工程力学-结构力学课件-17极限荷载

合集下载

结构力学(二)第4版龙驭球第17章结构的极限荷载

结构力学(二)第4版龙驭球第17章结构的极限荷载

第17章 极限荷载【17-1】 验证:(a )工字形截面的极限弯矩为)41(212δδδσb hbh M s u +=。

(b )圆形截面的极限弯矩为63D M s u σ=。

(c )环形截面的极限弯矩为⎥⎦⎤⎢⎣⎡--=33)21(16D D M su δσ。

【解】(a )工字形截面的等面积轴位于中间。

静距计算公式:2021d xy y xy S y ==⎰考虑上半部分面积对等面积轴的静距(大矩形静距减两个小矩形静距):)41(21)4(21)2)((21)2(21211212222121122222212bhb b h h bh h h b bh hb h b S δδδδδδδδδδδδδδδδ+-+-=+-+-=---= 去除高阶小量后)41(21212δδδb h bh S +=因此极限弯矩为)41()(212δδδσσb h bh S S M s s u +=+= (b )静距计算公式:2021d xy y xy S y==⎰ 6322d 2))2(d(21)2(4d )2(43)2(023)2(0202222202222D uu u y D y D y y y D S D DDD =⋅=⋅=-⋅-=⋅-=⎰⎰⎰关/注;公,众。

号:倾听细雨因此极限弯矩为63D S M s s u σσ==(c )圆的静距为63D S =则圆环的静距为⎥⎦⎤⎢⎣⎡--=-=3333)21(166)2(-6D D D D S δδ 因此极限弯矩为⎥⎦⎤⎢⎣⎡--==33)21(16D D S M ss u δσσ 【17-2】 试求图示两角钢截面的极限弯矩u M 。

设材料的屈服应力为s σ。

【解】设等面积轴距上顶面距离为xmm 。

由面积轴两侧面积相等,也即面积轴以上面积等于总面积的一半,得405550))50(21(22⨯+⨯=-+x x x ,解得mm x 723.4=。

单个角钢上下截面面积矩:32323232233214879mm ])723.440(20)723.440(31)723.445(20)723.445(31[)723.445(521723.431723.4)723.445(21540mm 723.431723.4)723.450(21=+⨯++⨯-+⨯-+⨯-+⨯⨯+⨯-⨯-⨯==⨯+⨯-⨯=S S由此得截面极限弯矩s s s u S S M σσσ10838)4879540(2)(221=+⨯=+=【17-3】 试求图示各梁的极限荷载。

结构力学极限荷载PPT课件

结构力学极限荷载PPT课件

i 1
上式中,n是塑性铰数目。
取任一可接受荷载 FP,相应的弯矩图称为 M 图。令
此荷载及内力在上述机构位移上作虚功,虚功方程为:
由实验可知理想刚塑性材料模型能较为准确反映结构极限状态的变形。
第9页/共63页
理想弹性状态下的变形(弹性变形)
强梁弱柱
理想刚塑性状态下的变形(塑性变形)
第10页/共63页
极限荷载
塑性铰
弯矩图
极限弯矩(P266)
杆件截面所能承受的最大弯矩。
塑性铰(P267)
当截面弯矩达到极限弯矩时,两个无限靠近的相邻截面可产生有限的相 对转角,产生局部弯曲变形,这种情况与带铰的截面相似,称为塑性铰。
对称截面的形心轴 与等面积轴重合, 皆为对称中心线。
矩形截面:
1.5
Mu Wu
M s Ws
圆形截面:
16 3
薄腹工字截面: 1.1
M
M
M
弹塑性变形发展阶段
Mu Ms
M s 屈服弯矩 M u 极限弯矩
弯矩与转角的关系曲线
第17页/共63页
弯矩M与曲率r的关系曲线例
h b
h strain
例 求单跨梁的极限荷载,截面极限弯矩为Mu(P269)
1)静力法(作弯矩图):
FP
解: 结构在A、C截面出现塑性铰。 A
l/2 C
l/2
B
FPu
6M u l
Mu
FP
A
C
B
Mu
极限状态弯矩图
第29页/共63页
2)虚功法(作破坏机构图)
FP
红线为变形后的杆件,兰点为塑性铰
A
C
Mu
Mu Wu s

极限荷载

极限荷载

例题2 试用试算法求图示结构的极限荷载。 p 解法 1 : 1.1 p
A D B
E
C
试取机构( 1) 1.1 p1 2a M u 3 M u 2 Mu a 绘出与机构( 1) 相应的M图, p1 2.27
验算屈服条件:
M EC 1 1 p1 2a M u 4 2 M 1 1 ( 2.27 u ) 2a M u 4 a 2 0.635 M u M u
0
A
ql 2
q
B
N M
q( x )
M+dM N+dN Q
x
dx
l
ql 2
q
dx
Q+dQ
x
q( x ) q
q
ql 2
ql 2
y0
x
dQ q( x ) dx
dM Q( x ) dx
M 0
Q( x )
Q
ql qx 2
x
d 2M q( x ) 2 dx
M
ql 2 8 ql 1 M ( x) x q x 2 2 2
(1)普通铰不能承受弯矩,塑性铰能够承受弯矩; (2)普通铰双向转动,塑性铰单向转动;
(3)卸载时机械铰不消失;当q<qu,塑性铰消失。
三、破坏机构 由于足够多的塑性铰的出现,使原结构成为机构(几何可变体系), 失去继续承载的能力,该几何可变体系称为“机构”。
1、不同结构在荷载作用下,成为机构,所需塑性铰的数目不同。
q
ql 12
2
ql 2 24
ql 12
2
Mu
q u1 l 2 Mu 12
Mu
q u1 l 2 Mu 12

结构力学结构的塑性分析与极限荷载 ppt课件

结构力学结构的塑性分析与极限荷载 ppt课件
屈服弯矩、极限弯矩 以理想弹塑性材料的矩形截面纯弯曲梁为例:
M
M
随着M的增大,梁截面应力的变化为:
b
s
s
h b
s
h
y0 y0
s
s
a)
b)
s c)
b
s
s
s
h
y0 y0
s
s
a)
b)
s c)
图a)弹性阶段,最外纤维处应力达到屈服极限σs ,弯矩M
为:
MS
bh2 6
s
→屈服弯矩
图b)弹塑性阶段,y0部分为弹性区,称为弹性核。
图c)塑性流动阶段,y0→0。相应的弯矩M为:
Mu
bh
s
→极限弯矩
是截面所能承受的最大弯矩。
极限弯矩的计算
Mu
bh
s
设塑性流动阶段截面上受压区和受拉区的面积分别为A1
和A2,并且此时受压区和受拉区的应力均为常量,又因为
梁是没有轴力的,所以:
sA1sA20
A1A2A/2
可见,塑性流动阶段的中性轴应等分截面面积。
【例17.1 】 图示为矩形截面简支梁在跨中承受集中荷载,试 求极限荷载。
FP
FPu
已知Mu
解:
FPul
Mu
FPu
Mu l
可破坏荷载: 对于任一单向破坏机构,用平衡条件求得的荷载值,称
为可破坏荷载,常用FP+ 表示。
基本定理:
(1)唯一性定理:极限荷载FPu值是唯一确定的。
(2)极小定理:极限荷载是可破坏荷载中的极小者。
由此,极限弯矩的计算方法: M u s(SS)
S、S分别为面 A、 积 A对等面积轴的静矩

结构力学 结构的极限荷载与弹性稳定图文

结构力学 结构的极限荷载与弹性稳定图文

A
B
D
C
l/3
l/3
l/3
解: AB段极限弯矩为 M u ,BC段极限弯矩为Mu。
塑性铰的可能位置:A、B、D。
A l/3
B
Mu B
l/3
FPu
DC Mu
D
l/3
§11-4 超静定结构的极限荷载计算
1)B、D截面出现塑性
FPu
铰,由弯矩图可知,只 有当 Mu 3Mu 时,此破
A l/3
B
Mu B
分析:(1) 图(a)表示截面处于弹性阶段。
该阶段的最大应力发生在截面最外纤维处,
称为屈服极限y,此时的弯矩Ms称为弹性 s a)
极限弯矩,或称为屈服弯矩。即:
s
MS
bh2 6
s
y0
(2)图(b)—截面处于弹塑性阶段,
y0
截面外边缘处成为塑性区,应力为常数, s b)
§11-2 基本概念
=s;在截面内部(|y|y0)则仍为弹性区,称为弹性
2
C l
2 4
B Mu
由We=Wi,可得 所以有1 4q源自l 24M uqu
16M l2
u
三次超静定 三个塑性铰
§11-4 超静定结构的极限荷载计算
例11-4-3 已知梁截面极限弯矩为Mu ,求极限荷载 。 解:塑性铰位置:A截面及梁上最大弯矩截面C。
q
qu
A
l
BA
Mu A
Mu C C B
l-x
x
例11-1-1 设有矩形截面简支梁在跨中承受集中荷载 作用(图a),试求极限荷载FPu 。
解:由M图知跨中截面 弯矩最大,在极限荷载作用 下,塑性铰将在跨中截面形 成,弯矩达极限值Mu(图b)。

结构力学课件结构的极限荷载

结构力学课件结构的极限荷载

中性轴附近处于弹性状态,处于弹性的部分称为弹性核。
(3)塑性流动阶段
Mu
bh2 4
s
—— 塑性极限弯矩(简称为极限弯矩)
M u 1.5 —— 截面形状系数。圆形截面1.7,工字形
Ms
截面1.10-1.17,圆环截面1.27-1.40。
※塑性铰
当截面弯矩达到极限弯矩,这时的曲率记作 κ。u
s 3 2 Mu 0
(2)只需考虑平衡条件,无需考虑变形协调条件,比弹 性计算简单;
(3)超静定结构的极限荷载,不受温度变化、支座移动 等因素的影响。
例:求图示变截面梁的极限荷载。已知 AB 段的极限弯矩 为2Mu,BC 段为Mu 。
A
BP
2Mu
C
A
BD
3Mu
C
A
D
l/3 l/3 l/3
Mu
Mu D
C
B Mu
2Mu A
0.5Mu D
C
B
Mu
Pu min P1 , P2 , P3
7.5M u l
4Mu
P l 3 l
2l 3
1 3
2M
u
4M u ,
P1
21M u l
P l 3 l
2l 3
1 3
3M
u
Mu,
P2
9M u l
P l 3 l
2l 3
1 3 2M u
Mu,
P3
7.5M u l
例:求图示变截面梁的极限荷载。已知 AB 段的极限弯矩 为2Mu,BC 段为Mu 。
3. 连续梁的极限荷载
超静定结构有多余约束,必须出现足够多的塑性铰 才能成为机构,从而丧失承载能力。

结构力学讲义ppt课件

结构力学讲义ppt课件
x y
x
结点自由度
y
φ
x
y
x
刚片自由度
2)一个刚片在平面内有三个自由度,因为确定 该刚片在平面内的位置需要三个独立的几何参
数x、y、φ。
4. 约束
凡是能减少体系自由度的装置就称为约束。
6
约束的种类分为:
1)链杆
简单链杆 仅连结两个结点的杆件称为简单 链杆。一根简单链杆能减少一个自由度,故一 根简单链杆相当于一个约束。
FyA
特点: 1) 结构在支座截面可以绕圆柱铰A转动 ; 2) x、y方向的反力通过铰A的中心。
29
3. 辊轴支座
A
A
FyA
特点: 1) 杆端A产生垂直于链杆方向的线位移; 2) 反力沿链杆方向作用,大小未知。
30
4. 滑动支座(定向支座)
A 实际构造
A
MA
FyA
A
MA
FyA
特点: 1)杆端A无转角,不能产生沿链杆方向的线 位移,可以产生垂直于链杆方向的线位移;
16
A
I
II
c)
B III C
形成瞬铰B、C的四根链杆相互平行(不等 长),故铰B、C在同一无穷远点,所以三个 铰A、 B、C位于同一直线上,故体系为瞬变 体系(见图c)。
17
二、举例
解题思路: 基础看作一个大刚片;要区分被约束的刚片及
提供的约束;在被约束对象之间找约束;除复 杂链杆和复杂铰外,约束不能重复使用。
高等教育出版社
4
第一章 绪 论
§1-1 结构力学的内容和学习方法
§1-2 结构计算简图
5
§1-1 结构力学的内容和学习方法
一、结构
建筑物或构筑物中 承受、传递荷载而起 骨架作用的部分称为 结构。如:房屋中的 框架结构、桥梁、大 坝等。

哈尔滨工业大学 11 结构力学—— 结构的极限荷载-PPT文档资料

哈尔滨工业大学 11 结构力学—— 结构的极限荷载-PPT文档资料
s
k F Pu F [ F ] 塑性设计时的荷载条件: Pw Pu k
哈工大 土木工程学院

4
17 结构的塑性分析和极限荷载
理想弹塑性材料假设:
• 在OA段线性,满足 E
• 在 AB 段应力达到屈服, 材料进入塑性流动;


s
A
C
B
E • 在C点卸载,满足
加载时是弹塑性,卸载时是弹性。
17 结构的塑性分析和极限荷载
HARBIN INSTITUTE OF TECHNOLOGY
结构力学
土木工程学院
工程力学学科组 李强
哈工大 土木工程学院
1
17 结构的塑性分析和极限荷载
§17.1 极限荷载的概述
此前主要讨论结构的弹性分析: • • • 假定应力应变关系是线性的; 荷载卸去后,结构无任何残余变形; 应力达到材料的极限应力即认为结构将 破坏; 正常使用条件下弹性计算能给出足够准 确的结果; 以弹性极限作为设计依据的设计方法称 弹性设计法。
• 塑性铰只能沿极限弯矩方向发生有限转角;
• 截面弯矩一旦小于极限弯矩(卸载),塑性铰即消失。
塑性铰与普通铰的差别:
1.塑性铰可承受极限弯矩~普通铰不承担弯矩 2.塑性铰是单向的~普通铰是多向铰 3.塑性铰卸载时消失~普通铰与荷载无关 4.塑性铰随荷载分布可出现于不同截面~普通铰位置固定
哈工大 土木工程学院
哈工大 土木工程学院

3
17 结构的塑性分析和极限荷载
为弥补弹性设计法的不足,进一步挖掘结构的承载 能力,给达到弹性极限的结构继续施加同样形式的 荷载,直至结构破坏。 • 结构所能够承担的最大荷载叫作极限荷载;
• 结构即将达到破坏时的状态称作极限状态;

结构力学第16章---结构的极限荷载

结构力学第16章---结构的极限荷载
极限荷载同时满足平衡条件、内力局限条件和单向机构条件; 极限荷载既是可破坏荷载, 又是可接受荷载。
(1)基本定理: 可破坏荷载 FP 恒不小于可接受荷载 FP ,即 FP FP
(2)唯一性定理: 极限荷载值是唯一确定的。
(3)上限定理(极小定理):可破坏荷载是极限荷载的上限; 即极限荷载是可破坏荷载中的极小值。 FPu FP
qu
6.4
Mu l2
§16-4 比例加载时判定极限荷载的一般定理
比例加载: 所有荷载变化时都彼此保持固定的比例,可用一个 参数FP表示; 荷载参数FP只是单调增大,不出现卸载现象。
假设条件: 材料是理想弹塑性的; 截面的正极限弯矩与负极限弯矩的绝对值相等; 忽略轴力和剪力对极限弯矩的影响。
结构的极限受力状态应满足的条件: (1)平衡条件: 结构的整体或任一局部都能维持平衡; (2)内力局限条件: 任一截面弯矩绝对值都不超过其极限弯矩; (3)单向机构条件: 结构成为机构能够沿荷载方向作单向运动。
11.7
Mu l2
§16-5 刚架的极限荷载
基本假设: (1)当出现塑性铰时,塑性区退化为一个截面(塑性铰处的
截面),其余部分仍为弹性区。 (2)荷载按比例增加,且为结点荷载,塑性铰只出现在结点
处。 (3)每个杆件的极限弯矩为常数,各杆的极限弯矩可不同。 (4)忽略轴力和剪力对极限弯矩的影响。
1. 增量变刚度法的基本思路: 把非线性问题转化为分阶段的几
0 0
k
e 1
2
0 EA
l 0
0 0 0
0 0 0
0 EA
l 0
0 0 0 0 0 0
0 0 0 0 0 0
3. 计算步骤-求刚架极限荷载(比例加载, 荷载用荷载参数FP表示)

结构力学-第17章-结构的塑性分析与极限荷载

结构力学-第17章-结构的塑性分析与极限荷载
极限荷载
q 2l x 2M u x(l x) l
qu
22 3 24
Mu l2
11.7
Mu l2
极限荷载复习题
1. 极限分析的目的是什么? 答:寻找结构承载能力的极限,充分利用材料。
2. 试说明塑性铰与普通铰的异同。 答:当截面弯矩达到极限弯矩时,这种截面可称为塑性铰; 塑性铰是单向铰,塑性铰只能沿弯矩增大的方向发生有限的 转角;塑性铰可传递弯矩,普通铰不能传递弯矩。
AB跨破坏时
ql
(a) A
B
0.5l 0.5l
q 1.5ql
C
D
l 0.75l 0.75l
1.2M u
(b)
Mu
ql 1.2MuB Mu ( A B )
1.2M
u
0.5l
M
u
( 0.5l
0.5l
)
q1
6.4 l2
M
u
BC跨破坏时
ql
(a) A
B
0.5l 0.5l
q 1.5ql
C
D
l 0.75l 0.75l
A1 A2 A / 2 1800mm2
A2
等面积轴
90mm
A1
A1的面积形心距等面积轴45mm, A2的面积形心距等
M u S (S S ) S [ A A .]
S
A
[
.]
S
A
.
26.79KN m
塑性铰、极限荷载
1、静定结构只要产生一个塑性铰即发生塑性破坏,n次超 静定结构一定要产生n +1个塑性铰才产生塑性破坏。
答案:错误
2、塑性铰与普通铰不同,它是一种单向铰,只能沿弯矩增 大的方向发生相对转动。

结构力学 第17章 结构的塑性分析与极限荷载

结构力学 第17章 结构的塑性分析与极限荷载

可见,塑性流动阶段的中性轴应等分截面面积。
由此,极限弯矩的计算方法: M u s (S S )
S、S 分别为面积A、A 对等面积轴的静矩。
可见,极限弯矩与外力无关,只与材料、截面几何形状 和尺寸有关。
6
[例]已知材料的屈服极限 s 240MPa ,试求图示截面的
极限弯矩。
80mm
解: A 3600mm2
荷载只是单调增大,不出现卸载现象。
2.结构的极限状态应当满足的条件
1)平衡条件:在极限受力状态下,结构的整体或任一 局部都保持平衡。
2)内力局限条件(屈服条件):在极限受力状态下,
结构任一截面的弯矩绝对值都不大于其极限弯矩,即
︱M︱≤Mu 。 3)单向机构条件:在极限状态,结构中已经出现足够
数量的塑性铰,使结构成为机构,该机构能够沿荷载
FP
FPu
l/2
l/2
Mu
①图中简支梁随着荷载的增大,梁跨中弯矩达到极限弯矩Mu。
②跨中截面达到塑性流动阶段,跨中两个无限靠近的截面可以产生有
限的相对转角,因此,当某截面弯矩达到极限弯矩Mu时,就称该截面
产生了“塑性铰”。
③这时简支梁已成为机构,这种状态称为“极限状态”,此时的荷载
称为“极限荷载”,记作FPu。
35
1、静定结构只要产生一个塑性铰即发生塑性破坏,n次超 静定结构一定要产生n +1个塑性铰才产生塑性破坏。
答案:错误
2、塑性铰与普通铰不同,它是一种单向铰,只能沿弯矩增 大的方向发生相对转动。
答案:正确
3、超静定结构的极限荷载不受温度变化、支座移动等因素 影响。
答案:正确
4、结构极限荷载是结构形成最容易产生的破坏机构时的荷 载。

结构力学 结构的塑性分析与极限荷载

结构力学  结构的塑性分析与极限荷载

A l/3
FPu
B
DC
Mu
B
Mu
D
l/3
l/3
B
3 l
D
6 l
此时M图如图,MA=3Mu
3M u
Mu
A
B
l/3 l/6
FPu
D
C
Mu
当3M u M u,此破坏可实现。
由虚功方程可得: FPu MuB MuD
FPu
Mu
(3 l
6) l
FPu
M u l
2 当截面D和A出现塑性铰时的破坏机构
FPu Mu' A MuD
极限荷载
q 2l x 2M u x(l x) l
qu
22 3 24
Mu l2
11
.7
Mu l2
极限荷载复习题
1. 极限分析的目的是什么? 答:寻找结构承载能力的极限,充分利用材料。
2. 试说明塑性铰与普通铰的异同。 答:当截面弯矩达到极限弯矩时,这种截面可称为塑性铰; 塑性铰是单向铰,塑性铰只能沿弯矩增大的方向发生有限的 转角;塑性铰可传递弯矩,普通铰不能传递弯矩。
屈服弯矩、极限弯矩 以理想弹塑性材料的矩形截面纯弯曲梁为例:
M
M
随着M的增大,梁截面应力的变化为:
b
s
s
h b
s
h
y0 y0
s
s
a)
b)
s
c)
b
s
s
s
h
y0 y0
s
s
a)
b)
s
c)
图a)弹性阶段,最外纤维处应力达到屈服极限σs ,弯矩M
为:
MS
bh2 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例 计算图示静定梁的极限荷载。已知极限弯矩值Mu= 30kN·m,a=1m。
M u Pua
Pu

Mu a

30 1
30kN
17.3 超静定梁的极限荷载
1. 超静定梁的破坏过程和极限荷载的特点
超静定梁有多余约束,出现一个塑性铰后仍是几何不变体系。
A截面先出现塑性铰, 再增加荷载
M A 3Pl /16 M u P 16M u / 3l
第十七章 结构的极限荷载
17.1 概述
结构的弹性分析: 假定应力应变关系是线性的,结构的位移与荷载关系是线性的。
荷载卸去后,结构会恢复到原来形状无任何残余变形。
结构的塑性分析: 利用材料塑性性质的结构分析。其任务是确定结构破坏时所能承受的荷载
---极限荷载。
计算假定:
(1) 材料为理想弹塑性材料。拉压性质相同。 (2) 所有的荷载均为单调增大,不出现卸载现象。 (3) 在加载过程中,所有各荷载均保持固定的比例倍数,因 而可以用同一个参数(荷载因子)的倍数来表示。
比例加载
比例加载
P1 1P P2 2P q1 1P q2 2P
P1
q1
q2
P2
17.2极限弯矩、塑性铰和极限状态
1. 极限弯矩——理想弹塑性材料的矩形截面梁
M
M
h b
1)弹性阶段
max s
E My
y I
Ey
---应力应变关系 ---应变与曲率关系 ---应力与曲率关系
3)塑性流动阶段
Mu

2 sb
h 2
h 4

1 4
bh2 s
---塑性极限弯矩(简称为极限弯矩)
极限弯矩与外力无关,只与材料的物理性质和截面几何形状、尺寸有关。
M u 1.5
M
Ms
Ms

bh2 6
s
截面形状系数 M
b
s s
h s s
s
y0 y0
s
有一个对称轴的任意截面梁
2.塑性铰的概念
塑性铰与真实铰的差别:
1.塑性铰可承受极限弯矩; 2.塑性铰是单向的,卸载时消失; 3.随荷载分布而出现于不同截面。
破坏机构
结构由于出现塑性铰而形成的机构称为破坏机构。 破坏机构可以是整体性的,也可能是局部的。
屈服弯矩? 极限弯矩? 塑性铰? 破坏机构?
3.静定梁的极限荷载
解: 若B、D出现塑性铰,由虚功方程求得
P
AB
C
D
l/3 l/3 l/3
线性关系
M ydA EI ---弯矩与曲率关系 A
max s
h
h
M s

2
2
0
bdy y

2
2
0
s
h/2
y bdy y

1 6
bh
2
s
---弹性极限弯矩(屈服弯矩)
M
M
s
h
b
s
2)弹塑性阶段 中性轴附近处于弹性状态.处于弹性的部分称为弹性核.
列虚功方程
Pu


l 2

Mu

2

M u
Pu

6 l
Mu
• 机动法——虚功原理
P
A
B
C
l/2 l/2
超静定结构极限荷载计算特点:
• 不考虑变形过程——破坏机构 • 不考虑变形条件——静力平衡 • 不受温度、支座移动影响
例:求图示等截面梁的极限荷载.已知梁的极限弯矩为Mu。
qu l 2 / 8 Mu Mu
C
P l / 4
逐渐加载法(增量法)
从受力情况,可判断出塑性铰发生的位置应为A、C。 利用极限状态的平衡可直接求出极限荷载。
3Pl /16
P
A
B
C
5Pl / 32
极限平衡法
A Mu
Pu
B
C Mu
RB
Mu

RB
l 2
MuLeabharlann Pul 2

RBl
Pu 6Mu / l
Mu

1 2
M
u

Pu l 4
Pu 6M u / l
qu 16Mu / l 2
例:求图示等截面梁的极限荷载。极限弯矩为Mu 。
解:
P
P
A
D
B
C
共有三种可能的破坏机构
l/3 l/3 l/3
(1)A、B出现塑性铰
P1
2

l 3

P1
l
3

Mu
2

Mu
3
P1

5 l
Mu
P1

5 l
M
u
P
P
A
D
B
C
l/3 l/3 l/3
P
A
B
C
l/2 l/2
M C 5Pl / 32 Pl / 4 令 MC Mu
3Pl /16
P
A
B
C
M u 5Pl / 32 Pl / 4
将P代入,得
5Pl / 32
A
P
B
Mu

5 16 32 3l
Mul
Pl
/4
P 2M u / 3l Pu P P 6M u / l
静定结构无多余约束,出现一个塑性铰即成为破坏机构。 ——极限荷载。
找出塑性铰发生的截面后,令该截面的弯矩等于极限弯矩, ——求极限荷载。
例:已知 Mu 19.646kN.m ,l=4m,求极限荷载。
解: 梁中最大弯矩为
M max Pl / 4 令 M max M u ,得
P
A
B
l/2 l/2
s
---矩形截面塑性极限弯矩(简称为极限弯矩)
例:已知材料的屈服极限 s 240 MPa,求图示截面的极限弯矩。
解:
A 0.0036m2
80mm
A1 A2
M u s (S1 S2 )
20mm
240 106 (80 20 20 10 20 5 90 20 45) 109 103 27.36kNm
(2)A、C出现塑性铰
P2
2

l 3

P2

l
3

Mu


Mu
3
P2

4 l
Mu
(3)B、C出现塑性铰
P3

l 3

Mu


Mu

2
P3

9 l
Mu
Pu min P1
P2
P3

4 l
M
u
例:求图示变截面梁的极限荷载.已知AB段的极限弯矩为2Mu,BC段为Mu 。
Pu

4M u
/l

4 19.646 4
19.646kN
若能判断出塑性铰的位置,利用极限状态的平衡可直接求出极限荷载。
虚功方程
Pu


l 2

Mu

2
Pu

4M u
/l

4 4
19.646
19.646kN
本例中,截面上有剪力,剪力 会使极限弯矩值降低,但一般 影响较小,可略去不计。
设截面上受压和受拉的面积分别为
s A1 s A2 0
A1
A1 A2
和 A2 ,当截面上无轴力作用时 A/2
中和轴等分截面轴。
由此可得极限弯矩 M u s A1a1 s A2a2 s (S1 S2 )
式中
S1、S2为A1、A2对该轴的面积矩。
Mu

bh2 4
相关文档
最新文档