北师大版高一必修一2.2 函数的表示法 习题

合集下载

表示函数的方法(3知识点+4题型+强化训练)(学生版) 24-2025学年高一数学上学期必修第一册

表示函数的方法(3知识点+4题型+强化训练)(学生版) 24-2025学年高一数学上学期必修第一册

3.1.2 表示函数的方法课程标准学习目标(1)在实际情境中, 会根据不同的需要选择恰当的方法(如图象法、列表法、解析法) 表示函数, 理解函数图象的作用。

(1)会求函数的解析式; (难点)(2)列表法表示函数(3)图象法表示函数。

知识点01 解析法把常量和表示自变量的字母用一系列运算符号连接起来得到的式子,叫作解析式(也叫作函数表达式或函数关系式),解析法就是用解析式来表示函数的方法。

比如正方形周长C 与边长a 间的解析式为C =4a ,圆的面积S 与半径r 的解析式S =πr 2等.求函数解析式的方法① 配凑法 ② 待定系数法③ 换元法④ 构造方程组法 ⑤ 代入法【即学即练1】已知函数f (x )=1x ,则f (x +1)=( )A .f (x +1)=1x+1B .f (x +1)=1x―1C .f (x +1)=2x―1D .f (x +1)=2x+1知识点02 列表法如上表,我们很容易看到y与r之间的函数关系.在初中刚学画一次函数时,想了解其图像是一直线,第一步就是列表,其实就是用表格法表示一次函数.【即学即练2】函数f(x)与g(x)的对应关系如下表.x―101x123f(x)132g(x)0―11则g(f(―1))的值为()A.0B.3C.1D.―1知识点03 图象法如上图,很清晰的看到某天空气质量指数I与时间t两个变量之间的关系,特别是其趋势.数学中的“数形结合”也就是这回事,它是数学一大思想,在高中解题中识图和画图尤为重要.【即学即练3】购买某种饮料x听,所需钱数是y元.若每听2元,试分别用解析法、列表法、图象法将y表示成x(x∈{1,2,3,4})的函数.【题型一:解析法表示函数】例1.若函数y=f(x)对任意x∈R,均有f(x+y)=f(x)+f(y),则下列函数可以为y=f(x)解析式的是()A.f(x)=x+1B.f(x)=2x―1C.f(x)=2x D.f(x)=x2+x变式1-1.一个等腰三角形的周长为20,底边长y是一腰长x的函数,则()A.y=10―x(0<x≤10)B.y=10―x(0<x<10)C.y=20―2x(5≤x≤10)D.y=20―2x(5<x<10)变式1-2.下列函数中,对任意x,不满足2f(x)=f(2x)的是()A.f(x)=|x|B.f(x)=―2xC.f(x)=x―|x|D.f(x)=x―1变式1-3.定义在R上的函数f(x)满足f(xy)=f(x)+f(y),且f(4)=8,则f()A B.2C.4D.6变式1-4.若函数f(x)满足f(a+b)=f(a)+f(b)1―f(a)f(b),且f(2)=12,f(3)=13,则f(7)=A.1B.3C.43D.83【方法技巧与总结】理解函数解析式y=f(x),仅是用一系列运算符号连接起来得到的式子,它对定义域内任何一个值都是成立的;比如①函数f(x)=x2(x>0),可取任何大于0的值进行赋值;②若函数f(x)满足f(xy)=f(x)+f(y),则x ,y 取任何实数均可使得等式成立.【题型二:求函数的解析式】方法1 待定系数法例2.若二次函数f(x)满足f(x +1)―f(x)=2x ,且f(0)=1,则f(x)的表达式为( )A .f(x)=―x 2―x ―1B .f(x)=―x 2+x ―1C .f(x)=x 2―x ―1D .f(x)=x 2―x +1变式2-1.已知f(x)是一次函数,且2f(2)―3f(1)=5,2f(0)―f(―1)=3,则f(x)=( )A .3x ―2B .3x +2C .92x ―12D .4x ―1变式2-2.已知函数f(x)是一次函数,且f[f(x)―2x]=3,则f(5)=( )A .11B .9C .7D .5变式2-3.已知二次函数f (x )满足f(2)=―1,f(1―x)=f(x),且f (x )的最大值是8,则此二次函数的解析式为f(x)=( )A .―4x 2+4x +7B .4x 2+4x +7C .―4x 2―4x +7D .―4x 2+4x ―7方法2 换元法例3.已知函数f 2)=x ―,则f(x)的解析式为( )A .f(x)=x 2+1(x ≥0)B .f(x)=x 2+1(x ≥―2)C .f(x)=x 2(x ≥0)D .f(x)=x 2(x ≥―2)变式3-1.已知函数f(1―x)=1―x2x2(x≠0),则f(x)=()A.1(x―1)2―1(x≠0)B.1(x―1)2―1(x≠1)C.4(x―1)2―1(x≠0)D.4(x―1)2―1(x≠1)变式3-2.设函数f1+=2x+1,则f(x)的表达式为()A.1+x1―x (x≠1)B.1+xx―1(x≠1)C.1―x1+x (x≠―1)D.2xx+1(x≠―1)变式3-3.已知f1)=x+3,则f(x)=()A.x2―2x+2(x≥0)B.x2―2x+4(x≥1)C.x2―2x+4(x≥0)D.x2―2x+2(x≥1)方法3 方程组法例4.已知定义在(0,+∞)上的函数f(x)满足f(x)=―15x,则f(2)的值为()A.152B.154C.174D.172变式4-1.若函数f(x),g(x)满足f(x)―=3x―4x,且f(x)+g(x)=2x+6,则f(2)+g(―1)=()A.6B.7C.8D.9变式4-2.已知函数f(x)满足f(x)+2f(2―x)=1x―1,则f(3)的值为()A.―73B.―109C.―415D.―16变式4-3.已知定义在R上的函数f(x),满足f(x)+2f(―x)=2x+12.(1)求f(x)的解析式;(2)若点P(a,b)在y=f(x)图像上自由运动,求4a+2b的最小值.【方法技巧与总结】求函数解析式,可视情况而定,1 若已知函数类型,可用待定系数法;2 若求f(g(x))型函数解析式,可用换元法,此时要注意新自变量的取值范围;3 若求满足某函数方程的函数解析式,则用方程组的方法.【题型三:列表法表示函数】例5.设已知函数f(x),g(x)如下表所示:x12345f(x)54321g(x)43215则不等式f(g(x))>g(f(x))的解集为()A.{1,3}B.{5,3}C.{2,3,4}D.{5}变式5-1.已知函数f(x),g(x)分别由下表给出:则f[g(2)]的值是()x123f(x)131g(x)321A.1B.2C.3D.1和2变式5-2.观察下表:x―3―2―1123f(x)51―1―335g(x)1423―2―4则f[f(―1)―g(3)]=()A.―4B.―3C.3D.5变式5-3.德国数学家狄利克在1837年时提出:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数,”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y和它对应就行了,不管这个对应的法则是公式、图象,表格或是其它形式.已知函数f(x)由下表给出,则f10f)x x≤11<x<2x≥2y123A.0B.1C.2D.3【方法技巧与总结】表格法表示函数,要注意看清楚变量数值之间的对应关系.【题型四:图象法表示函数】例6.如图所示的4个图象中,与所给3个事件最吻合的顺序为()①我离开家后,心情愉快,缓慢行进,但最后发现快迟到时,加速前进;②我骑着自行车上学,但中途车坏了,我修理好又以原来的速度前进;③我快速的骑着自行车,最后发现时间充足,又减缓了速度.A.③①②B.③④②C.②①③D.②④③变式6-1.小明骑车上学,开始时匀速行驶,中途因车流量大而减速行驶,后为了赶时间加速行驶,与以上事件吻合得最好的图象是()A.B.C.D.变式6-2.俗话说,“一分耕耘,一分收获”.那么,在实际生活中,如果把收获看成付出的函数,它们之间的关系可以怎样描述呢?情境甲:当以匀速的方式驾驶汽车时,行驶的里程与所用的时间之间的关系;情境乙:家长过分宠爱孩子,有时还有可能付出增加会导致收获减少;情境丙:在我们学习新的知识时,可能一开始效率会比较高,单位时间的付出得到的收获会比较大,但随着付出的时间越来越多,单位时间的付出得到的收获会变少.请问依次与下面三个图象所表示的收获与付出的关系相对应的情境正确的一项是()A.甲、乙、丙B.丙、甲、乙C.甲、丙、乙D.乙、丙、甲变式6-3.已知完成某项任务的时间t与参加完成此项任务的人数x之间满足关系式t=ax+bx(a∈R,b∈R),当x=2时,t=100;当x=4时,t=53,且参加此项任务的人数不能超过8.(1)写出t关于x的解析式;(2)用列表法表示此函数;(3)画出此函数的图象.【方法技巧与总结】图象法表示函数,达到“一目了然”的效果,对于函数图象还注意函数的定义域,函数图象的上升下降趋势,增减趋势的缓急等等!一、单选题1.已知定义在[―2,2]上的函数y=f(x)表示为:x[―2,0)0(0,2]y10―2设f(1)=m,f(x)的值域为M,则()A.m=1,M={―2,0,1}B.m=―2,M={―2,0,1}C.m=1,M={y|―2≤y≤1}D.m=1,M={y|―2≤y≤1}2.函数y=g(x)的对应关系如下表所示,函数y=f(x)的图象是如图所示的曲线ABC,则g(f(3)―1)的值为()x123g(x)20230―2023A.2023B.0C.―1D.―20233.设f(x)=xx2+1,则( )A.f(x)B.―f(x)C.1f(x)D.―1f(x)4.如图,公园里有一处扇形花坛,小明同学从A点出发,沿花坛外侧的小路顺时针方向匀速走了一圈(A→B→O→A),则小明到O点的直线距离y与他从A点出发后运动的时间t之间的函数图象大致是()A.B.C.D.5.已知函数f(x)=x3+ax2+bx+c,且0<f(―1)=f(―2)=f(―3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>96.已知f+1)=x+3,则f(x)的解析式为f(x)=()A.x2―2x+4B.x2+3C.x2―2x+4(x≥1)D.x2+3(x≥1)7.函数f(x)满足2f(x)―f(1―x)=x,则函数f(x)=()A.x―2B.x+13C.x―13D.―x+28.某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表:表一市场供给量单价(元/kg)2 2.4 2.8 3.2 3.64供给量(1000kg)506070758090表一市场需求量单价(元/kg)4 3.4 2.9 2.6 2.32需求量(1000kg)506065707580根据以上提供的信息,市场供需平衡点(即供给量和需求量相等时的单价)应在区间( )A.(2.3,2.6)内B.(2.4,2.6)内C.(2.6,2.8)内D.(2.8,2.9)内二、多选题9.某工厂8年来某产品产量y与时间t的函数关系如图,则以下说法中正确的是()A.前2年的产品产量增长速度越来越快B.前2年的产品产量增长速度越来越慢C.第2年后,这种产品停止生产D.第2年后,这种产品产量保持不变10.下列说法正确的是()A.函数f(x+1)的定义域为[―2,2),则函数f(x)的定义域为[―1,3)B.f(x)=x2x和g(x)=x表示同一个函数C.函数y=1x2+3的值域为0D.定义在R上的函数f(x)满足2f(x)―f(―x)=x+1,则f(x)=x3+111.已知f(0)=12,f(x+y)=f(x)f(1―y)+f(y)f(1―x),则()A.f(1)=12B.f(x)=12恒成立C.f(x+y)=2f(x)f(y)D.满足条件的f(x)不止一个三、填空题12.下列表示函数y=f(x),则f(11)=.x0<x<55≤x<1010≤x<1515≤x≤20y234513.已知y=f(x)是二次函数,且f(0)=1,f(x+1)―f(x)=2x,则y=f(x)=.14.若正整数m,n只有1为公约数,则称m,n互质.对于正整数n,φ(n)是小于或等于n的正整数中与n互质的数的个数,函数φ(n)以其首位研究者欧拉命名,称为欧拉函数,例如:φ(3)=2,φ(7)=6,φ(9)=6,则下列说法正确的序号是.①φ(5)=φ(10);②φ(2n―1)=1;③φ(32)=16;④φ(2n+2)>φ(2n),n是正整数.四、解答题15.下图所示为某市一天24小时内的气温变化图,根据图象回答下列问题.(1)全天的最高气温、最低气温分别是多少?(2)大约在什么时刻,气温为0°C?(3)大约在什么时刻内,气温在0°C以上?(4)变量Q是关于变量t的函数吗?16.已知f(x)=1(x∈R,且x≠―1),g(x)=x2+2(x∈R).1+x(1)求f(2),g(2)的值;(2)求f(g(2)),g(f(2))的值;(3)求f(x)和g(x―1)的值域.17.已知二次函数f(x)满足f(x)=f(2―x),且f(0)=―3,f(1)=―4.(1)求函数f(x)的解析式;(2)若g(x)=x+1,比较f(x)与g(x)的大小.18.已知二次函数f(x)=ax2+bx+c(a,b,c∈R)只能同时满足下列三个条件中的两个:①a=2;②不等式f(x)>0的解集为{x|―1<x<3 };③函数f(x)的最大值为4.(1)请写出满足题意的两个条件的序号,并求出函数f(x)的解析式;(2)求关于x的不等式f(x)≥(m―1)x2+2(m∈R)的解集.19.已知函数y=f(x)与y=g(x)的定义域均为D,若对任意的x1、x2∈D(x1≠x2)都有|g(x1)―g(x2)|<|f(x1)―f(x2)|成立,则称函数y=g(x)是函数y=f(x)在D上的“L函数”.(1)若f(x)=3x+1,g(x)=x,D=R,判断函数y=g(x)是否是函数y=f(x)在D上的“L函数”,并说明理由;(2)若f(x)=x2+2,g(x)==[0,+∞),函数y=g(x)是函数y=f(x)在D上的“L函数”,求实数a的取值范围;(3)若f(x)=x,D=[0,2],函数y=g(x)是函数y=f(x)在D上的“L函数”,且g(0)=g(2),求证:对任意的x1、x2∈D(x1≠x2)都有|g(x1)―g(x2)|<1.。

【精品推荐】高中数学北师大版必修一课后训练2.2 函数的表示法 Word版含答案

【精品推荐】高中数学北师大版必修一课后训练2.2 函数的表示法 Word版含答案

课后训练基础巩固1.下列图形是函数y =-|x |(x ∈[-2,2])的图像的是( ).2.函数f (x )=21,1,2,1,x x x x⎧+≤⎪⎨>⎪⎩则f (f (3))=( ).A .15B .3C .23D .1393.已知f (x 3-1)=x +1,则f (7)的值为( ). A1 B1 C .3 D .24.已知f (x )=21,0,(2,)0,x x f x x ⎧-≤⎨->⎩则f [f (1)]的值为( ).A .-1B .0C .1D .25.若11x f x x ⎛⎫=⎪-⎝⎭,则当x ≠0且x ≠1时,f (x )=( ). A .1x B .11x -C .11x -D .11x-6.已知函数f (x )=2x +1(1≤x ≤3),则( ). A .f (x -1)=2x +2(0≤x ≤2) B .f (x -1)=2x -1(2≤x ≤4) C .f (x -1)=2x -2(0≤x ≤2) D .f (x -1)=-2x +1(2≤x ≤4) 能力提升7.已知f (x )=kx +b (k <0),且f [f (x )]=4x +1,则f (x )=( ). A .-2x -1 B .-2x +1 C .-x +1 D .122x --8.对a ,b ∈R ,记max{a ,b }=,,,.a ab b a b ≥⎧⎨<⎩函数f (x )=max{|x +1|,|x -2|}(x ∈R )的最小值是().A.0B.12C.32D.39.已知函数f(x)=2,0,1,0.x xx x>⎧⎨+<⎩若f(a)+f(1)=0,则实数a的值等于().A.-3 B.-1 C.1 D.310.已知函数f(x)=21,0,2,0.x xx x⎧+≤⎨->⎩若f(x)=10,则x=______.11.设函数f(x)=2,0,2,0,x bx c xx⎧++≤⎨>⎩若f(-4)=f(0),f(-2)=-2,则关于x的方程f(x)=x的解的个数为________.12.已知函数f(x)在[-1,2]________.13.若定义运算a b=,,,b aa a b⎧⎨<⎩则函数f(x)=x(2-x)的值域是______.14.已知函数f(x)满足2f(x)+f(-x)=3x+2,则f(x)=________.15.设f(x)=11,0,21,0x xxx⎧-≥⎪⎪⎨⎪<⎪⎩若f(x)>-1,则实数x的取值范围为________.16.当m为怎样的实数时,方程x2-4|x|+5=m有四个互不相等的实数根?17.已知函数f(x)对任意的实数x,y,都有f(x+y)=f(x)+2y(x+y),且f(1)=1,求f(x)的解析式.参考答案1.B点拨:y=-|x|=,02,,20,x xx x-≤≤⎧⎨-≤<⎩注意端点的取舍.2.D点拨:f(3)=23,f(f(3))=24131399f⎛⎫=+=⎪⎝⎭.3.C点拨:令x3-1=7,得x3=8,∴x=2,∴f(7)=2+1=3.4.A点拨:∵f(1)=f(-1)=(-1)2-1=0,∴f[f(1)]=f(0)=02-1=-1.5.B点拨:令1x=t,则1xt=,∴f(t)=1111 1ttt=--.∴f(x)=11 x-.6.B点拨:∵f(x)=2x+1的定义域为[1,3],∴f(x-1)=2(x-1)+1=2x-1,且其定义域为[2,4].7.A点拨:∵f[f(x)]=k(kx+b)+b=k2x+kb+b=4x+1,∴24,1,0.kkb bk⎧=⎪+=⎨⎪<⎩∴2,1.kb=-⎧⎨=-⎩8.C点拨:函数f(x)=max{|x+1|,|x-2|}(x∈R)的图像如图所示(实线部分),由图像可得,其最小值为32.因此选C.9.A点拨:f(a)+f(1)=f(a)+2=0,∴f(a)=-2.结合函数表达式可知a<0,∴f(a)=a +1=-2,∴a=-3.10.-3点拨:分两种情况:当x≤0时,由f(x)=x2+1=10得x=-3或x=3(舍去);当x>0时,由f(x)=-2x=10得x=-5(舍去),综上可知x=-3.11.3点拨:由函数解析式可得f(-4)=(-4)2+b×(-4)+c=16-4b+c,f(0)=02+b ×0+c=c,f(-2)=(-2)2+b×(-2)+c=4-2b+c.∵f(-4)=f(0),f(-2)=-2,∴16-4b+c=c,且4-2b+c=-2,即b=4,c=2.∴f(x)=242,0, 2,0.x x xx⎧++≤⎨>⎩当x≤0时,由f(x)=x得x2+4x+2=x,即x2+3x+2=0,∴x=-1,或x=-2. 当x>0时,由f(x)=x得,x=2.综上可知,关于x 的方程f (x )=x 的解的个数为3.12.f (x )=1,10,1,022x x x x +-≤≤⎧⎪⎨-<≤⎪⎩点拨:设y 轴左侧函数的解析式为y =kx +b (k >0,-1≤x ≤0),把点(-1,0),(0,1)的坐标代入上式得0,1,k b b -+=⎧⎨=⎩∴1,1.k b =⎧⎨=⎩∴y =x +1(-1≤x ≤0). 同理可得y 轴右侧函数的解析式为y =-12x (0<x ≤2). 13.(-∞,1] 点拨:由题意,得f (x )=,1,2, 1.x x x x <⎧⎨-≥⎩画函数f (x )的图像,如图所示.由图像得函数f (x )的值域是(-∞,1]. 14.233x +点拨:∵2f (x )+f (-x )=3x +2①,用-x 替代关系式中的x , 得2f (-x )+f (x )=3(-x )+2②, ∴①×2-②得f (x )=233x +. 15.(-∞,-1)∪(0,+∞) 点拨:画出函数f (x )的图像,如图中实线部分所示,再作出直线y =-1.若f (x )>-1,则x <-1,或x >0.16.解:先作出y =x 2-4|x |+5=2245,0,45,0x x x x x x ⎧-+≥⎨++<⎩的图像(如图所示).再作出直线y=m,从图中可以直接看出,当1<m<5时,方程有四个互不相等的实根.17.解:∵f(x+y)=f(x)+2y(x+y)对任意x,y∈R都成立,可令x=0,y=1,得f(1)=f(0)+2×1×(0+1),又f(1)=1,解得f(0)=-1,再令x=0,y=x,得f(x)=f(0)+2x(0+x)=-1+2x2,即f(x)=2x2-1.。

2019—2020年最新高中数学北师大版必修一2.2.2《函数的表示法》同步练习题.doc

2019—2020年最新高中数学北师大版必修一2.2.2《函数的表示法》同步练习题.doc

第二章§2 2.2函数的表示法一、选择题1.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图像可能是( )[答案] A[解析] 因为汽车先启动、再加速、到匀速、最后减速,s随t的变化是先慢、再快、到匀速、最后慢,故A图比较适合题意.2.已知f(x-1)=x2,则f(x)的解析式为( )A.f(x)=x2+2x+1 B.f(x)=x2-2x+1C.f(x)=x2+2x-1 D.f(x)=x2-2x-1[答案] A[解析] 令x-1=t,则x=t+1,∴f(t)=f(x-1)=(t+1)2=t2+2t+1,∴f(x)=x2+2x+1.3.函数y=x2-2x的定义域为{0,1,2,3},那么其值域为( )A.{-1,0,3} B.{0,1,2,3}C.{y|-1≤y≤3} D.{y|0≤y≤3}[答案] A[解析] 由对应法则y=x2-2x,得0→0,1→-1,2→0,3→3,所以值域为{-1,0,3},故选A.4.若f(1x)=x1-x,则当x≠0,且x≠1时,f(x)=( )A.1xB.1x-1C.11-xD.1x-1[答案] B[解析] 令1x=t,则x=1t.∵x≠0,且x≠1,∴t≠1,且t≠0.∴f(t)=1t1-1t=1t-1.∴f(x)=1x-1.故选B.5.如图中的图像所表示的函数的解析式为()A.y=32|x-1|(0≤x≤2)B.y=32-32|x-1|(0≤x≤2)C.y=32-|x-1|(0≤x≤2)D .y =1-|x -1|(0≤x ≤2) [答案] B[解析] 可将原点代入,排除选项A ,C ,再将点(1,32)代入,排除选项D ,故选B.6.已知f(x)=⎩⎪⎨⎪⎧x>0-1x =02x - 3x<0,则f{f[f(5)]}为( )A .0B .-1C .5D .-5[答案] D[解析] 根据分段函数解析式可知, f(5)=0,而f(0)=-1, f(-1)=2×(-1)-3=-5. 故f{f[f(5)]}=f[f(0)]=f(-1)=-5.二、填空题7.已知集合A ={x|y =x +1},集合B ={y|y =-x 2+4x},则A ∩B =________.[答案] {x|-1≤x ≤4}(或写成{y|-1≤y ≤4}) [解析] A 是函数y =x +1的定义域,则A ={x|x ≥-1}.B 是二次函数y =-x 2+4x 的值域,则B ={y|y ≤4}.则A ∩B ={x|-1≤x ≤4}.8.已知f(x)=x 2+1,g(x)=2x +1,则f[g(x)]=________. [答案] 4x 2+4x +2[解析] ∵f(x)=x 2+1,g(x)=2x +1, ∴f[g(x)]=f(2x +1)=(2x +1)2+1=4x 2+4x +2. 三、解答题9.已知函数f(x)=⎩⎪⎨⎪⎧-x 1≤x<0x 20≤x<1x 1≤x ≤2.(1)求f(-8),f(-23),f(12),f(32)的值;(2)作出函数的简图;(3)求函数的值域.[分析] 给出的函数是分段函数,应注意在不同的自变量取值范围内有不同的解析式.(1)根据自变量的值,选用相应关系式求函数值.(2)在不同的区间,依次画出函数图像.(3)函数的值域是各段函数值的集合的并集.[解析] 函数的定义域为[-1,0)∪[0,1)∪[1,2]=[-1,2].(1)因为-8∉[-1,2],所以f(-8)无意义.因为-1≤x<0时,f(x)=-x,所以f(-23)=-(-23)=23.因为0≤x<1时,f(x)=x2,所以f(12)=(12)2=14.因为1≤x≤2时,f(x)=x,所以f(32)=32.(2)在同一坐标系中分段画出函数的图像,如图所示:(3)由第(2)问中画出的图像可知,函数的值域为[0,2].10.求下列函数的解析式.(1)已知f(1-x)=x2-3x+2,求f(x);(2)已知f(x+1)=x+2x,求f(x);(3)已知f(x)=ax2+bx+c,若f(0)=0,且f(x+1)=f(x)+x+1,求f(x).[解析] (1)∵f(1-x)=x2-3x+2=(1-x)2+1-x,∴f(x)=x2+x.(2)令x+1=t,则t≥1.即x=(t-1)2.则f(t)=(t-1)2+2(t-1)=t2-1.∴f(x)=x2-1(x≥1).(3)∵f(0)=c =0,∴f(x +1)=a(x +1)2+b(x +1)+c =ax 2+(2a +b)x +a +b ,f(x)+x +1=ax 2+bx +x +1=ax 2+(b +1)x +1,∴⎩⎪⎨⎪⎧2a +b =b +1a +b =1⇒⎩⎪⎨⎪⎧a =12,b =12.∴f(x)=12x 2+12x.一、选择题1.设函数f(x)=⎩⎪⎨⎪⎧1-x 2,x ≤1x 2+x -2,x>1,则f(1f 2)的值为( )A.1516B .4C.89 D .18[答案] A[解析] f(2)=22+2-2=4,∴1f 2=14, ∴f(1f2)=f(14)=1-(14)2=1516.2.已知f ⎝ ⎛⎭⎪⎫x 2-1=2x +3,且f(m)=6,则m 等于( )A .-14B.14C.32 D .-32[答案] A[解析] 令2x +3=6,得x =32,所以m =x2-1=12×32-1=-14.或先求f(x)的解析式,再由f(m)=6,求m 的值.二、填空题3.某客运公司确定车票价格的方法是:如果行程不超过100千米,票价是每千米0.5元;如果超过100千米,超过部分按每千米0.4元定价,则客运票价y(元)与行程数x(千米)之间的函数关系式是________.[答案] y =⎩⎪⎨⎪⎧0.5x ,0≤x ≤100,10+0.4x ,x>100[解析] 根据行程是否大于100千米来求出解析式,由题意,当0≤x ≤100时,y =0.5x ;当x>100时,y =100×0.5+(x -100)×0.4=10+0.4x.4.已知f(x)满足f(x)+2f ⎝ ⎛⎭⎪⎫1x =3x ,则f(2)=________.[答案] -1[解析] 设f(x)的定义域为C ,由f(x)+2f ⎝ ⎛⎭⎪⎫1x =3x 知,x ∈C ,1x ∈C ,将原式中的x 换为1x,原式仍成立,即有f ⎝ ⎛⎭⎪⎫1x +2f ⎝ ⎛⎭⎪⎪⎫11x =3x . 与原式联立⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫1x +2f x 3x,f x 2f ⎝ ⎛⎭⎪⎫1x =3x ,解得f(x)=2x-x ,∴f(2)=22-2=1-2=-1.三、解答题5.(1)已知f(x)是一次函数,且f[f(x)]=4x -1,求f(x); (2)已知f(x)是二次函数,且f(0)=1,f(x +1)-f(x)=2x ,求f(x).[解析] (1)∵f(x)是一次函数,设f(x)=ax +b(a ≠0). 则f[f(x)]=f(ax +b)=a(ax +b)+b =a 2x +ab +b. 又f[f(x)]=4x -1.∴a 2x +ab +b =4x -1.即⎩⎪⎨⎪⎧a 2=4,ab +b =-1⇒⎩⎪⎨⎪⎧a =2,b =-13,或⎩⎪⎨⎪⎧a =-2,b =1.∴f(x)=2x -13或f(x)=-2x +1.(2)∵f(x)是二次函数,设f(x)=ax 2+bx +c(a ≠0). 由f(0)=1知c =1.又f(x +1)-f(x)=2x , 得a(x +1)2+b(x +1)+1-ax 2-bx -1=2x. 左端展开整理得2ax +(a +b)=2x.∴⎩⎪⎨⎪⎧ 2a =2,a +b =0,即⎩⎪⎨⎪⎧a =1,b =-1.∴f(x)=x 2-x +1. 6.画出下列函数的图像: (1)y =|x -5|+|x +3|; (2)y =2x -3,x ∈Z ,且|x|≤2; (3)y =x 2-2|x|-1;(4)y =⎩⎪⎨⎪⎧x 2+2x x ≥0-x 2-2xx<0.[解析] (1)y =|x -5|+|x +3|= 图像如图(1)所示.(2)y =2x -3,∵x ∈Z ,且|x|≤2.∴x =±2,±1,0,图像如图(2)中的五个点.(3)y =x 2-2|x|-1=⎩⎪⎨⎪⎧x 2-2x -1 x ≥0x 2+2x -1x<0.图像如图(3)所示.(4)y =⎩⎪⎨⎪⎧x 2+2x x ≥0-x 2-2xx<0的图像如图(4)所示.7.如图所示,半径为R 的圆的内接等腰梯形ABCD ,它的下底AB 是⊙O 的直径,上底CD 的端点在圆周上,写出这个梯形周长y 和腰长x 之间的关系式,并求出它的定义域.[解析] 设腰长AD =BC =x , 作DE ⊥AB 交AE 于点E ,连接BD , 则∠ADB =90°,∴Rt △ADE ∽Rt △ABD.∴AD 2=AE ·AB ,AE =x 22R .∴CD =AB -2AE =2R -x 2R .∴周长y 满足关系式y =2R +2x +⎝⎛⎭⎪⎫2R -x 2R =-x 2R +2x +4R.即周长y 与腰长x 之间的关系式为y =-1R x 2+2x +4R.∵四边形ABCD 为圆内接梯形,∴AD>0,AE>0,CD>0.即⎩⎪⎪⎨⎪⎪⎧x>0,x22R >0,2R -x 2R >0,⇒0<x<2R.所以函数的定义域为{x|0<x<2R}.。

(常考题)北师大版高中数学必修一第二单元《函数》测试卷(含答案解析)

(常考题)北师大版高中数学必修一第二单元《函数》测试卷(含答案解析)

一、选择题1.令[]x 表示不超过x 的最大整数,例如,[]3.54-=-,[]2.12=,若函数()[][]32f x x x =-,则函数()f x 在区间[]0,2上所有可能取值的和为( )A .1B .2C .3D .42.函数()()1ln 24f x x x =-+-的定义域是( ) A .[)2,4B .()2,+∞C .()()2,44,⋃+∞D .[)()2,44,+∞3.已知函数f (x )满足f (x -1)=2f (x ),且x R ∈,当x ∈[-1,0)时,f (x )=-2x -2x +3,则当x ∈[1,2)时,f (x )的最大值为( ) A .52B .1C .0D .-14.已知,a t 为正实数,函数()22f x x x a =-+,且对任意[]0,x t ∈,都有()f x a ≤成立.若对每一个正实数a ,记t 的最大值为()g a ,若函数()g a 的值域记为B ,则下列关系正确的是( ) A .2B ∈B .12B ∉C .3B ∈D .13B ∉5.若函数22,2()13,22x ax x f x a x x⎧-≤⎪=⎨->⎪⎩是R 上的单调减函数,则实数a 的取值范围为( )A .115,24⎡⎤⎢⎥⎣⎦B .4,215⎡⎤⎢⎥⎣⎦C .41,152⎡⎤⎢⎥⎣⎦ D .152,4⎡⎤⎢⎥⎣⎦6.符号[]x 表示不超过x 的最大整数,如[]3π=,[]1.082-=-,定义函数{}[]x x x =-.给出下列结论:①函数{}x 的定义域是R ,值域为0,1;②方程{}12x =有无数个解;③函数{}x 是增函数;④函数{}x 为奇函数,其中正确结论的个数是( )A .0B .1C .2D .37.如果()()211f x mx m x =+-+在区间(]1-∞,上为减函数,则m 的取值范围( ) A .103⎛⎤ ⎥⎝⎦,B .103⎡⎤⎢⎥⎣⎦,C .103⎡⎫⎪⎢⎣⎭,D .103⎛⎫ ⎪⎝⎭,8.已知定义在R 上的奇函数()y f x =,当0x ≥时,22()f x x a a =--,若对任意实数x 有()()f x a f x -≤成立,则正数a 的取值范围为( )A .)1,4⎡+∞⎢⎣ B .)1,2⎡+∞⎢⎣C .(10,4⎤⎥⎦D .(10,2⎤⎥⎦9.已知函数log ,0(),0a xx x f x a x >⎧=⎨≤⎩(0a >,且1a ≠),则((1))f f -=( ) A .1B .0C .-1D .a10.已知函数()f x 是奇函数,()f x 在(0,)+∞上是减函数,且在区间[,](0)a b a b <<上的值域为[3,4]-,则在区间[,]b a --上( ) A .有最大值4 B .有最小值-4C .有最大值-3D .有最小值-311.函数f (x )=x 2+2ln||2x x 的图象大致为( ) A . B .C .D .12.若函数()y f x =为奇函数,且在(),0∞-上单调递增,若()20f =,则不等式()0f x >的解集为( )A .()()2,02,∞-⋃+B .()(),22,∞∞--⋃+C .()(),20,2∞--⋃D .()()2,00,2-⋃二、填空题13.设集合A 是集合*N 的子集,对于*i N ∈,定义()1,,0,i i A A i A ϕ∈⎧=⎨∉⎩给出下列三个结论:①存在*N 的两个不同子集A ,B ,使得任意*i N ∈都满足()0i AB ϕ=且()1A B ⋃=;②任取*N 的两个不同子集A ,B ,对任意*i N ∈都有()()()i i i A B A B ϕϕϕ⋃=+;③设{}*2,A x x n n N ==∈,{}*42,B x x n n N ==-=,对任意*i N ∈,都有()()()i i i A B A B ϕϕϕ⋂=其中正确结论的序号为______.14.已知函数f (x )满足2f (x )+f (-x )=3x ,则f (x )=________.15.已知函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若()f x 的最小值为(1)f ,则实数a 的取值范围是________.16.已知集合{1,A B ==2,3},f :A B →为从集合A 到集合B 的一个函数,那么该函数的值域的不同情况有______种.17.函数2()23||f x x x =-的单调递减区间是________.18.定义在R 上的奇函数()f x 在(0,)+∞上是增函数,又(3)0f -=,则不等式()0xf x <的解集为______.19.若函数()y f x = 的定义域为[-1,3],则函数()()211f xg x x +=-的定义域 ___________20.已知函数()2()10f x x ax a =++>,若“()f x 的值域为[)0,+∞”为真命题,则()3f =________. 三、解答题21.已知函数1()(1)1x x a f x a a -=>+,求:(1)判断函数的奇偶性;(2)证明()f x 是R 上的增函数; (3)求该函数的值域.22.已知二次函数()2(f x ax bx c a R =++∈且2a >-),(1)1f =,且对任意的x ∈R ,(5)(3)f x f x -+=-均成立,且方程()42f x x =-有唯一实数解.(1)求()f x 的解析式;(2)若当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,求实数k 的取值范围;(3)是否存在区间[],()m n m n <,使得()f x 在区间[],m n 上的值域恰好为[]6,6m n ?若存在,请求出区间[],m n ,若不存在,请说明理由. 23.已知22()2x af x x -=+. (1)若0a =,证明:()f x在递增,若()f x 在区间(12,1)m m --递增,求实数m 的范围;(2)设关于x 的方程1()f x x=的两个非零实根为1x ,2x ,试问:是否存在实数m ,使得不等式2121m tm x x ++≥-对任意[1,1]a ∈-及[1,1]t ∈-恒成立?如果存在求出m 的范围,如果不存在请说明理由. 24.定义在11,22⎛⎫-⎪⎝⎭上的函数()f x 满足:对任意的11,,22x y ⎛⎫∈- ⎪⎝⎭都有()()()1()()f x f y f x y f x f y ,且当102x <<时,()0f x >.(1)判断()f x 在10,2⎛⎫ ⎪⎝⎭上的单调性并证明; (2)求实数t 的取值集合,使得关于x 的不等式1()02f t x f x ⎛⎫-+> ⎪⎝⎭在11,22⎛⎫- ⎪⎝⎭上恒成立.25.已知函数()()222f x x ax a a =-+∈R .(1)若1a =,[]2,2x ∀∈-,()f x m 成立,求实数m 的取值范围;(2)若0a <,()()1212,0,x x x x ∀∈+∞≠,()()1212||2||f x f x x x ->-成立,求实数a 的最大值;(3)函数()()1g x f x x=+在区间()1,2上单调递减,求实数a 的取值范围.26.已知函数()f x = (1)求()f x 的定义域和值域; (2)设()h x =,若不等式231()42h x m am ≤-对于任意[1,1]x ∈-及任意[1,1]a ∈-都恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据[]x 表示不超过x 的最大整数,分5种情况讨论,分别求出[]x 和[2]x 的值,即可以计算()3[][2]f x x x =-的函数值,相加即可得答案. 【详解】因为[]x 表示不超过x 的最大整数,所以: 当102x <时,有021x <,则[]0x =,则3[]0x =,[2]0x =,此时()0f x =,当112x <时,有122x <,则[]0x =,则3[]0x =,[2]1x =,此时()1f x =-, 当312x <时,有223x <,则[]1x =,则3[]3x =,[2]2x =,此时()1f x =, 当322x <时,有324x <,则[]1x =,则3[]3x =,[2]3x =,此时()0f x =, 当2x =时,24=x ,则[]2x =,则3[]6x =,[2]4x =,此时()2f x =, 函数()f x 在区间[0,2]上所有可能取值的和为011022-+++=; 故选:B . 【点睛】结论点睛:分类讨论思想的常见类型(1)问题中的变量或含有需讨论的参数的,要进行分类讨论的; (2)问题中的条件是分类给出的;(3)解题过程不能统一叙述,必须分类讨论的;(4)涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.2.C解析:C 【分析】先根据函数的解析式建立不等式组,再解不等式组求定义域即可. 【详解】解:因为函数的解析式:()()1ln 24f x x x =-+- 所以2040x x ->⎧⎨-≠⎩,解得24x x >⎧⎨≠⎩故函数的定义域为:()(2,4)4,+∞故选:C 【点睛】数学常见基本初等函数定义域是解题关键.3.B解析:B 【分析】 首先设[)1,2x ∈,利用函数满足的关系式,求函数的解析式,并求最大值.【详解】 设[)1,2x ∈,[)21,0x -∈-,()()()222222323f x x x x x ∴-=----+=-++, ()()()()211214f x f x f x f x -=--=-=⎡⎤⎣⎦,()()()()2211122311444f x f x x x x ∴=-=-++=--+, [)1,2x ∈,()f x ∴在区间[)1,2单调递减,函数的最大值是()11f =.故选:B 【点睛】思路点睛:一般利用函数的周期,对称性求函数的解析式时,一般求什么区间的解析式,就是将变量x 设在这个区间,根据条件,转化为已知区间,再根据关系时,转化求函数()f x 的解析式. 4.A解析:A 【分析】根据函数的特征,要对t 进行分类讨论,求出t 的最大值,再根据a 是正实数,求出()g a 的值域即可判断答案. 【详解】 解:2()2f x x x a =-+∴函数()f x 的图象开口向上,对称轴为1x =①01t <时,()f x 在[0,]t 上为减函数,()(0)max f x f a ==,2()()2min f x f t t t a ==-+ 对任意的[0x ∈,]t ,都有()[f x a ∈-,]a . 22a t t a ∴-≤-+,即2220t t a -+≥,当()()22424120a a ∆=--⨯=-≤,即12a ≥时,01t <,当()()22424120a a ∆=--⨯=->,即102a <<时,11t ≤ ②1t >时,()f x 在[0,1]上为减函数,在[1,]t 上为增函数,则()()11min f x f a a ==-≥-,2(){(0),()}{,2}max f x max f f t max a t t a a ==-+≤,12a ∴≥,且22t t a a -+,即12t < t 的最大值为()g a综上可得,当12a ≥时(]0,2t ∈ 当102a <<时,()0,1t ∈ ∴函数()g a 的值域为(]0,2故选:A . 【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.5.D解析:D 【分析】若函数()f x 在R 上递减,则必须满足当(],2x ∈-∞时,函数22y x ax =-递减,且()2,x ∈+∞时132y a x=-也递减,且端点处的函数值必须满足条件. 【详解】 易知函数132y a x=-在(2,)+∞上单调递减,要使函数()f x 在R 上单调递减, 则函数22y x ax =-在(,2]-∞上单调递减,所以2a ≥, 当2x =时,2244x ax a -=-,113324a a x -=-,要使()f x 在R 上单调递减, 还必须14434a a -≥-,即154a ≤,所以1524a ≤≤.故选:D . 【点睛】解答本题时,首先要保证原函数在每一段上都递减,另外,解答时容易忽略掉端点的函数值的大小关系.6.B解析:B 【分析】根据函数性质判断[]x 是一个常见的新定义的形式,按照新定义,符号[]x 表示不超过x 的最大整数,由此可以得到函数的性质,又定义函数{}[]x x x =-,当0x ≥时,表示x 的小数部分,由于①③是错误的,举例可判断②,根据单调性定义可判断④. 【详解】①函数{}x 的定义域是R ,但[]01x x ≤-<,其值域为)01⎡⎣,,故错误; ②由{}[]12x x x =-=,可得[]12x x =+,则 1.52.5x =,……都是方程的解,故正确; ③由②可得{}11.52=,{}12.52=……当 1.52.5x =,……时,函数{}x 的值都为12,故不是增函数,故错误; ④函数{}x 的定义域是R ,而{}[]{}x x x x -=---≠-,故函数不是奇函数,故错误;综上,故正确的是②. 故选:B. 【点睛】本题以新定义函数{}[]x x x =-的意义为载体,考查了分段函数和函数的值域、单调性等性质得综合类问题,在解答的过程中体现了分类讨论和数形结合的思想,还可以利用函数的图象进行解题.7.B解析:B 【分析】当m =0时,()f x =1x -,符合题意.当0m ≠时,由题意可得0112m m m>⎧⎪-⎨≥⎪⎩,求得m 的范围.综合可得m 的取值范围. 【详解】当0m =时,()1f x x =-+,满足在区间(]1-∞,上为减函数; 当0m ≠时,由于()()211f x mx m x =+-+的对称轴为12mx m-=,且函数在区间(]1-∞,上为减函数, 则0112m m m>⎧⎪-⎨≥⎪⎩,解得103m <≤.综上可得,103m ≤≤. 故选:B 【点睛】要研究二次型函数单调区间有关问题,首先要注意二次项系数是否为零.当二次项系数不为零时,利用二次函数的对称轴来研究单调区间.8.C解析:C 【分析】由于22()f x x a a =--有绝对值,分情况考虑2x a ≥和2x a <,再由()y f x =是奇函数画出图象,再根据()()f x a f x -≤考虑图象平移结合图形可得答案. 【详解】由题得, 当0x ≥时,22()f x x a a =--,故写成分段函数222222,0(),x a a x a f x x a a x a ⎧-+-≤≤=⎨-->⎩,化简得222,0()2,x x a f x x a x a⎧-≤≤=⎨->⎩, 又()y f x =为奇函数,故可画出图像:又()f x a -可看出()y f x =往右平移a 个单位可得,若()()f x a f x -≤恒成立,则222(2)a a a ≥--,即24a a ≤,又a 为正数,故解得104a <≤. 故选:C . 【点睛】本题主要考查绝对值函数对分段函数的转换,图象的平移,属于中档题.9.C解析:C 【分析】根据分段函数的解析式,代入求值即可. 【详解】因为log ,0(),0a x x x f x a x >⎧=⎨≤⎩,所以11(1)f aa --==, 所以11((1))()log 1a f f f a a--===-,故选:C 【点睛】本题主要考查了利用分段函数的解析式,求函数值,涉及指数函数与对数函数的运算,属于中档题.10.B解析:B 【分析】根据奇函数的性质,分析()f x 在对称的区间上单调性相同,即可找出最大值与最小值. 【详解】∵()f x 是奇函数,在(0,)+∞上是减函数,∴()f x 在(,0)-∞上也是减函数,即在区间[,](0)a b a b <<上递减. 又∵()f x 在区间[,](0)a b a b <<上的值域为[3,4]-, ∴()()4,3,f a f b ==-根据奇函数的性质可知()()4,3,f a f b -=--=且在区间[,]b a --上单调递减,∴()f x 在区间[,]b a --上有最大值3,有最小值-4. 故选:B. 【点睛】本题考查了奇函数的单调性和值域特点,如果性质记不熟,可以将大致图像画出.本题属于中等题.11.B解析:B 【分析】利用奇偶性排除选项C 、D ;利用x →+∞时,()f x →+∞,排除A,从而可得结论. 【详解】 ∵f (-x )=( -x )2+2ln||2()x x --=x 2+2ln||2x x =f (x ),∴f (x )是偶函数,其图象关于y 轴对称,排除C,D ; 又x →+∞时,()f x →+∞,排除A, 故选B . 【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.12.A解析:A 【分析】根据题意,由奇函数的性质可得f (﹣2)=﹣f (2)=0,结合函数的单调性分析可得在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0,再结合函数的奇偶性可得在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0,综合即可得答案. 【详解】根据题意,函数y=f (x )为奇函数,且f (2)=0, 则f (﹣2)=﹣f (2)=0,又由f (x )在(﹣∞,0)上单调递增,则在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0, 又由函数y=f (x )为奇函数,则在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0, 综合可得:不等式f (x )>0的解集(﹣2,0)∪(2,+∞); 故选A . 【点睛】本题考查函数单调性奇偶性的应用,关键是掌握函数的奇偶性与单调性的定义,属于基础题.二、填空题13.①③【分析】根据题目中给的新定义对于或可逐一对命题进行判断举实例证明存在性命题是真命题举反例可证明全称命题是假命题【详解】∵对于定义∴对于①例如集合是正奇数集合是正偶数集合①正确;对于②例如:当时;解析:①③ 【分析】根据题目中给的新定义,对于()*,0i i N A ϕ∈=或1,可逐一对命题进行判断,举实例证明存在性命题是真命题,举反例可证明全称命题是假命题. 【详解】∵对于*i ∈N ,定义1,()0,i i AA i A ϕ∈⎧=⎨∉⎩, ∴对于①,例如集合A 是正奇数集合,B 是正偶数集合,,*AB A B N ∴=∅=,()()01i i A B A B ϕϕ∴==;,①正确;对于②, 例如:{}{}{}1232341234A B AB ===,,,,,,,,,,当2i =时,()1i A B ϕ⋃=;()()1,1i i A B ϕϕ==;()()()i i i A B A B ϕϕϕ∴≠+; ②错误;对于③, {}*2,A x x n n N ==∈,{}*42,B x x n n N ==-=,明显地,,A B 均为偶数集,A B ∴≠∅,()1i A B ϕ=,若i 为偶数,则()i A B ∈,则i A ∈且i B ∈;()()1i i A B ϕϕ∴⋅=,则有()()()i i i A B A B ϕϕϕ⋂=;若i 为奇数,此时,()0i A B ϕ=,则i A ∉且i B ∉,()()0,0i i A B ϕϕ==,()()()i i i A B A B ϕϕϕ⋂=∴也成立;③正确∴所有正确结论的序号是:①③; 故答案为:①③ 【点睛】关键点睛:解题关键在于对题目中新定义的理解和应用,结合特殊值法和反证法进行证明,难度属于中档题.14.【分析】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x)=-3x②解上面两个方程即得解【详解】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x) 解析:3x【分析】因为2f (x )+f (-x )=3x ,①,所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,②,解上面两个方程即得解. 【详解】因为2f (x )+f (-x )=3x ,①所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,② 解由①②组成的方程组得f (x )=3x . 故答案为3x 【点睛】本题主要考查函数的解析式的求法,意在考查学生对该知识的理解掌握水平,属于基础题.15.【分析】分别讨论和时结合基本不等式和二次函数的单调性可得的最小值解不等式可得所求范围【详解】函数可得时当且仅当时取得最小值由时若时在递减可得由于的最小值为所以解得;若时在处取得最小值与题意矛盾故舍去 解析:[3,)+∞【分析】分别讨论1x >和1x ≤时,结合基本不等式和二次函数的单调性可得()f x 的最小值,解不等式可得所求范围. 【详解】函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,可得1x >时,()44f x x a a a x =++≥=+,当且仅当2x =时,()f x 取得最小值4a +,由1x ≤时,()()2212f x x a a =-+-,若1a ≥时,()f x 在(]1-∞,递减,可得()()1132f x f a ≥=-, 由于()f x 的最小值为()1f ,所以1324a a -≤+,解得3a ≥; 若1a <时,()f x 在x a =处取得最小值与题意矛盾,故舍去; 综上得实数a 的取值范围是[)3,+∞, 故答案为:[)3,+∞. 【点睛】本题主要考查分段函数的最值求法,考查二次函数的单调性和运用,以及不等式的解法,属于中档题.16.7【分析】根据函数的定义来研究由于函数是一对一或者多对一的对应且在B 中的元素可能没有原像故可以按函数对应的方式分类讨论可分为一对一二对一三对一三类进行讨论得答案【详解】由函数的定义知此函数可以分为三解析:7 【分析】根据函数的定义来研究,由于函数是一对一或者多对一的对应,且在B 中的元素可能没有原像,故可以按函数对应的方式分类讨论.可分为一对一,二对一,三对一三类进行讨论得答案. 【详解】由函数的定义知,此函数可以分为三类来进行研究:若函数的是三对一的对应,则值域为{}1、{}2、{}3三种情况; 若函数是二对一的对应,{}1,2、{}2,3、{}1,3三种情况; 若函数是一对一的对应,则值域为{1,2,3}共一种情况. 综上知,函数的值域的不同情况有7种. 故答案为7. 【点睛】本题考查函数的概念,函数的定义,考查数学的基本思想方法,是中档题.17.【分析】讨论的符号去绝对值得到的分段函数形式根据其函数图象及对称轴即可确定单调递减区间【详解】函数图像如下图示可知的单调递减区间为故答案为:【点睛】本题考查了函数的单调区间利用函数的图象及其对称性确解析:33(,],[0,]44-∞-【分析】讨论x 的符号去绝对值,得到()f x 的分段函数形式,根据其函数图象及对称轴,即可确定单调递减区间 【详解】函数22223,0()23||23,0x x x f x x x x x x ⎧-≥⎪=-=⎨+<⎪⎩图像如下图示可知,()f x 的单调递减区间为33(,],[0,]44-∞- 故答案为:33(,],[0,]44-∞- 【点睛】本题考查了函数的单调区间,利用函数的图象及其对称性确定单调区间,属于简单题18.【分析】由条件确定原点两侧函数的单调性和零点由函数的草图确定不等式的解集【详解】在R 上是奇函数且在上是增函数∴在上也是增函数由得由得作出的草图如图所示:则或由图象得所以或所以的解集为故答案为:【点睛 解析:(3,0)(0,3)-⋃【分析】由条件确定原点两侧函数的单调性和零点,由函数()f x 的草图确定不等式的解集. 【详解】()f x 在R 上是奇函数,且()f x 在(0,)+∞上是增函数,∴()f x 在(,0)-∞上也是增函数,由(3)0f -=,得(3)0f =,由(0)(0)f f =--,得(0)0f =, 作出()f x 的草图,如图所示:()0xf x <,则0()0x f x >⎧⎨<⎩ 或0()0x f x <⎧⎨>⎩,由图象得,所以03x <<或30x -<<,所以()0xf x <的解集为(3,0)(0,3)-⋃. 故答案为:(3,0)(0,3)-⋃. 【点睛】本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键.属于中档题.19.【分析】由函数的定义域得出的取值范围结合分母不等于0可求出的定义域【详解】函数的定义域函数应满足:解得的定义域是故答案为:【点睛】本题考查了求函数定义域的问题函数的定义域是函数自变量的取值范围应满足 解析:[1,1)-【分析】由函数()y f x =的定义域,得出21x +的取值范围,结合分母不等于0,可求出()g x 的定义域. 【详解】函数()y f x =的定义域[1-,3],∴函数(21)()1f xg x x +=-应满足: 121310x x -≤+≤⎧⎨-≠⎩解得11x -≤< ()g x ∴的定义域是[1,1)-.故答案为:[1,1)-. 【点睛】本题考查了求函数定义域的问题,函数的定义域是函数自变量的取值范围,应满足使函数的解析式有意义,是基础题.20.16【分析】二次函数的值域为得到求得值得解【详解】因为的值域为所以则又所以故答案为:16【点睛】二次函数的值域为得到是解题关键解析:16 【分析】二次函数()f x 的值域为[)0,+∞得到240a ∆=-=求得a 值得解 【详解】因为()2()10f x x ax a =++>的值域为[0,)+∞,所以240a ∆=-=,则2a =±.又0a >,所以2,a =.22()21,(3)323116f x x x f ∴=++∴=+⨯+=故答案为:16 【点睛】二次函数()f x 的值域为[)0,+∞得到0∆=是解题关键.三、解答题21.(1)奇函数;(2)证明见解析;(3)()1,1-. 【分析】(1)根据函数奇偶性的定义即可判断函数的奇偶性; (2)结合单调性的定义可证明()f x 是R 上的增函数; (3)根据指数函数的性质即可求该函数的值域. 【详解】解:(1)函数的定义域为R ,则111()()111x x x x xx a a a f x f x a a a ------===-=-+++, 则函数()f x 是奇函数;(2)1122()1111x x x x xa a f x a a a -+-===-+++,1a >,x y a ∴=是增函数,设12x x <,则()()()()()12122121122222211111111x x x x x x x x a a f x f x a a a a a a -⎛⎫⎛⎫-=---=-= ⎪ ⎪++++++⎝⎭⎝⎭, 因为120x x a a <<,所以()()120f x f x -<,即()()12f x f x <, 即2()11xf x a =-+为增函数,即()f x 是R 上的增函数; (3)1122()1111x x x x xa a f x a a a -+-===-+++,1a >, 11x a ∴+>,则1011x a <<+,所以2021x a <<+,即2201x a -<-<+, 所以21111x a -<-<+,即11y -<<,故函数的值域为(1,1)-. 【点睛】 方法点睛:高一阶段求函数的单调性常用的思路有:一、紧扣单调性的定义;二、画出函数的图象,结合图象进行求解;三、结合函数单调性的性质,如增函数+增函数=增函数,减函数+减函数=减函数,增函数-减函数=增函数,减函数-增函数=减函数.22.(1)()22f x x x =-+;(2)()12-∞,;(3)存在,所求区间为:[]4,0-. 【分析】(1)根据题意,用待定系数法,列方程组,求出解析式;(2)恒成立问题用分离参数法转化为求函数的最值,即可求实数k 的取值范围; (3)对于存在性问题,可先假设存在区间[],m n ,再利用二次函数的单调性,求出m 、n 的值,如果出现矛盾,说明假设不成立,即不存在. 【详解】(1)对于()2f x ax bx c =++,由(1)1f =得到:0a b c ++=①;∵对任意的x ∈R ,(5)(3)f x f x -+=-均成立,取x =3,得:(2)(0)f f = 即42=a b c c ++②又方程()42f x x =-有唯一实数解,得:()()2=2440b a c ∆+--=③①②③联立,解得:1,2,0a b c =-==(其中259a =-舍去) 所以()22f x x x =-+.(2)不等式不等式()2160f x kx k +--<可化为:不等式()22216k x x x -<-+∴当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,∴26()2161=22,21,20x x k x x x x -+<-++--∈+∞记()1622,2(10,)g x x x x -++=∈+∞-,只需()min k g x < 对于()16222g x x x =-++-在(10,)+∞上单调递增,∴()()min =10=12g x g ∴12k <,即k 的取值范围为()12-∞,. (3)假设存在区间[],()m n m n <符合题意。

北师大版高中数学必修第一册2.2.2函数的表示法课件

北师大版高中数学必修第一册2.2.2函数的表示法课件

g(x) 3 2 1
则f(g(1))的值为____1____.
当g(f(x))=2时,x=____1____.
解析:由于函数关系是用表格形式给出的,知g(1)=3, ∴f(g(1))=f(3)=1.由于g(2)=2,∴f(x)=2,∴x=1.
题型1 函数的表示法——自主完成
1.某 学 生 离 家 去 学 校 , 一 开 始 跑 步 前 进 , 跑 累 了 再 走 余 下 的 路
(4)在坐标平面上,一个图形就是一个函数图象.( × )
解析:与y轴平行或重合的直线与图形有两个或两个以上的交点时,图形就不 是函数的图象,如圆.
(5)任何一个函数都可以用列表法表示.( × ) (6)函数的图象一定是一条连续不断的曲线.( ×ቤተ መጻሕፍቲ ባይዱ)
2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若 把这一过程中汽车的行驶路程s看作时间t的函数,则图象可能是( )
7.(6分)[多选题]下列函数中,满足f(2x)=2f(x)的是( )
A.f(x)=|x|
B.f(x)=x-|x|
C.f(x)=x+1
D.f(x)=-x
答案:ABD
解析:A中,f(2x)=|2x|=2|x|,2f(x)=2|x|,满足f(2x)=2f(x);B中,f(2x)=2x- |2x|=2(x-|x|)=2f(x),满足f(2x)=2f(x);C中,f(2x)=2x+1,2f(x)=2(x+1)=2x +2,不满足f(2x)=2f(x);D中,f(2x)=-2x=2(-x)=2f(x),满足f(2x)=2f(x).故 选ABD.
程.下列图中纵轴表示离校的距离,横轴表示出发后的时间,则较符
合该学生走法的是( )
答案:D

高一数学同步练习:函数的表示法练习题附解析

高一数学同步练习:函数的表示法练习题附解析

高一数学同步练习:函数的表示法练习题附解析高一数学同步练习:函数的表示法训练题1.下列各图中,不能是函数f(x)图象的是()解析:选C.结合函数的定义知,对A、B、D,定义域中每一个x都有唯独函数值与之对应;而对C,对大于0的x而言,有两个不同值与之对应,不符合函数定义,故选C.2.若f(1x)=11+x,则f(x)等于()A.11+x(x-1)B.1+xx(x0)C.x1+x(x0且x-1)D.1+x(x-1)解析:选C.f(1x)=11+x=1x1+1x(x0),f(t)=t1+t(t0且t-1),f(x)=x1+x(x0且x-1).3.已知f(x)是一次函数,2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)=()A.3x+2B.3x-2C.2x+3D.2x-3解析:选B.设f(x)=kx+b(k0),∵2f(2)-3f(1)=5,2f(0)-f(-1)=1,k-b=5k+b=1,k=3b=-2,f(x)=3x-2.4.已知f(2x)=x2-x-1,则f(x)=________.解析:令2x=t,则x=t2,f(t)=t22-t2-1,即f(x)=x24-x2-1.答案:x24-x2-11.下列表格中的x与y能构成函数的是()A.x 非负数非正数y 1 -1B.x 奇数0 偶数y 1 0 -1C.x 有理数无理数y 1 -1D.x 自然数整数有理数y 1 0 -1解析:选C.A中,当x=0时,y=B中0是偶数,当x=0时,y=0或y= -1;D中自然数、整数、有理数之间存在包含关系,如x=1N(Z,Q),故y的值不唯独,故A、B、D均不正确.2.若f(1-2x)=1-x2x2(x0),那么f(12)等于()A.1B.3C.15D.30解析:选C.法一:令1-2x=t,则x=1-t2(t1),f(t)=4t-12-1,f(12)=16-1=15.法二:令1-2x=12,得x=14,f(12)=16-1=15.3.设函数f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式是()A.2x+1B.2x-1C.2x-3D.2x+7解析:选B.∵g(x+2)=2x+3=2(x+2)-1,g(x)=2x-1.4.某学生离家去学校,由于怕迟到,因此一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示动身后的时刻,则下图中较符合此学生走法的是()解析:选D.由于纵轴表示离学校的距离,因此距离应该越来越小,排除A、C,又一开始跑步,速度快,因此D符合.5.假如二次函数的二次项系数为1且图象开口向上且关于直线x=1对称,且过点(0,0),则此二次函数的解析式为()A.f(x)=x2-1B.f(x)=-(x-1)2+1C.f(x)=(x-1)2+1D.f(x)=(x-1)2-1解析:选D.设f(x)=(x-1)2+c,由于点(0,0)在函数图象上,f(0)=(0-1)2+c=0,c=-1,f(x)=(x-1)2-1.6.已知正方形的周长为x,它的外接圆的半径为y,则y关于x的函数解析式为()A.y=12x(xB.y=24x(x0)C.y=28x(xD.y=216x(x0)解析:选C.设正方形的边长为a,则4a=x,a=x4,其外接圆的直径刚好为正方形的一条对角线长.故2a=2y,因此y=22a=22x4=28x.7.已知f(x)=2x+3,且f(m)=6,则m等于________.解析:2m+3=6,m=32.答案:328. 如图,函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则f[1f3]的值等于________.解析:由题意,f(3)=1,f[1f3]=f(1)=2.答案:29.将函数y=f(x)的图象向左平移1个单位,再向上平移2个单位得函数y=x2的图象,则函数f(x)的解析式为__________________.解析:将函数y=x2的图象向下平移2个单位,得函数y=x2-2的图象,再将函数y=x2-2的图象向右平移1个单位,得函数y=(x-1)2-2的图象,即函数y=f(x)的图象,故f(x)=x2-2x-1.答案:f(x)=x2-2x-110.已知f(0)=1,f(a-b)=f(a)-b(2a-b+1),求f(x).解:令a=0,则f(-b)=f(0)-b(-b+1)=1+b(b-1)=b2-b+1.再令-b=x,即得f(x)=x2+x+1.11.已知f(x+1x)=x2+1x2+1x,求f(x).解:∵x+1x=1+1x,x2+1x2=1+1x2,且x+1x1,f(x+1x)=f(1+1x)=1+1x2+1x=(1+1x)2-(1+1x)+1.f(x)=x2-x+1(x1).12.设二次函数f(x)满足f(2+x)=f(2-x),关于xR恒成立,且f(x)=0的两个实根的平方和为10,f(x)的图象过点(0,3),求f(x)的解析式.解:∵f(2+x)=f(2-x),f(x)的图象关于直线x=2对称.因此,设f(x)=a(x-2)2+k(a0),则由f(0)=3,可得k=3-4a,f(x)=a(x-2)2+3-4a=ax2-4ax+3.∵ax2-4ax+3=0的两实根的平方和为10,10=x21+x22=(x1+x2)2-2x1x2=16-6a,“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。

2022版高中数学第二章函数的表示法映射提升训练含解析北师大版必修1

2022版高中数学第二章函数的表示法映射提升训练含解析北师大版必修1

2022版高中数学北师大版必修1:函数的表示法映射基础过关练题组一函数的表示法1.(2020河北衡水冀州中学高一上第二次月考)已知函数f(x),g(x)由下列表格给出,则f[g(3)]= ()x 1 2 3 4f(x) 2 4 3 1g(x) 3 1 2 4A.4B.3C.2D.12.(2021山东烟台高一上期中)某高三学生于2020年9月第二个周末乘高铁赴济南参加全国高中数学联赛(山东赛区)的比赛活动.早上他乘出租车从家里出发,离开家不久,发现身份证忘在家里了,于是回到家取上身份证,然后乘出租车以更快的速度赶往高铁站,令x(单位:分钟)表示离开家的时间,y(单位:千米)表示离开家的距离,其中等待红绿灯及在家取身份证的时间忽略不计,下列图像中与上述事件吻合最好的是()3.如图,函数f(x)的图像是曲线OAB,其中点O、A、B的坐标分别为(0,0)、(1,2)、(3,1),则f[f(3)]的值等于.4.如图所示,有一块边长为a的正方形铁皮,将其四角各截去一个边长为x的小正方形,然后折成一个无盖的盒子,写出此盒子的体积V以x为自变量的函数解析式,并指明这个函数的定义域.题组二 函数解析式的求法5.(2021北京理工大学附中高一上期中)已知函数f (x )是一次函数,且f (x -1)=4x +3,则f (x )的解析式为( ) A.f (x )=4x -1 B.f (x )=4x +7 C.f (x )=4x +1 D.f (x )=4x +36.已知f (2x +1)=4x 2,则f (-3)= ( ) A.36 B.16 C.4D.-167.已知f (x )是一次函数,且2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )的解析式为 ( ) A.f (x )=2x +3 B.f (x )=3x +2 C.f (x )=3x -2 D.f (x )=2x -38.(2019河北辛集中学高一上第一次月考)已知f (x -1)=x 2,则f (x 2)= . 9.已知f (x -1x )=x 2+1x 2,则f (3)= .10.已知函数f (x )满足af (x )+f (-x )=bx ,其中a ≠±1,求函数f (x )的解析式. 题组三 分段函数问题的解法11.(2021四川成都实验外国语学校高一上第二次段考)已知f (x )={x (x +4),x ≥0,x (x -4),x <0,则f [f (-1)]的值为( )A.5B.15C.25D.4512.已知函数f (x )={x +1,x ∈[-1,0],x 2+1,x ∈(0,1],则下列函数图像正确的是( )13.已知函数f (x )={x 2(-1≤x ≤1),1(x >1或x <-1),则函数f (x )的值域为 .14.“水”这个曾经被人认为取之不尽用之不竭的资源,竟然到了严重制约我国经济发展,严重影响人民生活的程度.缺水每年给我国工业造成的损失达2000亿元,给我国农业造成的损失达1500亿元,严重缺水困扰全国三分之二的城市.为了节约用水,某市打算出台一项水费政策,规定当每季度每人用水量不超过5立方米时,每立方米水费1.2元;当超过5立方米而不超过6立方米时,超过部分的水费加收200%;当超过6立方米而不超过7立方米时,超过部分的水费加收400%.如果某人本季度实际用水量为x (x ≤7)立方米,那么本季度他应交的水费y (单位:元)与用水量x (单位:立方米)的函数关系式为 .15.已知函数f (x )=1+x -|x |4.(1)用分段函数的形式表示函数f (x ); (2)在平面直角坐标系中画出函数f (x )的图像;(3)在同一平面直角坐标系中,再画出函数g (x )=1x (x >0)的图像(不用列表),观察图像直接写出当x >0时,不等式f (x )>1x 的解集.16.(2021吉林榆树一中高一上期中)已知函数f (x )={x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2.(1)求f (-5),f (-√3),f f -52的值;(2)若f (a )=3,求实数a 的值. 题组四 映射17.下列各个对应中,构成映射的是( )18.已知集合A ={1,2,3},B ={4,5,6},f :A →B 为集合A 到集合B 的一个函数,那么该函数的值域的不同情况的种数为 ( ) A.6B.7C.8D.2719.(2021江西南昌六校高一上期中联考)已知映射f :(x ,y )→(x +2y ,x -2y ),在映射f 下(1,-1)的原像是( ) A.0,12 B.(1,1) C.(-1,3) D.12,1能力提升练一、选择题1.(2019广东深圳中学高一上第一次段考,)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.某城市机动车最高限速80千米/时,相同条件下,在该市用丙车比用乙车更省油D.甲车以80千米/时的速度行驶1小时,消耗10升汽油 2.()如图所示的图像表示的函数解析式为 ( )A.y =32|x -1|(0≤x ≤2)B.y =32-32|x -1|(0≤x ≤2) C.y =32-|x -1|(0≤x ≤2) D.y =1-|x -1|(0≤x ≤2)3.(2021江西景德镇一中高一上期中,)若f (x )对任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )= ( )A.x -1B.x +1C.2x +1D.3x +34.(2021辽宁抚顺一中高一上期中,)已知函数f (x )={3x -1x +3(x ≠-3),x (x =-3)的定义域与值域相同,则常数a =( ) A.3 B.-3 C.13D.-135.(2019福建莆田一中高一上月考,)定义运算:a*b ={x ,x ≥x ,x ,x <x ,则f (x )=x 2*|x |的图像是 ( )二、填空题6.(2021重庆西南大学附中高一上第二次月考,)已知函数g (√x +1)=2x +3,则g (3)= .7.()已知函数f (2x -1)=4x +3,若f (t )=11,则t =.8.(2019山东泰安一中高一上十月检测,)设函数f (x )={23x -1,x ≥0,1x,x <0,若f (a )>a ,则实数a 的取值范围是 . 三、解答题9.(2021河南南阳一中高一上第一次月考,)根据下列条件,求f (x )的解析式.(1)f [f (x )]=4x -3,其中f (x )为一次函数; (2)2f 1x+f (x )=x (x ≠0).10.()已知A ={a ,b ,c },B ={-1,0,1},映射f :A →B 满足f (a )+f (b )=f (c ),求映射f :A →B 的个数.答案全解全析 第二章 函 数 §1 生活中的变量关系 §2 对函数的进一步认识 第2.2 函数的表示法 第2.3 映 射 基础过关练1.A2.C 5.B 6.B 7.C 11.D12.A17.D18.B19.A1.A 由题意,根据题表的对应关系,可得g (3)=2,所以f [g (3)]=f (2)=4,故选A .2.答案 C信息提取 ①y 表示离开家的距离,x 表示离开家的时间;②该学生先乘出租车,中途返回家,再乘出租车以更快的速度前行;③确定与上述事件吻合的图像.数学建模 本题为实际问题中的函数图像识别题,通过构建函数模型,分析两个变量间的变化情况,得出正确的函数图像.由题意可知,该高三学生行动的三个过程均为离开家的距离关于时间的一次函数,结合图像可得答案.解析 由题意,知该高三学生离开家,y 是x 的一次函数,且y 值均匀增加; 返回家的过程中,y 仍然是x 的一次函数,且y 值均匀减少;最后由家乘出租车以更快的速度赶往高铁站,y 仍然是x 的一次函数,且y 值增加的速度比刚开始快, 所以与事件吻合最好的图像为C,故选C . 3.答案 2解析 由题中图像知f (3)=1,∴f [f (3)]=f (1)=2.4.解析 由题意可知该盒子的底面是边长为(a -2x )的正方形,高为x , ∴此盒子的体积V =x (a -2x )2, 其中自变量x 应满足{x -2x >0,x >0,即0<x <x 2,∴此盒子的体积V 以x 为自变量的函数解析式为V =x (a -2x )2,定义域为(0,x2).5.B 因为f (x -1)=4x +3=4(x -1)+7,所以f (x )=4x +7.故选B .6.B 当2x +1=-3时,x =-2,因此f (-3)=4×(-2)2=16.故选B . 7.C 设f (x )=kx +b (k ≠0),由2f (2)-3f (1)=5,2f (0)-f (-1)=1, 得{2(2x +x )-3(x +x )=5,2(0+x )-(-x +x )=1, 解得{x =3,x =-2,所以f (x )=3x -2.故选C .8.答案 (x 2+1)2解析 令t =x -1得x =t +1,由f (x -1)=x 2得f (t )=(t +1)2,即f (x )=(x +1)2,于是f (x 2)=(x 2+1)2. 9.答案 11解析 令t =x -1x ,则x 2+1x 2=(x -1x )2+2=t 2+2,因此f (t )=t 2+2,从而f (3)=32+2=11. 10.解析 在原式中以-x 替换x ,得af (-x )+f (x )=-bx , 于是有{xx (x )+x (-x )=xx ,xx (-x )+x (x )=-xx ,消去f (-x ),得f (x )=xxx -1. 故f (x )的解析式为f (x )=xx -1x. 11.D f (-1)=-(-1-4)=5>0,所以f [f (-1)]=f (5)=5×(5+4)=45,故选D .12.A 当x =-1时,f (x )=0,即图像过点(-1,0),故D 错误;当x =0时,f (x )=1,即图像过点(0,1),故C 错误;当x =1时,f (x )=2,即图像过点(1,2),故B 错误.故选A.13.答案 [0,1]解析 由已知得函数f (x )的定义域为R,大致图像如图所示,由图像知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1];当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1]. 14.答案 y ={1.2x ,x ∈[0,5]3.6x -12,x ∈(5,6]6x -26.4,x ∈(6,7]解析 由题意可知: ①当x ∈[0,5]时,y =1.2x ;②当x ∈(5,6]时,y =1.2×5+(x -5)×1.2×(1+200%)=3.6x -12; ③当x ∈(6,7]时,y =1.2×5+1×1.2×(1+200%)+(x -6)×1.2×(1+400%) =6x -26.4.∴y ={1.2x ,x ∈[0,5],3.6x -12,x ∈(5,6],6x -26.4,x ∈(6,7].15.解析 (1)当x ≥0时,f (x )=1+x -x 4=1;当x <0时,f (x )=1+x +x 4=12x +1.所以f (x )={1,x ≥0,12x +1,x <0.(2)函数f (x )的图像如图所示.(3)函数g (x )=1x (x >0)的图像如图所示,当f (x )>1x 时,f (x )的图像在g (x )的图像的上方,所以由图像可知f (x )>1x 的解集是{x |x >1}.16.解析 (1)因为f (x )={x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2,所以f (-5)=-5+1=-4,f (-√3)=(-√3)2+2×(-√3)=3-2√3,f -52=-52+1=-32,f [x (-52)]=f -32=(-32)2+2×-32=94-3=-34.(2)当a ≤-2时,f (a )=a +1=3,解得a =2,不符合题意,舍去; 当-2<a <2时,f (a )=a 2+2a =3, 即(a -1)(a +3)=0,解得a =1或a =-3(舍去),此时a =1; 当a ≥2时,f (a )=2a -1=3,即a =2. 综上所述,a =1或a =2. 思想方法对于分段函数的求值或求参问题,常常需要针对自变量的取值分类进行求解,即分段函数分段求,这体现了分类讨论思想.17.D 选项A 中,元素2没有像,不构成映射;选项B 中,元素2没有像,不构成映射;选项C 中,元素1有两个像,不构成映射;选项D 中,满足映射的定义,构成映射.18.B 由函数的定义知,此函数可以分为三类来进行研究:若函数是三对一的对应,则值域有{4},{5},{6}三种情况;若函数是二对一的对应,则值域有{4,5},{5,6},{4,6}三种情况;若函数是一对一的对应,则值域有{4,5,6}一种情况.综上可知,函数的值域的不同情况有7种.19.A 由{x +2x =1,x -2x =-1,解得{x =0,x =12,所以在映射f 下(1,-1)的原像是0,12.故选A . 能力提升练1.C2.B3.B4.A5.B一、选择题1.C 对于A 选项,由题图可知,当乙车速度大于40千米/时时,乙车每消耗1升汽油,行驶里程都超过5千米,故A 错误;对于B 选项,由题意可知,以相同速度行驶相同路程,燃油效率越高,耗油越少,故三辆车中甲车耗油最少,故B 错误;对于C 选项,当行驶速度不超过80千米/时时,在相同条件下,丙车的燃油效率高于乙车,则在该市用丙车比用乙车更省油,故C 正确;对于D 选项,甲车以80千米/时的速度行驶时,燃油效率为10千米/升,则行驶1小时,消耗了汽油80×1÷10=8(升),故D 错误. 故选C .2.B 当0≤x ≤1时,y =32x ,当1<x ≤2时,y =3-32x ,所以y =32-32|x -1|(0≤x ≤2). 3.B ∵f (x )对任意实数x 恒有2f (x )-f (-x )=3x +1①,∴2f (-x )-f (x )=-3x +1②, 由①②得,f (x )=x +1.故选B .4.A 显然f (x )={3x -1x +3(x ≠-3),x (x =-3)的定义域为R,故值域为R,y =3x -1x +3=3-10x +3的值域为{y ∈R|y ≠3},∴a =3,故选A .5.B 依题意得f (x )={x 2,x 2≥|x |,|x |,x 2<|x |.在同一平面直角坐标系中作出y =x 2与y =|x |的图像,如图所示.由图像知,当x ≤-1时,x 2≥|x |,f (x )=x 2; 当-1<x <1,且x ≠0时,x 2<|x |,f (x )=|x |; 当x =0时,x 2=|x |,f (x )=0; 当x ≥1时,x 2≥|x |,f (x )=x 2.因此,当x ≤-1或x ≥1时,图像为抛物线的一部分,当-1<x <1时,图像为折线段,故选B .二、填空题 6.答案 11解析 令√x +1=t ≥1,则x =(t -1)2,所以g (t )=2(t -1)2+3=2t 2-4t +5(t ≥1),所以g (x )=2x 2-4x +5(x ≥1),所以g (3)=2×32-4×3+5=11.7.答案 3解析 设2x -1=t ,则x =x +12,∴f (t )=2(t +1)+3=2t +5.∵f (t )=11,∴2t +5=11,解得t =3.8.答案 (-∞,-1)解析 当a ≥0时,由f (a )>a ,得f (a )=23a -1>a ,解得a <-3,与a ≥0矛盾,舍去;当a <0时,由f (a )>a ,得f (a )=1x >a ,由a <0去分母、移项,得a 2-1>0,即(a +1)(a -1)>0,解得a >1或a <-1,又因为a <0,所以a <-1.综上所述,实数a 的取值范围是(-∞,-1).三、解答题9.解析 (1)由题意,设f (x )=ax +b (a ≠0), 则f [f (x )]=af (x )+b =a (ax +b )+b =a 2x +ab +b =4x -3,由恒等式性质,得{x 2=4,xx +x =-3,解得{x =2,x =-1或{x =-2,x =3,∴函数f (x )的解析式为f (x )=2x -1或f (x )=-2x +3. (2)f (x )+2f1x=x ,将上式中的x 与1x互换,得f1x+2f (x )=1x ,于是得关于f (x )的方程组{x (x )+2x (1x )=x ,x (1x )+2x (x )=1x ,∴f (x )=23x -x3(x ≠0).10.解析 当A 中的三个元素都对应0时,f (a )+f (b )=0+0=0=f (c ),有1个映射;当A 中的三个元素对应B 中的两个元素时,满足f (a )+f (b )=f (c )的映射有4个,分别为1+0=1,0+1=1,(-1)+0=-1,0+(-1)=-1;当A 中的三个元素对应B 中的三个元素时,满足f (a )+f (b )=f (c )的映射有2个,分别是(-1)+1=0,1+(-1)=0.因此满足题设条件的映射有7个.。

【数学】2.2.2《函数表示法》课件(北师必修1)

【数学】2.2.2《函数表示法》课件(北师必修1)

问题探究
3. 下表列出的是正方形面积变化情况.
边长x米 面积y 米2
1 1
1.5 2.25
2 4
2.5 6.25
3 9
当x在(0,+∞)变化时,这个函数关系你能用式子表示吗?
解析法有两个优点:一是简明、精确地概 括了变量间的关系;二是可以通过解析式 求出任意一个自变量的值所对应的函数 值.中学阶段所研究的主要是能够用解析 式表示的函数.
问题探究
4. 国内跨省市之间邮寄信函,每封 信函的质量和对应的邮资如下表:
信函质量(m)/g 0 m 2 0 邮资(M)/元
2 0 m 4 0 4 0 m 6 0 60 m 80 8 0 m 1 0 0
1.20
2.40
3.60
4.80
6.00
请画出图像,并写出函数的解析式.
10
O
v 30
质点的速度.
10
20
30
t
t+10, (0 ≤ t<5)
解 解析式为v (t)=
3t, (5 ≤ t<10)
30, ( 10 ≤t <20) -3t+90,(20 ≤ t≤30)
t=9s时,v(9)=3×9=27 (cm/s)
小结: 1.函数图像可以是一些点或线段。 2.分段函数是一个函数,自变量在 不同的范围内时,函数的对应法则 不同(每段解析式不同)。
问题探究
1. 下表列出的是正方形面积变化情况.
边长x米 面积y 米2
1 1
1.5 2.25
2 4
2.5 6.25
3 9
这份表格表示的是函数关系吗?
列表法的优点:不需要计算就可以直接看 出与自变量的值相对应的函数值,简洁明 了.列表法在实际生产和生活中也有广泛 应用.如成绩表、银行的利率表等.

新北师大版高中数学必修1课件:第二章 §2 2.2 第1课时 函数的三种表示方法

新北师大版高中数学必修1课件:第二章 §2 2.2 第1课时 函数的三种表示方法

题型一 题型二 题型三
反思列表法、图像法和解析法分别从三个不同的角度刻画了自 变量与函数值的对应关系.采用列表法的前提是定义域内自变量的 个数较少;采用图像法的前提是函数的变化规律清晰;采用解析法 的前提是变量间的对应关系明确.
题型一 题型二 题型三
【变式训练1】 某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个 笔记本需要y元,试用三种表示法表示函数y=f(x).
123456
解析:由题意知该学生离学校越来越近,故排除选项A;又由于开始 匀速,后来因交通堵塞停留一段时间,最后是加快速度行驶,故选C. 答案:C
123456
3若g(x+2)=2x+3,则g(3)的值是( ) A.9 B.7 C.5 D.3 答案:C
123456
4某航空公司规定,乘客所携带行李的质量(kg)与其运费(元)由图中 的函数图像确定,则乘客可免费携带行李的最大质量为( )
题型一 题型二 题型三
题型一 函数的表示方法 【例1】 某商场新进了10台彩电,每台售价3 000元,试分别用列 表法、图像法、解析法表示售出台数x(x∈{1,2,3,4,5,6,7,8,9,10})与 收款总额y(元)之间的函数关系. 分析:明确函数的定义域 明确函数的值域 用三种表示 方法表示函数
2.2 函数的表示法
第1课时 函数的三种表示方法
1.掌握函数的三种表示方法——解析法、图像法、列表法. 2.会作简单函数的图像,掌握求函数解析式的一般方法.
1.函数的表示法
名师点拨函数的三种表示方法的优缺点比较.
【做一做1】 以下形式中,不能表示“y是x的函数”的是 ( )
A.
x
1
2
3
4

函数的表示法练习题

函数的表示法练习题

13、已知函数 f x
x x 4 , x x 4 ,
x 0, x 0,
求 f 1; f 3 ;
f a 1 的值.
14、画出下列函数的图像: (1) y x 2, x Z 且 x 2 ;
2
(2) y 2 x 3 x , x 0, 2 ;
2 2

x
(B) y
2 2
2 4
x
(C) y

2 8
x
(D) y
2 16
x
4 x
x 4 的定义域是(
B、 ( 2, 2)
2
C、 ( , 2) (2, )
D、 { 2, 2} )
5、若函数 f ( x ) (A)-2≤x≤2 6、若 f x A.
三、解答题 12、在国内投寄外埠平信,每封信不超过 20 g 付邮资 80 分,超过 20 g 不超过 40 g 付邮资 160 分, 超过 40 g 不超过 60 g 付邮资 240 分, 以此类推, 每封 xg 0 x 100 的信应付多少邮资 (单位: ? 分) 写出函数表达式,做出函数的图像,并求出函数的值域.
18、已知函数 y = f(x+2)的定义域为[1,4],求函数 y = f(x) 的定义域.
19、已知函数 f(x)= ax ax 1 的定义域为 R,求实数 a 的取值范围.
2
3
神木中学
2
2012 高一数学
必修 1
导学案
编写:张智亮
20、已知函数 f(3x+1)=9x -6x+5,求函数 f(x)的解析式.(用配凑法)

【世纪金榜】(教师用书)2021高中数学 2.2.2 函数的表示法同步课时训练 北师大版必修1(1)

【世纪金榜】(教师用书)2021高中数学 2.2.2 函数的表示法同步课时训练 北师大版必修1(1)

【世纪金榜】(教师用书)2021高中数学 函数的表示法同步课时训练 北师大版必修1(30分钟 50分)一、选择题(每题4分,共16分)1.已知函数f(x)=()2x 1(x 2),f x 3(x 2),⎧+ ≥⎪⎨+ ⎪⎩<那么f(1)-f(3)=( ) (A )-2 (B )7 (C )27 (D )-72.(2021·安徽高考)以下函数中,不知足f (2x )=2f(x)的是( )(A )f(x)=|x| (B )f(x)=x-|x|(C )f(x)=x+1 (D )f(x)=-x2.假设f(x)=x 1x-,那么方程f(4x)=x 的根是( ) (A )x=-2 (B )x=2 (C )x=-12 (D )x=12 3.(2021·修水高一检测)以下选项中,可表示函数y=f(x)图像的只可能是( )4.(2021·济宁高一检测)已知函数f(x+1)=x 2,那么f(x)=( )(A)x 2+x+2 (B)x 2+1(C)x 2-2x+1 (D)x 2+2x+1二、填空题(每题4分,共8分)5.(易错题)已知函数f(x)知足2f(1x)+f(x)=x(x ≠0),那么函数f(x)的解析式为____________. 6.(2021·温州高一检测)已知函数f(x)=22x 1,x 0,x 1,x 0⎧-⎪⎨+≥⎪⎩<,那么知足f(x 0)=1的实数x 0的集合是______________. 三、解答题(每题8分,共16分)7.已知f(x)是二次函数,且知足f(0)=1,f(x+1)-f(x)=2x ,求f(x)的解析式.8.已知f(x)=|x|(x-4).(1)把f(x)写成份段函数的形式;(2)画出函数f(x)的图像;(3)利用图像回答:当k 为何值时,方程|x|·(x-4)=k 有一解?有两解?有三解?【挑战能力】(10分)已知函数f(x)=x ax b+(a, b 为常数,且a ≠0)知足f(2)=1,且f(x)=x 有唯一解,求函数y=f(x)的解析式和f (f(-3))的值.答案解析1.【解析】选B.∵f(1)=f(1+3)=f(4)=42+1=17,f(3)=32+1=10,∴f(1)-f(3)=17-10=7.应选B.2.【解析】选C.(A)f(2x)=|2x|=2|x|=2f(x),知足要求;(B)f(2x)=2x-|2x|=2(x-|x|)=2f(x),知足要求;(C)f(2x)=2x+1≠2(x+1)=2f(x),不知足要求;(D)f(2x)=- 2x=2f(x),知足要求.2.【解析】选(4x)=4x 14x -,依题意有4x 1x 4x -=,解得x=12,应选D. 3.【解析】选D.判定图像是不是能够表示函数y=f(x)的图像,关键是看对概念域中的任意自变量是不是存在唯一的函数值与其对应,可知D 正确.4.【解析】选C.令t=x+1,则x=t-1.∴f(t)=(t-1)2=t 2-2t+1,即f(x)=x 2-2x+1.5.【解题指南】此题能够利用方程思想:采纳解方程的方式消去不需要的函数式子而取得f(x)的表达式.【解析】由题意知f(x)+2f(1x )=x ,令x=1t , 则1x =t,那么f(1t )+2f(t)=1t, 即f(1x )+2f(x)=1x ,于是取得关于f(1x)与f(x)的方程组()()1f x 2f ()x,x 11f ()2f x ,x x⎧+=⎪⎪⎨⎪+=⎪⎩ 解得f(x)=2x 3x 3-(x ≠0). 答案:f(x)=2x 3x 3-(x ≠0) 【变式训练】若3f(x-1)+2f(1-x)=2x ,那么f(x)=__________.【解析】令t=x-1,那么x=t+1,原式变成3f(t)+2f(-t)=2(t+1) ①以-t 代t ,原式变成3f(-t)+2f(t)=2(1-t) ②由①②消去f(-t),得f(t)=2t+25, ∴f(x)=2x+25. 答案:2x+25 6.【解题指南】别离在各段上求函数值为1时自变量的值,然后取并集.【解析】当x 0<0时,有x 20-1=1,x 20=2,x 0=又x 0<0,∴x 0.当x 0≥0时,x 20+1=1,∴x 0=0.故知足条件的实数x 0的集合是,0}.答案:,0}7.【解题指南】由于已知函数f(x)是二次函数,故可设f(x)=ax 2+bx+c(a ≠0),用待定系数法求出a,b,c 的值.【解析】设f(x)=ax 2+bx+c(a ≠0),∵f(0)=1,∴c=1.又∵f(x+1)-f(x)=2x,∴a(x+1)2+b(x+1)+1-(ax 2+bx+1)=2x,整理得2ax+(a+b)=2x.由恒等式性质知上式中对应项系数相等,∴2a 2,a b 0=⎧⎨+=⎩,解得a 1b 1=⎧⎨=-⎩,,∴f(x)=x 2-x+1. 8.【解析】(1)f(x)=()()()x x 4(x 0),x x 4x 0.- ≥⎧⎪⎨-- <⎪⎩ (2)图像如下图.(3)方程的解的个数即为函数y=|x|(x-4)与y=k 的交点个数.结合图像可知当k>0或k<-4时,方程有一解;当k=0或k=-4时,方程有两解;当-4<k <0时,方程有三解.【方式技术】数形结合巧解方程解的个数问题(1)此题为绝对值函数,应先由零点分段讨论法去掉绝对值符号,再画出分段函数的图像,然后利用数形结合思想,将方程解的个数转化为函数交点个数,结合图像取得结果.(2)函数图像能够帮忙咱们正确明白得函数的概念和有关性质,数形结合是研究数学问题的一个重要手腕,是解题的一个有效途径,用数形结合法解题,有助于培育综合运用数学知识解决问题的能力.【挑战能力】【解析】∵f(2)=1, ∴212a b=+,即2a+b=2.① 又∵f(x)=x 有唯一解,即x x ax b =+有唯一解, ∴ax 2+(b-1)x=0有两个相等的实数根,∴Δ=(b-1)2=0,∴b=1,代入①得a=12.∴f(x)=x2x ,1x 2x 12=++ ∴f(f(-3))=()6263f()f 6.1622-⨯===-+。

新教材北师大版必修第一册 第二章2.2函数的表示法1函数的表示法 课件(49张)

新教材北师大版必修第一册   第二章2.2函数的表示法1函数的表示法   课件(49张)
x
所以f(x)=- 1.
x
=-
x
,
3
xx
【补偿训练】
已知f(x)满足f(x)=2f ( 1 )+x,则f(x)的解析式为________.
x
【解析】因为f(x)=2f ( 1+) x,用
x
替1 换x得f
x
=( 12)f(x)+
x
,1
x
代入上式得f(x)= 2[2f x 1 ] x,
x
解得f(x)= 2 . x
【补偿训练】 某公共汽车,行进的站数与票价关系如表:
行进的 站数
票价
123456789 111222333
此函数的关系除了列表之外,能否用其他方法表示?
类型二 函数的图象及其应用(直观想象) 【典例】1.(2020·徐州高一检测)函数y= x2 的图象的大致形状是( )
x
2.已知函数f(x)=x2-2x(-1≤x≤2). (1)画出f(x)图象的简图. (2)根据图象写出f(x)的值域. 【思路导引】1.分x>0,x<0两种情况作出判断. 2.先作出图象,再根据图象写值域.
【跟踪训练】 作出下列函数的图象并写出其值域. (1)y=-x,x∈{0,1,-2,3}. (2)y= 2 ,x∈[2,+∞).
x
【拓展延伸】关于图象变换的常见结论有哪些? 提示:(1)y=f(x)与y=f(-x)的图象关于y轴对称. (2)y=f(x)与y=-f(x)的图象关于x轴对称. (3)y=f(x)与y=-f(-x)的图象关于点(0,0)对称. (4)y=f(|x|)是保留y=f(x)的y轴右边的图象,去掉y轴左边的图象,且将右边图象 沿y轴对折而成. (5)y=|f(x)|是保留y=f(x)的x轴上方的图象,将x轴下方的图象沿x轴对折且去掉 x轴下方的图象而成.

2018学年高中数学北师大版必修一课件:第二章 函数-第1.2节-2.2 精品

2018学年高中数学北师大版必修一课件:第二章 函数-第1.2节-2.2 精品

【提示】 当 a≤0 时,f(a)=-a. ∵f(a)=4,∴-a=4,∴a=-4. 当 a>0 时,f(a)=a2. ∵f(a)=4,∴a2=4,∴a=2,或 a=-2(舍去). 综上 a=-4 或 2.
探究 3 国内跨省市之间邮寄信函,每封信函的质量和对应的邮资如表.
信函质量 0<m≤20 20<m≤40 40<m≤60 60<m≤80 80<m≤100
则 t≠1.把 x=t-1 1代入 f1+x x=1+x2x2+1x,得 f(t)=1+ 1t-112 2+
1 1
=(t-1)2
t-1 t-1
+1+(t-1)=t2-t+1.
∴所求函数的解析式为
f(x)=x2-x+1,x∈(-∞,1)∪(1,+∞).
法二:(配凑法)∵f1+x x=1+x2+x22x-2x+1x=1+x x2-1+xx-x=1+x x2- 1+x x+1,
【精彩点拨】 (1)可设 f(x)=kx+b(k≠0),再根据题设列方程组,求待定系 数 k,b.
(2)在“x+2 x”中凑出“ x+1”或将“ x+1”整体换元来求解. (3)将 f1x,f(x)看成未知数,通过解方程求 f(x).
【尝试解答】 (1)设 f(x)=kx+b(k≠0), 则 f(f(x))=k(kx+b)+b=k2x+kb+b=9x+4. ∴kk2b=+9b,=4, 解得 k=3,b=1 或 k=-3,b=-2. ∴f(x)=3x+1 或 f(x)=-3x-2.
如图 2-2-2 所示,从边长为 2a 的正方形铁片的四个角各裁一个边 长为 x 的正方形,然后折成一个无盖的长方体盒子,要求长方体的高度 x 与底面 正方形边长的比不超过正常数 t.试把铁盒的容积 V 表示为 x 的函数,并求出其定 义域.

高中数学第二章函数2.2.2函数的表示法一学案含解析北师大版必

高中数学第二章函数2.2.2函数的表示法一学案含解析北师大版必

学习资料2.2 函数的表示法(一)内容标准学科素养1。

掌握函数的三种表示法:解析法、列表法、图像法以及各自的优缺点.2。

在实际问题中,能够选择恰当的表示法来表示函数.3。

能利用函数图像求函数的值域,并确定函数值的变化趋势。

加强逻辑推理提升数学运算增强直观想象授课提示:对应学生用书第20页[基础认识]知识点函数的表示法错误!某同学计划买x(x∈{1,2,3,4,5})支2B铅笔,每支铅笔的价格为0。

5元,共需y元,于是y与x之间建立起了一个函数关系.(1)函数的定义域是什么?提示:{1,2,3,4,5}.(2)y与x有何关系?提示:y=0.5 x。

(3)试用表格表示y与x之间的关系.提示:表格如下:支数(x)1234 5钱数(y)0。

51 1.52 2.5知识梳理函数的表示方法错误!思考:1。

任何一个函数都能用解析法表示吗?提示:不一定.如一年内每天的气温与日期间的关系,每日股票的价格同开盘时间的关系等等,都不能用解析法表示.2.你能说一下三种表示法各自的优缺点吗?提示:表示法优点缺点解析法简明、全面概括了变量间的关系;利用解析式可以求任一点处的函数值不够形象、直观而且并非所有的函数都有解析式列表法不需计算可以直接看出自变量对应的函仅能表示自变量取较少的有限的对应关数值系图像法能形象直观地表示函数的变化情况只能近似求出自变量的值所对应的函数值,而且有时误差较大3。

如何判断一个图形是否可以作为函数的图像?提示:任取一条垂直于x轴的直线l,在定义域上移动此直线,若直线l与图形只有一个交点,则是函数的图像,若有两个或两个以上的交点,则不是函数的图像.[自我检测]1.下列各图像中,不可能是函数y=f(x)的图像的有()A.1个B.2个C.3个D.4个解析:判断一个图像是否是函数图像,其关键是分析是否满足定义域内的任意一个x,都有唯一确定的y与之对应.故①②可能是函数图像.③④一定不是y=f(x)的图像.答案:B2.下列用图表给出的函数关系中,当x=6时,对应的函数值y=()x 0<x≤11<x≤55<x≤10x>10y 123 4A.2 B.解析:5<x≤10时,y=3,∴x=6时,y=3.答案:B3.已知f(x)是正比例函数且过点(1,1),则f(x)=________.解析:设f(x)=kx(k≠0),由题意可知f(1)=k=1,∴f(x)=x.答案:x授课提示:对应学生用书第21页探究一函数的三种表示方法[例1]下列式子或表格:①y=2x,其中x∈{0,1,2,3},y∈{0,2,4};②x2+y2=2;③y=x-2+1-x;④x 1234 5y 9089888595其中表示y是x[思路点拨]解答本题的关键是分析所给式子或表格是否满足函数的定义.[解析]①不表示y是x的函数,因为当x=3时,y没有值与其对应;②不表示y是x的函数,因为当x=1时,y=±1,即y有两个值与x的值对应;③不表示y是x的函数,因为原表达式中x∈∅;④能表示y是x的函数,因为该表格既满足函数概念中的确定性也满足唯一性.[答案]④方法技巧函数表示法的注意事项:(1)列表法、图像法、解析法均是函数的表示方法,无论用哪种方式表示函数,都必须满足函数的概念.(2)判断所给图像、表格、解析式是否表示函数的关键在于是否满足函数的定义.跟踪探究1。

新教材高中数学2函数2-2函数的表示法第1课时函数的表示法课件北师大版必修第一册

新教材高中数学2函数2-2函数的表示法第1课时函数的表示法课件北师大版必修第一册
(1)画出f(x)的图象;
(2)根据图象写出f(x)的值域.
解(1)f(x)的图象如图所示.
(2)观察f(x)的图象可知,f(x)图象上所有点的纵坐标的取值范围是[-1,3],故
f(x)的值域是[-1,3].
x=3不在定义域内,从而点(3,3)处用空心圈.
变式训练3
作出下列函数的图象,并写出其值域.
(1)y=2x+1,x∈[0,2];
(2)y=
2

,x∈[2,+∞).
解(1)当x=0时,y=1;当x=1时,y=3;当x=2时,y=5.
函数图象过点(0,1),(1,3),(2,5).
图象如图所示.
由图可知,函数的值域为[1,5].
1.判断正误.(正确的画√,错误的画×)
(1)任何一个函数都可以用列表法表示.( × )
(2)任何一个函数都可以用解析法表示.( × )
2.若 f
1
x
=x+1,则 f(2)=(
1
B.
2
A.2
)
C.3
答案 D
解析
1
令 =2,则

1
1
3
x= ,∴f(2)= +1= .故选
2
2
2
D.
3
D.
2
3.某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵
(方法二)令√+1=t,则 x=(t-1)2,且 t≥1,
函数 f(√+1)=x+2√可化为 f(t)=(t-1)2+2(t-1)=t2-1,
故所求函数的解析式为 f(x)=x2-1,x∈[1,+∞).
(3)因为对任意的 x∈R,且 x≠0 都有 f(x)+2f

2020-2021学年北师大版数学必修1课时跟踪训练:第二章 2.2 函数的表示法(一)

2020-2021学年北师大版数学必修1课时跟踪训练:第二章 2.2 函数的表示法(一)

[A组学业达标]1.(2019·商水县高一模拟)函数y=f(x)如下表所示,则函数的值域是()x x≤22≤x≤3x≥3y -21 2A.{y|-2≤y≤2}C.{y|-2≤y≤1} D.{-2,1,2}解析:根据表中y的取值可得,f(x)的值域是{-2,1,2}.答案:D2.(2019·聊城高一模拟)已知f(x+1)=x2+6x+5,则f(x)的表达式是()A.f(x)=x2+4x B.f(x)=x2+6x-4C.f(x)=x2+3x-8 D.f(x)=x2+4x-4解析:∵f(x+1)=x2+6x+5=(x+1)2+4(x+1);∴f(x)=x2+4x.答案:A3.某学生从家去学校,由于怕迟到,所以一开始跑步,等跑累了,再走余下的路,下图中y表示该学生与学校的距离,x表示出发后的时间,则符合题意的图像是()解析:由题意,知该学生离学校越来越近,故排除选项A,C;又由于开始跑步,后来步行,体现在图像上是先“陡”,后“缓”,故选D.答案:D4.在下列图像中,可以作为函数y=f(x)图像的是()解析:判断一个图像是否是函数图像,其关键是分析它是否满足对定义域内的任意一个x,都有唯一确定的y与之对应.故D可能是函数图像.其他一定不是y=f (x )的图像. 答案:D5.若函数f (x )满足f (x )+2f ⎝ ⎛⎭⎪⎫1x =3x ,则f (2)的值为( )A .-1B .2C .3 D.12 解析:∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =3x ,∴f (2)+2f ⎝ ⎛⎭⎪⎫12=6,f ⎝ ⎛⎭⎪⎫12+2f (2)=32,两式消去f ⎝ ⎛⎭⎪⎫12,得f (2)=-1.答案:A6.若一个长方体的高为80 cm ,长比宽多10 cm ,则这个长方体的体积y (cm 3)与长方体的宽x (cm)之间的表达式是________.解析:由题意可知,长方体的长为(x +10)cm ,从而长方体的体积y =80x (x +10),x >0.答案:y =80x (x +10),x ∈(0,+∞)7.已知函数f (x )是反比例函数,且f (-1)=2,则f (x )=________. 解析:设f (x )=kx ,∵f (-1)=2,∴-k =2,即k =-2. ∴f (x )=-2x . 答案:-2x8.已知函数f (x )的图像如图所示,其中点O ,A ,B ,C 的坐标分别为(0,0),⎝ ⎛⎭⎪⎫-5,32,(0,4),(2,0),则f (-5)=________,f (f (2))=________.解析:由题图可知f (-5)=32,f (2)=0,f (0)=4, 故f (f (2))=4. 答案:32 49.已知f (x )为二次函数,其图像的顶点坐标为(1,3),且过原点,求f (x ).解析:法一:由于图像的顶点坐标为(1,3), 则设f (x )=a (x -1)2+3(a ≠0).∵图像过原点(0,0),∴a +3=0,∴a =-3. 故f (x )=-3(x -1)2+3.法二:设f (x )=ax 2+bx +c (a ≠0),依题意得⎩⎪⎨⎪⎧-b2a =1,4ac -b24a =3,c =0,即⎩⎨⎧b =-2a ,b 2=-12a ,c =0.解得⎩⎨⎧a =-3,b =6,c =0.∴f (x )=-3x 2+6x .10.作出下列函数的图像,并指出其值域: (1)y =x 2+x (-1≤x ≤1). (2)y =2x (-2≤x ≤1,且x ≠0).解析:(1)用描点法可以作出所求函数的图像如图所示:由图可知y =x 2+x (-1≤x ≤1)的值域为⎣⎢⎡⎦⎥⎤-14,2.(2)用描点法可以作出函数的图像如图所示:由图可知y =2x (-2≤x ≤1,且x ≠0)的值域为(-∞,-1]∪[2,+∞).[B 组 能力提升]11.函数y =-1x +1+1的图像是下列图像中的( ) A. B.C. D.解析:根据题意,函数y =-1x +1+1的图像可以由函数f (x )=-1x 的图像向左平移一个单位,向上平移一个单位得到,分析可得D 符合. 答案:D12.定义两种运算:a ⊕b =a 2-b 2,a ⊗b =(a -b )2,则函数f (x )=2⊕x(x ⊗2)-2的解析式为( )A .f (x )=4-x 2x ,x ∈[-2,0)∪(0,2]B .f (x )=x 2-4x ,x ∈(-∞,-2]∪[2,+∞) C .f (x )=-x 2-4x ,x ∈(-∞,-2]∪[2,+∞) D .f (x )=-4-x 2x ,x ∈[-2,0)∪(0,2]解析:∵f (x )=2⊕x (x ⊗2)-2=22-x 2(x -2)2-2=4-x 2|x -2|-2.由⎩⎨⎧4-x 2>0,|x -2|-2≠0,得-2≤x ≤2,且x ≠0. ∴f (x )=-4-x 2x . 答案:D13.函数y =f (x )的定义域为(0,+∞),且对于定义域内的任意x ,y 都有f (xy )=f (x )+f (y ),且f (2)=1,则f (2)的值为________. 解析:∵f (xy )=f (x )+f (y ),且f (2)=1, ∴令x =y =2,得f (2)=f (2)+f (2)=1. ∴f (2)=12. 答案:1214.已知函数f (x )=2x +3,g (2x -1)=f (x 2-1),则g (x +1)=________. 解析:∵f (x )=2x +3,∴f (x 2-1)=2(x 2-1)+3=2x 2+1. ∴g (2x -1)=2x 2+1. 令t =2x -1,则x =t +12, ∴g (t )=2⎝⎛⎭⎪⎫t +122+1=(t +1)22+1. ∴g (x )=(x +1)22+1.∴g (x +1)=(x +2)22+1=12x 2+2x +3. 答案:12x 2+2x +315.如图所示,有一块边长为a 的正方形铁皮,将其四角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出此盒子的体积V 以x 为自变量的函数式,并指明这个函数的定义域. 解析:由题意可知该盒子的底面是边长为(a -2x )的正方形,高为x , ∴此盒子的体积V =(a -2x )2·x =x (a -2x )2, 其中自变量x 应满足⎩⎨⎧a -2x >0,x >0,即0<x <a 2.∴此盒子的体积V 以x 为自变量的函数式为V =x (a -2x )2,定义域为⎝ ⎛⎭⎪⎫0,a 2.16.画出函数f (x )=-x 2+2x +3的图像,并根据图像回答下列问题: (1)比较f (0)、f (1)、f (3)的大小;(2)若x1<x2<1,比较f(x1)与f(x2)的大小;(3)求函数f(x)的值域.解析:因为函数f(x)=-x2+2x+3的定义域为R,列表:x …-2-101234…y …-503430-5…(1)根据图像,容易发现f(0)=3,f(1)=4,f(3)=0,所以f(3)<f(0)<f(1).(2)根据图像,容易发现当x1<x2<1时,有f(x1)<f(x2).(3)根据图像,可以看出函数的图像是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].。

高中数学第二章函数2.2.2函数的表示法(二)2.2.3映射学案(含解析)北师大版必修1

高中数学第二章函数2.2.2函数的表示法(二)2.2.3映射学案(含解析)北师大版必修1

2.2 函数的表示法(二) 2.3 映射内 容 标 准学 科 素 养 1.了解分段函数的概念,会求分段函数的函数值,能画出分段函数的图像.2.了解映射的概念,会判断给出的对应是否是映射.3.能在实际问题中列出分段函数,并能解决有关问题.提升数学运算 准确分类讨论 加强逻辑推理授课提示:对应学生用书第23页[基础认识]知识点一 分段函数预习教材P 32-33,思考并完成以下问题在现实生活中,常常使用表格描述两个变量之间的对应关系.比如:国内邮寄信函,每封信函的重量和对应邮资如下表:信函重量m/g 0<m ≤2020<m ≤4040<m ≤6060<m ≤8080<m ≤100邮资M /元提示:据函数定义知M 是m 的函数,其解析式为:M =⎩⎪⎨⎪⎧0.80,m ∈(0,20]1.60,m ∈(20,40]2.40,m ∈(40,60]3.20,m ∈(60,80]4.00,m ∈(80,100](2)在(1)中有几个函数?为什么?提示:一个.因为(1)中的函数虽然有5个不同的部分,但不是5个函数,只不过在定义域的不同子集内,对应关系不同而已.知识梳理 分段函数如果函数y =f (x ),x ∈A ,根据自变量x 在A 中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数.知识点二 映射思考并完成以下问题在某次数学测试中,高一(1)班的60名同学都取得了较好的成绩,把该班60名同学的名字构成集合A,他们的成绩构成集合B.(1)A中的每一个元素,在B中有且只有一个元素与之对应吗?提示:是的.(2)从集合A到集合B的对应是函数吗?为什么?提示:不是.因为集合A不是数集.知识梳理设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.2.映射与函数的关系:映射是从集合A到集合B的一种对应关系,这里的集合A,B可以是数集、点集或其他集合,当A,B是数集时,此时的映射就是函数,即函数是一种特殊的映射.思考:1.“分段函数就是几个函数”,这句话正确吗?提示:不正确.分段函数是一个函数,而非几个函数,只不过是在不同的定义域的子区间上其解析式不同而已.2.已知集合A={x|x是中国人},集合B={x|x是每个中国人的身份证号码},对应关系f:每个中国人对应其自己的身份证号码,那么对应f:A→B是函数吗?是映射吗?提示:不是函数,而是映射.原因是集合A与B是非空的集合,但不是非空的数集.[自我检测]1.已知集合A={a,b},B={0,1},则下列对应不是从A到B的映射是()解析:A、B、D均满足映射定义,C不满足集合A中任一元素在集合B中有唯一元素与之对应,且集合A中元素b在集合B中无唯一元素与之对应.答案:C2.下列图形是函数y =-|x |(x ∈[-2,2])的图像的是( )解析:y =-|x |=⎩⎪⎨⎪⎧x ,(-2≤x <0)-x ,(0≤x ≤2),其图像是x 轴下方的两条线段,包括x =±2时的两个端点.答案:B3.已知函数f (x )=⎩⎪⎨⎪⎧x +1(x >0),π(x =0),0(x <0),则f (f (-2))=________.解析:∵f (-2)=0,∴f (f (-2))=f (0)=π. 答案:π授课提示:对应学生用书第23页 探究一 分段函数求值[例1] 已知函数f (x )=⎩⎪⎨⎪⎧x +2,x <0,x 2,0≤x <2,12x ,x ≥2,(1)求f ⎝⎛⎭⎫f ⎝⎛⎭⎫f ⎝⎛⎭⎫-12的值; (2)若f (x )=2,求x 的值.[思路点拨] (1)由内到外,先求f ⎝⎛⎭⎫-12,再求f ⎝⎛⎭⎫f ⎝⎛⎭⎫-12,最后求f ⎝⎛⎭⎫f ⎝⎛⎭⎫f ⎝⎛⎭⎫-12; (2)分别令x +2=2,x 2=2,12x =2,分段验证求x .[解析] (1)f ⎝⎛⎭⎫-12=⎝⎛⎭⎫-12+2=32, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫32=⎝⎛⎭⎫322=94, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫94=12×94=98.(2)当f (x )=x +2=2时,x =0,不符合x <0;当f (x )=x 2=2时,x =±2,其中x =2符合0≤x <2;当f (x )=12x =2时,x =4,符合x ≥2.综上,x 的值是2或4.延伸探究 在题设条件不变的情况下,若f (x )>3,求x 的取值范围. 解析:当x <0时,f (x )=x +2>3,得x >1,显然无解. 当0≤x <2时,f (x )=x 2x >3或x <-3, ∴3<xx ≥2时,f (x )=12x >3,得x >6.综上,x 的取值范围是(3,2)∪(6,+∞). 方法技巧 1.求分段函数函数值的方法:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,直到求出值为止.当出现f (f (x 0))的形式时,应从内到外依次求值.2.已知函数值求字母取值的步骤: (1)先对字母的取值范围分类讨论. (2)然后代入到不同的解析式中. (3)通过解方程求出字母的值.(4)检验所求的值是否在所讨论的区间内. 跟踪探究 f (x )=⎩⎪⎨⎪⎧x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2.求f (-5),f (-3),f ⎝⎛⎭⎫f ⎝⎛⎭⎫-52的值. 解析:由-5∈(-∞,-2],-3∈(-2,2),-52∈(-∞,-2],知f (-5)=-5+1=-4,f (-3)=(-3)2+2×(-3)=3-23, ∵f ⎝⎛⎭⎫-52=-52+1=-32,而-2<-32<2, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-32=⎝⎛⎭⎫-322+2×⎝⎛⎭⎫-32=94-3=-34. 探究二 分段函数的图像[例2] 如图,在边长为4的正方形ABCD 的边上有一点P ,沿着折线BCDA 由点B (起点)向A (终点)运动.设点P 运动的路程为x ,△APB 的面积为y .试求:(1)y 与x 之间的函数关系式; (2)画出y =f (x )的图像.[思路点拨] 当点P 在线段BC 上时△APB 的面积随点P 的变化而变化;当点P 在线段CD 上时,△APB 的面积是一个定值;当点P 在线段AD 上时,△APB 的面积随点P 的变化而变化,可见应分三段考虑面积计算.[解析] (1)①当点P 在线段BC 上运动时, S △APB =12×4x =2x (0≤x ≤4);②当点P 在线段CD 上运动时, S △APB =12×4×4=8(4<x ≤8);③当点P 在线段AD 上运动时,S △APB =12×4×(12-x )=24-2x (8<x ≤12).∴y 与x 之间的函数关系式为y =⎩⎪⎨⎪⎧2x ,(0≤x ≤4),8,(4<x ≤8),24-2x ,(8<x ≤12).(2)画出y =f (x )的图像,如图所示:方法技巧 1.由于分段函数在定义域的不同区间内解析式不一样,所以它的图像也由几部分构成,有的可以是光滑的曲线段,有的也可以是一些孤立的点或几段线段,画图时要特别注意区间端点处对应点的实虚之分.2.对含有绝对值的函数,要作出其图像,首先根据绝对值的意义去掉绝对值符号,将函数转化为分段函数来画图像.跟踪探究 ,并写出它们的值域: (1)y =⎩⎪⎨⎪⎧1x ,0<x <1,2x ,x ≥1;(2)y =|x +1|+|x -3|.解析:(1)函数y =⎩⎪⎨⎪⎧1x ,0<x <1,2x ,x ≥1的图像如图①,观察图像,得函数的值域为(1,+∞).(2)将原函数式中的绝对值符号去掉, 化为分段函数y =⎩⎪⎨⎪⎧-2x +2,x ≤-1,4,-1<x ≤3,2x -2,x >3,它的图像如图②.观察图像,得函数的值域为[4,+∞).探究三 映射[例3] 已知A ={a ,b ,c },B ={-1,2}.则从A 到B 可以建立多少个不同的映射? [解析] 从A 到B 可以建立8个映射,如下图所示.延伸探究 1.(改变问法)本例条件不变,则从B 到A 的映射有多少个? 解析:从B 到A 可以建立9个映射,如图所示.2.(增加条件)本例若增加条件:f (a )+f (b )+f (c )=A 到B 的映射有多少个?解析:欲使f (a )+f (b )+f (c )=0,需a ,b ,c 中有两个元素对应-1,一个元素对应2,共可建立3个映射.3.(变换条件)本例条件变为设A ={a ,b ,c },B ={-1,0,1},若从A 到B 的映射f 满足:f (a )+f (b )=f (c ),求这样的映射f 的个数.解析:要确定映射f ,只需确定A 中的每个元素对应的像即可,即确定f (a ),f (b ),f (c )的值,由题可知f (a ),f (b ),f (c )∈{-1,0,1},且满足f (a )+f (b )=f (c ),列表由上表可知,所求的映射有7个. 方法技巧 判断是否为映射的几大要点:(1)集合A ,B 的元素是任意的,没有任何限制;(2)映射是有方向的,A 到B 的映射与B 到A 的映射往往是不一样的;(3)映射要求对集合A 中的每一个元素在集合B 中都有元素与之对应,而且这个与之对应的元素是唯一的,这样集合A 中元素的任意性和集合B 中与其对应的元素的唯一性就构成了映射的核心;(4)映射允许集合B 中存在元素在A 中没有元素与其对应;(5)映射是特殊的对应,即“多对一”或“一对一”的对应,而对应不一定是映射,其中“一对多”的对应不是映射.跟踪探究 ,哪些是从集合A 到集合B 的映射? (1)A =B =N +,对应关系f :x →y =|x -3|;(2)A =R ,B ={0,1},对应关系f :x →y =⎩⎪⎨⎪⎧1,x ≥00,x <0;(3)设A ={矩形},B ={实数},对应关系f :矩形的面积.解析:(1)集合A 中的3,在f 作用下得0,但0∉B ,即3在集合B 中没有相对应的元素,所以不是映射.(2)对于集合A 中任意一个非负数都唯一对应元素1,对于集合A 中任意一个负数都唯一对应元素0,所以是映射.(3)对于每一个矩形,它的面积是唯一确定的,所以f 是从集合A 到集合B 的映射.授课提示:对应学生用书第25页[课后小结]1.对分段函数的理解(1)分段函数是一个函数而非几个函数;分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集.(2)分段函数的图像应分段来作,特别注意各段的自变量取值区间端点处函数的取值情况,以决定这些点的虚实情况.2.函数与映射的关系映射f :A →B ,其中A ,B 是两个非空集合;而函数y =f (x ),x ∈A ,A 为非空实数集,其值域也是数集,于是函数是数集到数集的映射.由此可知,映射是函数的推广,函数是一种特殊的映射.[素养培优]分段函数容易在分类讨论中出错 易错案例:某质点30 s 内运动速度v 是时间t 的函数,它的图像如图.用解析式法表示出这个函数,并求出9 s 时质点的速度.易错分析:解决这类问题的关键是根据自变量的取值情况决定其对应的运算关系,即保持自变量的取值范围与对应关系的一致性,一般需分类讨论求解、考查逻辑推理、分类讨论的学科素养.自我纠正:整体看表达式不能用一个式子写出,但可以分段求得.v (t )=⎩⎪⎨⎪⎧10+t ,t ∈[0,5),3t ,t ∈[5,10),30,t ∈[10,20),-3t +90,t ∈[20,30).当t=9时,v(9)=3×9=27 cm/s.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 函数 2.2 函数的表示法
一、选择题(每小题5分,共20分)
1.已知一次函数的图象过点(1,0)和(0,1),则此一次函数的解析式为……… ( ) A.f(x)=-x B.f(x)=x -1 C.f(x)=x +1 D.f(x)=-x +1
【答案】
D
2.已知函数f(x -1)=x 2-3,则f(2)的值为…………………………………( ) A.-2 B.6 C.1 D.0
【解析】 方法一:令x -1=t ,则x =t +1, ∴f(t)=(t +1)2-3, ∴f(2)=(2+1)2-3=6.
方法二:f(x -1)=(x -1)2+2(x -1)-2, ∴f(x)=x 2+2x -2, ∴f(2)=22+2×2-2=6. 方法三:令x -1=2,
∴x =3,∴f(2)=32-3=6.故选B. 【答案】 B
3.已知f(x)=1
x 2-1,g(x)=x +1,则f(g(x))的表达式是…………………… ( )
A.1
x 2+2x
B.x 2
x 2-1
C.x 2
x 2+2x
D.
1x 2-1 【解析】 f(g(x))=1(x +1)2-1=1
x 2+2x .
【答案】
A
4.已知函数y =⎩⎨⎧
f(1)=0
f(n +1)=f(n)+3,n ∈N *
,则f(3)等于…………………… ( )
A.0
B. 3
C. 6
D.9
【解析】 f(2)=f(1+1)=f(1)+3=0+3=3, ∴f(3)=f(2+1)=f(2)+3=3+3=6. 【答案】
C
二、填空题(每小题5分,共10分)
5.已知函数f(x)的图象如图所示,则此函数的定义域是
,值域是 .
【解析】 由图象可看出-3≤x ≤3,-2≤y ≤2. 【答案】 [-3,3][-2,2] 6.已知f(x)与g(x)分别由下表给出
那么f(g(3))= .
【解析】 由表可得g(3)=4,∴f(g(3))=f(4)=1. 【答案】 1
三、解答题(每小题10分,共20分) 7.解答下列问题:
(1)若f(x +1)=2x 2+1,求f(x);
(2)若函数f(x)=x
ax +b
,f(2)=1,又方程f(x)=x 有唯一解,求f(x).
【解析】 (1)令t =x +1,则x =t -1,∴f(t)=2(t -1)2+1=2t 2-4t +3.∴f(x)=2x 2-4x +3.
x 1 2 3 4 f(x)
4
3
2
1
x 1 2 3 4 g(x)
3
1
4
2
(2)由f(2)=1得2
2a +b
=1,即2a +b =2;
由f(x)=x 得x ax +b =x 变形得x(1
ax +b -1)=0,解此方程得:x =0或x =1-b a .又因为方
程有唯一解,所以1-b a =0,解得b =1,代入2a +b =2得a =12,所以所求解析式为f(x)=2x
x +2
.
8.作下列各函数的图象: (1)y =2x 2-4x -3(0≤x <3); (2)y =|x -1|;
【解析】 (1)∵0≤x <3,∴这个函数的图象是抛物线y =2x 2-4x -3介于0≤x <3之间的一段弧(如图(1)).
(2)所给函数可写成分段函数y =⎩⎨⎧
x -1 x ≥1
1-x x <1
是端点为(1,0)的两条射线(如图(2)).
9.(10分)已知函数
f(x)=⎩⎪⎨⎪⎧
2x , (x ≤-1)
1, (-1<x ≤1)-2x ,(x >1)
.
(1)求f(x)的定义域、值域; (2)作出这个函数的图象.
【解析】 (1)f(x)的定义域为{x|x ≤-1}∪{x|-1<x ≤1}∪{x|x >1}={x|x ≤-1或-1<x ≤1或x >1}=R ,
f(x)的值域为{y|y ≤-2}∪{1}∪{y|y <-2}={y|y ≤-2或y =1}, ∴f(x)的定义域为R ,值域为{y|y ≤-2或y =1}.
(2)根据解析式分段作图如图。

相关文档
最新文档