六个自由度的四旋翼飞行控制原理
六个自由度的四旋翼飞行控制原理
![六个自由度的四旋翼飞行控制原理](https://img.taocdn.com/s3/m/0e5ad41f4431b90d6c85c74a.png)
1.四旋翼飞行器只有四个输入力,同时却有六个状态输出,所以 它又是一种欠驱动系统。 2.四旋翼飞行器是通过改变旋翼转速实现升力变化。 3.电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转, 保证四旋翼飞行器能够提供升力的同时,又能平衡其对机身 的反扭矩。
机载端控制电路版开发
• 红外接收装置——接收到发射装置的信息传递给单片机。
• 中央处理——单片机将接收到的红外信息处理,发送到PWM装置, 控制发动机的转速改变。
动力电路开发(PWM控制电流装置)
PWM电流控制电路: 每个PWM控制 器由一组电桥、及其外部一个感应电 阻(Rs)、一个内部比较器和一个单 稳多谐振荡器组成,来独立感应和控 制输出电流。
红外线接收器(接收信号)
反馈
单片机(中央处理)
PWM 步进电机(改变电流大小)
电机(转速改变) 飞行动作 轨道偏移外部扰动来自遥控电路开发(红外线装置)
• 四通道遥控器——上下、左右、前后、旋转 • 红外遥控装置——开关键,上升下降键,方向前后左右键。 (开关键:开启时,转速与飞行器重力刚好抵消,处于悬停 状态。关闭时,转速为零,处于停止状态。)
输出电流的逻辑控制:两个输入逻辑信号(l0 和 I1)用于数 字选择电机线圈电流在其最大水平的百分比,100%, 67%, 33%, or 0%。0%的输出电流值说明电桥关闭了所有驱动并且 也作为一个输出特性。
外界干扰因素
• 1.传感器噪声 • 2.外部扰动 • 3.摩擦 • 4.风速
四旋翼飞机的结构原理操作--中小学创新创造教育
![四旋翼飞机的结构原理操作--中小学创新创造教育](https://img.taocdn.com/s3/m/0ec2ce02cc22bcd126ff0cb0.png)
四旋翼飞行器结构和原理1.结构形式四旋翼飞行器采用四个旋翼作为飞行的直接动力源,旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,旋翼1 和旋翼3 逆时针旋转,旋翼2 和旋翼4 顺时针旋转,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。
结构形式如图1.1所示。
2、工作原理典型的传统直升机配备有一个主转子和一个尾浆。
他们是通过控制舵机来改变螺旋桨的桨距角,从而控制直升机的姿态和位置。
四旋翼飞行器与此不同,是通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。
由于飞行器是通过改变旋翼转速实现升力变化,这样会导致其动力不稳定,所以需要一种能够长期确保稳定的控制方法。
四旋翼飞行器是一种六自由度的垂直起降机,因此非常适合静态和准静态条件下飞行。
但是四旋翼飞行器只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。
四旋翼飞行器的电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。
在上图中,电机1和电机3作逆时针旋转,电机2和电机4作顺时针旋转,规定沿x 轴正方向运动称为向前运动,箭头在旋翼的运动平面上方表示此电机转速提高,在下方表示此电机转速下降。
(1)垂直运动:同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。
当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。
(2)俯仰运动:在图(b)中,电机1的转速上升,电机3 的转速下降(改变量大小应相等),电机2、电机4 的转速保持不变。
由于旋翼1 的升力上升,旋翼3 的升力下降,产生的不平衡力矩使机身绕y 轴旋转,同理,当电机1 的转速下降,电机3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。
四旋翼无人机控制原理
![四旋翼无人机控制原理](https://img.taocdn.com/s3/m/dba6f066ec630b1c59eef8c75fbfc77da26997c8.png)
四旋翼无人机控制原理四旋翼无人机(Quadcopter)是一种由四个电动马达驱动的多旋翼飞行器,它通过改变电动马达的转速来控制飞行姿态和飞行方向。
在本文中,我们将探讨四旋翼无人机的控制原理,包括姿态稳定控制、飞行控制和导航控制等方面的内容。
首先,四旋翼无人机的姿态稳定控制是其飞行控制的基础。
姿态稳定控制是通过调整四个电动马达的转速,使得无人机能够保持平衡并保持所需的飞行姿态。
这一过程涉及到飞行控制器(Flight Controller)的运算和反馈控制,通过加速度计、陀螺仪和磁力计等传感器获取飞行器的姿态信息,并根据预设的飞行控制算法来调整电动马达的转速,从而实现姿态的稳定控制。
其次,飞行控制是四旋翼无人机实现飞行动作的关键。
飞行控制包括起飞、降落、悬停、前进、后退、转向等动作,通过改变四个电动马达的转速和倾斜角度,飞行控制器能够实现对无人机的飞行状态进行精确控制。
在飞行控制过程中,飞行控制器需要根据无人机的当前状态和飞行任务的要求,实时调整电动马达的输出,以实现平稳、灵活的飞行动作。
最后,导航控制是四旋翼无人机实现自主飞行和定位的重要环节。
导航控制包括位置定位、航向控制、高度控制等功能,通过全球定位系统(GPS)、气压计、光流传感器等设备获取飞行环境的信息,并通过飞行控制器进行数据处理和控制指令下发,实现无人机在空中的定位和导航。
导航控制的精准性和稳定性对于实现无人机的自主飞行和执行特定任务至关重要。
综上所述,四旋翼无人机的控制原理涉及姿态稳定控制、飞行控制和导航控制等多个方面,通过飞行控制器和传感器等设备的协同作用,实现对无人机飞行状态的实时监测和精确控制。
这些控制原理的应用,使得四旋翼无人机能够在各种环境条件下实现稳定、灵活的飞行,并具备执行特定任务的能力,如航拍、搜救、巡航等。
四旋翼无人机的控制原理不仅对于飞行器设计和制造具有重要意义,也对于无人机的应用和发展具有深远影响。
多旋翼飞行器原理
![多旋翼飞行器原理](https://img.taocdn.com/s3/m/2fb2c20bb0717fd5360cdcf2.png)
四旋翼飞行器结构和原理1.结构形式旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。
结构形式如图 1.1所示。
2.工作原理四旋翼飞行器通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。
四旋翼飞行器是一种六自由度的垂直升降机,但只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。
四旋翼飞行器的电机 1和电机 3逆时针旋转的同时,电机 2和电机 4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。
在上图中,电机 1和电机 3作逆时针旋转,电机 2和电机 4作顺时针旋转,规定沿 x轴正方向运动称为向前运动,箭头在旋翼的运动平面上方表示此电机转速提高,在下方表示此电机转速下降。
(1)垂直运动:同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿 z轴的垂直运动。
当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。
(2)俯仰运动:在图(b)中,电机 1的转速上升,电机 3 的转速下降(改变量大小应相等),电机 2、电机 4 的转速保持不变。
由于旋翼1 的升力上升,旋翼 3 的升力下降,产生的不平衡力矩使机身绕 y 轴旋转,同理,当电机 1 的转速下降,电机 3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。
(3)滚转运动:与图 b 的原理相同,在图 c 中,改变电机 2和电机 4的转速,保持电机1和电机 3的转速不变,则可使机身绕 x 轴旋转(正向和反向),实现飞行器的滚转运动。
(4)偏航运动:旋翼转动过程中由于空气阻力作用会形成与转动方向相反的反扭矩,为了克服反扭矩影响,可使四个旋翼中的两个正转,两个反转,且对角线上的各个旋翼转动方向相同。
四旋翼飞行器的工作原理
![四旋翼飞行器的工作原理](https://img.taocdn.com/s3/m/484c0196a48da0116c175f0e7cd184254b351bfe.png)
四旋翼飞行器的工作原理
四旋翼飞行器,作为一种无人机类型,由四个电动马达驱动,每个马达带动一
个螺旋桨,通过旋转螺旋桨产生的升力和推力来实现飞行。
在四个螺旋桨的作用下,四旋翼飞行器可以进行上升、下降、前进、后退、向左、向右移动等各种飞行动作。
结构组成
四旋翼飞行器的主要结构包括机架、电机、螺旋桨、飞控以及电池等部件。
其中,电机和螺旋桨的组合负责提供飞行器的动力,飞控系统则控制着电机的转速,从而操控四旋翼飞行器的姿态和飞行方向。
工作原理
四旋翼飞行器的工作原理主要是通过控制四个电动马达的转速,来调节四个螺
旋桨产生的推力大小和方向,在空气中形成动力平衡,从而实现飞行。
当四个电动马达以相同的速度旋转时,四旋翼飞行器将悬停在空中;当电机转速有所不同时,四旋翼飞行器就会产生倾斜,从而实现前进、后退、向左或向右移动。
升力和推力
四旋翼飞行器的飞行靠的是螺旋桨产生的升力和推力。
当四个螺旋桨以适当的
速度旋转时,它们将向下推动大量的空气,产生向上的升力。
通过协调四个螺旋桨的转速和方向,四旋翼飞行器可以在空中保持平衡,实现稳定的飞行。
飞控系统
飞控系统是四旋翼飞行器的大脑,负责控制电机的转速和姿态,以实现飞行器
的稳定飞行。
飞控系统通过传感器感知四旋翼飞行器的姿态和环境信息,然后通过内置的控制算法计算出最优的控制指令,控制电机的运行状态,确保飞行器能够稳定飞行。
结语
总的来说,四旋翼飞行器的工作原理是通过控制螺旋桨产生的升力和推力来实
现飞行。
通过合理设计机身结构和配备飞控系统,四旋翼飞行器能够实现各种复杂的飞行动作,是一种十分便捷和灵活的无人机类型。
四旋翼飞行器飞行控制
![四旋翼飞行器飞行控制](https://img.taocdn.com/s3/m/a618d0c7d5bbfd0a795673e7.png)
四旋翼飞行器飞行控制摘要:四旋翼飞行器是一种结构简单、飞行方式独特的垂直起降无人机。
本文主要讨论了关于四旋翼飞行器的飞行控制方法,由于该飞行器的系统是属于MIMO系统和现代飞行控制技术的发展,人们对飞机性能的要求也越来越高,但是需要提出更好的控制器使其系统的稳定性、鲁棒性、自适应性等能提高。
关键词:四旋翼飞行器,飞行控制,MIMO,鲁棒性,稳定性,自适应性1 引言四旋翼无人机是具有4个输人力和6个自由度的欠驱动动力学旋翼式直升机[1],该系统是能够准静态飞行的自主飞行器,如图1.1所示。
与传统的直升机相比,四旋翼直升机具有4个固定倾斜角的螺旋桨,从而使其结构和动力学特性得到了简化。
图1.1四旋翼飞行器的结构形式从该飞行器结构模型可以看出,推进器(1、3)、(2、4)为互相对称的两部分。
通过改变推进器转子的旋转速度,会使飞行器产生升力,引起运动[2],如图1.2所示。
因此,通过改变4个推进器的转动速度,我们可以控制飞行器的垂直起降运动。
如果相反地控制(2、4)推进器的旋转速度,会引起滚转运动;如果相反地控制(1、3)推进器的旋转速度,会引起俯仰运动;要使飞行器产生偏航运动,则需要通过共同控制(1、2)和(3、4)推进器的旋转速度。
近几十年来,随着飞机性能的不断提高,飞行控制技术发生了很大的变化,出现了主动控制技术、综合控制技术、自主飞行控制技术等先进的飞行控制技术,。
现代高性能飞机对飞行控制系统提出了更高的要求,使用古典控制理论设计先进飞机的飞行控制系统已越来越困难。
在国际上已经有很多学者研究了关于四旋翼飞行器的控制问题,而这些控制方法可以概括为三类[3]:(1)频域法,如线性二次型调节器/线性二次高斯函数/回路传递恢复方法(LQR/LQG/LTR)、定量反馈理论(QFT)方法、动态逆方法;(2)数值最优方法,如H∞方法、μ综合方法等;(3)时域法,如特征结构配置(EA)方法。
但是这些方法对四旋翼飞行器的各种姿态控制、位置控制、速度控制、定点悬停控制、协调转弯控制、自主飞行控制等控制方法设计,不能很好的提高飞行器的稳定性、自适应性和鲁棒特性等。
四旋翼飞行原理是什么
![四旋翼飞行原理是什么](https://img.taocdn.com/s3/m/4c6b172524c52cc58bd63186bceb19e8b8f6ec32.png)
四旋翼飞行原理解析四旋翼无人机在现代社会中逐渐成为一种重要的飞行器。
但是,许多人对四旋翼飞行的原理仍然知之甚少。
在本文中,我将深入探讨四旋翼飞行的根本原理,以帮助读者更好地理解这项技术。
1. 四旋翼结构概述四旋翼无人机通常由四个对称分布的旋翼组成,这些旋翼通过电机叶片驱动。
每个旋翼的转速和叶片角度可以独立调节,从而实现对无人机的飞行姿态控制。
2. 升力的产生四旋翼飞行器的升力产生与传统固定翼飞行器有着明显的不同。
固定翼飞行器通过机翼形状和速度差产生升力,而四旋翼无人机则通过旋翼产生升力。
旋翼在高速旋转时,会吸入空气并产生向下的推力,从而推动整个机体向上飞行。
3. 姿态控制原理四旋翼无人机通过调节四个旋翼的转速和叶片角度来控制飞行器的姿态,包括横滚、俯仰和航向。
当需要向前飞行时,前方的两个旋翼加大推力,而后方的两个旋翼减小推力,从而使得飞行器产生向前的倾斜角度。
4. 悬停技术原理四旋翼无人机在空中保持悬停状态是其最基本的飞行技巧之一。
悬停技术的实现依赖于飞行控制系统对四个旋翼的高频率调节。
通过细微地调整旋翼的转速和叶片角度,飞行控制系统可以使飞行器在空中保持静止。
5. 起飞与降落原理四旋翼无人机的起飞和降落过程也是其飞行技术中的重要部分。
在起飞时,四个旋翼需要以足够的转速产生足够的升力来克服重力,使得飞行器脱离地面。
而在降落时,飞行器需要逐渐减小升力以平稳降落。
结语通过本文的介绍,希望读者能对四旋翼飞行的原理有一个更清晰的认识。
四旋翼无人机的飞行技术是一个综合了物理学、工程学和控制理论的复杂系统,只有深入理解其原理才能更好地驾驭这一技术。
四旋翼飞行器结构和原理
![四旋翼飞行器结构和原理](https://img.taocdn.com/s3/m/61e65c876c175f0e7dd13707.png)
四旋翼飞行器结构和原理1.结构形式旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。
结构形式如图1.1所示。
.工作原理四旋翼飞行器通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。
四旋翼飞行器是一种六自由度的垂直升降机,但只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。
四旋翼飞行器的电机 1和电机 3逆时针旋转的同时,电机 2和电机 4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。
在上图中,电机 1和电机 3作逆时针旋转,电机 2和电机 4作顺时针旋转,规定沿 x 轴正方向运动称为向前运动,箭头在旋翼的运动平面上方表示此电机转速提高,在下方表示此电机转速下降。
(1)垂直运动:同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。
当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。
(2)俯仰运动:在图(b)中,电机1的转速上升,电机3 的转速下降(改变量大小应相等),电机2、电机4 的转速保持不变。
由于旋翼1 的升力上升,旋翼3 的升力下降,产生的不平衡力矩使机身绕y 轴旋转,同理,当电机1 的转速下降,电机3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。
(3)滚转运动:与图b 的原理相同,在图c 中,改变电机2和电机4的转速,保持电机1和电机3的转速不变,则可使机身绕x 轴旋转(正向和反向),实现飞行器的滚转运动。
(4)偏航运动:旋翼转动过程中由于空气阻力作用会形成与转动方向相反的反扭矩,为了克服反扭矩影响,可使四个旋翼中的两个正转,两个反转,且对角线上的各个旋翼转动方向相同。
四旋翼飞行器控制系统ppt课件
![四旋翼飞行器控制系统ppt课件](https://img.taocdn.com/s3/m/b504396bb307e87101f69651.png)
四旋翼飞行器的6种 基本运动状态
8
9
总体结构
电池
电调1 电调2 电调3 电调4
传感器
飞行控制板
10
电机1 电机2 电机3 电机4
无线传输模块
控制系统电源
四旋翼飞行器采用3.7伏 锂电池供电,用1sUSB充 电器给锂电池进行充电。
11
飞行控制板
四旋翼飞行控制板计划采用STM32作 为主控制器,STM32是一款基于ARM的 32位MCU的闪存、USB、CAN、7个16 位定时器、两个ADC和9个通信接口的芯片。 STM32丰富的片上资源可满足各类传感器 通讯需求,与传统飞行控制器相比,大大的 降低了开发成本,节约了资源。是一款非常 适合本项目开发使用的单片机。
12
无线通信模块
无限通信模块采用2.4G无线收发 模块nRF24L01来实现四旋翼飞行器 与遥控器之间信息的交互,实现遥控 器对四旋翼飞行器的操控,遥控器用 一块1S锂电池经升压板输出9伏电压 作为电源。
13
传感器
为实现四旋翼飞行器的人工智能,除采用传 统的6轴传感器MPU6050,我们将尝试用超声 波传感器,红外传感器,增加摄像头,用DSP芯 片进行数据处理实现自动壁障,加入电压传感器, 实现对电源的实时监控,加入了GPS全球卫星定 位系统使其拥有了自动导航等功能,在本系统的 基础上,我们还将添加电子罗盘,将偏航角引入 到导航计算中,从而使飞行器的飞行路线更加精 确与稳定。
14
程序流程图
开始 系统初始化 接受解码遥控信号 设置相应飞行参数
3ms中断?
进行短周期数据融合 数据采集次数=160xn?
进行长周期数据融合 控制量输出
采集传感器数据
15
四旋翼飞行原理
![四旋翼飞行原理](https://img.taocdn.com/s3/m/09535445591b6bd97f192279168884868662b857.png)
四旋翼飞行原理
四旋翼飞行器是一种利用四个独立旋转的螺旋桨产生升力和推力的飞行器。
其独特的设计结构使其在空中悬停、飞行、转弯等动作更加灵活和稳定。
四旋翼飞行器的飞行原理可以简单分为升力和操纵两个方面:
一、升力原理
四旋翼飞行器通过四个螺旋桨产生的气流产生升力。
每个螺旋桨的旋转产生了高速气流,使得飞行器所在的空气受到扰动,从而产生了向下的压力,这个压力就是所谓的升力。
从力学角度来说,根据伯努利定律,当气流速度增大时,气流的压强就减小,于是形成了一个向上的升力。
四个螺旋桨产生的升力共同支撑飞行器的重量,使其能够悬停在空中。
二、操纵原理
四旋翼飞行器可以通过控制四个螺旋桨的转速和方向来实现前进、后退、转弯等动作。
通过增加某个螺旋桨的转速来使得飞行器向对应的方向运动,通过降低某个螺旋桨的转速来实现停止或改变方向。
此外,四旋翼飞行器还有倾斜机身的能力,可以通过调整飞行器的机身倾斜角度来实现飞行器的横向平移和提升、下降等动作。
倾斜机身会产生较大的水平推进力,使得飞行器可以迅速移动或改变方向。
总结来说,四旋翼飞行器的飞行原理包括升力和操纵两个方面,通过螺旋桨产生的气流升力和控制螺旋桨转速和机身倾斜角度来实现飞行动作。
这种设计结构使得四旋翼飞行器在垂直起降、悬停、飞行和转弯等操作上都具有独特的优势和灵活性。
四旋翼飞行器运动原理
![四旋翼飞行器运动原理](https://img.taocdn.com/s3/m/647589a6336c1eb91a375def.png)
题目:基于单片机的四旋翼飞行器的设计第一章引言1.1 研究的背景与意义随着当今社会日益信息化和智能化,人们对于如何轻量化、便携化获取信息的需求日益增加,通过四旋翼飞行器来更为直观有效地观察周围、获取信息已经在货物运输、监控安保、抗震救灾等多方面投入使用,并取得较为良好的效果。
四旋翼飞机由于起飞和着陆的空间需求较小,在有障碍物的密集环境下的高操纵能力,以及保持飞机姿态的能力,在民用和军用领域都有广泛的应用[1]。
由于四旋翼飞机具有垂直升力、承载飞行、控制方便等特点,引起社会各个层次日益广泛的应用[2]。
由于姿态的改变将引起姿态的变化,故控制部分主要包括姿态的控制和位置的控制两个方面。
通常情况下人们使用经典的PID算法来控制飞行姿态,进一步控制飞行的位置,从而达到稳定飞行的目标。
1.2 四旋翼飞行器概述四旋翼飞机最早出现在20世纪80年代,但由于当时社会生产力不足以及科学技术水平较低,还没有开发出相应的产品。
因为当时电子元器件和相关制造技术的限制,绝大多数的飞行器产品仍处于实验测试阶段,并没有真正投入生产应用。
二十一世纪初,随着微电子器件、芯片制作工艺的发展,飞行运动原理及数学建模和自动控制技术的不断发展和进步,在实际应用平台上运用了更加先进和稳定的控制算法。
这些程序命令由微控制器进行分析,控制变量被应用到相应的执行机制中。
旋翼机控制技术的显著成就,推动了飞机商业化、产业化的研究方向,在社会各个领域均具有广阔的应用前景。
四旋翼飞行器是一种在三维空间中进行飞行,完成指定任务的机器,具有六个活动自由度。
通过控制四台电机的转速,实现飞行姿态的控制,实现平稳飞行的要求[4]。
基本的飞行姿态可以实现,如向前、向后、平移等。
1.3 本课题的研究思路本文的核心是四旋翼飞行器的整体设计,整个过程包括调研阶段、硬件设计、算法研究、论文撰写四个阶段,而又可细分为查阅资料、Altium Designer绘制学习、方案论证与算法设计、实验记录、论文纲要制定、论文撰稿与修改等过程,详细的研究思路如下图1.1所示:图1.1 研究流程图1.4 本论文的结构安排本论文分为以下六个章节,完成整个研究与算法实现过程的介绍,具体如下:一、绪论:为本课题的背景,概述四旋翼飞机的概况,介绍本课题的研究思路和文章的结构分布。
多旋翼飞行器基本知识
![多旋翼飞行器基本知识](https://img.taocdn.com/s3/m/5b2abb82c1c708a1284a44a7.png)
四旋翼飞行器结构和原理1.结构形式旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。
结构形式如图1.1所示。
2.工作原理四旋翼飞行器通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。
四旋翼飞行器是一种六自由度的垂直升降机,但只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。
四旋翼飞行器的电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。
在上图中,电机1和电机3作逆时针旋转,电机2和电机4作顺时针旋转,规定沿x轴正方向运动称为向前运动,箭头在旋翼的运动平面上方表示此电机转速提高,在下方表示此电机转速下降。
(1)垂直运动:同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。
当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。
(2)俯仰运动:在图(b)中,电机1的转速上升,电机3 的转速下降(改变量大小应相等),电机2、电机4 的转速保持不变。
由于旋翼1 的升力上升,旋翼3 的升力下降,产生的不平衡力矩使机身绕y 轴旋转,同理,当电机1 的转速下降,电机3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。
(3)滚转运动:与图b 的原理相同,在图c 中,改变电机2和电机4的转速,保持电机1和电机3的转速不变,则可使机身绕x 轴旋转(正向和反向),实现飞行器的滚转运动。
(4)偏航运动:旋翼转动过程中由于空气阻力作用会形成与转动方向相反的反扭矩,为了克服反扭矩影响,可使四个旋翼中的两个正转,两个反转,且对角线上的各个旋翼转动方向相同。
四旋翼飞机
![四旋翼飞机](https://img.taocdn.com/s3/m/fb38226dcaaedd3383c4d3cb.png)
功能介绍:利用小型四旋翼飞机对灾害现场进行勘测,其中四旋翼上添加摄像头对现场进行勘测,从而了解现场状况。
设计思路:小型四旋翼飞机座位各类传感器搭载平台,根据现场实际情况通过控制四旋翼飞机飞行姿态,从而达到对复杂环境的监测。
四旋翼飞行器结构和原理:1:结构形式旋翼对称分布在机体的前后,左右四个方向,四个旋翼处于同一高度平面,四个旋翼的结构和半径相同,四个电机对称的安装在飞行器的支架端,支架中间安放飞行控制计算机和外部设备。
四旋翼飞行器一般是由四个可以独立控制转速的外转子直流无刷电机驱动的螺旋桨提供全部动力的飞行运动装置,四个固定迎角的螺旋桨分别安装在两个十字相交的刚性碳素杆的两端。
对于绝大多数四旋翼飞行器来讲,飞行器的结构是关于两根碳素杆的交点对称的,并且两个相邻的螺旋桨旋转方向相反;正是由于这种独特结构,使四旋翼飞行器抵消了飞机的陀螺效应。
结构如下2.工作原理通过调节四个电机转速来改变旋翼转速,实现升力的变化,进而控制飞行器的姿态和位置。
四旋翼是一种欠驱动系统,是一种六自由度的垂直升降机,四个输入力,六个状态输出。
垂直飞行控制:控制飞机的爬升,下降和悬停。
图中蓝色弧线箭头方向表示螺旋桨旋转的方向,以下同。
当四旋翼处于水平位置时,在垂直方向上,惯性坐标系同机体坐标系重合。
同时增加或减小四个旋翼的螺旋桨转速,四个旋翼产生的升力使得机体上升或下降,从而实现爬升和下降。
悬停时,保持四个旋翼的螺旋桨转速相等,并且保证产生的合推力与重力相平衡,使四旋翼在某一高度处于相对静止状态,各姿态角为零。
垂直飞行控制的关键是要稳定四个旋翼的螺旋桨转速使其变化一致横滚控制:如图所示,通过增加左边旋翼螺旋桨转速,使拉力增大,相应减小右边旋翼螺旋桨转速,使拉力减小,同时保持其它两个旋翼螺旋桨转速不变。
这样由于存在拉力差,机身会产生侧向倾斜,从而使旋翼拉力产生水平分量,使机体向右运动,当2,4转速相等时,可控制四旋翼飞行器作侧向平飞运动。
和菜鸟一起学电子小玩意之四轴飞行器原理
![和菜鸟一起学电子小玩意之四轴飞行器原理](https://img.taocdn.com/s3/m/032eaf3f10661ed9ad51f30f.png)
和菜鸟一起学电子小玩意之四轴飞行器原理前几天看到个视频,觉得四轴飞行器很赞,于是乎想研究下,准备做一个玩玩。
凡事还得先从基础开始。
先学习下四轴的工作原理,那样,对以后的开发也相对来说方便多了。
下面摘抄了一篇好文章,结合图形,通俗易懂。
先看个四轴飞行器的图吧。
四旋翼飞行器结构形式如图所示,电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。
与传统的直升机相比,四旋翼飞行器有下列优势:各个旋翼对机身所施加的反扭矩与旋翼的旋转方向相反,因此当电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,可以平衡旋翼对机身的反扭矩。
四旋翼飞行器在空间共有6个自由度(分别沿3个坐标轴作平移和旋转动作),这6个自由度的控制都可以通过调节不同电机的转速来实现。
基本运动状态分别是:(1)垂直运动;(2)俯仰运动;(3)滚转运动;(4)偏航运动;(5)前后运动;(6)侧向运动。
在图中,电机1和电机3作逆时针旋转,电机2和电机4作顺时针旋转,规定沿x轴正方向运动称为向前运动,箭头在旋翼的运动平面上方表示此电机转速提高,在下方表示此电机转速下降。
(1)垂直运动:垂直运动相对来说比较容易。
在图中,因有两对电机转向相反,可以平衡其对机身的反扭矩,当同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。
当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。
保证四个旋翼转速同步增加或减小是垂直运动的关键。
(2)俯仰运动:在图(b)中,电机1的转速上升,电机3的转速下降,电机2、电机4的转速保持不变。
为了不因为旋翼转速的改变引起四旋翼飞行器整体扭矩及总拉力改变,旋翼1与旋翼3转速该变量的大小应相等。
四轴飞行器ppt
![四轴飞行器ppt](https://img.taocdn.com/s3/m/c6d2257aaef8941ea66e0552.png)
2.3角度测量模块的方案 MPU6050三轴陀螺仪。MPU6050三轴陀螺仪就是可以在同一时间内测 量三个不同方向的加速度、角速度、角度。单轴的话,就只可以测定 一个方向的量,那么一个三轴陀螺就可以代替三个单轴陀螺。它现在 已经成为激光陀螺的发展趋向,具有可靠性很好、结构简单不复杂、 重量很轻和体积很小等等特点,但是其输出数据需要大量的浮点预算 才能保证较高的精度,这样会影响主控板对最终的姿态控制的响应速 率。
七、经费预算
F450机架
科目
摄像头
摄像头固定夹和支架 飞行控制板制作
图像处理模块制作
螺旋桨*4 超声波测距模块
舵机载物装置 电源等其他配件
估计合计
经费金额(单位:元)
50 30 20 100 100 45 30 20 150 600元以上
•谢谢观看!
六、时间与进度安排
时间
2016.4——2016.5.1 2016.5.1——2016.6
进度安排
查阅相关书籍和文献资料, 了解研究背景,明确研究内 容,了解研究所需学习的理 论基础知识和掌握设计中需 要应用的软件操作.整套系统 的各模块硬件设计,以及组 装。
对整个系统的各个模块进行编程 及其模拟、实际测试。
1
控制系统的选择方案
2
飞行姿态控制方案
3
角度测量模块的方案
4
CCD相机图像识别的方案
2.1控制系统的选择方案 主控板使用stm32。Stm32板子的I/O口很多,自带定时器和多路 PWM,可以实现的功能较多,符合实验要求。Stm32迷你板在体积 和重量上也不是很大,对飞机的载重量要求不是很高。
2.2飞行姿态控制方案 十字飞行方式。四轴的四个电机以 十字的方式排列,x轴和y轴成直角, 调整俯仰角和翻滚角的时候分开调 整,角度融合简单,适合初学者, 能明确头尾,飞行时机体动作精准, 飞控起来也容易。 鉴于我们是初 次设计,所以选择了十字飞行方式。
四旋翼自主飞行器概要
![四旋翼自主飞行器概要](https://img.taocdn.com/s3/m/7cf2c27abe23482fb4da4c4f.png)
四旋翼自主飞行器设计报告林,张,翁(泉州师范学院物理与信息工程学院,福建泉州362000)摘要:设计四旋翼自主飞行器,使得飞行器自主的从一个指定的区域飞到另外的一个指定区域降落并停机。
四旋翼飞行器具有四个定螺距螺旋桨,可以通过协调各个旋翼的速度来控制飞行器的飞行姿态和飞行速度,而不需要繁杂的桨矩控制部件,而且也可以共享电池、控制电路板等,因此简化了结构,减轻了飞行器重量,可以减少能源消耗。
关键字:四旋翼飞行器;电机;电调一、系统方案1.1方案描述四轴飞行器是一个具有6个自由度和4个输入的欠驱动系统,具有不稳定和强耦合等特点,除了受自身机械结构和旋翼空气动力学影响外,也很容易受到外界的干扰。
无人机的姿态最终通过调节4个电机的转速进行调整,飞行控制系统通过各传感器获得无人机的姿态信息,经过一定的控制算法解算出4个电机的转速,通过I2C接口发送给电机调速器(简称电调),调整4个电机的转速,以实现对其姿态的控制。
姿态控制是整个飞行控制的基础,根据姿态控制子系统的数学模型[4],姿态控制系统需要检测的状态有:无人机在机体坐标系下3个轴向的角速度、角度和相对地面的高度。
飞控系统担负着传感器信息采集、控制算法解算及通信等各种任务,是整个无人机的核心,其主要功能有: (1)主控制器能快速获得各传感器的数据,并对数据进行处理; (2)传感器实时检测无人机的状态,包括姿态、位置、速度等信息; (3)主控制器能与PC机进行数据交换;(4)系统能进行无线数据传输。
根据四轴飞行器实际的飞行需求,飞行控制系统一般包含主控制器、各传感器模块,通信模块和电源模块等。
其中主控制器采集各传感器的信息,通过控制算法求解出4个电机的转速,通过I2C接口发送给电调;惯性测量单元检测无人机3个轴向的角速度和加速度;高度传感器检测无人机的高度;无线数传模块用于传送控制指令,也可以在调试时用于传输传感器数据;电源模块为各传感器和主控制器提供电源。
嵌入式开发-四旋翼飞行器飞行控制原理普及
![嵌入式开发-四旋翼飞行器飞行控制原理普及](https://img.taocdn.com/s3/m/40442ea71b37f111f18583d049649b6648d70917.png)
嵌入式开发-四旋翼飞行器飞行控制原理普及简介硬件结构四旋翼飞行器采用四个旋翼作为飞行的直接动力源,旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,旋翼1 和旋翼3 逆时针旋转,旋翼2 和旋翼4 顺时针旋转,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。
四旋翼飞行器的结构形式如图 1.1所示。
四轴主要硬件组成:•架子•电池•四个电机+螺旋桨+电机驱动•飞控板(姿态测量传感器+无线遥控模块+其他)【电池】四轴电池示意图为什么要选锂电池?同样电池容量锂电最轻,起飞效率最高。
电池的多少 mah时什么意思?表示电池容量,如 1000mah电池,如果以 1000ma 放电,可持续放电 1小时。
如果以 500mh放电,可以持续放电 2 小时。
电池后面的 2s,3s,4s什么意思?代表锂电池的节数,锂电池 1 节标准电压为 3.7v,那么 2s电池,就是代表有 2 个 3.7v电池在里面,电压为 7.4v。
电池后面多少 c 是什么意思?代表电池放电能力,这是普通锂电池和动力锂电池最重要区别,动力锂电池需要很大电流放电,这个放电能力就是C 来表示的。
如1000mah电池标准为5c,那么用5x1000mah,得出电池可以以5000mh 的电流强度放电。
这很重要,如果用低c 的电池,大电流放电,电池会迅速损坏,甚至自燃。
【电机(motor)】俗称马达,是飞行器的重要组成部分,为四飞行器的飞行提供动力【螺旋桨】碳纤维材料螺旋桨木质材料螺旋桨首先要说明的是螺旋桨工作时一定要与它要保持一定的距离,不要让它伤到你。
螺旋桨有两个十分重要的指标:直径和几何螺距。
几乎所有的螺旋桨在售出的时候都会在其包装上注明例如8×4.5 这样的字样,第一个数字8 代表了它的直径,第二个数字4.5代表了它的几何螺距,二者单位均为英寸。
此处直径的定义为叶片的直径大小,而它决定了在标准流体实验条件下,螺旋桨在桨旋一周形成的圆形区域内切割空气量的大小,但是它只能决定产生飞行拉力的大小和扭矩的大小,并不能影响飞行的速度。
四旋翼飞行器结构和原理.
![四旋翼飞行器结构和原理.](https://img.taocdn.com/s3/m/c711057058fafab069dc0228.png)
四旋翼飞行器结构和原理1. 结构形式旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。
结构形式如图 1.1所示。
2. 工作原理四旋翼飞行器通过调节四个电机转速来改变旋翼转速, 实现升力的变化, 从而控制飞行器的姿态和位置。
四旋翼飞行器是一种六自由度的垂直升降机,但只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。
四旋翼飞行器的电机 1和电机 3逆时针旋转的同时,电机 2和电机 4顺时针旋转,因此当飞行器平衡飞行时, 陀螺效应和空气动力扭矩效应均被抵消。
在上图中,电机 1和电机 3作逆时针旋转,电机 2和电机 4作顺时针旋转,规定沿x 轴正方向运动称为向前运动,箭头在旋翼的运动平面上方表示此电机转速提高,在下方表示此电机转速下降。
(1垂直运动:同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时, 四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿 z 轴的垂直运动。
当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。
(2俯仰运动:在图(b 中,电机 1的转速上升,电机 3 的转速下降(改变量大小应相等,电机 2、电机 4 的转速保持不变。
由于旋翼 1 的升力上升,旋翼 3 的升力下降,产生的不平衡力矩使机身绕 y 轴旋转,同理,当电机 1 的转速下降,电机 3的转速上升,机身便绕 y 轴向另一个方向旋转,实现飞行器的俯仰运动。
(3滚转运动:与图 b 的原理相同,在图 c 中,改变电机 2和电机 4的转速,保持电机1和电机 3的转速不变, 则可使机身绕 x 轴旋转(正向和反向,实现飞行器的滚转运动。
(4偏航运动:旋翼转动过程中由于空气阻力作用会形成与转动方向相反的反扭矩,为了克服反扭矩影响,可使四个旋翼中的两个正转,两个反转,且对角线上的各个旋翼转动方向相同。
四旋翼无人机上关于飞行控制方面的理论基础(一)
![四旋翼无人机上关于飞行控制方面的理论基础(一)](https://img.taocdn.com/s3/m/2e7de21bbb1aa8114431b90d6c85ec3a87c28b91.png)
四旋翼无人机上关于飞行控制方面的理论基础(一)
无人机上的平衡:
作用于飞机的力要刚好平衡,就是合力不为零,
根据牛顿第二定律,如果合力不为0,飞机就会产生加速度。
为了方便,把飞机受到的所有的力分解到X、Y、Z三个轴力,飞机受到的所有的弯矩分解到绕X、Y、Z三个轴的弯矩。
伯努利定律在固定翼飞机上的应用:
简述一下就是,空气的流动速度越大,对机翼压力越小,相反,速度越小,压力越大,机翼的结构使得机翼上部空气流速较快,压力则较小,机翼下部空气流速较慢,压力较大,于是机翼就被往上推去,然后飞机就飞起来。
弯矩不平衡就会产生旋转。
这里的X、Y、Z轴是可以重新定义的。
X轴弯矩不平衡飞机会滚转,Y轴弯矩不平衡飞机会俯仰、Z轴弯矩不平衡飞机会偏航。
四旋翼无人机的飞行姿态:
前后运动、左右运动、上下运动
偏航运动、俯仰运动、翻滚运动
欠驱动系统:输入控制量的数目小于输出控制量的数目,这样的系统,就是欠驱动系统。
四旋翼无人机属于欠驱动系统。
它有四个电调,分别调节4个电机的转速,转速有控制无人机的螺旋桨升力,4个输入控制量。
四旋翼无人机的飞行姿态有6个。
4<>。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 红外接收装置——接收到发射装置的信息传递给单片机。
• 中央处理——单片机将接收到的红外信息处理,发送到PWM装置, 控制发动机的转速改变。
动力电路开发(PWM控制电流装置)
PWM电流控制电路: 每个PWM控制 器由一组电桥、及其外部一个感应电 阻(Rs)、一个内部比较器和一个单 稳多谐振荡器组成,来独立感应和控 制输出电流。
输出电流的逻辑控制:两个输入逻辑信号(l0 和 I1)用于数 字选择电机线圈电流在其最大水平的百分比,100%, 67%, 33%, or 0%。0%的输出电流值说明电桥关闭了所有驱动并且 也作为一个器噪声 • 2.外部扰动 • 3.摩擦 • 4.风速
红外线接收器(接收信号)
反馈
单片机(中央处理)
PWM 步进电机(改变电流大小)
电机(转速改变) 飞行动作 轨道偏移
外部扰动
遥控电路开发(红外线装置)
• 四通道遥控器——上下、左右、前后、旋转 • 红外遥控装置——开关键,上升下降键,方向前后左右键。 (开关键:开启时,转速与飞行器重力刚好抵消,处于悬停 状态。关闭时,转速为零,处于停止状态。)
飞行控制——六个自由度
1.四旋翼飞行器只有四个输入力,同时却有六个状态输出,所以 它又是一种欠驱动系统。 2.四旋翼飞行器是通过改变旋翼转速实现升力变化。 3.电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转, 保证四旋翼飞行器能够提供升力的同时,又能平衡其对机身 的反扭矩。
机载端控制电路版开发