勾股定理教学设计[1]

合集下载

勾股定理教学设计(1)

勾股定理教学设计(1)

18.1勾股定理主备人:吕彦启2014、3教学目标:1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识、主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、使学生掌握勾股定理及其应用。

3、探索并理解直角三角形三边之间的数量关系,进一步发展学生的说理和简单推理的意识及能力。

教学重难点1、了解勾股定理的由来并能用它解决一些简单问题。

2、动手操作、发现勾股定理。

教学过程:一、导入:2002年国际数学家大会图标介绍二、新课教学看一看、想一想:见课件(与教材一样)完成填空和猜想:S1+S2=S3两条直角边上的正方形面积之和等于斜边上的正方形的面积。

推广:一般的直角三角形,上述结论成立吗?a2+b2=c2得出结论:勾股定理:直角三角形两直角边的平方和等于斜边的平方. 在西方又称毕达哥拉斯定理耶!人类最伟大的十个科学发现之一.画一画,验一验:画一个直角三角形ABC ,使两直角边分别为3cm 和4cm ,如图所示,试量出它的斜边c 的长度。

(学生完成操作并验证)a2+b2=c2有趣的总统证法:美国第二十任总统伽菲尔德的证法在数学史上被传为佳话∴ a2 + b2 = c2在中国古代,人们把弯曲成直角的手臂的上半部分称为"勾",下半部分称为"股"。

我国古代学者把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.c2=a2 + b2 a2=c2-b2b2 =c2-a2b)b a )(b a (21S ++=梯形2212121cab ab S ++=梯形a =b=c 2-a 2c =三、应用定理,巩固新知例1:如图,为得到池塘两岸A 点和B 点间的距离,观测者在C 点设桩,使△ABC 为直角三角形,并测得AC 为100米,BC 为80米.求A 、B 两点间的距离是多少?CA例题2、受台风麦莎影响,一棵树在离地面4米处断裂,树的 顶部落在离树跟底部3米处,这棵树折断前有多高?例题3、判断正误若直角三角形的两条边长为6cm 、8cm ,则第三边长一定为10cm.( ) 例题4、考一考,测一测1.求下列图中表示面积的未知数x 与表示边的未知数y 、z 的值.2.Rt △的两直角边为5、12,则三角形周长为 米3. .在△ABC中,∠C=90°,如果AB=10, BC=6,那么△ABC的面积为____.四、小结:五、作业:六、思考题:小明的妈妈买了一部29英寸(约74厘米)的电视机。

苏科版数学八年级上册3.1《勾股定理》教学设计1

苏科版数学八年级上册3.1《勾股定理》教学设计1

苏科版数学八年级上册3.1《勾股定理》教学设计1一. 教材分析《勾股定理》是苏科版数学八年级上册第三章的第一节,本节课的主要内容是让学生掌握勾股定理的内容、证明及应用。

教材通过生活中的实例引入勾股定理,让学生体会数学与生活的紧密联系,培养学生的数学应用意识。

同时,本节课还引导学生通过探究、合作、交流的方式,感受数学的探究过程,培养学生的数学思维能力。

二. 学情分析学生在学习本节课之前,已经掌握了实数、勾股数等基础知识,具备了一定的逻辑思维能力和数学探究能力。

但部分学生对勾股定理的理解可能仍停留在死记硬背的层面,对勾股定理的应用和证明过程可能还不够清晰。

因此,在教学过程中,需要关注学生的个体差异,引导学生深入理解勾股定理,提高学生的数学思维能力。

三. 教学目标1.知识与技能:让学生掌握勾股定理的内容、证明及应用。

2.过程与方法:通过探究、合作、交流的方式,让学生体验数学的探究过程,培养学生的数学思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,感受数学的趣味性与魅力,培养学生的数学应用意识。

四. 教学重难点1.重点:勾股定理的内容、证明及应用。

2.难点:勾股定理的证明过程,以及如何将实际问题转化为数学问题。

五. 教学方法1.情境教学法:通过生活中的实例引入勾股定理,让学生感受数学与生活的紧密联系。

2.探究教学法:引导学生通过自主探究、合作交流的方式,探索勾股定理的证明过程。

3.启发式教学法:教师提问引导学生思考,激发学生的数学思维。

六. 教学准备1.教学课件:制作勾股定理的相关课件,包括生活中的实例、证明过程、应用实例等。

2.教学素材:准备一些与勾股定理相关的实际问题,用于课堂练习和拓展。

3.板书设计:设计简洁清晰的板书,突出勾股定理的关键信息。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的实例,如直角三角形的家具尺寸、建筑物的设计等,引导学生感受数学与生活的联系,激发学生的学习兴趣。

勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。

勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。

2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。

3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。

重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。

2.已知直角三角形的两边长为3、4,则另一条边长是______________。

3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。

4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。

求点F和点E坐标。

6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。

勾股定理的优秀教案5篇

勾股定理的优秀教案5篇

勾股定理的优秀教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、讲话致辞、条据文书、合同协议、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, speeches, written documents, contract agreements, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的优秀教案5篇教案的制定可以帮助教师思考教学策略和方法是否合理,激发学生的学习兴趣和积极参与,写好教案帮助教师评估学生的学习情况和教学效果,及时调整教学计划和教学内容,以下是本店铺精心为您推荐的勾股定理的优秀教案5篇,供大家参考。

八年级数学下册(人教版)17.1.1勾股定理(第一课时)教学设计

八年级数学下册(人教版)17.1.1勾股定理(第一课时)教学设计
4.合作交流,提升能力:组织学生进行小组讨论,分享学习心得和解决问题的方法,培养学生的合作精神和交流能力。在此基础上,设计一些实际问题,让学生运用勾股定理进行求解,提高他们的问题解决能力。
5.总结反思,拓展提高:在教学结束时,引导学生对勾股定理进行总结,明确其应用范围和注意事项。同时,布置一些拓展提高的练习题,让学生在课后进行巩固。
本节课的教学设计以勾股定理为核心,紧密结合教材内容,注重培养学生的知识技能、过程方法和情感态度与价值观,旨在提高学生的数学素养和实际应用能力。
二、学情分析
八年级学生在经过前两年的数学学习后,已经具备了一定的数学基础和逻辑思维能力。在本节课之前,学生已经学习了平面几何、立体几何的基本概念,掌握了直角三角形的性质和判定方法,这些都为学习勾股定理奠定了基础。然而,由于勾股定理涉及斜边与直角边的平方关系,学生在理解上可能会存在一定难度。因此,在教学过程中,教师需关注以下几点:
2.自主探究,发现定理:引导学生观察教材中的直角三角形图形,鼓励他们大胆猜想勾股定理的表达形式。在学生自主探究的基础上,引导他们通过实际测量、计算,验证勾股定理的正确性。
3.精讲精练,突破难点:针对勾股定理的证明过程,教师进行详细讲解,并设计具有梯度的问题,让学生逐步掌握定理的证明方法。同时,通过典型例题的讲解和练习,帮助学生巩固定理的应用。
(四)课堂练习,500字
为了巩固学生对勾股定理的理解,我将设计一些课堂练习题。这些练习题分为基础题和提高题,以满足不同层次学生的学习需求。
1.基础题:主要针对勾股定理的基本应用,如已知直角三角形的两边,求解第三边。
2.提高题:涉及勾股定理在实际问题中的应用,如计算建筑物的高度、距离等。
我会让学生独立完成练习题,并在必要时给予指导。通过课堂练习,学生可以检验自己对勾股定理的掌握程度,并为课后作业打下基础。

勾股定理教案范本 勾股定理教案教学方法优秀6篇

勾股定理教案范本 勾股定理教案教学方法优秀6篇

勾股定理教案范本勾股定理教案教学方法优秀6篇初中数学《勾股定理》教学设计篇一一、学生知识状况分析本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。

学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。

二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。

具体内容是运用勾股定理及其逆定理解决简单的实际问题。

当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。

三、本节课的教学目标是:1.通过观察图形,探索图形间的关系,发展学生的空间观念。

2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性。

利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的`重点也是难点。

四、教法学法1.教学方法引导—探究—归纳本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,顺势教学过程;(3)利用探索研究手段,通过思维深入,领悟教学过程。

2.课前准备教具:教材、电脑、多媒体课件。

学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具五、教学过程分析本节课设计了七个环节。

第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业。

人教版八年级下册17.1《勾股定理》第一课时教学设计

人教版八年级下册17.1《勾股定理》第一课时教学设计
6.注重课后反思,让学生在反思中巩固所学知识,发现自己的不足,为下一节课的学习做好准备。
四、教学内容与过程
(一)导入新课
1.教师通过展示一组图片,包括古代建筑、现代桥梁等,引导学生观察这些图形中的直角三角形,并提出问题:“这些图形有什么共同特点?它们在数学中有什么特殊性质?”
2.学生观察后,教师总结直角三角形的定义,并引导学生回顾已知的直角三角形相关知识,为新课的学习做好铺垫。
5.针对教学难点,采取以下措施:
a.对勾股定理的证明过程进行详细讲解,通过画图、举例等方式,让学生在直观感知的基础上,理解证明的严密性。
b.专门安排一节课,让学生列举并分析勾股数的特点,总结规律,以便更好地辨识和应用勾股数。
c.结合实际情境,开展数学建模活动,让学生在小组内共同探讨、解决问题,提高他们的数学建模能力。
5.掌握勾股数的特点,能够辨识和列举出一组勾股数。
(二)过程与方法
在教学过程中,学生将通过以下方式来达成目标:
1.通过观察直角三角形的特性,引导学生发现勾股定理,培养观察力和逻辑思维能力。
2.通过小组合作,探究勾股定理的证明方法,提高合作意识和解决问题的能力。
3.通过数学问题的解答,培养学生将理论知识应用于实际情境的能力。
4.利用数形结合的方法,让学生在直观的图形中理解抽象的数学公式,提高形象思维和抽象思维的能力。
5.通过分析勾股数的特点,让学生总结规律,增强数学归纳和总结的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们探究数学问题的热情。
2.使学生体会到数学知识与现实生活的紧密联系,增强学生的数学应用意识。
人教版八年级下册17.1《勾股定理》第一课时教学设计
一、教学目标

八年级数学下册17.1勾股定理教学设计

八年级数学下册17.1勾股定理教学设计
(2)思考并解答以下问题:直角三角形中,如果斜边的长度是整数,那么它的两条直角边长度是否一定是整数?请给出理由。
3.拓展作业:
(1)查阅资料,了解勾股定理在古今中外的应用,如建筑、天文学等领域。
(2)探讨勾股定理在解决其他数学问题中的应用,如解三角形、计算面积等。
4.实践作业:
(1)运用勾股定理,设计并制作一个直角三角形的模型,标注三边的长度。
五、作业布置
为了巩固学生对勾股定理的理解和应用,确保学习效果,特布置以下作业:
1.基础作业:
(1)完成课本第17.1节后的练习题1、2、3。
(2)运用勾股定理,解决以下实际问题:某直角三角形的两条直角边分别为3米和4米,求斜边的长度。
2.提高作业:
(1)证明勾股定理的另一种方法,如拼图法、归纳法等。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握勾股定理的表达式及其应用。
2.掌握勾股定理的证明过程,理解其背后的数学原理。
3.能够运用勾股定理解决实际问题,尤其是涉及直角三角形斜边长度计算的问题。
4.培养学生的几何直观能力和逻辑推理能力。
(二)教学设想
1.引入阶段:通过实际问题引入勾股定理,激发学生兴趣。例如,可以提出一个关于直角三角形斜边长度的问题,引导学生运用已有知识尝试解决,进而引出勾股定理。
4.通过勾股定理的证明过程,引导学生掌握数学推理的基本方法,提高逻辑思维能力。
5.设计丰富的例题和练习题,帮助学生巩固所学知识,提高解题技巧。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,使其体会到数学在生活中的实际应用。
2.培养学生勇于探索、敢于创新的精神,使其在数学学习过程中充满自信。
3.培养学生严谨、细致的学习态度,使其在解决问题的过程中注重逻辑性和条理性。

初中数学_《勾股定理(1)》教学设计学情分析教材分析课后反思

初中数学_《勾股定理(1)》教学设计学情分析教材分析课后反思

《勾股定理(1)》教学设计教学目标:知识与技能1、了解勾股定理的文化背景,体验勾股定理的探索过程。

2、在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。

3、能利用勾股定理的数学模型解决现实世界中的简单实际问题。

过程与方法1、在勾股定理的探索过程中,发展合情推理能力,体会数形结合思想。

2、经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识。

情感、态度与价值观1、通过对勾股定理历史的了解,感受数学文化,激发学习热情。

2、在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神。

教学重点:探索和验证勾股定理。

教学难点:用拼图的方法验证勾股定理。

课时安排:1课时教学过程:一、情境导入相传2500年前,古希腊数学家毕达哥拉斯到朋友家做客时,发现朋友家的地砖反映了直角三角形三条边的数量关系。

请同学们观察,并填空1、观察图形(简化图中每个小方格代表一个单位面积)①正方形A的面积是个单位面积。

②正方形B的面积是个单位面积。

③正方形C的面积是个单位面积。

结论:2、观察图形,填表A的面积B的面积C的面积图1-1图1-2教师口述毕达哥拉斯发现勾股定理的故事,并展示图案。

学生认真观察图形,填空,探究发现,学生就发现的特点用语言描述出来。

教师做详细准确的归纳。

通过毕达哥拉斯的故事激发学生的学习兴趣。

渗透从特殊到一般的数学思想,充分发挥学生的主体地位。

鼓励学生体会观察、大胆猜想、归纳,提高学生的语言表达能力和归纳概括能力。

你能发现图1-1正方形A、B、C的的面积有什么关系吗?图1-2呢?3、用边长表示A的面积用边长表示B的面积用边长表示C的面积用边长表示图1-1图1-2二、探究新知大胆猜想:命题:直角三角形中,三边的长度存在什么关系?语言描述:符号表示:动手拼拼图1、准备四个全等的三角形(设直角三角形的两条直角边分别为a和b,斜边为c)2、你能用这四个直角三角形拼出边长为c的正方形吗?拼一拼,试试看。

八年级数学《勾股定理》教案8篇

八年级数学《勾股定理》教案8篇

八年级数学《勾股定理》教案8篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!八年级数学《勾股定理》教案8篇本文将为大家介绍八年级数学《勾股定理》教案8篇。

17.1勾股定理(1)教学设计

17.1勾股定理(1)教学设计

17.1 勾股定理(1)教学设计教学内容17.1 勾股定理(一)教学目标知识与技能:让学生通过观察、计算、猜想直角三角形两条直角边的平方和等于斜边的平方的结论.过程与方法:1.在学生充分观察、归纳、猜想、探索直角三角形两条直角边的平方和等于斜边的平方的过程中,发展合情推理能力,体会数形结合的思想.2.在探索上述结论的过程中,发展学生归纳、概括和有条理地表达活动的过程和结论.情感、态度与价值观:1.培养学生积极参与、合作交流的意识,2.在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气.教学重点探索直角三角形两条直角边的平方和等于斜边的平方的结论。

从而发现勾股定理.教学难点以直角三角形的边为边的正方形面积的计算.教学方法读一读,练一练,议一议教学准备课件教学过程设计(含各环节中的教师活动和学生活动以及设计意图)教学过程一、创设问题情境,引入新课问题1:在我国古代,人们将直角三角形中的短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.根据我国古算书《周髀算经》记载,在约公元前1100年,人们已经知道,如果勾是三,股是四,那么弦是五,你知道是为什么吗?问题2:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队能否进入三楼灭火?问题3:我们再来看章头图,在下角的图案,它有什么童义?为什么选定它作为2002年在北京召开的国际数学家大会的会徽?学习本章,我们就能回答上述问题.首先我们先来看一个传说.二.实际操作,探索直角三角形的三边关系问题1:毕达哥拉斯是古希腊著名的哲学家、数学家、天文学家,相传2500年前,一次,毕达哥拉斯去朋友家作客.在宴席上,其他的宾客都在尽情欢乐,高谈阔论,只有毕达哥拉斯却看着朋友家的方砖地而发起呆来.原来,朋友家的地是用一块块直角三角形形状的砖铺成的,黑白相间,非常美观大方.主人看到毕达哥拉斯的样子非常奇怪,就想过去问他.谁知毕达哥拉斯突然恍然大悟的样子,站起来,大笑着跑回家去了.同学们,我们也来观察下面图中的地面,看看你能发现什么?是否也和大哲学家有同样的发现呢?问题2:你能发现下图中等腰直角三角形ABC有什么性质吗?问题3:等腰直角三角形都有上述性质吗?观察下图,并回答问题:引导学生发现等腰直角三角形以直角边为边的小正方形的面积和等于以斜边为边的稍大的正方形的面积.即两直角边的平方和等于斜边的平方.对于问题3,可让学生在自己准备好的小方格纸上画出,并计算A、B、C三个正方形的面积,并在小组内交流.学生计算C正方形的面积,可能有不同的方法.不管是通过直接数小方格的个数,还是将C划成为4个全等的等腰直角三角形来求,都应予以肯定,并鼓励学生用语言进行描述.通过上面操作,让学生更进一步验证等腰直角三角形直角边的平方和等于斜边的平方.等腰直角三角形有上述性质,其他的直角三角形是否也有这个性质呢?问题4:等腰三角形有上述性质,其他的三角形也有这个性质吗?如下图,每个小方格的面积均为1,请分别计算出下图中正方形A、B、C,A'、B'、C'的面积,看看能得出什么结论.(提示:以斜边为边长的正方形的面积,等于虚线标出的正方形的面积减去四个直角三角形的面积.)由上面的几个例子,我们猜想:命题1 如果直角三角形的两直角边长分别为a,b,斜边为c,那么2c22+.ba=下图是我国古人赵爽利用弦图证明命题1的基本思路如下,如图(7).把边长为a,b的两个正方形连在一起,它的面积为a2+b2,另一方面这个图形由四个全等的直角三角形和一个正方形组成.把田(7)中左、右两个三角形移到图(9)所示的位置,就会形成一个c为边长的正方形.因为图(7)与图(9)都是由四个全等的直角三角形和一个正方形组成,所以它们的面积相等.因此a2+b2=c2这样就通过推理证实了命题1的正确性,我们把经过证明被确定为正确的命题叫做定理.命题1与直角三角形的边有关,我国把它称为勾股定理.我国古代的学者们对勾股定理的研究有许多重要成就,不仅在很久以前独立地发现了勾股定理,而且使用了许多巧妙的方法证明了它。

勾股定理教案(精选3篇)

勾股定理教案(精选3篇)

勾股定理教案(精选3篇)勾股定理教案(精选3篇)作为一位无私奉献的人民教师,有必要进行细致的教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。

怎样写教案才更能起到其作用呢?以下是大熊猫壹号书店整理的勾股定理教案(精选3篇),仅供参考,大家一起来看看吧。

勾股定理教案1学习目标1、通过拼图,用面积的方法说明勾股定理的正确性。

2、探索勾股定理的过程,发展合情推理的能力,体会数型结合的思想。

重点难点或学习建议学习重点:用面积的方法说明勾股定理的正确。

学习难点:勾股定理的应用。

学习过程教师二次备课栏自学准备与知识导学:这是1955年希腊为纪念一位数学家曾经发行的邮票。

邮票上的图案是根据一个著名的数学定理设计的。

学习交流与问题研讨:1、探索问题:分别以图中的直角三角形三边为边向三角形外作正方形,小方格的面积看做1,求这三个正方形的面积?S正方形BCED=S正方形ACFG=S正方形ABHI=发现:2、实验在下面的方格纸上,任意画几个顶点都在格点上的三角形;并分别以这个三角形的各边为一边向三角形外做正方形并计算出正方形的面积。

请完成下表:S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的关系1121454162091625发现:如何用直角三角形的三边长来表示这个结论?这个结论就是我们今天要学习的勾股定理:如图:我国古代把直角三角形中,较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”,所以勾股定理可表示为:弦股还可以表示为:或勾练习检测与拓展延伸:练习1、求下列直角三角形中未知边的长练习2、下列各图中所示的线段的长度或正方形的面积为多少。

(注:下列各图中的三角形均为直角三角形)例1、如图,在四边形中,∠,∠,,求。

检测:1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,则c=________;(2)b=8,c=17,则S△ABC=________。

勾股定理 教学设计(一)

勾股定理 教学设计(一)

勾股定理
教学目标:
1.知识与技能目标:
⑴.了解勾股定理的文化背景,体验勾股定理的探索过程
⑵.简单应用勾股定理解决实际问题。

2.过程与方法目标:
⑴.经历用面积割、补方法探究“勾股定理”的过程,培养学生探究意识,发展
合情推理能力,体现数形结合思想。

⑵.通过拼图活动体验数学思维的严密性,发展形象思维。

3.情感与态度目标:
⑴.通过对勾股定理历史的了解,感受数学文化,激发学习热情。

⑵.在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探
究精神。

⑶.应用中体会勾股定理的数学价值。

教学重点:探索与证明勾股定理,并体验一般概念的建立过程。

教学难点:⑴.用拼图方法证明勾股定理。

⑵.学生在探究活动之后对概念本质属性的概括,以及回顾反思环节
中对学习策略的概括.
五、应用定理,解决问题
c。

初中数学《勾股定理》教学设计及教学反思

初中数学《勾股定理》教学设计及教学反思

《勾股定理》教学设计(1)一、教学内容解析勾股定理是数学中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。

它在数学的发展中起着重要的作用,在现实世界中也有着广泛的应用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

(华东师大版九年义务教育八年级上册P108~111。

)二、教学目标设置基于以上分析和数学课程标准的要求,制定了本节课的教学目标。

知识与技能:经历探索勾股定理的过程,掌握勾股定理及其简单应用。

过程与方法:1、通过动手、猜想、概括及验证,获得数学思维的一般方法。

2、感受数学思考过程的条理性,体会特殊到一般的数学思想。

情感与态度:1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。

2、在动手实践中,体验学习数学带来自信与成功感,培养合作意识和探索精神。

教学重、难点(1)重点:勾股定理内容及其简单的应用。

(2)难点:勾股定理的应用。

三、学情分析学生对几何图形的观察,几何图形的分析能力已初步形成。

部分学生解题思维能力比较高,能够正确归纳所学知识,通过讨论交流,能够形成解决问题的思路。

现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会。

四、教学策略本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。

如图,每个小方格代表以AC,BC,AB三边为边长作正方形。

回答以下内容:(1)正方形P中含有(如图:这里每一小格表示(1)正方形P中含有(P的面积是(师:()你是怎么知道它是9个呢?(2)正方形Q中含有((引导学生用自己的语言归纳出结论)教学反思舞雩中学魏凤琼俗话说:“螳螂捕蝉黄雀在后”。

勾股定理是数学中重要的定理之一,它揭示的是直角三角形中三边的数量关系。

第一章《勾股定理》教案

第一章《勾股定理》教案
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表述和证明这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过制作直角三角形模型,演示勾股定理的基本原理。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
其次,在新课讲授中,我尝试采用了案例分析、重点难点解析等方法,但感觉效果并不如预期。可能是我讲解得不够细致,或者例子不够贴近学生的生活实际。这个问题提醒我,在今后的教学中,要尽量选择更具针对性和生活化的案例,以便学生更好地理解和接受。
在实践活动环节,学生分组讨论和实验操作进行得比较顺利。但我发现有些小组在讨论时,个别成员参与度不高。为了提高学生的参与度,我考虑在下次活动中,增加一些互动环节,鼓励每个学生都发表自己的观点。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理(第1 课时)》教学设计
【教材分析】
勾股定理是数学中最重要的定理之一,它揭示了直角三角形中三条边之间的数量关系.由勾股定理及其逆定理,能够把直角三角形中“形”的特征转化为“数”的关系,因此它可以解决直角三角形中的许多计算问题.勾股定理不仅体现出完美的“形数统一”思想,而且其成为数学上最引人注目的定理之一.
对学生来说,用面积的“割补”证明一个定理应该是比较陌生的,尤其觉得不像证明,因此,勾股定理的证明是一个难点.但是,八年级学生经过一年的几何学习,已具有初步的观察和逻辑推理能力,他们更希望独立思考和发表自己的见解.因此,教师要创设一种便于学生观察、思考、交流的教学情境,激发兴趣,培育他们学习的热情.【教学目标】知识技能:了解勾股定理的文化背景,体验勾股定理的探索过程.数学思考:在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想.
解决问题:1.通过拼图活动,体验数学思维的严谨性,发展形象思维.2.在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果.
情感态度:1.通过对勾股定理历史的了解,感受数学文化,激发学
习热情.
2.在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神.
教学重点与难点】
重点:探索和证明勾股定理.
难点:用拼图的方法证明勾股定理.
课型】新授课.
教具】多媒体课件(演示文稿). 教学方法】讲授法、讨论法. 教学过程】
[活动1] 引课教师活动:以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔. 周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度. 夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五. 既方其外,半之一矩,环而共盘.得成三、四、五,两矩共长二十有五,是谓积矩. 故禹之所以治天下者,此数之所由生也. ”
提问:你听说过“勾股定理”吗?
教师展示图片并介绍第二情景
毕达哥拉斯是古希腊著名的数学家. 相传在2500年以前,他 在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角 形的某种特性.
(1) 现在请你也观察一下,你能有什么发现吗?
(2) 等腰直角三角形是特殊的直角三角形,一般的直角三角形
(3) 你有新的结论吗?
学生自己画图,并观察图片,分组交流讨论.
(安排学生代表上讲台板演)
[活动2]教师引导学生总结:
等腰直角三角形的两条直角边平方的和等于斜边的平方.
在独立探究的基础上,学生分组交流.
教师参与小组活动,指导、
是否也有这样的特点呢?
倾听学生交流.针对不同认识水平的学生,引导其用不同的方法 得出大正方形的面积.
学生活动:每组派代表分别自己总结的观点,在教师的引导下,
慢慢发现能否将三个正方形面积的关系转化为直角三
角形三条边之间的关系,并用自己的语言叙述出来;
用弯曲的手臂形象地表示勾、股、弦的概念,板书勾股定理,进
而给出字母表达式.
2002年在北京召开了第24届国 数学家
大会,它是最高水平的全 性数学科学
学术会议,被誉为数 界的“奥运会”.
这就是本届大, 会徽的图案.
你见过这个图案吗?
教师作补充说明:这个图案是我国汉代数学家赵爽在
证明勾股定理时用到的,被称为“赵爽弦图”
是不是所有的直角三角形都有这样的特点呢?这就需要我们 对一个一般的直角三角形进行证明.到目前为止,对这个命题的证 明方法已有几百种之多.下面,我们就来看一看我国数学家赵爽是
怎样证明这个命题的.
[活动3]
教师多媒体展示:
(1)以直角三角形ABC的两条直角边a、b为边作两个正方形.你能通
过剪、拼把它拼成弦图的样子吗?
(2)面积分别怎样表示?它们有什么关系呢?
教师解释文言原话:「按弦图,又可勾股相乘为朱实二,倍之为朱实
四,以勾股之差相乘为中黄实,加差实,亦称弦
实」.
再用现在的数学符号,分别用a、b、c记勾、股、弦之长,赵爽所述
即2ab+(a-b) 2=c2,化简之得a2+b2=c2.
学生活动:学生在独立思考的基础上以小组为单位,动手拼接.
[活动4]教师介绍刘徽的“青朱出入图”
学生类比的从面积的角度做出合理的解释和说明
[活动5]随堂练习
1、如图:一块长约80 m、宽约60 m的长方形草坪,
被几个不自觉的学生沿对角线踏出了一条斜
“路”,
这种情况在生活中时有发生.请问同学们:
(1)这几位同学为什么不走正路,走斜“路”?
(2)他们知道走斜“路”比正路少走几步吗?
(3)他们这样做值得吗?适时对学生进行行为规范教育
2、古代有关勾股定理的典型问题“红莲出水”
波平如镜一湖面,半尺高处出红莲;
鲜艳多姿湖中立,猛遭狂风吹一边.
红莲斜卧水淹面,距根生处两尺远;
渔翁发现忙思考,湖水深浅有多少?
本课小结:通过本节课的学习,大家有什么收获?有什么疑问?你认为还有什么要继续探索的问题?
学生谈体会.教师进行补充、总结,为下节课做好铺垫.
今天,我们学习了勾股定理“直角三角形的两直角边的平方和等于斜边的平方”.从几何上看,勾股定理是讲:以
Rt△斜边为一边的正方形的面积等于分别以两直角边为边的正
方形的面积之和.
我国古代学者,就是用这种思路来证明勾股定理的
勾股定理反映了直角三角形三边之间的数量关系,因此是直角三角形的性质定理. 它为利用计算的方法研究几何图
形的性质提供了新的途径.
作业布置:利用网页找到有关勾股定理的丰富的内容,收集有关勾股定理的证明方法,下节课展示、交流.。

相关文档
最新文档