结构力学位移法ppt课件
合集下载
结构力学第五章位移法.ppt
NDA
NDB
2
2
NDC FNDB 2 FNDC 2 FNDA FP
建立力的 平衡方程
D Fp
EA(2 2L
2) FP
由方程解得: 2PL
(2 2)EA
位移法方程
把△回代到杆端力的表达式中就可得到各杆的轴力 :
FNDB
2FP 2 2
FNDA
FNDC
P 2
发生一个顺时针的转角 A。
A
A EI,L B
由力法求得:
MAB
MBA
M AB
3
EI L
B
3iB
M BA 0
§8-3 杆端力与杆端位移的关系
5、一端固定一端铰结单元,在B端
发生一个向下的位移 。
A MAB
EI,L
B
△
由力法求得:
M
AB
3EI L2
3i L
MBA
M BA 0
两端固定单元在荷载、支座位移共同作用下的杆端
弯矩表达式:
M AB
4i A
2iB
6i
L
M
F AB
M BA
4iB
2i A
6i
L
M
F BA
§8-3 杆端力与杆端位移的关系
一端固定一端铰结单元在荷载、支座位移共同作用下 的杆端弯矩表达式:
M AB
3iA
6EI L2
BC
qL2 12
M AB
结构力学结构位移计算的一般公式PPT课件
仅有荷载作用时:
K
F N F Q 0 M ds
按照材料力学有:
FNP ,
EA
0
k
FQP GA
,
MP
EI
截面系数:
k
A I2
A
S2 b2
dA
所以: K
F N FNP ds EA
k F Q FQP ds GA
M M P ds EI
⑴ 梁和刚架: K
M M P ds EI
yC
5ql 4 384EI
1
2.4
h l
2
第4页/共9页
例5-1 求C点的竖向位移和转角。 ⒉ 求C点截面的转角。
由于简支梁在全跨均布荷载作用 下变形与内力都是对称的,所以梁中 点应无转角发生。
其虚拟力状态中的内力是反对称 的,按照式(5-5)进行积分同样可求得 转角位移:
C 0
M
1 2
x,
FQP
1 2
ql
qx
FQ
1 2
yC 2
l 2
MMP
dx
0 EI
l 2
k
F Q FQP
dx
0 GA
2
1 EI
l 2
0
x 2
1 2
qlx
1 2
qx2
dx
k GA
l 2
0
1 2
1 2
ql
qx
dx
5ql4 kql2 384EI 8GA
A bh, I bh3 , k 1.2, G 0.4E 12
⑶ B端的竖向位移。
yB
M M P ds EI
F N FNP ds EA
k F Q FQP ds GA
结构力学(位移计算课件)
解:近似采用直杆的位移计算公式,只考虑弯 矩影响.实际状态中的截面弯矩为
M P = FR sin θ
虚拟状态如图b,截面弯矩为
M = 1 ( R R cos θ ) = R (1 cos θ )
代入位移计算公式,可得
虚拟状态
MM P ds (1 cos α ) 2 FR 3 = (→) ΔBx = ∑ ∫ EI 2 EI 20
2
A′
§6—1 概 1. 变形和位移
述
在荷载或其它因素作用下,结构将产生 变形和位移. 变形:是指结构形状的改变. 位移:是指结构各处位置的移动.
P A
△A
y
△A
□
△Ax
A′
2. 位移的分类
线位移: AA ' (△A) △Ay △Ax 角位移: A 绝对位移 相对位移:
指两点或两截面之间的位置改变量
§6-4 静定结构在荷载作用下的位移计算
(4)讨论
5 ql 4 8 I 4 kEI ΔAy = (1 + + ) 2 2 8 EI 5 Al 5 GAl
上式中:第一项为弯矩的影响,第二,三项分别为轴力,剪力的影响. 设:杆件截面为矩形,宽度为b,高度为h,A=bh,I=bh3/12,k=6/5
5 ql 4 2 h 2 E h 2 ΔAy = [1 + ( ) 2 + ( ) ] 8 EI 15 l 25 G l
12 1 2
2. 变形体的虚功原理:
对于杆件结构(非刚体),在发生变形的过程中,不但各杆件发生位 移,内部材料同时也产生应变,虚功原理可以表述如下:
设结构(包括变形体)在某力系处于平衡,对于结构上产 生的任何微小的虚位移,外力所作的虚功总和等于该结构 各微段上内力所作的变形虚功总和.简单地说,外力虚功 等于变形虚功(或称内力虚功),即
M P = FR sin θ
虚拟状态如图b,截面弯矩为
M = 1 ( R R cos θ ) = R (1 cos θ )
代入位移计算公式,可得
虚拟状态
MM P ds (1 cos α ) 2 FR 3 = (→) ΔBx = ∑ ∫ EI 2 EI 20
2
A′
§6—1 概 1. 变形和位移
述
在荷载或其它因素作用下,结构将产生 变形和位移. 变形:是指结构形状的改变. 位移:是指结构各处位置的移动.
P A
△A
y
△A
□
△Ax
A′
2. 位移的分类
线位移: AA ' (△A) △Ay △Ax 角位移: A 绝对位移 相对位移:
指两点或两截面之间的位置改变量
§6-4 静定结构在荷载作用下的位移计算
(4)讨论
5 ql 4 8 I 4 kEI ΔAy = (1 + + ) 2 2 8 EI 5 Al 5 GAl
上式中:第一项为弯矩的影响,第二,三项分别为轴力,剪力的影响. 设:杆件截面为矩形,宽度为b,高度为h,A=bh,I=bh3/12,k=6/5
5 ql 4 2 h 2 E h 2 ΔAy = [1 + ( ) 2 + ( ) ] 8 EI 15 l 25 G l
12 1 2
2. 变形体的虚功原理:
对于杆件结构(非刚体),在发生变形的过程中,不但各杆件发生位 移,内部材料同时也产生应变,虚功原理可以表述如下:
设结构(包括变形体)在某力系处于平衡,对于结构上产 生的任何微小的虚位移,外力所作的虚功总和等于该结构 各微段上内力所作的变形虚功总和.简单地说,外力虚功 等于变形虚功(或称内力虚功),即
结构力学位移法PPT_图文
6.校核。
用位移法分析超静定结构时,把只有角位移没有线位移结构,称无侧移 结构,如连续梁; 又把有线位移的结构,称为有侧移结构。如铰接排架 和有侧移刚架等。
位移法应用举例
例题1 试计算图示连续梁,绘弯矩图。各杆EI相同。
22.5
5、依M=M1X1+ M2X2+ MP绘弯矩图
例题2 试计算图示刚架,绘弯矩图。各杆EI相同。 Z1 Z2
(a)
(b )
(c)
1)求qA1,qA1见上图(b) (d
(e)
(f)
(g )
2)求qA2,qA2见图(c) 3)叠加得到
由平衡条件得杆端剪力:见图(g)
等截面直杆的转角位移方程,或典型单元刚度 方程。
4)当考虑典型单元上同时也作用荷载时的单元 刚度方程
MfAB
MfBA
式中,MfAB、MfBA——为两端固定梁在荷载单独作 用下的杆端弯矩(固端弯矩或载常数)
四、一端固定、另一端铰支梁的转角位移方程
φA P
MAB A φA
QAB
q
βAB
EI
l
B ΔAB
B'
QBA
五、一端固定、另一端定向支承梁的转角位移方程
φA P
MAB A φA
QAB
q
βAB
EI
l
B
B' MBA
× ×
表9-1 等截面单跨超静定梁的杆端弯矩和剪力
28
29
30
31
32
9.3 基本未知量数目的确定
64
65
66
67
68
69
70
71
72
73
§9-5 用位移法分析具有剪力静定杆的刚架
用位移法分析超静定结构时,把只有角位移没有线位移结构,称无侧移 结构,如连续梁; 又把有线位移的结构,称为有侧移结构。如铰接排架 和有侧移刚架等。
位移法应用举例
例题1 试计算图示连续梁,绘弯矩图。各杆EI相同。
22.5
5、依M=M1X1+ M2X2+ MP绘弯矩图
例题2 试计算图示刚架,绘弯矩图。各杆EI相同。 Z1 Z2
(a)
(b )
(c)
1)求qA1,qA1见上图(b) (d
(e)
(f)
(g )
2)求qA2,qA2见图(c) 3)叠加得到
由平衡条件得杆端剪力:见图(g)
等截面直杆的转角位移方程,或典型单元刚度 方程。
4)当考虑典型单元上同时也作用荷载时的单元 刚度方程
MfAB
MfBA
式中,MfAB、MfBA——为两端固定梁在荷载单独作 用下的杆端弯矩(固端弯矩或载常数)
四、一端固定、另一端铰支梁的转角位移方程
φA P
MAB A φA
QAB
q
βAB
EI
l
B ΔAB
B'
QBA
五、一端固定、另一端定向支承梁的转角位移方程
φA P
MAB A φA
QAB
q
βAB
EI
l
B
B' MBA
× ×
表9-1 等截面单跨超静定梁的杆端弯矩和剪力
28
29
30
31
32
9.3 基本未知量数目的确定
64
65
66
67
68
69
70
71
72
73
§9-5 用位移法分析具有剪力静定杆的刚架
结构力学教学PPT第六章 位移法和弯
10i B 15i 4 0.............(1)
QBA
B
QCD
x 0
QBA + QCD =0…………...(2a) MAB
QAB MDC
QDC
6i B 3.75i 24 0........(2)
(4)解位移法方程
QBA
QCD
QCD
3i 2 4
QBA 1.5i B 0.75i 6
B
A F11
B 1
8m C
D
F21
A F12 B C
D 2 F22
A
D
A
D
2、建立基本方程
F11+F12+F1P=0………………(1a)
F21+F22+F2P=0………………(2a)
F11 4i
k11
2i
C
k21
F21 B
F12 12 k 1.5i
2 =1 C
k F22 22
B
1 =1 3(2i) i A 2i
(4)解位移法方程
10i B 1.5i 4 0...........(1) 6i B 3.75i 24 0........(2)
(5)弯矩图
0.737 B i
7.58 i
MAB= -13.896 kN· m
B 4.422 4.422
C
MBA= -4.422kN· m
C
左图所示无侧移刚架在P作用下
荷载效应包括:
内力效应:M、Q、N;
附加 刚臂
B P A C
位移效应:θA
θA
θA 附加刚臂限制结 点位移,荷载作
A
C
QBA
B
QCD
x 0
QBA + QCD =0…………...(2a) MAB
QAB MDC
QDC
6i B 3.75i 24 0........(2)
(4)解位移法方程
QBA
QCD
QCD
3i 2 4
QBA 1.5i B 0.75i 6
B
A F11
B 1
8m C
D
F21
A F12 B C
D 2 F22
A
D
A
D
2、建立基本方程
F11+F12+F1P=0………………(1a)
F21+F22+F2P=0………………(2a)
F11 4i
k11
2i
C
k21
F21 B
F12 12 k 1.5i
2 =1 C
k F22 22
B
1 =1 3(2i) i A 2i
(4)解位移法方程
10i B 1.5i 4 0...........(1) 6i B 3.75i 24 0........(2)
(5)弯矩图
0.737 B i
7.58 i
MAB= -13.896 kN· m
B 4.422 4.422
C
MBA= -4.422kN· m
C
左图所示无侧移刚架在P作用下
荷载效应包括:
内力效应:M、Q、N;
附加 刚臂
B P A C
位移效应:θA
θA
θA 附加刚臂限制结 点位移,荷载作
A
C
结构力学-位移法-PPT(1)
五、解题示例 q
A
øB B øB
l
l
原结构
Z1
q
A
øB B øB
Z1= 14EI/l
CA
B
C
2EI/l 3EI/l
ql2/8M1图 ql2/8
A C
B
C
基本体系 4EI 3EI 7EI r11 l l l
Mp图
r11 Z1 R1 p
R1 P
ql 2 8
0
Z1
R1 p r11
ql2 8
7 EI
φA P
MAB A φA
QAB
q
βAB
EI
l
B ΔAB
B'
QBA
M AB
3
EI l
A
3
EI l2
Δ
M
f AB
M BA 0
QAB
3EI l2
a
b
3EI l3
Δ QAfB
QAB
3EI l2
a
b
3EI l3
Δ QBfA
令:i
EI l
称为“线刚度”、 AB
l
称为“旋转角”,则:
M AB
3i A
R1 r11Z1 r12 Z 2 R1P R2 r21Z1 r22 Z 2 R2P
要使基本结构在荷载和基本未知量共同作用下的受力和 原结构受力相同,故本例中R1和R2应该为零
rr1211ZZ11
r12 Z 2 r22 Z 2
R1P R2P
0 0
上式既为二个未知量的位移法典型方程
计算系数和自由项
B øB
(c)
A
Z1= øB
øB
结构力学位移法分解课件
结构力学位移法分解课件 PPT模板
目录
• 位移法的基本概念与原理 • 位移法的计算步骤与应用 • 位移法的关键问题与解决方法 • 位移法的拓展应用与前沿研究
01
位移法的基本概念与原理
位移法的定义
定义描述
位移法是结构力学中的一种分析方法, 通过设定结构节点的位移未知量来求解 结构内力。
VS
基本思想
04
位移法的拓展应用与前沿 研究
位移法在复杂结构分析中的应用
01
应用概述
位移法能够用于分析复杂结构中 的受力情况和变形行为,为工程 设计提供准确的数据支持。
优点介绍
02
03
案例分析
位移法具有计算精度高、适用范 围广等优点,在复杂结构分析中 发挥着重要作用。
通过多个复杂结构分析的案例, 展示位移法的应用过程及取得的 成果。
02
高阶单元应用
通过细化单元划但同时也会增加计算量和求解时 间,需要权衡考虑。
采用高阶单元可以更好地逼近结构的 真实位移场,提高计算精度。常用的 高阶单元包括二次单元、三次单元等 。
03
迭代法和增量法
对于非线性问题,可以采用迭代法和 增量法来提高位移法的求解精度。这 些方法通过逐步逼近真实解,避免一 次性求解带来的误差和困难。
03
机械工程
在机械工程中,位移法可以用于分析复杂机械结构的性能,例如齿轮传
动系统、轴承支撑结构等。这些分析有助于优化机械设计,提高其运行
稳定性和效率。
03
位移法的关键问题与解决 方法
位移法中的关键问题
刚度矩阵构建问题
在位移法中,如何准确快速地构建结构刚度矩阵是一个关键问题。这需要理解和掌握单元刚度矩阵和整体刚度矩阵的构建方法。
目录
• 位移法的基本概念与原理 • 位移法的计算步骤与应用 • 位移法的关键问题与解决方法 • 位移法的拓展应用与前沿研究
01
位移法的基本概念与原理
位移法的定义
定义描述
位移法是结构力学中的一种分析方法, 通过设定结构节点的位移未知量来求解 结构内力。
VS
基本思想
04
位移法的拓展应用与前沿 研究
位移法在复杂结构分析中的应用
01
应用概述
位移法能够用于分析复杂结构中 的受力情况和变形行为,为工程 设计提供准确的数据支持。
优点介绍
02
03
案例分析
位移法具有计算精度高、适用范 围广等优点,在复杂结构分析中 发挥着重要作用。
通过多个复杂结构分析的案例, 展示位移法的应用过程及取得的 成果。
02
高阶单元应用
通过细化单元划但同时也会增加计算量和求解时 间,需要权衡考虑。
采用高阶单元可以更好地逼近结构的 真实位移场,提高计算精度。常用的 高阶单元包括二次单元、三次单元等 。
03
迭代法和增量法
对于非线性问题,可以采用迭代法和 增量法来提高位移法的求解精度。这 些方法通过逐步逼近真实解,避免一 次性求解带来的误差和困难。
03
机械工程
在机械工程中,位移法可以用于分析复杂机械结构的性能,例如齿轮传
动系统、轴承支撑结构等。这些分析有助于优化机械设计,提高其运行
稳定性和效率。
03
位移法的关键问题与解决 方法
位移法中的关键问题
刚度矩阵构建问题
在位移法中,如何准确快速地构建结构刚度矩阵是一个关键问题。这需要理解和掌握单元刚度矩阵和整体刚度矩阵的构建方法。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R1P为荷载作用下所产生的约束反力矩。
精选ppt
16
为了将式(a)写成未知量Z1的显式,将R11写为
Z1=1 R11=r11Z1
R11r11Z1
r11为单位转角(Z1=1) 产生的约束反力矩。
精选ppt
17
式(a)变为
r1Z 11R1P0
其物理意义是,基本结构由于转角Z1及外荷载共同作用, 附加刚臂1处所产生的约束反力矩总和等于零。
由此方程可得
Z1
R1P r11
可见,只要有了系数 r11及自由项R1P,Z1值很容易求得 r11 ,可先用力法分别求出各
单跨超静定梁在梁端、柱顶1处转动 Z1=1时产生的弯矩图 及外荷载作用下产生的弯矩图。
精选ppt
19
Z1=1 r11
精选ppt
M1
20
MBA4iB
2iA
6i l
M AB
F BA
转角位移方程(刚度方程) Slope-Deflection (Stiffness) Equation
其中: i EI 称杆件的线刚度。 l
MA FB, MBFA为 杆由 端荷 弯载 矩和 ,温 称度 为变固化端引弯起矩的。
精选ppt
27
A端固定B端铰支杆的转角位移方程为
精选ppt
23
综上所述,位移法的基本思路是:
1. 在原结构产生位移的结点上设置附加约束,使结点 固定,从而得到基本结构,然后加上原有的外荷载;
2. 人为地迫使原先被“固定”的结点恢复到结构原 有的位移。
通过上述两个步骤,使基本结构与原结构的受力和变 形完全相同,从而可以通过基本结构来计算原结构的内力 和变形。
R1P
P
1
A
Pl
P
Pl
8
8
MP图
精选ppt
21
现取 M 1 图、MP图中的结点1为隔离体,由力矩平衡方
程 M10,求出 :
r11
7 EI l
1
R1P
8
Pl
精选ppt
22
将这些结果代入位移法基本方程中解方程,即得
Z1
Pl 2 56 EI
最后,根据叠加原理 MMPM1Z1 ,即可求出最后弯 矩图 。
14
R1P
P
基本结构
=
+
Z1
R11
Z1
精选ppt
15
结点1正好转动一个转角Z1时,所加的附加约束不再起 作用,其数学表达式为:
R1=0 即外荷载和应有的转角Z1共同作用于基本结构时,附 加约束反力矩等于零。
根据叠加原理,共同作用等于单独作用的叠加:
R1=R11+R1P=0
(a)
R11为强制使结点发生转角Z1时所产生的约束反力矩。
位移法在解题上比较规范,具有通用性,因 而计算机易于实现。
位移法可分为:手算——位移法
电算——矩阵位移法
精选ppt
5
力法与位移法最基本的区别:基本未知量不同
力法:以多余未知力基本未知量 位移法:以某些结点位移基本未知量
精选ppt
6
力法和位移法的解题思路:
力法:
先求多余未知力
结构内力
解题过程:
超静定结构
位移法基本未知量数目的确定
位移法的两种思路:位移法典型方程和直接平衡方程
有侧移的斜柱刚架
剪力静定杆的求算 对称性的利用
联合法和混合法 温度改变时的计算
支座移动的计算
弹性支座问题
课堂练习
本章小结
精选ppt
4
位移法的基本概念
求解超静定结构的两种最基本的方法: 力法 位移法
力法适用性广泛,解题灵活性较大。(可选用各 种各样的基本结构)。
结构 力学Ⅱ
STRUCTURE MECHANICS
南华大学建资学院道桥教研室
精选ppt
1
结构力学Ⅱ
讲 授: 课件制作:
刘华良 刘华良
南华大学建资学院道桥教研室 衡阳 2005年
精选ppt
2
第八章 位移法
(Displacement Method)
精选ppt
3
内容
位移法的基本概念
等截面直杆的物理方程
精选ppt
11
为了求出Z1值,可先对原结构作些修改
P
1
1
B
基本结构
A
基本体系
这样,原结构就被改造成两个单跨梁: lB是两端固定梁,1A是一端固定、另端铰支梁。
精选ppt
12
R1P
P
在基本结构上加上原来的 力P,由于附加刚臂不允许结 点1转动,此时只有梁lB发生 变形,梁1A则不变形。
基本结构
此时附加刚臂中产生了反力矩R1P,反力矩规定以顺时 针为正。于是,基本结构与原结构就发生了差别,表现为:
精选ppt
24
等截面直杆的物理方程
A
位基
移本
A
法单
中跨
的梁
精选ppt
B B
25
1.转角位移方程 Slope-Deflection Equation
单跨超静定梁在荷载、
符号规定:
温改和支座移动共同作用下
杆端弯矩---绕杆端顺时针为正
杆端剪力---同前
杆端转角---顺时针为正
x 杆端相对线位移---使杆轴顺时针转为正
A
B
M AB 3i
A3 li
M AB
F AB
精选ppt
28
A端固定B端定向杆的转角位移方程为
MABiA MAFB MBAiA MBFA
1.由于加了约束,使结点1不能转动,而原来是能转动 的。
精选ppt
13
2.由于加了约束,产生了约束反力矩,而原来是没有 这个约束反力矩的。
为了消除基本结构与原
Z1
结构的差别,在结点1的附
R11
加约束上人为地加上一个外
Z1
力矩R11,迫使结点1正好转
动了一个转角Z1,于是变形
复原到原先给定的结构。
精选ppt
拆成基本 结构
结构位移 加上某些条件
原结构的变形协调条件(力法基本方程)
精选ppt
7
位移法:
先求某些结点位移
解题过程:
结构内力
结构
拆成单根杆件 的组合体
加上某些条件
1.杆端位移协调条件
2.结点的平衡条件
精选ppt
8
适用范围:
力法: 超静定结构 位移法: 超静定结构,也可用于静定结构。
一般用于结点少而杆件较多的刚架。 例:
A
4i A
+
2i A
B
2iB
4iB
y 由线性小变形,由叠加原理可得
+
6iAB/l
P+
AB 6iAB/l
MAB4iA
2iB
6i l
M AB
F AB
MBA4iB
2iA
6i l
M AB
F BA
精选ppt
t1
转角位t移2 方程
M
F AB
M
F BA
固端弯矩
26
MAB4iA
2iB
6i l
M AB
F AB
精选ppt
9
用位移法计算图示刚架。
为了使问题简化,作如下 计算假定:
1. 在受弯杆件中,略去杆 件的轴向变形和剪切变 形的影响。
2. 假定受弯杆两端之间的 距离保持不变。
精选ppt
10
由此可知,结点1只有转角Z1,而无线位移,汇交 于结点1的两杆杆端也应有同样的转角Z1。
整个刚架的变形只要用未 知转角Z1来描述,如果能设 法求得转角Z1,即可求出刚 架的内力。