G(2,﹣5)中,为点A的“等距点”的是;②若点B的坐标为B(m,m+6),且A,B两点为“等距点”,则点B的坐标为;(2)若T1(﹣1,﹣k﹣3),T2(4,4k﹣3)两点为“等距点”,求k的值.【答案】(1)①E、F;②(﹣3,3);(2)1或2【解答】解:(1)①∵点A(﹣3,1)到x、y轴的距离中最大值为3,∴与A点是“等距点”的点是E、F.②当点B坐标中到x、y轴距离其中至少有一个为3的点有(3,9)、(﹣3,3)、(﹣9,﹣3),这些点中与A符合“等距点”的是(﹣3,3).故答案为①E、F;②(﹣3,3);(2)T1(﹣1,﹣k﹣3),T2(4,4k﹣3)两点为“等距点”,①若|4k﹣3|≤4时,则4=﹣k﹣3或﹣4=﹣k﹣3解得k=﹣7(舍去)或k=1.②若|4k﹣3|>4时,则|4k﹣3|=|﹣k﹣3|解得k=2或k=0(舍去).根据“等距点”的定义知,k=1或k=2符合题意.即k的值是1或2.18.(延长)在平面直角坐标系中,O为坐标原点,过点A(8,6)分别作x轴、y轴的平行线,交y轴于点B,交x轴于点C,点P是从点B出发,沿B→A→C以2个单位长度/秒的速度向终点C运动的一个动点,运动时间为t(秒).(1)直接写出点B和点C的坐标B(,)、C(,);(2)当点P运动时,用含t的式子表示线段AP的长,并写出t的取值范围;(3)点D(2,0),连接PD、AD,在(2)条件下是否存在这样的t值,使S△APD=S,若存在,请求出t值,若不存在,请说明理由.四边形ABOC【答案】(1)0、6,8、0 (2)AP=8﹣2t(0≤t<4);AP=2t﹣8(4≤t≤7).(3)当t为3秒和5秒时S△APD=S四边形ABOC【解答】解:(1)B(0,6),C(8,0),故答案为:0、6,8、0;(2)当点P在线段BA上时,由A(8,6),B(0,6),C(8,0)可得:AB=8,AC=6∵AP=AB﹣BP,BP=2t,∴AP=8﹣2t(0≤t<4);当点P在线段AC上时,∵AP=点P走过的路程﹣AB=2t﹣8(4≤t≤7).(3)存在两个符合条件的t值,当点P在线段BA上时∵S△APD=AP•AC S四边形ABOC=AB•AC∴(8﹣2t)×6=×8×6,解得:t=3<4,当点P在线段AC上时,∵S△APD=AP•CD CD=8﹣2=6∴(2t﹣8)×6=×8×6,解得:t=5<7,综上所述:当t为3秒和5秒时S△APD=S四边形ABOC,19.(齐齐哈尔)如图①,在平面直角坐标系中,点A、B在x轴上,AB⊥BC,AO=OB=2,BC=3(1)写出点A、B、C的坐标.(2)如图②,过点B作BD∥AC交y轴于点D,求∠CAB+∠BDO的大小.(3)如图③,在图②中,作AE、DE分别平分∠CAB、∠ODB,求∠AED的度数.【答案】(1)A(﹣2,0),B(2,0),C(2,3);(2)90°(3)45°【解答】解:(1)依题意得:A(﹣2,0),B(2,0),C(2,3);(2)∵BD∥AC,∴∠ABD=∠BAC,∴CAB+∠BDO=∠ABD+∠BDO=90°;(3):∵BD∥AC,∴∠ABD=∠BAC,∵AE,DE分别平分∠CAB,∠ODB,∴∠CAE+∠BDE=(∠BAC+∠BDO)=(∠ABD+∠BDO)=×90°=45°,过点E作EF∥AC,则∠CAE=∠AEF,∠BDE=∠DEF,∴∠AED=∠AEF+∠DEF=∠CAE+∠BDE=45°.20.(随县)如图,在平面直角坐标系中,已知点A(0,2),B(4,0),C(4,3)三点.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,1),且四边形ABOP的面积是△ABC的面积的两倍;求满足条件的P点坐标.【答案】(1)6(2)P(﹣8,1)【解答】解:(1)∵B(4,0),C(4,3),∴BC=3,∴S△ABC=×3×4=6;(2)∵A(0,2)(4,0),∴OA=2,OB=4,∴S四边形ABOP=S△AOB+S△AOP=×4×2+×2(﹣m)=4﹣m,又∵S四边形ABOP=2S△ABC=12,∴4﹣m=12,解得:m=﹣8,∴P(﹣8,1).。

部编数学七年级上册期中考试压轴题训练(一)(解析版)含答案

部编数学七年级上册期中考试压轴题训练(一)(解析版)含答案

期中考试压轴题训练(一)1.如果0abcd <,0a b +=,0cd >,那么这四个数中负数有( )A .4个B .3个C .2个D .1个或3个【答案】D【详解】由abcd<0,a+b=0,cd>0,得a,b 一个正数,一个是负数,c,d 同正或同负,这四个数中的负因数有1个或三个,故选D.2.对于有理数x ,y ,若0x y <,则||||||xy y x xy y x ++的值是( ).A .3-B .1-C .1D .3A .7B .3或﹣3C .3D .7或3【答案】A【详解】解:∵|m |=5,|n |=2,∴m =±5,n =±2,又∵m 、n 异号,∴m =5、n =﹣2或m =﹣5、n =2,当m =5、n =﹣2时,|m ﹣n |=|5﹣(﹣2)|=7;当m =﹣5、n =2时,|m ﹣n |=|﹣5﹣2|=7;综上|m ﹣n |的值为7,故选:A .4.已知132n x y +与4313x y 是同类项,则n 的值是( )A .2B .3C .4D .5【答案】B周长为n (图中阴影部分所示),则这两个正方形的周长和可用代数式表示为( )A .m n+B .m n -C .2m n -D .2m n+10010AB BC CD DE ===,,则数9910所对应的点在线段( )上.A .ABB .BC C .CD D .DE12+2+2++2+L 2342009222+2+2+2S =++L,因此2009221S S -=-,所以23200820091+2+2++221=-L .请仿照以上推理计算出2342019144444++++++L 的值是( )A .201941-B .202041-C .2019413-D .2020413- 8.若代数式3x ax bx x +---的值与字母x 无关,则-a b 的值为__________.【答案】-2【详解】解:∵x2+ax-(bx2-x-3)=x2+ax-bx2+x+3=(1-b)x2+(a+1)x+3,且代数式的值与字母x无关,∴1-b=0,a+1=0,解得:a=-1,b=1,则a-b=-1-1=-2,故答案为:-2.9.已知a、b为有理数,下列说法:①若a、b互为相反数,则“ab=﹣1;②若|a﹣b|+a﹣b=0,则b>a;③若a+b<0,ab>0,则|3a+4b|=﹣3a﹣4b;④若|a|>|b|,则(a+b)•(a﹣b)是正数,其中正确的序号是_____.张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲,乙,丙,丁,戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:16;丁:7;戊:17.根据以上信息,判断戊同学手里拿的两张卡片上的数字是________.【答案】8和9【详解】解:由题意可知,一共十张卡片十个数,五个人每人两张卡片,∴每人手里的数字不重复.由甲:11,可知甲手中的数字可能是1和10,2和9,3和8,4和7,5和6;由乙:4,可知乙手中的数字只有1和3;由丙:16,可知丙手中的数字可能是6和10,7和9;由丁:7,可知丁手中的数字可能是1和6,2和5,3和4;由戊:17,可知戊手中的数字可能是7和10,8和9;∴丁只能是2和5,甲只能是4和7,丙只能是6和10,戊只能是8和9.故答案为:8和9.11.干支纪年法是中国历法上自古以来就一直使用的纪年方法.干支是天干和地支的总称,“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”十个符号叫天干;“子、丑、寅、卯、辰、巳、午、未、申、酉、戊、亥”十二个符号叫地支.把干支(天干+地支)顺序相配(甲子、乙丑、丙寅……)正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”. 如1984年为甲子年,1911年为辛亥年,请问中华人民共和国成立之年(1949年)是________年.【答案】己丑【详解】1949-3=1946天干:1946÷10=194……6天干从左往右数6为已地支:1946÷12=162……2地支从左往右数2为丑∴1949年是乙丑年12.在“-”“×”两个符号中选一个自己想要的符号,填入212212æö+´ç÷èøW 中的□,并计算.41=+5=13.已知A=3a2b﹣2ab2+abc,小明同学错将“2A﹣B”看成“2A+B”,算得结果为4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求出2A﹣B的结果;(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=18,b=15,求(2)中式子的值.(1)如图1,在数轴上标有A,B两点,已知A,B两点所表示的数互为相反数.①如果点A所表示的数是5-,那么点B所表示的数是_______;②在图1中标出原点O的位置;(2)图2是小敏所画的数轴,数轴上标出的点中任意相邻两点间的距离都相等.根据小敏提供的信息,标出隐藏的原点O的位置,并写出此时点C所表示的数是____________;(3)如图3,数轴上标出若干个点,其中点A ,B ,C 所表示的数分别为a ,b ,c .若数轴上标出的若干个点中每相邻两点相距1个单位(如AB =1),且28c a -=.①试求a 的值;②若点D 也在这条数轴上,且CD =2,求出点D 所表示的数.【答案】(1)①5;②数轴见解析(2)数轴见解析,点C 表示的数是3(3)①-2;②d =2或d =6【解析】(1)解:①点A 所表示的数是-5,点A 、点B 所表示的数互为相反数,所以点B 所表示的数是5,故答案为:5;②在图1中表示原点O 的位置如图所示:(2)原点O 的位置如图所示,点C 所表示的数是3.故答案为:3;(3)解:①由题意得:AC =6,所以c -a =6,又因为c -2a =8,所以a =-2;②设D 表示的数为d ,因为c -a =6,a =-2,所以c =4,因为CD =2,所以c -d =2或d -c =2,所以d =2或d =6.15.如图,射线OM 上有三点,,A B C ,满足40OA =cm ,30AB =cm ,20BC =cm.点P 从点O 出发,沿OM 方向以2cm/秒的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点,P Q 停止运动.(1)若点Q 运动速度为3cm/秒,经过多长时间,P Q 两点相遇?(2)当2PB PA =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度;(3)自点P 运动到线段AB 上时,分别取OP 和AB 的中点,E F ,求OB AP EF-的值.。

【压轴题】初一数学上期中试卷附答案

【压轴题】初一数学上期中试卷附答案

【压轴题】初一数学上期中试卷附答案一、选择题1.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( )A .24里B .12里C .6里D .3里2.7-的绝对值是 ( )A .17-B .17C .7D .7-3.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a ,用含a 的式子表示这组数的和是( )A .2a 2-2aB .2a 2-2a -2C .2a 2-aD .2a 2+a4.2019的倒数的相反数是( )A .-2019B .12019-C .12019D .20195.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .a=52bB .a=3bC .a=72bD .a=4b6.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为( )A .84.610⨯B .84610⨯C .94.6D .94.610⨯ 7.周长为68的长方形ABCD 被分成7个全等的长方形,如图所示,则长方形ABCD 的面积为( )A .98B .196C .280D .2848.如图,用火柴棒摆出一列正方形图案,第①个图案用了 4 根,第②个图案用了 12 根,第③个图案用了 24 根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是( )A .84B .81C .78D .76 9.若关于x 的方程3x +2a =12和方程2x -4=12的解相同,则a 的值为( ) A .6B .8C .-6D .4 10.下列数中,最小的负数是( )A .-2B .-1C .0D .1 11.下列等式变形错误的是( )A .若x =y ,则x -5=y -5B .若-3x =-3y ,则x =yC .若x a =y a,则x =y D .若mx =my ,则x =y 12.如果||a a =-,下列成立的是( )A .0a >B .0a <C .0a ≥D .0a ≤二、填空题13.一次新冠病毒防疫知识竞赛有25道题,评委会决定:答对一道题得4分,答错或不答一题扣1分,在这次知识竞赛中,小明被评为优秀(85分或85分以上),那么小明至少答对了__________道题.14.数轴上点A 、B 的位置如下图所示,若点B 关于点A 的对称点为C ,则点C 表示的数为___15.已知3x -8与2互为相反数,则x = ________.16.观察以下一列数:3,54,79,916,1125,…则第20个数是_____. 17.观察一列数:12,25-,310,417- 526,637-…根据规律,请你写出第10个数是______.18.某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价为_________元.19.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3h ,若静水时船速为26km/h ,水速为2km/h ,则A 港和B 港相距_____km .20.一副三角板按如下图方式摆放,若2136'α∠=︒,则β∠的度数为__________.只用度表示α∠的补角为__________.三、解答题21.已知关于x的方程(m+3)x|m+4|+18=0是一元一次方程,试求:(1)m的值;(2)2(3m+2)-3(4m-1)的值.22.请仔细阅读下列材料:计算:(-130)÷(23-110+16-25).解:先求原式的倒数,即(23-110+16-25)÷(-130)=(23-110+16-25)×(-30)=-20+3-5+12=-10,所以原式=-1 10.请根据以上材料计算:(-142)÷(16-314+23-27).23.先化简,再求值 [(xy+2)(xy-2)-2x2y2+4]÷xy,其中x=10,y=-1.24.试根据图中信息,解答下列问题.(1)一次性购买6根跳绳需_____元,一次性购买12根跳绳需______元;(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.25.如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.(1)求∠AOE 的度数;(2)若OF 平分∠BOE ,问:OB 是∠DOF 的平分线吗?试说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】【详解】试题分析:设第一天走了x 里,则根据题意知234511111137822222x ⎛⎫+++++= ⎪⎝⎭,解得x=192,故最后一天的路程为5119262⨯=里. 故选C 2.C解析:C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.3.C解析:C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n =2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n=2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2-a.故选:C.【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1-2.4.B解析:B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是1 2019,1 2019的相反数为12019-,所以2019的倒数的相反数是1 2019 -,故选B.【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.5.B解析:B【解析】【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式.【详解】如图,设左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为CG=a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差()()2S AE AF PC CG PC4b a3b PC a3b a PC12b3ab=⋅-⋅=+-⋅+⋅=-+-.∵S始终保持不变,∴3b﹣a=0,即a=3b.故选B.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6.D解析:D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】4 600 000 000用科学记数法表示为:4.6×109.故选D.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.C解析:C【解析】【分析】观察图形可知AD=BC,也就是5个小长方形的宽与2个小长方形有长相等.设小长方形的宽为x,则其长为34﹣6x,根据AB=CD列方程即可求解即可.【详解】设小长方形的宽为x,则其长为682-6x=34-6x,所以AD=5x,CD=2(34-6x)=68-12x,则有5x=68-12x,解得:x=4,则大长方形的面积为7×4×(34-6×4)=280,故选C.8.A解析:A【解析】【分析】图形从上到下可以分成几行,第n个图形中,竖放的火柴有n(n+1)根,横放的有n(n+1)根,因而第n个图案中火柴的根数是:n(n+1)+n(n+1)=2n(n+1).把n=6代入就可以求出.【详解】解:设摆出第n个图案用火柴棍为S n.①图,S1=1×(1+1)+1×(1+1);②图,S2=2×(2+1)+2×(2+1);③图,S3=3×(3+1)+3×(3+1);…;第n个图案,S n=n(n+1)+n(n+1)=2n(n+1).则第⑥个图案为:2×6×(6+1)=84.故选A.【点睛】本题考查了规律型:图形的变化,此题注意第n个图案用火柴棍为2n(n+1).9.C解析:C【解析】【分析】分别解出两方程的解,两解相等,就得到关于a的方程,从而可以求出a的值.【详解】解第一个方程得:x=1223a-,解第二个方程得:x=8,∴1223a-=8,解得:a=-6.故选C.【点睛】考查了同解方程,利用同解方程得出关于a的方程是解题关键.10.A解析:A【解析】试题分析:根据数轴上的数,左边的地总比右边的小,两个负数相比较,绝对值大的反而小.解:∵ 最小的负数,∴ C 、D 不对, ∵21->-,绝对值大的反而小,∴-2最小.故选A考点:正数和负数.11.D解析:D【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时乘以或除以同一个不为0的数,等式依然成立;据此对各选项进行分析判断即可.【详解】A :等式两边同时减去了5,等式依然成立;B :等式两边同时除以3-,等式依然成立;C :等式两边同时乘以a ,等式依然成立;D :当0m =时,x 不一定等于y ,等式不成立;故选:D .【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.12.D解析:D【解析】【分析】绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.【详解】如果||a a =-,即一个数的绝对值等于它的相反数,则0a ≤.故选D .【点睛】本题考查绝对值,熟练掌握绝对值的性质是解题关键.二、填空题13.22【解析】【分析】将答对题数所得的分数减去打错或不答所扣的分数在由题意知小明答题所得的分数大于等于85分列出不等式即可【详解】解:设小明答对了x道题则他答错或不答的共有(25-x)道题由题意得4x解析:22【解析】【分析】将答对题数所得的分数减去打错或不答所扣的分数,在由题意知小明答题所得的分数大于等于85分,列出不等式即可.【详解】解:设小明答对了x道题,则他答错或不答的共有(25-x)道题,由题意得4x-(25-x)×1≥85,解得x≥22,答:小明至少答对了22道题,故答案为:22.【点睛】本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.本题尤其要注意所得的分数是答对题数所得的分数减去打错或不答所扣的分数.14.-5【解析】分析:点A表示的数是-1点B表示的数是3所以|AB|=4;点B 关于点A的对称点为C所以点C到点A的距离|AC|=4即设点C表示的数为x则-1-x=4解出即可解答;解答:解:如图点A表示的解析:-5【解析】分析:点A表示的数是-1,点B表示的数是3,所以,|AB|=4;点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,即,设点C表示的数为x,则,-1-x=4,解出即可解答;解答:解:如图,点A表示的数是-1,点B表示的数是3,所以,|AB|=4;又点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,设点C表示的数为x,则,-1-x=4,x=-5;故答案为-5.15.2【解析】根据互为相反数的两个数的和为0可得3x-8+2=0解得x=2点睛:根据互为相反数的和为零可得关于x的一元一次方程解方程即可得答案解析:2【解析】根据互为相反数的两个数的和为0可得,3x-8+2=0,解得x=2.点睛:根据互为相反数的和为零,可得关于x的一元一次方程,解方程即可得答案.16.【解析】【分析】观察已知数列得到一般性规律写出第20个数即可【详解】解:观察数列得:第n 个数为则第20个数是故答案为【点睛】本题考查了规律型:数字的变化类弄清题中的规律是解答本题的关键 解析:41400【解析】【分析】 观察已知数列得到一般性规律,写出第20个数即可.【详解】解:观察数列得:第n 个数为221n n +,则第20个数是41400. 故答案为41400. 【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键. 17.【解析】【分析】仔细观察给出的一列数字从而可发现分子等于其项数分母为其所处的项数的平方加1根据规律解题即可【详解】…根据规律可得第n 个数是第10个数是故答案为;【点睛】本题是一道找规律的题目要求学生 解析:10101-【解析】【分析】 仔细观察给出的一列数字,从而可发现,分子等于其项数,分母为其所处的项数的平方加1,根据规律解题即可.【详解】12,25-,310,417-,526,637-….. 根据规律可得第n 个数是()1211n n n +-+,∴第10个数是10101-, 故答案为; 10101-. 【点睛】 本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.18.2750【解析】【分析】【详解】解:设标价为x 元则由售价-进价=进价×利润率得解得x =2750∴标价为2750元故答案为:2750解析:2750【解析】【分析】【详解】解:设标价为x 元,则由售价-进价=进价×利润率,得0.8x 2000200010%-=⨯,解得x =2750.∴标价为2750元.故答案为:2750.19.【解析】【分析】根据逆流速度=静水速度-水流速度顺流速度=静水速度+水流速度表示出逆流速度与顺流速度根据题意列出方程求出方程的解问题可解【详解】解:设A 港与B 港相距xkm 根据题意得:解得:x=504解析:【解析】【分析】根据逆流速度=静水速度-水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解问题可解.【详解】解:设A 港与B 港相距xkm ,根据题意得:3262262x x +=+- , 解得:x=504,则A 港与B 港相距504km .故答案为:504.【点睛】此题考查了分式方程的应用题,解答关键是在顺流、逆流过程中找出等量关系构造方程.20.【解析】【分析】根据平角的定义可得++90°=180°然后进一步计算即可得出的度数然后再根据补角性质用180°减去度数即可得出其补角【详解】由题意得:++90°=180°∴=90°−=;的补角=18解析:6824'o 158.4o【解析】【分析】根据平角的定义可得α∠+β∠+90°=180°,然后进一步计算即可得出β∠的度数,然后再根据补角性质用180°减去α∠度数即可得出其补角.【详解】由题意得:α∠+β∠+90°=180°,2136'α∠=︒∴β∠=90°−α∠=6824'o ;α∠的补角=180°−α∠=158.4o ,故答案为:6824'o ,158.4o .【点睛】本题主要考查了角的性质,熟练掌握相关概念是解题关键.三、解答题21.(1)m=-5 (2)37【解析】(1)依题意有|m+4|=1,解之得m=-3(舍去),m=-5,故m=-5,(2)()()232341m m +--= 6m+4-12m+3=-6m+7当m=-5时,原式= 37.22.-114【解析】【分析】 根据题目提供的方法计算即可.【详解】∵(16-314+23-27)÷(-142) =(16-314+23-27)×(-42) =16×(-42)-314×(-42)+23×(-42)-27×(-42) =-7+9-28+12=-7-28+9+12=-35+21=-14,∴(-142)÷(16-314+23-27)=-114. 【点睛】 本题考查了有理数的混合运算,熟练掌握有理数的运算法则并读懂题目所提供的的运算方法是解答本题的关键.23.xy -,10.【解析】【分析】利用去括号、合并同类项和整式的除法运算法则进行化简,然后将x 、y 的值代入即可解答.【详解】解:[(xy+2)(xy-2)-2x2y2+4]÷xy,= [x2y2-4-2x2y2+4] ÷xy=- x2y2 ÷xy=- xy当x=10,y=-1时,- xy=-10×(-1)=10.【点睛】本题主要考查了整式的混合运算,正确掌握相关运算法则是解答本题的关键.24.(1)150;240;(2)11根.【解析】【分析】(1)根据单价×数量=总价,求出6根跳绳需多少元;购买12根跳绳,超过10根,打八折是指现价是原价的80%,用单价×数量×0.8即可求出购买12根跳绳需多少元;(2)有这种可能,可以设小红购买x跳绳根,那么小明购买x-2根跳绳,列出方程25x×0.8=25(x-2)-5,解答即可.【详解】解:(1)一次性购买6根跳绳需25×6=150(元);一次性购买12根跳绳需25×12×0.8=240(元);故答案为:150;240.(2)设小红购买x跳绳根,那么小明购买(x-2)根跳绳,25x×0.8=25(x-2)-5,解得:x=11;小明购买了:11-2=9根.答:小红购买11根跳绳.【点睛】解答的关键是读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程进行解答即可.25.(1) 30°;(2) OB是∠DOF的平分线,理由见解析【解析】【分析】(1)设∠AOE=2x,根据对顶角相等求出∠AOC的度数,根据题意列出方程,解方程即可;(2)根据角平分线的定义求出∠BOF的度数即可.【详解】(1)∵∠AOE:∠EOC=2:3.∴设∠AOE=2x,则∠EOC=3x,∴∠AOC=5x.∵∠AOC=∠BOD=75°,∴5x=75°,解得:x=15°,则2x=30°,∴∠AOE=30°;(2)OB是∠DOF的平分线.理由如下:∵∠AOE=30°,∴∠BOE=180°﹣∠AOE=150°.∵OF平分∠BOE,∴∠BOF=75°.∵∠BOD=75°,∴∠BOD=∠BOF,∴OB是∠DOF的角平分线.【点睛】本题考查了对顶角、邻补角的概念和性质、角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.。

初一数学期中压轴题系列:定义新运算和程序运算

初一数学期中压轴题系列:定义新运算和程序运算

初一数学期中压轴题系列:定义新运算和程序运算【难度】★★☆☆☆【考点】有理数运算,错项相消【八十中期中】设f(k)=k2+(k+1)2+……+(3k)2,求f(4)-f(3)=()A.365 B.63 C.356 D.7【分析】令等式中的k分别等于4、3【答案】C【难度】★★★☆☆【考点】分类讨论【清华附期中】a为有理数,定义运算符号△:当a>0时,△a=-a;当a<0时,△a=a;a=0时,△a=0,依照这种运算,则△(1+△2)等于()A.3B.-3C.1D.-1【分析】△运算的本质是:△a=-|a|【答案】D【难度】★★★★☆【考点】有理数运算,错项相消【北大附期中】若规定一种新运算为,假如,那么_______。

【分析】先令a=2,b=1/2,代入公式,可得A= - 1;把A= - 1代入,令a=2021,b=2021【答案】1/2021000【难度】★★★★☆【考点】绝对值化简、等差数列求和【清华附期中】将1,2,3,…,100这100个自然数,任意分成50组,每组两个数,现将每组中的两个数记为a,b,代入中进行运算,求出结果,可得到50个值,则这50个值的和的最小值为____。

【分析】绝对值运算化简:当ab,原式=b;当a【答案】1+2+3+……+49+50= 1275【难度】★★★★☆【考点】程序运算、多次循环【人大附中期中】按下面的程序运算,若开始输入的值x 为正数,最后输出的结果为85 3,则满足条件的x 的不同值最多有()A.5个B.4个C.3个D.2个【分析】输出结果853可能是没有通过循环、通过1次或者多次循环后的结果【答案】A【易错点】注意题目中的x条件为正数,满足的有:213、53、13、3、0.5五个【难度】★★★★☆【考点】程序运算、二元一次方程按下面的程序运算,若开始输入的值x 为1,最后输出的结果为1;若开始输入的值x 为-1,,最后输出的结果为-3,则若开始输入的值x 为0.5,最后输出的结果为_________.语文课本中的文章差不多上精选的比较优秀的文章,还有许多名家名篇。

七上期中考试数学压轴题专练经典及答案

七上期中考试数学压轴题专练经典及答案

-20-16-12-8-4201612840七上期中考试数学压轴题1.如图,点A 从原点出发沿数轴向左运动,同时,点B 也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B 的速度是点A 的速度的4倍(速度单位:单位长度/秒).(1)求出点A 、点B 运动的速度,并在数轴上标出A 、B 两点从原点出发运动3秒时的位置;(4分)(2)若A 、B 两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A 、点B 的正中间?(4分)2.动点A 从原点出发向数轴负方向运动,同时,动点B 也从原点出发向数轴正方向运动,4秒后,两点相距20个单位长度.已知动点A 、B 的速度比为2∶3(速度单位:单位长度/秒).(1)求出两个动点运动的速度,并在数轴上标出A 、B 两点从原点出发运动4秒时的位置;(2)若A 、B 两点从(1)中标出的位置同时出发,按原速度向数轴负方向运动,求几秒钟后原点恰好在两个动点的正中间;(3)当A 、B 两点从(1)中标出的位置出发向数轴负方向运动时,另一动点C 也同时从原点的位置出发向A 运动,当遇到A 后立即返回向B 点运动,遇到B 后又立即返回向A 运动,如此往返,直到B 追上A 时,C 立即停止运动.若点C 一直以10单位长度/秒的速度匀速运动,求点C 一共运动了多少个单位长度.3.画个数轴,想一想(1)已知在数轴上表示3的点和表示8的点之间的距离为5个单位,有这样的关系5=8-3,那么在数轴上表示数4的点和表示-3的点之间的距离是________单位;(2)已知在数轴上到表示数-3的点和表示数5的点距离相等的点表示数1,有这样的关系11(35)2=-+,那么在数轴上到表示数a 的点和表示数b 的点之间距离相等的点表示的数是__________________.(3)已知在数轴上表示数x 的点到表示数-2的点的距离是到表示数6的点的距离的2倍,求数x .4.已知:b 是最小的正整数,且a 、b 满足2(5)||0c a b -++=,请回答问题 (1)请直接写出a 、b 、c 的值。

期中复习(压轴题42题)(原卷版)—2024-2025学年七年级数学上学期(北师大版2024)

期中复习(压轴题42题)(原卷版)—2024-2025学年七年级数学上学期(北师大版2024)

期中复习(压轴题42题)一、单选题1.若ab≠0,则a|a|+b|b|+ab|ab|的值可能是()A.1和3B.―1和3C.1和―3D.―1和―32.如图,在探究“幻方”、“幻圆”的活动课上,学生们感悟到我国传统数学文化的魅力.一个小组尝试将数字―5,―4,―3,―2,―1,0,1,2,3,4,5,6这12 个数填入“六角幻星”图中,使6条边上四个数之和都相等.部分数字已填入圆圈中,则a的值为()A.―4B.―3C.3D.43.某公园将免费开放一天,早晨6时30分有2人进公园,第一个30min内有4人进去并出来1人,第二个30min内进去8人并出来2人,第三个30min内进去16人并出来3人,第四个30min内进去32人并出来4人,······按照这种规律进行下去,到上午11时30分公园内的人数是()A.2001B.4039C.8124D.163044.有依次排列的两个不为零的整式A=x,B=2y,用后一个整式与前一个整式求和后得到新的整式a1=x+2y,用整式a1=x+2y与前一个整式B=2y作差后得到新的整式a2=x,用整式a2=x与前一个整式a1=x+2y求和后得到新的整式a3=2x+2y,……,依次进行作差、求和的交替操作得到新的整式.下列说法:①当x=2,y=1时,a6=6;②a12=8x+10y;③a2023+a2026=0;④a2024+a2022=a2017+2 a2019.其中,正确的个数是( )A.0B.1C.2D.35.南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将其称为“杨辉三角”.(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)10展开式中所有项的系数和是()A.2048B.1024C.512D.2566.观察下面的数:按着规律排下去,那么第16行从左边数第2个数是()A.―225B.―226C.―224D.―2277.发现规律解决问题是常见解题策略之一.已知数a=15+25+35+45+55+⋯+295,则这个数a的个位数为()A.3B.4C.5D.68.下图是一组有规律的图案,图1中有4个小黑点,图2中有7个小黑点.图3中有12个小黑点,图4中有19个小黑点,⋯,按此规律图9中的小黑点个数为()A.64B.67C.84D.879.把所有偶数从小到大排列,并按如下规律分组:第1组:2,4第2组:6,8,10,12第3组:14,16,18,20,22,24第4组:26,28,30,32,34,36,38,40……现有等式A m=(i,j)表示正偶数m是第i组第j个数(从左往右数),如A10=(2,3),则A2020=()A.(31,63)B.(32,18)C.(32,19)D.(31,41)10.汉诺塔问题是指有三根杆子和套在杆子上的若干大小不等的碟片,按下列规则,把碟片从一根杆子上全部移到另一根杆子上;(1)每次只能移动1个碟片.(2)较大的碟片不能放在较小的碟片上面.如图所示,将1号杆子上所有碟片移到2号杆子上,3号杆可以作为过渡杆使用,称将碟片从一根杆子移动到另一根杆子为移动一次,记将1号杆子上的n个碟片移动到2号杆子上最少需要a n次,则a6=()A.31次B.33次C.62次D.63次11.如图所示,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的4倍,则它们第2022次相遇在边()上.A.AB B.BC C.CD D.AD二、填空题12.如图①是一个小正方体的侧面展开图,小正方体从如图②所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,这时小正方体朝上面的字是.13.定义一种新运算:对于任意实数a、b,满足⟨a,b⟩=a―2b(a≤b)b―2a(a>b),当|a|=1,|b|=2时,⟨a,b⟩的最大值为.14.在数轴上剪下8个单位长度(从1到9)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图).若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是15.如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第1幅图形中“•”的个数为a 1,第2幅图形中“•”的个数为a 2,第3幅图形中“•”的个数为a 3,以此类推,则1a 1+1a 2+1a 3+…+1a 18的值为 .16.比―12大而不大于3的所有整数为,它们的和为 .17.若一个三位正整数m =abc (各个数位上的数字均不为0),若满足a +b +c =9,则称这个三位正整数为“合九数”.对于一个“合九数”m ,将它的十位数字和个位数字交换以后得到新数n ;记F (m )=m+n9,则F (234)= ,对于一个“合九数”m ,若F (m )能被8整除,则满足条件的“合九数”m 的最大值是 .18.如图,把五个长为b 、宽为a (b >a )的小长方形,按图1和图2两种方式放在一个宽为m 的大长方形.设图1中两块阴影部分的周长和为C 1,图2中阴影部分的周长为C 2,若大长方形的长比宽大(6―a ),则C 2―C 1的值为 .19.a 是不为1的有理数,我们把11―a 称为a 的差倒数.如:2的差倒数是11―2=―1,―1的差倒数是11―(―1)=12.已知a 1=―12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,则a 2020=.20.一动点A 从原点出发,规定向右为正方向,连续不断地一右一左来回动(第一次先向右移动),移动的距离依次为2,1;4,2;6,3;8,4;10,5;12,6;14,7;.....则动点A 第一次经过表示 55的点时,经过了次移动21.已知a 2+2ab =―2,ab ―b 2=―4,则2a 2+72ab +12b 2的值为.22.正方形ABCD 在数轴上的位置如图,点A 、D 对应的数分别为0和﹣1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2022次后,数轴上数2022所对应的点是 .23.卡塔尔世界杯吸引了很多球迷的观看.某观看大厅观众区分为三部分,中间部分为固定座位数,每排13座,两边成扇形,第一排两边都为5座,第二排两边都为7座,第三排两边都为9座,往后按照此规律依次类推……,若此演出大厅共有15排座位,则能同时容纳 人观看.24.将正整数按如图所示的规律排列,有序数对(n,m )表示第n 排,从左到右第m 个数.如有序数对(4,3)表示8,则有序数对(16,14)表示的数为 .三、解答题25(1)数轴上表示3和2的两点之间的距离是_____;表示―2和1两点之间的距离是_____;一般地,数轴上表示数m 和数n 的两点之间的距离等于|m ―n |.(2)如果|x +1|=2,那么x =______;(3)若|a ―3|=4,|b +2|=3,且数a 、b 在数轴上表示的数分别是点A 、点B ,则A 、B 两点间的最大距离是______,最小距离是_____.(4)若数轴上表示数a 的点位于―3与5之间,则|a +3|+|a ―5|=_____.(5)当a =_____时,|a ―1|+|a +5|+|a ―4|的值最小,最小值是_____.26.已知|x |=3,|y |=2.(1)若x >0,y <0,求x +y 的值;(2)若x <y ,求x ﹣y 的值.27.如图,在数轴上点A表示数a,点B表示数b,且a,b满足|a―7|+(b―28)2=0.(1)a=______,b=______;(2)如图,一根木棒放在数轴上,木棒的左端与数轴上的点C重合,右端与点D重合.若将木棒沿数轴向右水平移动,则当它的左端移动到D点时,它的右端与点B重合:若将木棒沿数轴向左水平移动,则当它的右端移动到C点时,则它的左端与点A重合.若数轴上一个单位长度表示1cm.则①由此可得到木棒长为______cm;②图中C点表示的数是______,D点表示的数是______;(3)由题(1)(2)的启发,请你能借助“数轴”这个工具帮助小红解决下列问题:一天,小红去问曾当过数学老师现在退休在家的爷爷的年龄,爷爷说:“我若是你现在这么大,你还要39年才出生,你若是我现在这么大,我已经117”请求出爷爷现在多少岁.28.若点A在数轴上对应的数为a,点B在数轴上对应的数为b,我们把A、B两点之间的距离表示为AB,记AB=|a―b|,且a,b满足|a―1|+(b+2)2=0.(1)a=;b=;线段AB的长=;(2)点C在数轴上对应的数是c,且c与b互为相反数,在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点B以每秒1个单位长度的速度向左运动,同时点A和点C分别以每秒4个单位长度和9个单位长度的速度向右运动,t秒钟后,若点A和点C之间的距离表示为AC,点A和点B之间的距离表示为AB,那么AB―AC的值是否随着时间t的变化而变化?若变化,请说明理由;若不变,请求出AB―AC的值.29.已知在纸面上有一数轴(如图),折叠纸面,若数轴上数1表示的点与数―1表示的点重合,则数轴上数―2表示的点与数2表示的点重合,根据你对上述内容的理解,解答下列问题:若数轴上数―4表示的点与数0表示的点重合.(1)则数轴上数3表示的点与数___________表示的点重合;(2)若点A到原点的距离是5个单位长度,并且A,B两点经折叠后重合,求B点表示的数;(3)若数轴上M,N2022,并且M,N两点经折叠后重合,如果M点表示的数比N点表示的数大,直接写出M点,N点表示的数.30.如图,已知:a、b分别是数轴上两点A、B所表示的有理数,满足|a+20|+(b+8)2=0.(1)求A、B两点相距多少个单位长度?(2)若C点在数轴上,C点到B点的距离是C点到A点距离的1,求C点表示的数;3(3)点P从A点出发,先向左移动一个单位长度,再向右移动2个单位长度,再向左移动3个单位长度,再向右移动4个单位长度,如此下去,依次操作2023次后,求P点表示的数.31.平移和翻折是初中数学两种重要的图形变换(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动4个单位长度,再向正方向移动1个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是______.A、(+4)+(+1)=+5B、(+4)+(―1)=+3C、(―4)―(+1)=―5D、(―4)+(+1)=―3②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,⋅⋅⋅,依此规律跳,当它跳2023次时,落在数轴上的点表示的数是______.(2)翻折变换①若折叠纸条,表示―1的点与表示3的点重合,则表示2023的点与表示______的点重合;②若数轴上A、B两点之间的距离为2024(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示______,B点表示______.(4)一条数轴上有点A、B、C,其中点A、B表示的数分别是―17、8,现以点C为折点,将数轴向右对折,若点A对应的点A′落在数轴上,并且A′B=2,求点C表示的数.32.数学问题:计算1m +1m2+1m3+⋯1m n(其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算12+122+123+⋯+12n .第1次分割,把正方形的面积二等分,其中阴影部分的面积为12.第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为12+122.第3次分割,把上次分割图中空白部分的面积继续二等分,⋯.⋯第n 次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和12+122+123+⋯+12n ,最后空白部分的面积是12n .第n 次分割图可得等式:12+122+123+⋯+12n =1―12n .探究二:计算13+132+133+⋯+13n .第1次分割,把正方形的面积三等分,其中阴影部分的面积为23.第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为23+232.第3次分割,把上次分割图中空白部分的面积继续三等分,⋯.⋯第n 次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为23+232+233+⋯+23n ,最后空白部分的面积是13n .根据第n 次分割图可得等式:23+232+233+⋯+23n =1―13n ,两边同除以2,得13+132+133+⋯+13n =12―12×3n .探究三:计算14+142+143+⋯+14n .(仿照上述方法,只画出第n 次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:根据前面探究结果:12+122+123+⋯+12n =1―12n 13+132+133+⋯+13n =12―12×3n 14+142+143+⋯+14n =__________.⋯1m +1m 2+1m 2+⋯+1m n =__________.(只填空,其中m ,n 都是正整数,且m ≥2,n ≥1)拓广应用:计算5―15+52―152+53―153+⋯+5n ―15n .33.求1+2+22+23+…+22016的值,令S =1+2+22+23+…+22016,则2S =2+22+23+…+22016+22017,因此2S ﹣S =22017﹣1,S =22017﹣1.参照以上推理,计算5+52+53+…+52016的值.34.将两个数轴平行放置,并使二者的刻度数上下对齐,再将两个数轴的原点连接起来,就构成一个“双轴系”.定义“双轴系”中两个点A 、B 的距离.如果A 、B 两点在同一个数轴上,则二者之间的距离定义和通常的距离一致,AB =|a ―b |,如果A 、B 两点分别位于两个数轴上,定义AB =|a ―b |+1.利用“双轴系”定义一种“有向数”,记号是在通常数的右边加上“↑”或“↓”,例如,“2↑”表示上层数轴中表示数“2”的点,“―3↓”表示下层数轴中表示数“―3”的点,“0↑”“0↓”分别表示上下两个数轴的原点.(1)在双轴系中3↑与5↑的距离为:______,2↑与―3↓的距离为________;(2)在(1)的假设下,现有只电子蚂蚁甲从“0↑”所表示的点出发不断跳跃,依次跳至1↑、12↑、13↑、23↑、14↑、12↑、34↑、15↑、25↑、…,另有一只电子蚂蚁乙从“0↓”所表示的点出发,然后跳跃到1↓,接着又跳回0↓其后再次跳到1↓,下一步又跳回0↓,按此规律在0↓和1↓之间来回跳动.假设两只蚂蚁同时跳跃同时落下,步调一致.①当蚂蚁甲第3次跳到12↑所表示的点时,请问此时蚂蚁甲共跳跃了多少次?②当甲乙两只蚂蚁的距离为1110时,请直接写出3个符合条件的跳跃次数.35.如图,已知点A ,B ,C 从左到右依次在数轴上,所表示的数分别为x ,―10,200,现将一把最小刻度为1cm的刻度尺放到数轴上,测得点A与点B的距离为5cm.(1)若数轴的1个单位长度为1cm.①x的值为________;点A与点C的距离为________个单位长度;②求点A,B,C所表示的数的和;(2)若数轴的1个单位长度不是1cm,且刻度尺上表示“8”和“10”的刻度分别对应数轴上的―14,―10.①求x的值;②若点D在数轴上,且点A与点C的距离是点A与点D的距离的2倍,求点D所表示的数;的后,用刻度尺能测量出数轴上点B与点C③若刻度尺的最大刻度为30cm,将数轴的单位长度变为原来1k的距离,直接写出k的最小整数值.36.如图,数轴上两点A、B对应的数分别是a、b,a、b满足(a+1)2+|3b―9|=0.点P为数轴上的一动点,其对应的数为x.(1)a= ,b= ,并在数轴上面标出A、B两点;(2)若PA=2PB,求x的值;(3)若点P以每秒2个单位长度的速度从原点O向右运动,同时点A以每秒1个单位长度的速度向左运动,点B以每秒3个单位长度的速度向右运动,设运动时间为t秒.请问在运动过程中,3PB―PA的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.37.已知多项式A=2x2+my―12,B=nx2―3y+6.(1)若(m+2)2+|n―3|=0,化简A―B;(2)若A+B的结果中不含有x2项以及y项,求m+n+mn的值.38.已知M,N两点在数轴上所表示的数分别为m,n,且m,n满足:|m―7|+(n+2)2=0.(1)求m、n的值;(2)①情境:有一个玩具火车AB如图1所示,放置在数轴上,将火车沿数轴左右水平移动,当点A移动到点B时,点B所对应的数为m,当点B移动到点A时,点A所对应的数为n.则玩具火车的长为__________个单位长度;②应用:如图1所示,当火车AB匀速向右运动时,若火车完全经过点M需要2秒,则火车的速度为__________个单位长度/秒.(3)在(2)的条件下,当火车AB匀速向右运动,同时点P和点Q从N、M出发,分别以每秒1个单位长度和2个单位长度的速度向左和向右运动,记火车AB运动后对应的位置为A1B1.是否存在常数k使得kPQ―B1A的值与它们的运动时间无关?若存在,请求出k和这个定值:若不存在,请说明理由.39.A、B为数轴上的两个点,点A对应的数记为a,点B对应的数记为b,且是8xy b―10+(a+8)xy―1关于x、y的三次二项式.解答下列问题:(1)a=________,b=________;(2)若数轴上有一点C,且3AC=BC,求点C对应的数;(3)若点M、N分别从O、B出发,同时向左匀速运动,点M的速度为m个单位长度每秒,点N的速度是3个单位长度每秒,点P、Q分别为线段AM、线段BN的中点.设运动时间为t秒,在点M,N的运动过程中,若PQ+MN的长度与t的取值无关,求m的值及PQ+MN的长度.40.阅读下面材料并解决问题:两个数量的大小可以通过它们的差来判断,如果两个数a和b比较大小,那么,当a>b时,有a―b>0;当a=b时,有a―b=0;当a<b时,有a―b<0;反过来也对,即当a―b>0时,有a>b;当a―b=0时,有a=b;当a―b<0时,有a<因此,我们经常把两个要比较的对象先数量化,再求它们的差,根据差的正负判断对象的大小.像这样判断两数大小关系的方法叫做求差法,请你用求差的方法解决以下问题:(1)若P=2m+3,Q=2m―1,则P―Q 0,P Q(填>,=或<);(2)如图,图1长方形1的周长M= ,图2长方形Ⅱ的周长N= ,用求差法比较M、N的大小;(3)制作某产品有两种用料方案,方案一:用3块A型钢板,用5块B型钢板;方案二:用2块A型钢板,用6块B型钢板.A型钢板的面积比B型钢板的面积大.设A型钢板和B型钢板的面积分别为x和y,从省料角度考虑,应选哪种方案?41.仔细观察下列三组数:第一组:1,﹣4,9,﹣16,25,……第二组:0,﹣5,8,﹣17,24,……第三组:0,10,﹣16,34,﹣48,……根据它们的规律,解答下列问题:(1)取每组数的第10个数,计算它们的和;(2)取每组数的第n个数,它们的和能否是﹣1,说明理由.42.综合与实践素材1:如右图是一款单肩包的背带,背带由双层部分、单层部分、调节扣构成.使用时可以通过调节扣加长或缩短单层部分的长度,使背带的总长度加长或缩短(总长度为单层部分与双层部分的长度和,其中调节扣的长度忽略不计).素材2:对该单肩包背带的单层部分长度和双层部分的长度进行测量,得到下表中数据:单层部分的长度(cm)02468 (150)双层部分的长度(cm)75747372a 0素材3:根据小明同学的身高,背带的总长度为110cm时,背起来最舒适,此时单层部分的长度为70cm,周末小明妈妈已经帮小明调到最舒适的长度,可小明出门时还是习惯性把调节扣调整了五次,下表是五次调节的情况(调节扣向单层方向移动记为正,向双层方向移动记为负,单位:cm)第一次第二次第三次第四次第五次+2―8+7―6+1请根据上述素材,解答以下问题:(1)素材2的表格中a=________.(2)在小明的五次调节中哪一次最接近舒适长度?此时背带总长度是多少?(3)小明每次滑动调节扣之后都要一次性把双层部分拉直,求这五次调节过程中经过悬挂点的背带共多长?。

初一数学期中压轴题:定义新运算和程序运算_题型归纳

初一数学期中压轴题:定义新运算和程序运算_题型归纳

初一数学期中压轴题:定义新运算和程序运算_题型归纳初一数学期中压轴题:定义新运算和程序运算,仅供同学们参考学习,祝大家期中考试取得好成绩!一、【考点】程序运算、多次循环【人大附中期中】按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为853,则满足条件的x 的不同值最多有()A.5个B.4个C.3个D.2个【分析】输出结果853可能是没有经过循环、经过1次或者多次循环后的结果【答案】A【易错点】注意题目中的x条件为正数,满足的有:213、53、13、3、0.5五个二、【考点】程序运算、二元一次方程按下面的程序计算,若开始输入的值x 为1,最后输出的结果为1;若开始输入的值x 为-1,,最后输出的结果为-3,则若开始输入的值x 为0.5,最后输出的结果为_________.【分析】分别将x=1和x=-1输入程序等到关于k、b的二元一次方程,求出k=2、b=-1【答案】-3/4三、【考点】有理数计算,错项相消【八十中期中】设f(k)=k+(k+1)++(3k),求f(4)-f(3)=()A.365 B.63 C.356 D.7【分析】令等式中的k分别等于4、3【答案】C四、【考点】分类讨论【清华附期中】a为有理数,定义运算符号△:当a>0时,△a=-a;当a<0时,△a=a;a=0时,△a=0,根据这种运算,则△(1+△2)等于()A.3B.-3C.1D.-1【分析】△运算的本质是:△a=-|a|【答案】D五、【考点】有理数计算,错项相消【北大附期中】若规定一种新运算为【分析】先令a=2,b=1/2,代入公式,可得A= - 1;把A= - 1代入,令a=2001,b=2002【答案】1/2002000六、【考点】绝对值化简、等差数列求和【清华附期中】将1,2,3,,100这100个自然数,任意分成50组,每组两个数,现将每组中的两个数记为a,b,代入中进行计算,求出结果,可得到50个值,则这50个值的和的最小值为____。

【压轴题】初一数学上期中模拟试题(带答案)

【压轴题】初一数学上期中模拟试题(带答案)

【压轴题】初一数学上期中模拟试题(带答案)一、选择题1.为庆祝“六·一”儿童节,綦江区某中学初一年级学生举行火柴棒摆“金鱼”比赛.如图所示:……按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A .+26nB .+86nC .44n +D .8n2.如图,O 在直线AB 上,OC 平分∠DOA (大于90°),OE 平分∠DOB ,OF ⊥AB ,则图中互余的角有( )对.A .6B .7C .8D .9 3.方程去分母,得( ) A .B .C .D .4.下列方程变形正确的是( ) A .由25x +=,得52x =+B .由23x =,得32x =C .由104x =,得4x =D .由45x =-,得54x =--5.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km .用科学记数法表示1.496亿是( )A .71.49610⨯B .714.9610⨯C .80.149610⨯D .81.49610⨯6.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .81B .508C .928D .13247.周长为68的长方形ABCD 被分成7个全等的长方形,如图所示,则长方形ABCD 的面积为()A.98 B.196 C.280 D.2848.已知∠1=18°18′,∠2=18.18°,∠3=18.3°,下列结论正确的是()A.∠1=∠3 B.∠1=∠2C.∠2=∠3D.∠1=∠2=∠3 9.下列说法:①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个10.已知x=2是关于x的一元一次方程mx+2=0的解,则m的值为()A.﹣1 B.0 C.1 D.211.如图所示几何体的左视图是()A.B.C.D.12.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.二、填空题13.若代数式5x-5与2x-9的值互为相反数,则x=________.14.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是____.15.如图,用代数式表示图中阴影部分的面积为___________________.16.某商品按标价八折出售仍能盈利b 元,若此商品的进价为a 元,则该商品的标价为_________元.(用含a ,b 的代数式表示).17.如图,90AOB ∠=︒,OD 平分BOC ∠,45DOE ∠=︒,则AOE ∠________COE ∠.(填“>”“<”或“=”)18.单项式234x y -的系数是__________,次数是__________.19.用科学记数法表示:-206亿=______.20.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.三、解答题21.已知关于x 的方程(m+3)x |m+4|+18=0是一元一次方程,试求:(1)m 的值;(2)2(3m+2)-3(4m-1)的值.22.今年秋季,长白山土特产喜获丰收,某土特产公司组织10辆汽车装运甲、乙、丙三种土特产去外地销售,按计划10辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的汽车有x 辆,装运乙种土特产的汽车有y 辆,根据下表提供的信息,解答以下问题.(1)装运丙种土特产的车辆数为(用含x 、y 的式子表示);(2)用含x 、y 的式子表示这10辆汽车共装运土特产的吨数;(3)求销售完装运的这批土特产后所获得的总利润(用含x 、y 的式子表示).23.用简便方法计算下列各式的值:(1)()151 2.7 1.5 4.8 1.522⎛⎫-⨯+-⨯+⨯- ⎪⎝⎭(2)12345678979899100--++--+++--+…24.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.25.先化简,再求值:5(3a2b﹣ab2﹣1)﹣(ab2+3a2b﹣5),其中a=﹣12,b=13.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】观察给出的3个例图,注意火柴棒根数的变化是图②的火柴棒比图①的多6根,图③的火柴棒比图②的多6根,而图①的火柴棒的根数为2+6.【详解】解:图①中有8根,即2+6=8图②中有14根,即2+62⨯图③中有20根,即263+⨯……∴第n个图有:26n+;故选:A.【点睛】本题考查列代数式,本题的解答体现了由特殊到一般的数学方法(归纳法),先观察特例,找到火柴棒根数的变化规律,然后猜想第n条小鱼所需要的火柴棒的根数.2.D解析:D【解析】【分析】根据角平分线的定义、垂直的定义、角互余的定义、角的和差即可得.【详解】∵OC平分DOA∠∴12AOC COD DOA ∠=∠=∠ ∵OE 平分DOB ∠∴DOE BOE ∠=∠ ∴11()1809022COE COD DOE DOA DOB ∠=∠+∠=∠+∠=⨯︒=︒ ∴90AOC DOE ∠+∠=︒,90AOC BOE ∠+∠=︒,90COD BOE ∠+∠=︒ ∵OF AB ⊥∴90AOF BOF ∠=∠=︒∴90AOC COF ∠+∠=︒,90BOE EOF ∠+∠=︒,90BOD DOF ∠+∠=︒ ∴90COD COF ∠+∠=︒,90DOE EOF ∠+∠=︒综上,互余的角共有9对故选:D .【点睛】本题考查了角平分线的定义、垂直的定义、角互余的定义、角的和差,熟记角的运算是解题关键.3.B解析:B【解析】【分析】解一元一次方程中去分母的步骤:先确定几个分母的最简公分母,然后将方程两边同时乘以这个最简公分母约去分母即可.【详解】解:因为最简公分母是6,所以将方程两边同时乘以6可得:, 约去分母可得:, 故选B.【点睛】本题主要考查解一元一次方程中去分母的步骤,解决本题的关键是要熟练掌握去分母的步骤. 4.B解析:B【解析】【分析】根据等式的性质依次进行判断即可得到答案.【详解】A. 由25x +=,得x=5-2,故错误;B. 由23x =,得32x =,故正确;C. 由104x =,得x=0,故错误; D. 由45x =-,得x=4+5,故错误,故选:B.【点睛】 此题考查等式的性质,熟记性质定理是解题的关键.5.D解析:D【解析】分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:数据1.496亿用科学记数法表示为1.496×108.故选D .点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.B解析:B【解析】【分析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数. 【详解】解:孩子自出生后的天数是:1×73+3×72+2×7+4=508, 故选:B .【点睛】本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数字列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.7.C解析:C【解析】【分析】观察图形可知AD=BC ,也就是5个小长方形的宽与2个小长方形有长相等.设小长方形的宽为x ,则其长为34﹣6x ,根据AB=CD 列方程即可求解即可.【详解】设小长方形的宽为x ,则其长为682-6x=34-6x , 所以AD=5x ,CD=2(34-6x )=68-12x ,则有5x=68-12x,解得:x=4,则大长方形的面积为7×4×(34-6×4)=280,故选C.8.A解析:A【解析】【分析】根据小单位化大单位除以进率,可化成相同单位的角,根据有理数的大小比较,可得答案.【详解】∠1=18°18′=18.3°=∠3<∠2,故选:A.【点睛】本题考查了度、分、秒的换算,利用小单位化大单位除以进率化成相同单位的角是解题的关键.9.A解析:A【解析】【分析】【详解】根据负数的概念,当a≤0时,-a≥0,故①不正确;|-a|≥0,是非负数,故②不正确;根据乘积为1的两数互为倒数,可知倒数是本身的数为±1,故③正确;根据绝对值的意义,一个正数的绝对值是本身,0的绝对值是0,负数的绝对值是其相反数,故④不正确;由平方的意义,1和0的平方均为她本身,故⑤不正确.故选A.【点睛】此题主要考查了有理数的相关概念,解题时要明确正负数,相反数,绝对值,倒数的意义及特点,然后从中判断即可.相反数:只有符号不同的两数互为相反数;绝对值:一个正数的绝对值是本身,0的绝对值是0,一个负数的绝对值是其相反数;倒数:乘积为1的两数互为倒数.10.A解析:A【解析】把代入方程得:,解得:,故选A.11.B解析:B【解析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.12.C解析:C【解析】【分析】分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.【详解】解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:将直角三角形绕斜边所在直线旋转一周后形成的几何体为:故选C.【点睛】本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.二、填空题13.2【解析】【分析】由5x-5的值与2x-9的值互为相反数可知:5x-5+2x-9=0解此方程即可求得答案【详解】由题意可得:5x-5+2x-9=0移项得7x=14系数化为1得x=2【点睛】本题考查了【解析】【分析】由5x -5的值与2x -9的值互为相反数可知:5x -5+2x -9=0,解此方程即可求得答案.【详解】由题意可得:5x -5+2x -9=0,移项,得7x =14,系数化为1,得x =2.【点睛】本题考查了相反数的性质以及一元一次方程的解法.14.【解析】寻找规律:上面是1234…;左下是14=229=3216=42…;右下是:从第二个图形开始左下数字减上面数字差的平方:(4-2)2(9-3)2(16-4)2…∴a=(36-6)2=900解析:【解析】寻找规律:上面是1,2 ,3,4,…,;左下是1,4=22,9=32,16=42,…,;右下是:从第二个图形开始,左下数字减上面数字差的平方:(4-2)2,(9-3)2,(16-4)2,…∴a=(36-6)2=900.15.【解析】阴影部分的面积等于长方形的面积减去两个小扇形的面积差长方形的面积是ab 两个扇形的圆心角是90∘∴这两个扇形是分别是半径为b 的圆面积的四分之一∴【点睛】本题考查了列代数式由数和表示数的字母经有 解析:212ab b π- 【解析】阴影部分的面积等于长方形的面积减去两个小扇形的面积差.长方形的面积是ab ,两个扇形的圆心角是90∘,∴这两个扇形是分别是半径为b 的圆面积的四分之一. ∴2211242ab b ab b ππ-⨯=- . 【点睛】 本题考查了列代数式, 由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式.理解图意得到阴影部分的面积长方形的面积-2个14圆的面积是解题的关键. 16.【解析】【分析】首先设标价x 元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x 的值【详解】设标价x 元由题意得:80x ﹣b=a 解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关 解析:5()4a b +【分析】首先设标价x 元,由题意得等量关系:标价×打折﹣利润=进价,代入相应数值,再求出x 的值.【详解】设标价x 元,由题意得:80%x ﹣b=a ,解得:x=5()4a b +, 故答案为:5()4a b +. 【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,标价×打折﹣利润=进价.17.【解析】【分析】先根据角的和差得出再根据角平分线的定义得出由此即可得出答案【详解】又即OD 平分故答案为:【点睛】本题考查了角的和差角平分线的定义掌握角的和差运算是解题关键解析:=【解析】【分析】先根据角的和差得出45,45BOD C CO O E D A E O ∠+∠+∠==∠︒︒,再根据角平分线的定义得出BOD COD ∠=∠,由此即可得出答案.【详解】45DOE ∠=︒Q45COE DO COD E ∴∠+∠=∠=︒又90AOB ∠=︒Q90DOE BOD OE AOB A ∠=∠∴+∠+=∠︒,即4905AOE BOD ︒+∠=+∠︒ 45AOE BOD ∴+∠=∠︒BOD CO OE AOE C D ∠=∠+∠∴∠+Q OD 平分BOC ∠BOD COD ∴∠=∠AOE COE ∴∠=∠故答案为:=.【点睛】本题考查了角的和差、角平分线的定义,掌握角的和差运算是解题关键.18.-4;5【解析】【分析】单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数【详解】解:单项式-4x2y3的系数是-4次数是5故答案为-45【点睛】此题考查了单项式的知识解析:-4; 5.【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.【详解】解:单项式-4x2y3的系数是-4,次数是5.故答案为-4、5.【点睛】此题考查了单项式的知识,掌握单项式的系数、次数的定义是解答本题的关键.19.-206×1010【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时解析:-2.06×1010【解析】【分析】科学记数法的表示形式为a×10 n 的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将-206亿=-20600000000用科学记数法表示为-2.06×1010 .故答案为:-2.06×1010.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10 n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.28【解析】设这种电子产品的标价为x元由题意得:09x−21=21×20解得:x=28所以这种电子产品的标价为28元故答案为28解析:28【解析】设这种电子产品的标价为x元,由题意得:0.9x−21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.三、解答题21.(1)m=-5 (2)37【解析】(1)依题意有|m+4|=1,解之得m=-3(舍去),m=-5,故m=-5,(2)()()232341m m +--= 6m+4-12m+3=-6m+7当m=-5时,原式= 37.22.(1)装运丙种土特产的车辆数为10-x-y ;(2)这10辆汽车共装运土特产的吨数为60-2x-y ;(3)销售完装运的这批土特产后所获得的总利润为90000-4200x-4000y .【解析】【分析】(1)根据“装运丙种土特产的车辆数=总汽车辆数10−装运甲种土特产的车辆数−装运乙种土特产的车辆数”列式表达便可;(2)根据“装运甲种土特产的每辆车运载重量×装运甲种土特产的车辆数+装运乙种土特产的每辆车运载重量×装运乙种土特产的车辆数+装运丙种土特产的每辆车运载重量×装运丙种土特产的车辆数=10辆汽车共装运土特产的数量”列出代数式并化简便可;(3)根据“甲种土特产每吨利润×甲种土特产的总吨数+乙种土特产每吨利润×乙种土特产的总吨数+丙种土特产每吨利润×丙种土特产的总吨数=总利润”列出代数式,并化简便可.【详解】(1)由题意得,装运丙种土特产的车辆数为:10−x−y (辆)答:装运丙种土特产的车辆数为(10−x−y );(2)根据题意得:4x+5y+6(10-x-y)=4x+5y+60-6x-6y=60-2x-y答:这10辆汽车共装运土特产的数量为(60-2x-y )吨;(3)根据题意得:()12004100051500610x y x y ⨯+⨯+⨯--=4800x+5000y+90000-9000x-9000y=90000-4200x-4000y .答:销售完装运的这批土特产后所获得的总利润为(90000-4200x-4000y )元.【点睛】本题主要考查了列代数式,正确理解各种数量关系之间的运算关系是列代数式的关键所在.23.(1)-15;(2)0.【解析】【分析】(1)可把原式变形为()()1.5 2.7 1.5 4.8 1.5 2.5-⨯+-⨯+-⨯,再逆用乘法分配律计算; (2)可将原式变形为()()()12345678979899100--++--+++--+…,进一步即可求出结果.【详解】 解:()151 2.7 1.5 4.8 1.522⎛⎫-⨯+-⨯+⨯- ⎪⎝⎭=()()1.5 2.7 1.5 4.8 1.5 2.5-⨯+-⨯+-⨯=()1.5 2.7 4.8 2.5-⨯++= 1.510-⨯=-15;(2)12345678979899100--++--+++--+…=()()()12345678979899100--++--+++--+…=000+++L=0.【点睛】本题考查了有理数的加法和乘法运算律,属于常见题型,熟练掌握有理数的运算律和混合运算法则是解题关键.24.C【解析】【分析】先根据图形结合互余的定义进行一一判断,然后综合即可得出符合题意的选项.【详解】解:A 、∠α与∠β不一定互余,故本选项错误;B 、∠α与∠β不互余,故本选项错误;C 、∠α与∠β互余,故本选项正确;D 、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C .【点睛】本题考查的知识点是对顶角、余角和补角.解题关键是熟记“互余的两个角的和等于90°”.25.原式=12a 2b ﹣6ab 2=43. 【解析】试题分析:去括号,合并同类项,把字母的值代入运算即可.试题解析:原式2222155535,a b ab ab a b =----+ 22126.a b ab =- 当1123a b =-=,时,原式1111141261.432933⎛⎫=⨯⨯-⨯-⨯=+= ⎪⎝⎭。

初一数学期中压轴题

初一数学期中压轴题

一、【考点】等比数列观察下图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有________个.【答案】121【规律】1+3+3²+3³+34二、【考点】等差数列的变形观察下面所给的一列数:0,6,-6,18,-30,66,…,则第9个数是______【答案】-510 【规律】相邻两项的差:+6,-12,+24,-48,+96,-192……三、【考点】平方数列的变形如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是______【答案】(n+1)²-1或n(n+2)【规律】①4-1,9-1,16-1,25-1,36-1……②1*3=3;2*4=8;3*5=15;4*6=24……四、如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要枚棋子,摆第n个图案需要________枚棋子.绝对值化简求值一、【考点】绝对值的代数意义、绝对值化简设a,b,c为实数,且化简|a|+a=0,|ab|=ab,|c|-c=0,化简|b|-|a+b|-|c-b|+|a-c|【解析】|a|+a=0,即|a|=-a,a≤0;|ab|=ab,ab≥0,b≤0;|c|-c=0,即|c|=c,c≥0原式=-b+a+b-c+b-a+c=b 【答案】b二、【考点】有理数运算、绝对值化简在有理数的范围内,我们定义三个数之间的新运算“#”法则:a#b#c=(|a-b-c|+a+b+c)/2如:(-1)#2#3=[|(-1-2-3)|+(-1)+2+3]/2=5(1)计算:3#(-2)#(-3)___________(2)计算:1#(-2)#(10/3)=_____________(3)在-6/7,-5/7……-1/7,0,1/9,2/9……8/9这15个数中,①任取三个数作为a、b、c的值,进行“a#b#c”运算,求所有计算结果的最大值__________,②若将这十五个数任意分成五组,每组三个数,进行“a#b#c”运算,得到五个不同的结果,由于分组不同,所以五个运算的结果也不同,那么五个结果之和的最大值是___________【分析】将a#b#c=(|a-b-c|+a+b+c)/2进行取绝对值化简。

【压轴题】初一数学上期中试卷(带答案)

【压轴题】初一数学上期中试卷(带答案)

【压轴题】初一数学上期中试卷(带答案)一、选择题1.有理数a、b、c在数轴上的对应点如图,下列结论中,正确的是()A.a>c>b B.a>b>c C.a<c<b D.a<b<c 2.一个数的绝对值是3,则这个数可以是()A.3B.3-C.3或者3-D.1 33.如图,O在直线AB上,OC平分∠DOA(大于90°),OE平分∠DOB,OF⊥AB,则图中互余的角有()对.A.6B.7C.8D.94.用科学记数方法表示0.0000907,得()A.49.0710-⨯B.59.0710-⨯C.690.710-⨯D.790.710-⨯5.x=5是下列哪个方程的解()A.x+5=0B.3x﹣2=12+xC.x﹣15x=6D.1700+150x=24506.有理数 a,b 在数轴上的点的位置如图所示,则正确的结论是()A.a<﹣4B.a+ b>0C.|a|>|b|D.ab>0 7.小王利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出 (1)225310417526…那么,当输入数据8时,输出的数据是()A.861B.863C.865D.8678.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A .|a|>|b|B .|ac|=acC .b <dD .c+d >0 9.一周时间有604800秒,604800用科学记数法表示为( ) A .2604810⨯ B .56.04810⨯ C .66.04810⨯ D .60.604810⨯ 10.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为( )A .66.6×107B .0.666×108C .6.66×108D .6.66×107 11.已知,OA ⊥OC ,且∠AOB :∠AOC =2:3,则∠BOC 的度数为( )A .30°B .150°C .30°或150°D .90° 12.下列各图经过折叠后不能围成一个正方体的是( )A .B .C .D .二、填空题13.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a 的值是____.14.某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,若设春游的总人数为x 人,则列方程为_____15.近似数2.30万精确到________位,用科学记数法表示为__________.16.若数轴上表示互为相反数的两点之间的距离是16,则这两个数是____.17.一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“221⨯-”得到的,那么这组数中y 表示的数为______.18.太阳半径约为696000千米,数字696000用科学记数法表示为 千米.19.已知12,2x y =-=,化简 2(2)()()x y x y x y +-+- = _______. 20.比较大小:123-________ 2.3-.(“>”“<”或“=”) 三、解答题21.用简便方法计算下列各式的值:(1)()151 2.7 1.5 4.8 1.522⎛⎫-⨯+-⨯+⨯- ⎪⎝⎭(2)12345678979899100--++--+++--+…22.已知直线AB 和CD 交于点O ,∠AOC 的度数为x ,∠BOE=90°,OF 平分∠AOD . (1)当x=19°48′,求∠EOC 与∠FOD 的度数.(2)当x=60°,射线OE 、OF 分别以10°/s ,4°/s 的速度同时绕点O 顺时针转动,求当射线OE 与射线OF 重合时至少需要多少时间?(3)当x=60°,射线OE以10°/s的速度绕点O顺时针转动,同时射线OF也以4°/s的速度绕点O逆时针转动,当射线OE转动一周时射线OF也停止转动.射线OE在转动一周的过程中当∠EOF=90°时,求射线OE转动的时间.23.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.24.试根据图中信息,解答下列问题.(1)一次性购买6根跳绳需_____元,一次性购买12根跳绳需______元;(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.25.先化简,再求值:2(x2y+3xy)﹣3(x2y﹣1)﹣2xy﹣2,其中x=﹣2,y=2.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据数轴上的数,右边的总比左边的大写出后即可选择答案.【详解】根据题意得,a <c <b .故选C .【点睛】本题考查了利用数轴比较有理数的大小,熟记数轴上的数右边的总比左边的大是解题的关键.2.C解析:C【解析】试题解析:∵一个数的绝对值是3,可设这个数位a ,∴|a|=3,∴a=±3 故选C .3.D解析:D【解析】【分析】根据角平分线的定义、垂直的定义、角互余的定义、角的和差即可得.【详解】∵OC 平分DOA ∠ ∴12AOC COD DOA ∠=∠=∠ ∵OE 平分DOB ∠∴DOE BOE ∠=∠ ∴11()1809022COE COD DOE DOA DOB ∠=∠+∠=∠+∠=⨯︒=︒ ∴90AOC DOE ∠+∠=︒,90AOC BOE ∠+∠=︒,90COD BOE ∠+∠=︒ ∵OF AB ⊥∴90AOF BOF ∠=∠=︒∴90AOC COF ∠+∠=︒,90BOE EOF ∠+∠=︒,90BOD DOF ∠+∠=︒ ∴90COD COF ∠+∠=︒,90DOE EOF ∠+∠=︒综上,互余的角共有9对故选:D .【点睛】本题考查了角平分线的定义、垂直的定义、角互余的定义、角的和差,熟记角的运算是解题关键.4.B解析:B【解析】【分析】【详解】解:根据科学记数法的表示—较小的数为10n a ,可知a=9.07,n=-5,即可求解. 故选B【点睛】本题考查科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.5.D解析:D【解析】【分析】依次解各个选项中的方程,找出解为x=5的选项即可.【详解】A .解方程x+5=0得:x=-5,A 项错误,B .解方程3x-2=12+x 得:x=7,B 项错误,C .解方程x-12x=6得:x=152,C 项错误, D .解方程1700+150x=2450得:x=5,D 项正确,故选D .【点睛】本题考查了一元一次方程的解,正确掌握解一元一次方程的步骤是解题的关键.6.C解析:C【解析】由数轴得:-4<a <-3,1<b <2,∴a+b <0,|a|>|b|,ab <0,则结论正确的选项为C ,故选C.7.C解析:C【解析】【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解.【详解】 输出数据的规律为2+1n n , 当输入数据为8时,输出的数据为288+1=865.故答案选:C .【点睛】本题考查的知识点是有理数的混合运算,解题的关键是熟练的掌握有理数的混合运算. 8.B解析:B【解析】【分析】先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1;A 、|a|>|b|,故选项正确;B 、a 、c 异号,则|ac|=-ac ,故选项错误;C 、b <d ,故选项正确;D 、d >c >1,则c+d >0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.9.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】604800的小数点向左移动5位得到6.048,所以数字604800用科学记数法表示为56.04810⨯,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值.10.C解析:C【解析】665 575 306≈6.66×108.故选C .11.C解析:C【解析】【分析】【详解】解:∵OA⊥OC,∴∠AOC=90°.∵∠AOB:∠AOC=2:3,∴∠AOB=60°.因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.①当在∠AOC内时,∠BOC=90°﹣60°=30°;②当在∠AOC外时,∠BOC=90°+60°=150°.故选C.【点睛】本题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.同时做这类题时一定要结合图形.12.D解析:D【解析】【分析】由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.【详解】解:A、是正方体的展开图,不符合题意;B、是正方体的展开图,不符合题意;C、是正方体的展开图,不符合题意;D、不是正方体的展开图,缺少一个底面,符合题意.故选:D.【点睛】本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.二、填空题13.【解析】寻找规律:上面是1234…;左下是14=229=3216=42…;右下是:从第二个图形开始左下数字减上面数字差的平方:(4-2)2(9-3)2(16-4)2…∴a=(36-6)2=900解析:【解析】寻找规律:上面是1,2 ,3,4,…,;左下是1,4=22,9=32,16=42,…,;右下是:从第二个图形开始,左下数字减上面数字差的平方:(4-2)2,(9-3)2,(16-4)2,…∴a=(36-6)2=900.14.x-1413=x+2614【解析】【分析】设春游的总人数是x 人由包租相同的大巴13辆有14人没有座位可得一辆大巴所坐的人数为x-1413人;由多包租1辆就多了26个空位可得一辆大巴所坐的人数为x+2 解析:. 【解析】【分析】设春游的总人数是x 人,由包租相同的大巴13辆,有14人没有座位可得一辆大巴所坐的人数为人;由多包租1辆,就多了26个空位可得一辆大巴所坐的人数为人,由此即可得方程. 【详解】设春游的总人数是x 人. 根据题意可列方程为:, 故答案为:. 【点睛】 本题考查了一元一次方程的应用,根据题意表示出一辆大巴所坐的人数是解决问题的关键.15.百【解析】解析:百 42.3010【解析】16.-88【解析】因为互为相反数的两个数表示在数轴上是关于原点对称的两个点到原点的距离相等所以互为相反数的两个数到原点的距离为8故这两个数分别为8和-8故答案为-88解析:-8、8【解析】因为互为相反数的两个数表示在数轴上是关于原点对称的,两个点到原点的距离相等,所以互为相反数的两个数到原点的距离为8,故这两个数分别为8和-8.故答案为-8、8.17.-9【解析】【分析】根据题中给出的运算法则按照顺序求解即可【详解】解:根据题意得:故答案为:-9【点睛】本题考查了有理数的运算理解题意弄清题目给出的运算法则是正确解题的关键解析:-9.【解析】【分析】根据题中给出的运算法则按照顺序求解即可.【详解】解:根据题意,得:2131x =?=-,2(1)79y =?-=-.故答案为:-9.【点睛】本题考查了有理数的运算,理解题意、弄清题目给出的运算法则是正确解题的关键. 18.【解析】试题分析:696000=696×105故答案为696×105考点:科学记数法—表示较大的数解析:56.9610⨯ .【解析】试题分析:696000=6.96×105,故答案为6.96×105.考点:科学记数法—表示较大的数.19.-【解析】【分析】先根据完全平方公式和平方差公式去括号再合并同类项最后把xy 的值代入计算即可【详解】∵把代入得:原式故答案为:﹣【点睛】本题考查代数式的化简求值快速解题的关键是先利用完全平方公式和平解析:-114【解析】【分析】 先根据完全平方公式和平方差公式去括号,再合并同类项,最后把x ,y 的值代入计算即可.【详解】∵2(2)()()x y x y x y +-+- 222244x xy y x y =++-+245xy y =+ 把12,2x y =-=代入得: 原式()21142522⎛⎫=⨯-⨯+⨯ ⎪⎝⎭ 544=-+114=- 故答案为:﹣114 【点睛】本题考查代数式的化简求值,快速解题的关键是先利用完全平方公式和平方差公式化简原式.20.<【解析】【分析】直接根据负数比较大小的法则进行比较即可【详解】∵||=≈233|−23|=23233>23∴−233<−23∴<−23故答案为:<【点睛】本题考查有理数的大小比较解题突破口是根据负解析:<【解析】【分析】直接根据负数比较大小的法则进行比较即可.【详解】∵|123-|=123≈2.33,|−2.3|=2.3,2.33>2.3,∴−2.33<−2.3, ∴123-<−2.3.故答案为:<.【点睛】本题考查有理数的大小比较,解题突破口是根据负数比较大小的法则进行比较. 三、解答题21.(1)-15;(2)0.【解析】【分析】(1)可把原式变形为()()1.5 2.7 1.5 4.8 1.5 2.5-⨯+-⨯+-⨯,再逆用乘法分配律计算; (2)可将原式变形为()()()12345678979899100--++--+++--+…,进一步即可求出结果.【详解】 解:()151 2.7 1.5 4.8 1.522⎛⎫-⨯+-⨯+⨯- ⎪⎝⎭=()()1.5 2.7 1.5 4.8 1.5 2.5-⨯+-⨯+-⨯=()1.5 2.7 4.8 2.5-⨯++= 1.510-⨯=-15;(2)12345678979899100--++--+++--+…=()()()12345678979899100--++--+++--+…=000+++L=0.【点睛】本题考查了有理数的加法和乘法运算律,属于常见题型,熟练掌握有理数的运算律和混合运算法则是解题关键.22.(1)∠EOC=70°12′,∠FOD=80°6′;(2)射线OE 与射线OF 重合时至少需要35秒;(3)射线OE 转动的时间为t=607或1507或2407. 【解析】【分析】(1)利用互余和互补的定义可得:∠EOC 与∠FOD 的度数.(2)先根据x=60°,求∠EOF=150°,则射线OE 、OF 第一次重合时,则OE 运动的度数-OF 运动的度数=360-150,列式解出即可;(3)分三种情况:①OE 不经过OF 时,②OE 经过OF ,但OF 在OB 的下方时;③OF 在OB 的上方时;根据其夹角列方程可得时间.【详解】(1)∵∠BOE=90°,∴∠AOE=90°,∵∠AOC=x=19°48′,∴∠EOC=90°-19°48′=89°60°-19°48′=70°12′, ∠AOD=180°-19°48′=160°12′, ∵OF 平分∠AOD ,∴∠FOD=12∠AOD=12×160°12′=80°6′; (2)当x=60°,∠EOF=90°+60°=150°设当射线OE 与射线OF 重合时至少需要t 秒,10t-4t=360-150,t=35,答:当射线OE 与射线OF 重合时至少需要35秒;(3)设射线OE 转动的时间为t 秒,分三种情况:①OE 不经过OF 时,得10t+90+4t=360-150,解得,t=607; ②OE 经过OF ,但OF 在OB 的下方时,得10t-(360-150)+4t=90 解得,t=1507;③OF在OB的上方时,得:360-10t=4t-120解得,t=2407.所以,射线OE转动的时间为t=607或1507或2407.【点睛】本题考查了对顶角相等,邻补角互补的定义,角平分线的定义,角的计算,第三问有难度,熟记性质是解题的关键,难点在于要分情况讨论.23.C【解析】【分析】先根据图形结合互余的定义进行一一判断,然后综合即可得出符合题意的选项.【详解】解:A、∠α与∠β不一定互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.【点睛】本题考查的知识点是对顶角、余角和补角.解题关键是熟记“互余的两个角的和等于90°”. 24.(1)150;240;(2)11根.【解析】【分析】(1)根据单价×数量=总价,求出6根跳绳需多少元;购买12根跳绳,超过10根,打八折是指现价是原价的80%,用单价×数量×0.8即可求出购买12根跳绳需多少元;(2)有这种可能,可以设小红购买x跳绳根,那么小明购买x-2根跳绳,列出方程25x×0.8=25(x-2)-5,解答即可.【详解】解:(1)一次性购买6根跳绳需25×6=150(元);一次性购买12根跳绳需25×12×0.8=240(元);故答案为:150;240.(2)设小红购买x跳绳根,那么小明购买(x-2)根跳绳,25x×0.8=25(x-2)-5,解得:x=11;小明购买了:11-2=9根.答:小红购买11根跳绳.【点睛】解答的关键是读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程进行解答即可.25.﹣x2y+4xy+1,-23【解析】【分析】原式去括号再合并即可得到最简结果,将x与y的值代入计算即可求出值.【详解】原式=2x2y+6xy﹣3x2y+3﹣2xy﹣2=﹣x2y+4xy+1,当x=﹣2、y=2时,原式=﹣(﹣2)2×2+4×(﹣2)×2+1=﹣4×2﹣16+1=﹣8﹣16+1=﹣23.【点睛】本题考查了整式的加减运算-化简求值,解题的关键是熟练的掌握整式的加减运算.。

初中七年级上数学期中考压轴题(含答案)

初中七年级上数学期中考压轴题(含答案)

初一年级考试压轴题1、已知a 是最大的负整数,b 是多项式23222m n m n m ---的次数,c 是单项式2-2xy 的系数,且a 、b 、c 分别是点A.B.C 在数轴上对应的数。

(1) 求a 、b 、c 的值,并在数轴上标出点A 、B 、C.(2) 若动点P 、Q 分别从A 、B 同时出发沿数轴负方向运动,点P 的速度是每秒12个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,点Q 可以追上点P?(3) 若M 点在此数轴上运动,请求出M 点到A 、B 两点距离之和的最小值;(此小题只需写出答案)(4) 在数轴上找一个点N,使点N 到A 、B 、C 三点的距离之和等于10,请直接写出所有点N 对应的数。

(此小题只需写出答案,不必说明理由)2、()2++++++21,n n -=已知公式13579请利用此公式完成以下小题:()()()()()()++++++21225-3+-9+-15+-21++-597n n -=(1)若13579,求整数的值.(2)求的值.3、(中大附中)()2A B a b 120.a b -++=已知:数轴上、两点表示的有理数为、,且()22(1)(2)113339(3)1A B C bc c a c ⎛⎫+--- ⎪⎝⎭、各表示哪一个有理数?点在数轴上表示的数是c ,且与A 、B 两点的距离和为11,求多项式 a 的值.小蚂蚁甲以个单位长度/秒的速度从点B 出发向其左边6个单位长度处的一颗饭粒爬去,3秒后位于点A 的小蚂蚁乙收到它的信号,以2个单位长度/秒的速度也迅速爬向饭粒,小蚂蚁甲到达后背着饭粒立即返回,与小蚂蚁乙在数轴上D 点相遇,则点D 表示的有理数是什么?从出发到此时,小蚂蚁甲共用去多少时间?4、2+21- 3.x x x x +--已知是有理数,化简:5、5阅读探究有关个位数是的整数的平方简便计算问题.c bac bac ba(1) (2) (3)2222222=12100+25=22525=23100+25=625 35=34100+25=1225(1)95(2)5-895(3)53540⨯⨯⨯⨯⨯⨯观察下列算式:15; ;请你写出的简便计算过程及结果;其实这种方法也可以推广到个位数是的三位数的平方,证明略.① 请你写出115的简便计算过程及结果.②用计算或说理的方式确定985的结果末两位数字是多少?已知一个个位数是的整数的平方是25,请用方程的相关知识求这个数.6、某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元。

七年级数学上册期中压轴题及答案解析

七年级数学上册期中压轴题及答案解析

七年级数学上册期中压轴题及答
案解析
七年级数学上册期中考试一般涉及三章。

北师大出版的这本教材第一章是普通几何,第二章是有理数及其运算,第三章是代数式及其加减法。

在数学的学习中,除了掌握基本的概念、基本的运算、基本的解题思路、方法和题型,还需要拓展和提高,以提高思维和能力。

普通几何章节大多属于基础问题,欧拉定理的探索是本章的难点内容。

有理数一章有很多难点,比如绝对值的几何意义,数轴和绝对值的合成,有理数的简单计算和正则计算。

代数式一章的难点主要体现在代数式的应用和规律探索上。

分享一些期末题给朋友们复习准备期中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学期中考试压轴题:探索类附加题【难度】★★★★☆【考点】有理数计算、分数拆分、方程思想【清华附中期中】解答题:有8个连续的正整数,其和可以表示成7个连续的正整数的和,但不能表示为3个连续的正整数的和,求这8个连续的正整数中最大数的最小值。

(4分)【解析】设这八个连续正整数为:n,n+1……n+7;和为8n+28可以表示为七个连续正整数为:k,k+1……k+6;和为7k+21所以8n+28=7k+21,k=(8n+7)/7=n+1+n/7,k是整数所以n=7,14,21,28……当n=7时,八数和为84=27+28+29,不符合题意,舍当n=14时,八数和为140,符合题意【答案】最大数最小值:21【难度】★★★★★【考点】倒数的定义、有理数计算、分类讨论思想【人大附中期中】已知x,y是两个有理数,其倒数的和、差、积、商的四个结果中,有三个是相等的,(1)填空:x与y的和的倒数是;(2)说明理由。

【解析】设x,y的倒数分别为a,b(a≠0,b≠0,a+b≠a-b),则a+b,a-b,ab,a/b中若有三个相等,ab=a/b,即b²=1,b=±1分类如下:①当a+b=ab=a/b时:如果b=1,无解;如果b=-1,解得a=0.5②当a-b=ab=a/b时:如果b=1,无解;如果b=-1,解得a=-0.5所以x、y的倒数和为a+b=-0.5,或-1.5【难度】★★★★☆【考点】绝对值化简【101中学期中】将1,2,3,…,100这100个自然数,任意分成50组,每组两个数,现将每组中的两个数记为a,b,代入中<="" p="" style="max-width: 100%; border: 0px;"> 进行计算,求出结果,可得到50个值,则这50个值的和的最小值为____【解析】绝对值化简得:当a≥b时,原式=b;当a所以50组可得50个最小的已知自然数,即1,2,3,4 (50)【答案】1275【老杨改编】这50个值的和的最大值为____【解析】因为本质为取小运算,所以100必须和99一组,98必须和97一组,最后留下的50组结果为:1,3,5,7……99=2500【难度】★★★★☆【考点】有理数计算【清华附中期中】在数1,2,3,4……1998,前添符号“+”或“-”,并依次运算,所得可能的最小非负数是多少?(6分)【解析】最小的非负数为“0”,但是1998个正数中有999个奇数,999个偶数,他们的和或者差结果必为奇数,因此不可能实现“0”可以实现的最小非负数为“1”,如果能实现结果“1”,则符合题意相邻两数差为1,所以相邻四个数可以和为零,即n-(n+1)-(n+2)+n+3=0从3,4,5,6……1998共有1996个数,可以四个连续数字一组,和为零【答案】-1+2+3-4-5+6+7……+1995-1996-1997+1998=1【老杨改编】在数1,2,3,4……n,前添符号“+”或“-”,并依次运算,所得可能的最小非负数是多少?【解析】由上面解析可知,四个数连续数一组可以实现为零如果n=4k,结果为0;(四数一组,无剩余)如果n=4k+1,结果为1;(四数一组,剩余首项1)如果n=4k+2,结果为1;(四数一组,剩余首两项-1+2=1)如果n=4k+3,结果为0;(四数一组,剩余首三项1+2-3=0)初一数学期中考试压轴题:列方程解应用题【难度】★★★☆☆【考点】表格阅读题,列一元一次方程解应用题【五中分校期中】某校初一甲、乙两班共103人(其中甲班人数多于乙班人数,每班人数均在100以内)去游该公园,如果两班都以班为单位分别购票,则一共需付486元。

(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?【解析】(1)节省=486-103*4=74元(2)设甲班有x人,则乙班有(103-x)人103*4.5=463.5<;486,则甲班人数x>;51,乙班人数103-x≤50依题意列方程:4.5x+5*(103-x)=486,解得x=58【答案】节省74元,甲班有58人,乙班有45人【难度】★★★☆☆【考点】方案选择题,列一元一次方程解应用题【北大附中期中】某工厂生产某种产品,每件产品的出厂价为50元,其成本价为25元,因为在生产过程中平均每生产一件产品有0.5立方米污水排出,所以为了净化环境,工厂设计两种方案对污水进行处理,并准备实施。

方案1:工厂污水先净化处理后再排出,每1立方米污水所用原料费为2元,且每月排污水设备耗损为30000元;方案2:工厂将污水排到污水厂统一处理每处理1立方米污水需付14元的排污费。

问:(1)设工厂每月生产x 件产品,每月利润为y元,分别求出依方案1和方案2处理污水里,y与x之间的等量关系(即用含x 的代数式表示y.)(其中利润=总收入-支出)。

(2)设工厂生月生产量为6000件产品,你若做为厂长在不污染环境又节约资金的前提下应选用哪种处理污水的方案请通过计算加以说明。

【解析与答案】(1)方案一:y=(50-25)x-0.5×2x-30000=24x-30000方案二:y=(50-25)x-0.5×14x=18x(2)方案一:y=114000方案二:y=108000<;114000方案一更节约资金。

【难度】★★★☆☆【考点】方案选择题,列一元一次方程解应用题【北京四中期中】老师准备购买精美的练习本当作奖品,有两种购买方式:一种是直接按定价购买,每本售价为8元;另一种是先购买会员年卡(自购买之日起,可持供卡人使用一年),每张卡40元,再持卡买这种练习本,每本5元。

(1)如果购买20本这种练习本,两种购买方式各需要多少钱?(2)如果你只能选择一种购买方式,并且你计划一年中用100元花在购买这种练习本上,请通过计算找出可使用购买本数最多的购买方式;(3)一年至少购买这种练习本超过多少本,购买会员年卡才合算?初一数学期中考试压轴题:定义新运算和程序运算【难度】★★☆☆☆【考点】有理数计算,错项相消【八十中期中】设f(k)=k²+(k+1)²+……+(3k)²,求f(4)-f(3)=()A.365 B.63 C.356 D.7【分析】令等式中的k分别等于4、3【答案】C【难度】★★★☆☆【考点】分类讨论【清华附期中】a为有理数,定义运算符号△:当a>0时,△a=-a;当a<0时,△a=a;a=0时,△a=0,根据这种运算,则△(1+△2)等于()A.3B.-3C.1D.-1【分析】△运算的本质是:△a=-|a|【答案】D【难度】★★★★☆【考点】有理数计算,错项相消【北大附期中】若规定一种新运算为<="" p="" style="max-width: 100%; border: 0px;"> ,如果<="" p="" style="max-width: 100%; border: 0px;"> ,那么<="" p="" style="max-width: 100%; border: 0px;"> _______。

【分析】先令a=2,b=1/2,代入公式,可得A= - 1;把A= - 1代入,令a=2001,b=2002【答案】1/2002000初一数学期中考试压轴题:代数式化简求值【难度】★★★★☆【考点】整体法求值、有理数加减法计算【清华附中期中】已知(2x-1)5=ax5+bx4+cx³+dx²+ex+f(a,b,c,d,e,f为常数),则b+d=_______【解析】令x=1得,1=a+b+c+d+e+f……①令x=-1得,-243=-a+b-c+d-e+f……②令x=0得,-1=f①+②得:2b+2d+2f=-242b+d+f=-121b+d=-120【答案】-120【难度】★★★★☆【考点】整体法求值、二元一次方程组【五中分校期中】如果四个有理数满足下列等式a+bc=-1,2b-a=5,2a+b=2d,3a+bc=5,求:abcd的值.【解析】a+bc=-1……①,2b-a=5……②,2a+b=2d……③,3a+bc=5……④由①、④解得:a=3,bc=-4把a=3代入②得:b=4把a=3、b=4代入③得:d=5所以abcd=3×(-4)×5= - 60【答案】-60初一数学期中考试压轴题:一元一次方程概念和计算相关【难度】★★★☆☆【考点】解方程、有理数乘除法法则、约数倍数【北京四中期中】当整数k为何值时,方程9x-3=kx+14有正整数解?并求出正整数解.【解析】整理变形得:x=17/(9-k)有正整数解知:9-k>0,且9-k是17的约数(因数)所以9-k=1,或9-k=17解得k=8或k=-8【答案】k=±8,整数解x=17,x=1【难度】★★★★☆【考点】解方程、整体思想、方程解得定义【人大附中期中】我们规定,若x的一元一次方程ax=b的解为b-a,则称该方程的定解方程,例如:3x=4.5的解为4.5-3=1.5,则该方程3x=4.5就是定解方程.请根据上边规定解答下列问题(1)若x的一元一次方程2x=m是定解方程,则m .(2)若x的一元一次方程2x=ab+a是定解方程,它的解为a,求a,b的值.(3)若x的一元一次方程2x=mn+m和-2x=mn+n都是定解方程,求代数式-2(m+11)-{-4n-3[(mn+m)²-m]}-[(mn+n)²-2n]/2的值.【解析】(1)x=m/2=m-2 解得m=4(2)由(1)得ab+a=4,(ab+a)/2=ab+a-2=a=2,求得b=1(3)由(1)得mn+m=4……①,(mn+n)/-2=mn+n+2,整理得mn+n=-4/3……②①-②得m-n=16/3,化简求值即可【答案】(1)m=4(2)a=2,b=1(3)原式=-14/9初一数学期中考试压轴题:找规律运算题【难度】★★★★☆【考点】平方数列的变形【五中分校期中】如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是______【答案】(n+1)2-1或n(n+2)【规律】①4-1,9-1,16-1,25-1,36-1……②1*3=3;2*4=8;3*5=15;4*6=24……【难度】★★★★☆【考点】等差数列的变形【难度】★★★☆☆【考点】等比数列【北京四中期中】观察下图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有________个.【答案】121【规律】1+3+32+33+34【北京四中期中】如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要枚棋子,摆第n个图案需要________枚棋子.【难度】★★★★☆【考点】等差数列的变形【北京八中期中】观察下面所给的一列数:0,6,-6,18,-30,66,…,则第9个数是______【答案】-510【规律】相邻两项的差:+6,-12,+24,-48,+96,-192……初一数学期中考试压轴题:绝对值化简求值【难度】★★★★★【考点】有理数运算、绝对值化简【人大附期中】在有理数的范围内,我们定义三个数之间的新运算“#”法则:a#b#c=(|a-b-c|+a+b+c)/2如:(-1)#2#3=[|(-1-2-3)|+(-1)+2+3]/2=5(1)计算:3#(-2)#(-3)___________(2)计算:1#(-2)#(10/3)=_____________(3)在-6/7,-5/7……-1/7,0,1/9,2/9……8/9这15个数中,①任取三个数作为a、b、c的值,进行“a#b#c”运算,求所有计算结果的最大值__________,②若将这十五个数任意分成五组,每组三个数,进行“a#b#c”运算,得到五个不同的结果,由于分组不同,所以五个运算的结果也不同,那么五个结果之和的最大值是___________ 【分析】将a#b#c=(|a-b-c|+a+b+c)/2进行取绝对值化简。

相关文档
最新文档