2021届高三数学(理科)一轮复习通关检测卷全国卷(二)(含解析)

合集下载

百师联盟2021届高三一轮复习联考(二)全国卷 数学(理) Word版含答案

百师联盟2021届高三一轮复习联考(二)全国卷 数学(理) Word版含答案

百师联盟2021届高三一轮复习联考(二)全国卷I理科数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

考试时间为120分钟,满分150分一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.集合U ={x||x|≤4且x ∈Z},集合B ={x|x ∈U 且62x-∈U},则UB =A.{-4,-3,-2,1,2,3}B.{-3,-2,1,2,3}C.{-3,-2,0,1,2,3}D.{-3,1,2,3} 2.已知复数z =1+i ,z 为z 的共轭复数,则|z ·(z +1)|=B.2C.103.函数f(x)=()2log x x 2f x 1x 2≥⎧⎪⎨+<⎪⎩,,,则f(0)=A.-1B.0C.1D.24.明代数学家程大位编著的《算法统宗》是中国数学史上的一座丰碑。

其中有一段著述“远望巍巍塔七层,红光点点倍加增,共灯三百八十一”。

注:“倍加增”意为“从塔顶到塔底,相比于上一层,每一层灯的盏数成倍增加”,则该塔正中间一层的灯的盏数为A.3B.12C.24D.485.已知α和β表示两个不重合的平面,a 和b 表示两条不重合的直线,则平面α//平面β的一个充分条件是A.a//b ,a//α且b//βB.a ⊂α,b ⊂α且a//β,b//βC.a ⊥b ,a//α且b ⊥βD.a//b ,a ⊥α且b ⊥β 6.已知等差数列{a n }的前项和为S n ,若93S S =6,则126SS = A.177 B.83 C.143 D.1037.已知实数x ,y 满足约束条件x y 10x 2y 202x y 20+-≥⎧⎪-+≥⎨⎪--≤⎩,则z =y 3x 1--的取值范围为A.(-∞,-1]∪[2,+∞)B.[-1,2]C.[0,3]D.(-∞,0]∪[3,+∞) 8.如图,在△ABC 中,AB =4,AC =22,∠BAC =135°,D 为边BC 的中点,且AM MD =,则向量BM 的模为26 52 26或5226529.将函数f(x)=2(cosx +sinx)·cosx -1的图象向左平移24π个单位后得到函数g(x)的图象,且当x ∈[1124π,1912π]时,关于x 的方程g 2(x)-(a +2)g(x)+2a =0有三个不等实根,则实数a 的取值范围为A.[-1,0]B.(-2,-1]C.[-1,2]D.[-2,-1] 10.已知函数f(x)=lnx ,若函数g(x)=kx -12与函数y =f(|x|)的图象有且仅有三个交点,则k 的取值范围是 A.(0,12e-) B.(-12e-,12e-) C.(-12e-,0)∪(0,12e-) D.(-12e-,0)∪(0,12e )11.如图,某市一个圆形公园的中心为喷泉广场,A 为入口,B 为公园内紧贴围墙修建的一个凉亭,C 为公园内紧贴围墙修建的公厕,已知AB =300m ,BC =500m ,∠ABC =120°,计划在公园内D 处紧贴围墙再修建一座凉亭,若要使得四条直线小路AB ,BC ,CD 和DA 的总长度L 最大,则DC 的长度应为(凉亭和公厕的大小忽略不计)A.500mB.700m 3m D.140033m 12.直线y =2x +m 与函数f(x)=xe x -2lnx +3的图象相切于点A(x 0,y 0),则x 0+lnx 0= A.2 B.ln2 C.e 2 D.-ln2二、填空题:本题共4小题,每小题5分,共20分。

2021届高三高考数学理科一轮复习知识点专题2-2 函数的单调性与最值【含答案】

2021届高三高考数学理科一轮复习知识点专题2-2 函数的单调性与最值【含答案】

2021届高三高考数学理科一轮复习知识点专题2.2 函数的单调性与最值【核心素养分析】1.理解函数的单调性、最大(小)值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.3.培养学生数学抽象、逻辑推理、直观想象能力。

【重点知识梳理】知识点一函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.知识点二函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(3)对于任意的x∈I,都有f(x)≥M;(2)存在x 0∈I ,使得f (x 0)=M(4)存在x 0∈I ,使得f (x 0)=M 结论M 为最大值M 为最小值【特别提醒】1.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反. 2.“对勾函数”y =x +ax (a >0)的单调增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ].【典型题分析】高频考点一 确定不含参函数的单调性(区间)例1.(2020·新课标Ⅱ)设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A. 是偶函数,且在1(,)2+∞单调递增B. 是奇函数,且在11(,)22-单调递减C. 是偶函数,且在1(,)2-∞-单调递增D. 是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--, ()ln 21y x =+在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ; 当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+-在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞-⎪⎝⎭上单调递减,D 正确. 【举一反三】(2020·山东青岛二中模拟)函数y =x 2+x -6的单调递增区间为________,单调递减区间为________.【答案】[2,+∞) (-∞,-3] 【解析】令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数. 令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在[0,+∞)上是增函数, 所以y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞)。

2021年全国新高考Ⅰ、II卷数学试题(解析版)

2021年全国新高考Ⅰ、II卷数学试题(解析版)
6.若 ,则 ()
A. B. C. D.
【答案】C
【解析】
【分析】将式子进行齐次化处理,代入 即可得到结果.
【详解】将式子进行齐次化处理得:

故选:C.
【点睛】易错点睛:本题如果利用 ,求出 的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论.
7.若过点 可以作曲线 的两条切线,则()
【答案】(1).5(2).
【解析】
【分析】(1)按对折列举即可;(2)根据规律可得 ,再根据错位相减法得结果.
【详解】(1)对折 次可得到如下规格: , , , , ,共 种;
(2)由题意可得 , , , , , ,
设 ,
则 ,
两式作差得

因此, .
故答案为: ; .
【点睛】方法点睛:数列求和 常用方法:
【详解】因为函数 的单调递增区间为 ,
对于函数 ,由 ,
解得 ,
取 ,可得函数 的一个单调递增区间为 ,
则 , ,A选项满足条件,B不满足条件;
取 ,可得函数 的一个单调递增区间为 ,
且 , ,CD选项均不满足条件.
故选:A.
【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成 形式,再求 的单调区间,只需把 看作一个整体代入 的相应单调区间内即可,注意要先把 化为正数.
【详解】圆 的圆心为 ,半径为 ,
直线 的方程为 ,即 ,
圆心 到直线 的距离为 ,
所以,点 到直线 的距离的最小值为 ,最大值为 ,A选项正确,B选项错误;
如下图所示:
当 最大或最小时, 与圆 相切,连接 、 ,可知 ,
, ,由勾股定理可得 ,CD选项正确.
故选:ACD.

2021届高考数学二轮复习常考题型大通关(全国卷理数)

2021届高考数学二轮复习常考题型大通关(全国卷理数)

2023届高考数学二轮复习常考题型大通关(全国卷理数) 解答题:解三角形1.在ABC △中,sin 3cos A B a b=. (1)求角B 的值;(2)如果2b =,求ABC △面积的最大值.2.已知ABC △的内角,,A B C 对应的边分别为,,,33cos sin a b c a c B b C =+.(1)求角C 的大小;(2)如图,设P 为ABC △内一点,1,2,PA PB ==且π,APB ACB ∠+∠=求AC BC +的最大值.3.如图,平面四边形ABCD 中,30CAD BAD ∠=∠=︒(1)若75,10ABC AB ∠=︒=,且//AC BD ,求CD 的长;(2)若10BC =,求AC AB +的取值范围.4.在ABC △中, ,,a b c 分别是角,,A B C 的对边, 且cos cos 2B b C a c=-+. (1)求角B 的大小;(2)若13b =4a c +=,求ABC △的面积.5.在 ABC △ 中, 角,,A B C 所对的边分别为,,,2a b c a =.(1)若sin 1sin sin A a b B C a c -=-+-求B ; (2) 若2c b =,当角B 最大时,求ABC △的面积.6.ABC △的内角,,A B C 的对边分别为,,a b c .已知sinsin 2A C a b A +=. (1)求B ; (2)若ABC △为锐角三角形,且1c =,求ABC △面积的取值范围.7.已知ABC △的三个内角,,A B C 的对边分别为,,,3a b c a c +=,2cos cos C B a c b-= (1)求b 的最小值;(2)若,2a b b <=,求πcos()6A +的值. 8.已知ABC △的内角,,A B C 的对边分别为,,a b c ,)cos cos a B b A ac +=,且sin2sin A A =.(1)求A 及a ;(2)若2b c -=,求BC 边上的高.答案以及解析1.答案:解:(1)∵sin A a ∴ 由正弦定理知:sin sin a b A B =∴ sin B B =,即有tan B =∵ 0πB <<∴ π3B =.(2)∵ 由(1)知,sin B ,a A =,2π3A C =- ∴112π2sin 2sin sin sin 222233ABC S ab C C C C C C C π⎛⎫⎛⎫==-⨯⨯=-⨯=++= ⎪ ⎪⎝⎭⎝⎭△π26C ⎛⎫++ ⎪⎝⎭.∴ ABC △∴ ABC △2.答案:(1)33cos sin a B b C =+,cos sin sin A C B B C =+,)cos sin sin B C C B B C +=+,cos sin cos )cos sin sin B C C B C B B C ++,cos sin sin ,tan B C B C C =∴=,又π(0,π),3C C ∈∴=. (2)由(1)与π,APB ACB ∠+∠=得2π3APB ∠=. 由余弦定理,得2222π2cos 14212cos73AB PA PB PA PB APB =+-⋅∠=+-⨯⨯⨯=, 又22222cos ()3AB AC BC AC BC ACB AC BC AC BC =+-⋅∠=+-⋅222()()324AC BC AC BC AC BC ++⎛⎫+-= ⎪⎝⎭, 27AC BC ∴+(当且仅当AC BC =时取等号).AC BC +∴的最大值为 3.答案:(1) 30,75CAD BAD ABC ︒︒=∠=∠=,可得45ACB ∠=,∴在ABC △中,由10sin 45sin60CB =,可得CB =在ABD △中, 30ADB BAD ∠∠==,10DB AB ==∴在BCD △中, 45510CD ==(2) 10AC AB BC +>=,22100cos602AB AC AB AC+-=⋅,可得2()1003AB AC AB AC +-=⋅, 而22AB AC AB AC +⎛⎫⋅≤ ⎪⎝⎭, 22()10032AB AC AB AC +-+⎛⎫≤ ⎪⎝⎭, 20AB AC +≤,故AB AC +的取值范围为(]10,20.4.答案:(1)∵cos cos 2B b C a c =-+,∴由正弦定理得cos sin cos 2sin sin B B C A C =-+, 即2sin cos sin cos cos sin 0A B C B C B ++=,∴2sin cos sin()0A B B C ++=.∵B C A π+=-,∴2sin cos sin 0A B A +=.∵sin 0A ≠,∴1cos 2B =-. ∵(0,π)B ∈,∴2π3B =.(2)将b =4a c +=,2π3B =代入2222cos b a c ac B =+-得11216212ac ⎛⎫=-⋅- ⎪⎝⎭, ∴3ac =,∴11sin 322ABC S ac B ==⨯△5.答案:(1)因为sin 1sin sin A a b B C a c -=-+-,所以得sin sin sin A b c a B C a c b c-==+-+ 得:2220a c b ac +--=,1cos 2B ∴=,B 为三角形的内角,π3B ∴=. (2)在ABC △中,2222cos ,2b a c ac B c b =+-=所以243cos 8b B b +=b =时將取等号 此时ππ,62B C ==所以S . 6.答案:(1)由题设及正弦定理得sin sinsin sin 2A C A B A +=. 因为sin 0A ≠,所以sinsin 2A C B +=.由180A B C ++=︒,可得sin cos 22A CB +=,故cos 2sin cos 222B B B =. 因为cos 02B ≠,故1sin 22B ==,因此60B =︒.(2)由题设及(1)知ABC △的面积ABC S =△.由正弦定理得sin sin(120)1sin sin 2c A C a C C ︒-===+. 由于ABC △为锐角三角形,故090,090A C ︒<<︒︒<<︒.由(1)知120A C +=︒,所以3090C ︒<<︒,故122a <<,ABC S <△因此,ABC △面积的取值范围是⎝⎭. 7.答案:(1)由题意cos (2)cos b C a c B =-,由正弦定理可得sin cos (2sin sin )cos B C A C B =- 得 sin cos cos sin 2sin cos ,sin()2sin cos B C B C A B B C A B +=+= 因为 sin()sin(π)sin ,sin 0B C A A A +=-=≠ 所以1cos 2B =.因为0πB <<,所以 π3B = . 所以222229()3939324a c b a c ac a c ac ac +⎛⎫=+-=+-=-≥-= ⎪⎝⎭当且仅当 32a c ==时,等号成立,故b 的最小值为32.(2)因为,sin sin sin a b c a A A B C ===,c C =由3a c +=2πsin sin 33A A ⎤⎛⎫+-= ⎪⎥⎝⎭⎣⎦, 整理可得π3sin 64A ⎛⎫+= ⎪⎝⎭ 又π,3a b B <=,π3A ∴<,故πππ662A <+<,所以πcos 6A ⎛⎫+== ⎪⎝⎭8.答案:(1))cos cos a B b A ac +=,根据正弦定理得,sin cos sin cos sin ,A B B A C +sin sin ,C C ∴=又因为sin 0,C ≠,a ∴=sin2sin ,2sin cos sin ,A A A A A =∴= 因为sin 0,A ≠所以1cos 2A =, (0,),.3A A π∈π∴= (2)由(1)知,.3a A π== 由余弦定理得2222cos ,abc bc A =+- 2227,7(),b c bc b c bc ∴=+-∴=-+ 因为2b c -=,所以74,bc =+所以 3.bc =设BC 边上的高为h .11sin 322ABC S bc A ∴==⨯△11,22ABC S ah =∴△h ∴即BC 边上的高为.。

2021届高三数学(文理通用)一轮复习题型专题训练:函数的图像及其应用(二)(含解析)

2021届高三数学(文理通用)一轮复习题型专题训练:函数的图像及其应用(二)(含解析)

《函数的图像及其应用》(二)考查内容:主要涉及利用函数图像研究函数的性质、利用函数图像解不等式等一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数3211,0()32,0x x x x f x e x ⎧-<⎪=⎨⎪≥⎩则2(3)(2)f x f x ->的解集为( ) A .(,3)(1,)-∞-⋃+∞ B .(3,1)- C .(,1)(3,)-∞-+∞D .(1,3)-2.已知定义在R 上的函数()f x 在(),2-∞-上是减函数,若()()2g x f x =-是奇函数,且()20g =,则不等式()0xf x ≤的解集是( ) A .][(),22,-∞-⋃+∞ B .][)4,20,⎡--⋃+∞⎣C .][(),42,-∞-⋃-+∞D .][(),40,-∞-⋃+∞3.已知奇函数()f x 在0x ≥时的图象如图所示,则不等式()0xf x <的解集为( )A .(1,2)B .(2,1)--C .(2,1)(1,2)--⋃D .(1,1)-4.已知在R 上的偶函数()y f x =,当0x ≥时,()2f x x x =-,则关于x 的不等式()()2f f x ≤的解集为( )A .[]1,1-B .[]22-,C .[]3,3-D .[]4,4-5.已知函数()f x 是定义在[)(]4,00,4-⋃上的奇函数,当(]0,4x ∈时,()f x 的图象如图所示,那么满足不等式()31xf x ≥-的x 的取值范围是( )A .[)(]1,00,1-B .[](]4,20,1--C .[][]4,22,4-- D .[)[]1,02,4-6.函数()[](),y f x x ππ=∈-的图象如图所示,那么不等式()cos 0f x x ⋅≥的解集为( )A .,22ππ⎡⎤-⎢⎥⎣⎦B .][,0,22πππ⎡⎤--⋃⎢⎥⎣⎦C .,2ππ⎡⎤-⎢⎥⎣⎦ D .0,22ππ⎧⎫⎡⎤-⋃⎨⎬⎢⎥⎩⎭⎣⎦7.函数y =f (x )的图象是以原点为圆心、1为半径的两段圆弧,如图所示.则不等式f (x )>f (-x )+x 的解集为( )A .[1,-∪(0,1]B .[-1,0)∪C .[1,-∪D .[1,-∪1] 8.已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|1f x ax ≥-恒成立,则a 的取值范围是( ) A .[2,0]-B .[4,0]-C .[2,1]-D .[4,1]-9.设函数()f x 的定义域为R ,满足2(1)()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =--.若对任意[,)x m ∈+∞,都有8()9f x ≤,则m 的取值范围是( ) A .7[,)6-+∞B .5[,)3-+∞C .5[,)4-+∞D .4[,)3-+∞10.已知函数()()2,0,ln 1,0,x x f x x x ⎧⎪=⎨+>⎪⎩若不等式()10f x kx k -++<的解集为空集,则实数k 的取值范围为( )A .(2⎤-⎦B .(2⎤-⎦C .2⎡⎤-⎣⎦D .[]1,0-11.已知()y f x =是定义在R 上的偶函数,当0x ≥时,()22f x x x =-,则不等式()210f x ->的解集为( )A .13,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭B .33,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .()(),53,-∞-+∞D .()(),33,-∞-+∞12.设函数2()min{|2|,,|2|}f x x x x =-+,其中min{,,}x y z 表示,,x y z 中的最小者.下列说法错误的是 A .函数()f x 为偶函数B .若[1,)x ∈+∞时,有(2)()f x f x -≤C .若x ∈R 时,(())()f f x f x ≤D .若[]4,4x ∈-时|()2|()f x f x -≥二.填空题13.如图所示,已知奇函数()y f x =在y 轴右边部分的图像,则()0f x >的解集为_________.14.已知22,0()32,0x x f x x x ⎧-≤=⎨->⎩,若|()|f x ax 在[1,1]x ∈-上恒成立,则实数a 的取值范围是__________15.已知函数()(),y f x y g x ==分别是定义在[]3,3-上的偶函数和奇函数,且它们在[]0,3上的图象如图所示,则不等式()()0f x g x ≥在[]3,3-上的解集是________.16.设()(),()()0f x g x g x ≠分别是定义在R 上的奇函数和偶函数,当0x <时,()()()()0f x g x f x g x ''-<,且(2)0f -=,则不等式()0()f xg x >的解集为__ 三.解答题(解答应写出文字说明、证明过程或演算步骤)17.已知函数+2y k x b =+的图象经过点(2-,4)和(6-,2-),完成下面问题:(1)求函数+2y k x b =+的表达式;(2)在给出的平面直角坐标系中,请用适当的方法画出这个函数的图象,并写出这个函数的一条性质; (3)已知函数1+12y x =的图象如图所示,结合你所画出+2y k x b =+的图象,直接写出1+2+12k x b x +>的解集.18.已知函数()|21|||2f x x x =+--. (1)解不等式()0f x ≤;(2)当[2,2]x ∈-时,|()||1|f x a ≥+有解,求实数a 的取值范围.19.已知函数()()20f x x a x a =-+>. (1)解不等式()2f x a ≥;(2)若函数()f x 的图象与直线2y a =围成的图形的面积为6,求实数a 的值.20.已知函数()()()()22102201log 1x x f x x x x x ⎧+≤⎪=-+<≤⎨⎪>⎩(1)画出()y f x =的简图,并指出函数值域;(2)结合图象,求当()1f x >时,x 的取值范围.21.设函数()121f x x x =+--.(1)画出()y f x =的图象;(2)当(],0x ∈-∞时,()f x ax b ≤+,求-a b 的最大值.22.已知函数()y f x =是定义在R 上的偶函数,且[)0,x ∈+∞时,()[]()222,0,11,1,x x f x x x ⎧-∈⎪=⎨-∈+∞⎪⎩.(1)求(),0x ∈-∞时()f x 的解析式;(2)在如图坐标系中作出函数()f x 的大致图象;(3)若不等式()f x k ≤恰有5个整数解,求k 的取值范围.《函数的图像及其应用》(二)解析1.【解析】当0x <时,()321132f x x x =-,()2f x x x '=- ()0,0x f x ∴',()f x 单调递增,且0x →时,()0f x →,∴()0f x <当0x ≥时,()xf x e =单调递增,且()()01f x f ≥=因此可得()f x 单调递增,()()232f x f x ∴->可转化为232xx ->解得31x -<<,故选B 项.2.【解析】由()()2g x f x =-是把函数()f x 向右平移2个单位得到的,且()()200g g ==,()()()4220f g g -=-=-=,()()200f g -==,画出()f x 的大致形状结合函数的图像可知,当4x ≤-或2x ≥-时,()0xf x ≤,故选C. 3.【解析】由图像可知在0x ≥时,在()()012+∞,,,()0f x >;在(1,2),()0f x <;由()f x 为奇函数,图象关于原点对称,在0x <时,在()(),21,0∞-⋃--,()0f x <;在(2,1)--,()0f x >; 又()y xf x =,在0x ≥时与()y f x =同号,在0x <时与()y f x =异号 故不等式()0xf x <的解集为:(2,1)(1,2)--⋃,故选:C4.【解析】因为()y f x =是R 上的偶函数,且当0x ≥时,()2f x x x =-,则当0x <时,0x ->,()()2f x f x x x =-=+。

2021届高三数学(文理通用)一轮复习题型专题训练:函数与方程(二)(含解析)

2021届高三数学(文理通用)一轮复习题型专题训练:函数与方程(二)(含解析)

《函数与方程》(二)考查内容:主要涉及函数零点个数的判断(方程法、数形结合法、图象法、零点存在定理与函数性质结合法)一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数26,0()3ln ,0x x x f x x x ⎧--≤=⎨-+>⎩的零点个数为( )A .3B .2C .1D .02.已知函数ln ,0()2(2),0x x f x x x x ⎧>=⎨-+≤⎩,则函数()3y f x =-的零点个数是( )A .1B .2C .3D .43.函数()ln 1f x x x =-+的零点个数为( ) A .0B .1C .2D .34.已知函数()()y f x x R =∈满足(2)()f x f x +=,且(1,1]x ∈-时,2()f x x =,则4()log ||y f x x =-的零点个数为( ) A .8B .6C .4D .25.函数()sin 1f x x x =-在,22ππ⎛⎫- ⎪⎝⎭上的零点个数为( )A .2B .3C .4D .56.函数()22lg 2||f x x x x =+-的零点的个数为( ) A .2B .3C .4D .67.已知函数23(0),()1(0),x x x x f x e x -⎧-=⎨-+<⎩则方程|()1|2f x c -=-(c 为常数且(1,0)c ∈-)的不同的实数根的个数为( )A .3B .4C .5D .68.已知函数()2e e xx f x ax =--有且只有一个零点,则实数a 的取值范围为( )A .(],0-∞B .[)0,+∞ C .()()0,11,+∞ D .(]{},01-∞9.已知函数23||,3()(3),3x x f x x x -⎧=⎨->⎩,()(3)6g x f x +-=,则函数()()y f x g x =-的零点个数为( )A .0B .4C .3D .210.若函数()2020xlog x x f x a x ⎧=⎨--≤⎩,>,有且只有一个零点,则a 的取值范围是( ) A .(﹣∞,﹣1)∪(0,+∞) B .(﹣∞,﹣1)∪[0,+∞) C .[﹣1,0)D .[0,+∞)11.已知函数()sin ,02224xx f x x π⎧≤≤⎪=⎨⎪<≤⎩,若函数()()1g x f x kx =--恰有三个零点,则实数k 的取值范围为 ( )A .31,44⎡⎤--⎢⎥⎣⎦B .31,44⎛⎤-- ⎥⎝⎦C .41,34⎛⎫-- ⎪⎝⎭D .41,34⎛⎤-- ⎥⎝⎦12.已知函数()()21,1ln 1,1x x f x x x -≤⎧⎪=⎨->⎪⎩,则方程()()1f f x =根的个数为( )A .3B .5C .7D .9二.填空题13.函数()()2ln 14xf x x =⋅+-的零点个数为_______.14.已知函数32,2()(1),2x f x xx x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是________.15.已知函数32ln(2),2,()68,,x x m f x x x x x m +-<<⎧=⎨-+≥⎩若函数()f x 仅有2个零点,则实数m 的取值范围为______. 16.已知函数,0()(1),0xlnx x f x e x x >⎧=⎨+⎩,若函数()()()F x f x c c R =-∈恰有3个零点,则实数c 的取值范围是__.三.解答题(解答应写出文字说明、证明过程或演算步骤) 17.求函数lg y x =和sin y x =的图像的交点个数.18.讨论a 取不同值时,关于x 的方程2|log |1|2|x a -+=的解的个数.19.已知函数()f x =,()3g x ax =-.(1)设函数()()()()25h x f x g x x =+-+,讨论函数()y h x =在区间[]0,2内的零点个数;(2)若对任意[]0,4x ∈,总存在[]02,2x ∈-,使得()()0g x f x =成立,求实数a 的取值范围.20.已知函数2()7f x x mx m =++-,m R ∈.(1)若()f x 在区间[]2,4上单调递增,求m 的取值范围; (2)求()f x 在区间[]1,1-上的最小值()g m ; (3)讨论()f x 在区间[]3,3-上的零点个数.21.已知函数()22,182,1x a x f x ax x a x ⎧-≤=⎨-+>⎩,其中a R ∈.()1当1a =时,求()f x 的最小值; ()2当2a ≤时,讨论函数()f x 的零点个数.22.已知函数()34ln f x x x x=--. (1)求()f x 的单调区间;(2)判断()f x 在(]0,10上的零点的个数,并说明理由.(提示:ln10 2.303≈)《函数与方程》(二)解析1.【解析】若260x x --=.则2x =-或3x =.又∵0x ≤∴2x =- 若3ln 0x -+=,则3x e =满足0x >,综上,函数()f x 的零点个数为2. 故选:B2.【解析】当0x >时,3|ln |30,ln 3,x x x e -=∴=±∴=或3e -,都满足0x >; 当0x ≤时,222430,2430,20,164230x x x x ---=∴++=>∆=-⨯⨯<,所以方程没有实数根.综合得函数()3y f x =-的零点个数是2.故选:B3.【解析】函数()ln 1f x x x =-+的零点个数等价于函数ln y x =与函数1y x =-的图象的交点个数.在同一坐标系下作出函数ln y x =与1y x =-的图象,如下图:因为1(ln )y x x ''==,曲线ln y x =在点(1,0)处的切线的斜率为:11k x==, 所以曲线ln y x =在点(1,0)处的切线方程为1y x =-,所以可知两函数图象有一个交点,故函数()ln 1f x x x =-+的零点个数为1. 故选:B .4.【解析】因为()()y f x x R =∈为周期为2的函数,通过且(1,1]x ∈-时,2()f x x =,做出函数图象如图所示:4()log ||y f x x =-的零点个数即为()y f x =与4log ||y x =图象交点个数,由图象可知共有6个交点.故选:B.5.【解析】令()sin 10f x x x =-=,显然0x =不是函数的零点,可得1sin x x=. 故作出函数sin y x =和1y x =的图象,如图所示:在(,)22ππ-上有2个交点.故选:A6.【解析】函数()22lg 2||f x x x x =+-的零点个数,即方程22lg 2||x x x =-+的根的个数,考虑()()22lg ,2||g x x h x x x ==-+,定义在()(),00,-∞+∞的偶函数,当0x >时,()()22lg ,2g x x h x x x ==-+,作出函数图象:两个函数一共两个交点,即当0x >时22lg 2||x x x =-+有两根, 根据对称性可得:当0x <时22lg 2||x x x =-+有两根, 所以22lg 2||x x x =-+一共4个根,即函数()22lg 2||f x x x x =+-的零点的个数为4.故选:C7.【解析】由|()1|2f x c -=-,得()1(2)f x c =±-.∵(1,0)c ∈-, ∴1(2)(3,4),1(2)(2,1)c c +-∈--∈--. 作出函数()f x 和1(2)y c =±-的图象如图所示,易知它们的图象共有4个不同的交点,即方程|()1|2f x c -=-(c 为常数且(1,0)c ∈-)有4个不同的实数根.故选:B8.【解析】(0)1100f =--=,则可知0x =一定是函数()f x 的一个零点0x ≠时,可得:1x x e a x e -=,令1(),()x x e a g x h x x e -==,21()x x xe e g x x '-+=,令()1x x u x xe e =-+, ()xu e x x '=,可得函数()u x 在0x =时取得极小值即最小值 ,()()00u x u ∴≥=.())'0(0g x x ∴>≠.∴函数()g x 在(,0)-∞和(0,)+∞上单调递增,此时,()0g x >恒成立,对于()xa h x e =, 0a <时 , 函数()g x 与()h x 没有交点,如下图,满足条件0a =时 , 函数()g x 与()h x 没有交点,如下图,满足条件1a =时 , 函数1()x h x e=, 经过()0,1, 与函数()g x 的图象没有交点, 如下图,满足条件 .0a >, 且1a ≠时 , 函数()h x 与函数()g x 的图象有交点,如下图,不满足条件,舍去 .综上可得:实数a 的取值范围为{}(],01-∞⋃,故选:D .9.【解析】由()6(3)g x f x =--,知()()()(3)6y f x g x f x f x =-=+--. 令()()(3)F x f x f x =+-,则(3)(3)()F x f x f x -=-+, 所以(3)()F x F x -=,即()F x 的图象关于直线32x =对称.当302x时,()()(3)33(3)3F x f x f x x x =+-=-+--=; 当0x <时,2221()()(3)3(33)32F x f x f x x x x x x ⎛⎫=+-=++--=++=++⎪⎝⎭114.作出()F x 的图象可知,函数()6F x =的解有2个,所以函数()()y f x g x =-的零点个数2个.故选:D10.【解析】当x >0时,因为log 21=0,所以有一个零点,所以要使函数()2020x log x x f x a x ⎧=⎨--≤⎩,>,有且只有一个零点,则当x ≤0时,函数f (x )没有零点即可,当x ≤0时,0<2x ≤1,∴﹣1≤﹣2x <0,∴﹣1﹣a ≤﹣2x ﹣a <﹣a ,所以﹣a ≤0或﹣1﹣a >0,即a ≥0或a <﹣1.故选:B11.【解析】当24x <≤时,y =,则0y ≤,等式两边平方得2268y x x =-+-,整理得()2231x y -+=,所以曲线)24y x =<≤表示圆()2231x y -+=的下半圆,如下图所示:由题意可知,函数()y g x =有三个不同的零点,等价于直线1y kx =+与曲线()y f x =的图象有三个不同交点,直线1y kx =+过定点()0,1P ,当直线1y kx =+过点()4,0A 时,则410k +=,可得14k =-; 当直线1y kx =+与圆()2231x y -+=相切,且切点位于第三象限时,k0<,1=,解得34k =-.由图象可知,当3144k -<≤-时,直线1y kx =+与曲线()y f x =的图象有三个不同交点.因此,实数k 的取值范围是31,44⎛⎤-- ⎥⎝⎦. 故选:B.12.【解析】令()u f x =,先解方程()1f u =. (1)当1u ≤时,则()211f u u =-=,得11u =;(2)当1u >时,则()()ln 11f u u =-=,即()ln 11u -=±,解得211u e=+,31u e =+. 如下图所示:直线1u =,11u e=+,1u e =+与函数()u f x =的交点个数为3、2、2, 所以,方程()1f f x ⎡⎤=⎣⎦的根的个数为3227++=.故选:C. 13.【解析】令()()2ln 140xf x x =⋅+-=,则()24ln 122x x x -+==, 在同一直角坐标系中作出函数()ln 1y x =+与22xy -=的图象,如图:由图象可知,函数()ln 1y x =+当1x →-时,()ln 1y x =+→+∞则与22xy -=的图象有必有两个交点, 所以方程()24ln 122xxx -+==有两个不同实根,所以函数()()2ln 14x f x x =⋅+-的零点个数为2.故答案为:2.14.【解析】作出函数()f x 的图象,如图所示,由图象可知,当01k <<时,函数()f x 与y k =的图象有两个不同的交点, 此时,方程有两个不同实根,所以所求实数k 的取值范围是(0,1).故答案为:(0,1) 15.【解析】对于函数3268y x x x =-+,23128y x x '=-+,令0y '=,解得23x =±,故当,2x ⎛∈-∞- ⎝⎭时,0y '>;当22x ⎛∈ ⎝⎭时,0y '<;当2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,0y '>; 令ln(2)0x +=,解得1x =-;令32680x x x -+=,解得0x =,2x =或4x =. 作出ln(2)y x =+,3268y x x x =-+的大致图像:观察可知,若函数()f x 仅有2个零点,则24m <≤,故实数m 的取值范围为(]2,4. 16.【解析】当0x >时,函数()f x lnx =单调递增;当0x ≤时,()(1)xf x e x =+,则()(2)x f x e x '=+2x <-时,()0f x '<,20x -<时,()0f x '>,故当0x ≤时,()f x 在(,2)-∞-上单调递减,在(2,0)-上单调递增,所以()f x 在2x =-处取极小值,极小值为2(2)f e --=-;当1x <-时,()(1)0xf x e x =+< 作出函数()f x 的图象如图:函数()()()F x f x c c R =-∈恰有3个零点,等价于函数()f x 与y c =的图象有且仅有3个交点,由图可知,20e c --<<,故答案为:()20,e -- 17.【解析】由1y lgx ==解得10x =,又sin y x =的值域为[]1,1-, 且y lgx =在定义域上单调递增,作出函数sin y x =与y lgx =的图象如图: 由图象可知两个图象的交点个数为3个,18.【解析】令2()|log |1|2|f x x =-+,作出函数()f x 的图象,如图所示,所求问题可转化为函数()f x ,与直线y a =交点的个数问题. 当0a <时,()y f x =与y a =无交点,所以原方程无解; 当0a =时,()y f x =与y a =有两个交点,原方程有2个解; 当0a >时,()y f x =与y a =有四个交点,原方程有4个解.19.【解析】(1)因为()()()()()22511h x fx g x x x a x =+-+=+-+,令()0h x =,则()2110x a x +-+=,当=0x 时,则10=,不符合条件,当0x ≠时,则11a x x-=+ 作函数1y a =-与()102y x x x=+<≤的图象,由图可知:①当12a -<时,即1a >-时,两图象无公共点,则()h x 在区间[]0,2内无零点;②当12a -=时或512a ->时,即32a <-或1a =-时,两图象仅有一个公共点, 则()h x 在区间[]0,2内仅有一个零点; ③当5212a <-≤时,即312a -≤<-时,两图象有两个公共点, 则()h x 在区间[]0,2内有两个零点.(2)当[]0,4x ∈时,[]20,16x ∈,则[]299,25x +∈,所以()f x 的值域是[]3,5; 当[]02,2x ∈-时,设函数()0g x 的值域是M ,依题意,[]3,5M ⊆,①当0a =时,()03g x =-不合题意;②当0a >时,()()[]2,223,23M g g a a =-=---⎡⎤⎣⎦, 由()()2523g g ⎧≥⎪⎨-≤⎪⎩ ,得2352330a a a -≥⎧⎪--≤⎨⎪>⎩,解得4a ≥; ③当0a <时,()()[]2,223,23M g g a a =-=---⎡⎤⎣⎦,由()()2523g g ⎧-≥⎪⎨≤⎪⎩,得2352330a a a --≥⎧⎪-≤⎨⎪<⎩,解得4a ≤-; 综上得,实数a 的取值范围是(][),44,-∞-⋃+∞.20.【解析】(1)由题意,函数2()()7f x x mx m m R =++-∈开口向上,对称轴的方程为2m x =-,若使得函数()f x 在[]2,4上单调递增,则满足122m -≤,解得4m ≥-,即实数m 的取值范围[4,)-+∞.(2)①当112m -≤-即2m ≥时,函数()y f x =在区间[]1,1-单调递增, 所以函数()y f x =的最小值为()()16g m f =-=-;②当1112m -<-<,即22m -<<时, 函数()y f x =在区间11,2m ⎡⎤--⎢⎥⎣⎦单调递减,在区间1,12m ⎡-⎤⎢⎥⎣⎦上单调递增, 所以函数()y f x =的最小值为21()724m g m f m m ⎛⎫=-=-+- ⎪⎝⎭; ③当112m -≥即2m ≤-时,函数()y f x =在区间[]1,1-单调递减, 所以函数()y f x =的最小值为()()126g m g m ==-, 综上可得,函数的最小值为226,27(),2246,2m m m m g m m m -≤-⎧⎪+-⎪=--<<⎨⎪-≥⎪⎩. (3)因为函数()y f x =的对称轴方程为12x m =-,且24280m m ∆=-+>恒成立, ①当()()133232203420m f m f m ⎧-<-<⎪⎪-=-≥⎨⎪=+≥⎪⎩,即112m -≤≤时, 函数()f x 在区间[]3,3-上有2个零点; ②当()1323220m f m ⎧-≤-⎪⎨⎪-=-≥⎩,此时m 不存在; ③当()1323420m f m ⎧-≥⎪⎨⎪=+≥⎩,此时m 不存在;④当()()330f f -⋅≤,即()()22420m m -+≤,解得m 1≥或12m ≤-时,函数()f x 在区间[]3,3-上有1个零点. 综上可得:当112m -≤≤时,函数()f x 在区间[]3,3-上有2个零点, 当m 1≥或12m ≤-时,函数()f x 在区间[]3,3-上有1个零点. 21.【解析】()1当1a =时,()221,182,1x x f x x x x ⎧-≤=⎨-+>⎩,则当1x ≤时,()f x 在(],1-∞上单调递增,()1f x >-且无最小值;当1x >时,由二次函数()()2282414g x x x x =-+=--知,()f x 在(]1,4上单调递减,在()4,+∞上单调递增,故()()min 414f x f ==-.()2当0a ≤,1x ≤时,()f x 没有零点,当1x >时,()f x 没有零点;当02a <≤,1x ≤时,()f x 有一个零点,当1x >时,()f x 有一个零点.22.【解析】(1)由题意知,()f x 的定义域为()0,∞+,则令2223443()10x x f x x x x -+'=+-==, 解得1x =或3x =,当01x <<或3x >时,()0f x '>,则此时()f x 单调递增; 当13x <<时,()0f x '<,则此时()f x 单调递减.故()f x 的单调递增区间是()0,1和()3,+∞,单调递减区间是()1,3.(2)由函数在()0,1上单调递增,在()1,3上单调递减,则当03x <≤时,()()12f x f ≤=-,故()f x 在(]0,3上无零点;又()324ln30f =-<,当310x <≤时,因为3(10)104ln10100.34 2.3030.488010f =--≈--⨯=>, 又()f x 在(]3,10上单调递增,所以()f x 在(]3,10上仅有一个零点.综上,()f x 在(]0,10上的零点的个数为1.。

2021届高考数学一轮复习第二章函数、导数及其应用考点测试6函数的单调性(含解析)人教版B版

2021届高考数学一轮复习第二章函数、导数及其应用考点测试6函数的单调性(含解析)人教版B版

考点测试6 函数的单调性高考概览本考点是高考的常考知识点,常与函数的奇偶性、周期性相结合综合考查.题型为选择题、填空题,分值5分,难度为低、中、高各种档次 考纲研读 1.理解函数的单调性、最大值、最小值及其几何意义 2.会运用基本初等函数的图象分析函数的单调性一、基础小题1.下列函数中,在区间(0,1)上是增函数的是( ) A .y =|x | B .y =3-x C .y =1xD .y =-x 2+4答案 A解析 函数y =3-x ,y =1x,y =-x 2+4在(0,1)上均为减函数,y =|x |在(0,1)上为增函数,故选A.2.函数y =x 2-6x +10在区间(2,4)上( ) A .递减 B .递增 C .先递减后递增 D .先递增后递减答案 C解析 由函数y =x 2-6x +10的图象开口向上,对称轴为直线x =3,知y =x 2-6x +10在(2,4)上先递减后递增,故选C.3.若函数f (x )=(2a -1)x +b 是R 上的减函数,则实数a 的取值范围为( )A.⎣⎢⎡⎭⎪⎫12,+∞ B .⎝ ⎛⎦⎥⎤-∞,12C.⎝ ⎛⎭⎪⎫12,+∞ D .⎝⎛⎭⎪⎫-∞,12 答案 D解析 当2a -1<0,即a <12时,该函数是R 上的减函数.故选D.4.已知函数y =f (x )在R 上单调递增,且f (m 2+1)>f (-m +1),则实数m 的取值范围是( )A .(-∞,-1)B .(0,+∞)C .(-1,0)D .(-∞,-1)∪(0,+∞)答案 D解析 由题意得m 2+1>-m +1,故m 2+m >0,解得m <-1或m >0.故选D. 5.函数f (x )=-x +1x 在⎣⎢⎡⎦⎥⎤-2,-13上的最大值是( )A.32 B .-83C .-2D .2答案 A解析 因为f (x )=-x +1x 在⎣⎢⎡⎦⎥⎤-2,-13上为减函数,所以当x =-2时,f (x )取得最大值,且为2-12=32.故选A.6.函数f (x )=⎩⎪⎨⎪⎧x +cx ≥0,x -1x <0是增函数,则实数c 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1)D .(-∞,-1]答案 A解析 ∵f (x )在R 上单调递增,∴c ≥-1,即实数c 的取值范围是[-1,+∞).故选A.7.设函数f (x )在R 上为增函数,则下列结论一定正确的是( ) A .y =1f x在R 上为减函数B .y =|f (x )|在R 上为增函数C .y =-1f x在R 上为增函数D .y =-f (x )在R 上为减函数 答案 D解析 A 错误,如y =x 3,y =1f x在R 上无单调性;B 错误,如y =x 3,y =|f (x )|在R 上无单调性; C 错误,如y =x 3,y =-1f x在R 上无单调性;故选D.8.若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均为增函数,则实数a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-113,-3 B .[-6,-4] C .[-3,-22] D .[-4,-3]答案 B解析 由于f (x )为R 上的偶函数,因此只需考虑函数f (x )在(0,+∞)上的单调性即可.由题意知f (x )在[3,+∞)上为增函数,在[1,2]上为减函数,故-a2∈[2,3],即a ∈[-6,-4].9.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1]B .(-1,0)∪(0,1)C .(0,1)D .(0,1]答案 D解析 f (x )=-(x -a )2+a 2,当a ≤1时,f (x )在[1,2]上是减函数;g (x )=ax +1,当a >0时,g (x )在[1,2]上是减函数,则a 的取值范围是0<a ≤1.故选D.10.已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c答案 D解析 因为f (x )的图象关于直线x =1对称,所以f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.因为1<2<52<e ,所以f (2)>f ⎝ ⎛⎭⎪⎫52>f (e),所以b >a >c .11.设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________.答案 (-∞,1]∪[4,+∞)解析 作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.12.已知f (x )=ax +1x +2,若对任意x 1,x 2∈(-2,+∞),有(x 1-x 2)[f (x 1)-f (x 2)]>0,则a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫12,+∞ 解析 由f (x )=ax +1x +2=a +1-2ax +2,且y =f (x )在(-2,+∞)上是增函数,得1-2a <0,即a >12.二、高考小题13.(2019·全国卷Ⅲ)设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则( )答案 C解析 因为f (x )是定义域为R 的偶函数,所以f ⎝ ⎛⎭⎪⎫log 314=f (-log 34)=f (log 34).又因为log 34>1>>0,且函数f (x )在(0,+∞)单调递减,所以f (log 34)< .故选C.14.(2019·全国卷Ⅱ)下列函数中,以π2为周期且在区间⎝ ⎛⎭⎪⎫π4,π2单调递增的是( )A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |答案 A解析 作出函数f (x )=|cos2x |的图象,如图.由图象可知f (x )=|cos2x |的周期为π2,在区间⎝⎛⎭⎪⎫π4,π2上单调递增.同理可得f (x )=|sin2x |的周期为π2,在区间⎝ ⎛⎭⎪⎫π4,π2上单调递减,f (x )=cos|x |的周期为2π.f (x )=sin|x |不是周期函数.故选A.15.(2017·全国卷Ⅱ)函数f (x )=ln (x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞) D .(4,+∞)答案 D解析 由x 2-2x -8>0可得x >4或x <-2,所以x ∈(-∞,-2)∪(4,+∞),令u =x2-2x -8,则其在x ∈(-∞,-2)上单调递减,在x ∈(4,+∞)上单调递增.又因为y =ln u 在u ∈(0,+∞)上单调递增,所以f (x )=ln (x 2-2x -8)在x ∈(4,+∞)上单调递增.故选D.16.(2017·北京高考)已知函数f (x )=3x-⎝ ⎛⎭⎪⎫13x ,则f (x )( )A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数 答案 A解析 ∵函数f (x )的定义域为R ,f (-x )=3-x-⎝ ⎛⎭⎪⎫13-x =⎝ ⎛⎭⎪⎫13x -3x =-f (x ),∴函数f (x )是奇函数.∵函数y =⎝ ⎛⎭⎪⎫13x 在R 上是减函数,∴函数y =-⎝ ⎛⎭⎪⎫13x 在R 上是增函数.又y =3x在R上是增函数,∴函数f (x )=3x-⎝ ⎛⎭⎪⎫13x 在R 上是增函数.故选A.17.(2016·北京高考)下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln (x +1)D .y =2-x答案 D解析 A 中,y =11-x =1-x -1的图象是将y =-1x的图象向右平移1个单位得到的,故y =11-x在(-1,1)上为增函数,不符合题意;B 中,y =cos x 在(-1,0)上为增函数,在(0,1)上为减函数,不符合题意;C 中,y =ln (x +1)的图象是将y =ln x 的图象向左平移1个单位得到的,故y =ln (x +1)在(-1,1)上为增函数,不符合题意;D 中,y =2-x=⎝ ⎛⎭⎪⎫12x 在(-1,1)上为减函数,所以D 符合题意.18.(2016·天津高考)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫12,32 解析 由题意知函数f (x )在(0,+∞)上单调递减.因为f (2|a -1|)>f (-2),且f (-2)=f (2),所以f (2|a -1|)>f (2),所以2|a -1|<,解得12<a <32.三、模拟小题19.(2019·武汉模拟)若函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,则a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]答案 B解析 因为函数f (x )=2|x -a |+3=⎩⎪⎨⎪⎧2x -2a +3,x ≥a ,-2x +2a +3,x <a ,因为函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,所以a >1,所以a 的取值范围是(1,+∞).故选B.20.(2019·郑州模拟)函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-3答案 C 解析 y =x -a -2+a -3x -a -2=1+a -3x -a -2=1+a -3x -a +2,由题意知⎩⎪⎨⎪⎧a -3<0,a +2≤-1,得a ≤-3.所以a 的取值范围是a ≤-3.21.(2019·重庆模拟)定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12答案 C解析 由已知得,当-2≤x ≤1时,f (x )=x -2;当1<x ≤2时,f (x )=x 3-2.因为f (x )=x -2,f (x )=x 3-2在定义域内都为增函数,所以f (x )的最大值为f (2)=23-2=6.22.(2019·漳州模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln x +1,x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)答案 D解析 因为当x =0时,两个表达式对应的函数值都为零,所以函数的图象是一条连续的曲线.因为当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln (x +1)也是增函数,所以函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.23.(2020·沈阳市高三摸底)如果函数y =f (x )在区间I 上是增函数,且函数y =f xx在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( )A .[1,+∞)B .[0,3]C .[0,1]D .[1,3]答案 D解析 因为函数f (x )=12x 2-x +32的对称轴为直线x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f x x =12x -1+32x ,令g (x )=12x -1+32x(x ≥1),则g ′(x )=12-32x 2=x 2-32x 2,由g ′(x )≤0得1≤x ≤ 3,即函数f x x =12x -1+32x 在区间[1,3]上单调递减,故“缓增区间”I 为[1,3].24.(2019·广东名校联考)设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是________.答案 [0,1)解析 由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其单调递减区间是[0,1).一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2019·福建泉州高三阶段测试)已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1;②当x >0时,f (x )>-1.(1)求f (0)的值,并证明f (x )在R 上是单调增函数; (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 解 (1)令x =y =0得f (0)=-1. 在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1.又f (x 1)=f ((x 1-x 2)+x 2)=f (x 1-x 2)+f (x 2)+1>f (x 2), 所以f (x )在R 上是单调增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又因为f (x )在R 上是增函数,故x 2+x +1>3, 解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.2.(2019·安徽肥东高级中学调研)函数f (x )=2x -ax的定义域为(0,1]. (1)当a =-1时,求函数f (x )的值域;(2)若f (x )在定义域上是减函数,求a 的取值范围.解 (1)因为a =-1,所以函数f (x )=2x +1x ≥22⎝ ⎛⎭⎪⎫当且仅当x =22时,等号成立,所以函数f (x )的值域为[22,+∞).(2)若函数f (x )在定义域上是减函数,则任取x 1,x 2∈(0,1]且x 1<x 2都有f (x 1)>f (x 2)成立, 即f (x 1)-f (x 2)=(x 1-x 2)⎝⎛⎭⎪⎫a +2x 1x 2x 1x 2>0,只要a <-2x 1x 2即可,由x 1,x 2∈(0,1],得-2x 1x 2∈(-2,0),所以a ≤-2,故a 的取值范围是(-∞,-2].3.(2019·湖南永州模拟)已知二次函数f (x )=ax 2+bx +1(a >0),F (x )=⎩⎪⎨⎪⎧f x ,x >0,-fx ,x <0.若f (-1)=0,且对任意实数x 均有f (x )≥0成立.(1)求F (x )的表达式;(2)当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围. 解 (1)因为f (-1)=0,所以a -b +1=0, 所以b =a +1,所以f (x )=ax 2+(a +1)x +1. 因为对任意实数x 均有f (x )≥0恒成立, 所以⎩⎪⎨⎪⎧a >0,Δ=a +12-4a ≤0,所以⎩⎪⎨⎪⎧a >0,a -12≤0.所以a =1,从而b =2,所以f (x )=x 2+2x +1,所以F (x )=⎩⎪⎨⎪⎧x 2+2x +1,x >0,-x 2-2x -1,x <0.(2)g (x )=x 2+2x +1-kx =x 2+(2-k )x +1. 因为g (x )在[-2,2]上是单调函数, 所以k -22≤-2或k -22≥2,解得k ≤-2或k ≥6.故实数k 的取值范围是(-∞,-2]∪[6,+∞).4.(2019·陕西西安长安区大联考)已知定义在区间(0,+∞)上的函数f (x )满足f (x 1·x 2)=f (x 1)+f (x 2),且当x >1时,f (x )>0.(1)求f (1)的值;(2)证明:f (x )为单调增函数;(3)若f ⎝ ⎛⎭⎪⎫15=-1,求f (x )在⎣⎢⎡⎦⎥⎤125,125上的最值. 解 (1)因为函数f (x )满足f (x 1·x 2)=f (x 1)+f (x 2), 令x 1=x 2=1,则f (1)=f (1)+f (1),解得f (1)=0. (2)证明:设x 1,x 2∈(0,+∞),且x 1>x 2, 则x 1x 2>1,所以f ⎝ ⎛⎭⎪⎫x 1x2>0,所以f (x 1)-f (x 2)=f ⎝⎛⎭⎪⎫x 2·x 1x2-f (x 2)=f (x 2)+f ⎝ ⎛⎭⎪⎫x 1x 2-f (x 2)=f ⎝ ⎛⎭⎪⎫x 1x 2>0,所以f (x 1)>f (x 2),所以f (x )在(0,+∞)上是增函数. (3)因为f (x )在(0,+∞)上是增函数.若f ⎝ ⎛⎭⎪⎫15=-1,则f ⎝ ⎛⎭⎪⎫15+f ⎝ ⎛⎭⎪⎫15=f ⎝ ⎛⎭⎪⎫125=-2, 因为f ⎝ ⎛⎭⎪⎫15×5=f (1)=f ⎝ ⎛⎭⎪⎫15+f (5)=0, 所以f (5)=1,则f (5)+f (5)=f (25)=2,f (5)+f (25)=f (125)=3,即f (x )在⎣⎢⎡⎦⎥⎤125,125上的最小值为-2,最大值为3.。

2021《单元滚动检测卷》高考复习数学(理)(北师大全国)精练二 函数概念与基本初等函数Ⅰ

2021《单元滚动检测卷》高考复习数学(理)(北师大全国)精练二 函数概念与基本初等函数Ⅰ

高三单元滚动检测卷·数学考生留意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。

2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上。

3.本次考试时间120分钟,满分150分。

单元检测二 函数概念与基本初等函数Ⅰ第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2021·重庆)函数f (x )=log 2(x 2+2x -3)的定义域是( ) A .[-3,1]B .(-3,1)C .(-∞,-3]∪[1,+∞)D .(-∞,-3)∪(1,+∞)2.(2021·北京)下列函数中为偶函数的是( ) A .y =x 2sin x B .y =x 2cos x C .y =|ln x |D .y =2-x 3.(2021·慈溪联考)函数y =x 2lg x -2x +2的图像( ) A .关于x 轴对称 B .关于原点对称 C .关于直线y =x 对称D .关于y 轴对称4.(2021·江西省师大附中联考)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x <1,f (x -1),x ≥1,则f (log 25)等于( )A.516B.58C.54D.525.(2021·山东)若函数f (x )=2x +12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)6.下列各式中错误的是( ) A .0.83>0.73B .log 0.50.4>log 0.50.6C .0.75-0.1<0.750.1 D .lg 1.6>lg 1.47.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,(12)x -1,x <2满足对任意的实数x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为( ) A .(-∞,2) B .(-∞,138]C .(-∞,2]D .[138,2)8.(2021·山东19所名校联考)函数y =x ln|x ||x |的图像可能是( )9.定义在R 上的偶函数f (x )满足f (x )=f (x +2),当x ∈[3,4]时,f (x )=x -2,则( ) A .f (sin 1)<f (cos 1) B .f (sin π3)>f (cos π3)C .f (sin 12)<f (cos 12)D .f (sin 32)>f (cos 32)10.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-2x +a ,x <0,f (x -1),x ≥0,且函数y =f (x )-x 恰有3个不同的零点,则实数a 的取值范围是( )A .(0,+∞)B .[-1,0)C .[-1,+∞)D .[-2,+∞)11.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是( )A .(0,1] B.⎝⎛⎭⎫0,12 C .(0,2]D .[0,1)12.(2021·蚌埠模拟)已知函数f (x ) (x ∈R )是以4为周期的奇函数,当x ∈(0,2)时,f (x )=ln(x 2-x +b ).若函数f (x )在区间[-2,2]上有5个零点,则实数b 的取值范围是( ) A .-1<b ≤1 B.14≤b ≤54C .-1<b <1或b =54D.14<b ≤1或b =54 第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知函数f (x )是定义在(-∞,+∞)上的奇函数,若对于任意的实数x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2 015)+f (2 016)的值为________.14.(2021·湖南浏阳一中联考)设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=x 2,若对任意x ∈[a ,a +2],不等式f (x +a )≥f (3x +1)恒成立,则实数a 的取值范围是________.15.卡车以x 千米/小时的速度匀速行驶130千米路程,按交通法规限制50≤x ≤100(单位:千米/小时).假设汽油的价格是每升6元,而汽车每小时耗油(2+x 2360)升,司机的工资是每小时42元.(1)这次行车总费用y 关于x 的表达式为___________________________________; (2)当x =________时,这次行车总费用最低.16.设f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=(12)1-x ,则给出下列结论: ①2是f (x )的周期;②f (x )在(1,2)上单调递减,在(2,3)上单调递增; ③f (x )的最大值是1,最小值是0; ④当x ∈(3,4)时,f (x )=(12)x -3.其中正确结论的序号是________.(写出全部正确结论的序号)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=2x -3·2-x . (1)当x <0时,求f (x )的解析式; (2)若f (x )=12,求x 的值.18.(12分)已知函数f (x )=log 4(ax 2+2x +3).(1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,请说明理由.19.(12分)(2021·赣州市十二县(市)联考)已知函数g (x )=ax 2-2ax +1+b (a >0)在区间[2,3]上有最大值4和最小值1.设f (x )=g (x )x .(1)求a 、b 的值;(2)若不等式f (2x )-k ·2x ≥0在x ∈[-1,1]上有解,求实数k 的取值范围.20.(12分)某厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x )万元,当年产量不足80千件时,C (x )=13x 2+10x (万元);当年产量不少于80千件时,C (x )=51x +10 000x -1 450(万元).通过市场分析,若每件售价为500元时,该厂年内生产的商品能全部销售完. (1)写出年利润L (万元)关于年产量x (千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?21.(12分)(2021·余姚联考)已知函数f (x )=x 2+a |x -1|,a 为常数. (1)当a =2时,求函数f (x )在[0,2]上的最小值和最大值;(2)若函数f(x)在[0,+∞)上单调递增,求实数a的取值范围.22.(12分)(2021·北京第六十六中学上学期期中)已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),当x>0时,f(x)<0,且f(1)=-2.(1)推断f(x)的奇偶性;(2)求f(x)在区间[-3,3]上的最大值;(3)解关于x的不等式f(ax2)-2f(x)<f(ax)+4.答案解析1.D[需满足x2+2x-3>0,解得x>1或x<-3,所以f(x)的定义域为(-∞,-3)∪(1,+∞).]2.B[由f(-x)=f(x),且定义域关于原点对称,可知A为奇函数,B为偶函数,C定义域不关于原点对称,D 为非奇非偶函数.]3.B[∵y=x2lgx-2x+2,∴其定义域为(-∞,-2)∪(2,+∞),∴f(-x)=x2lgx+2x-2=-x2lgx-2x+2=-f(x),∴函数为奇函数,∴函数的图像关于原点对称,故选B.]4.C[∵2<log25<3,∴f(log25)=2log25-2=2log25·2-2=54,故选C.]5.C[∵f(x)为奇函数,∴f(-x)=-f(x),即2-x+12-x-a=-2x+12x-a,整理得(1-a)(2x+1)=0,∴a=1,∴f(x)>3即为2x+12x-1>3,化简得(2x-2)(2x-1)<0,∴1<2x<2,∴0<x<1.]6.C[对于A,构造幂函数y=x3,为增函数,故A对;对于B、D,构造对数函数y=log0.5x为减函数,y=lg x为增函数,B、D都正确;对于C,构造指数函数y=0.75x,为减函数,故C错.]7.B[由题意知函数f(x)是R上的减函数,于是有⎩⎪⎨⎪⎧a-2<0,(a-2)×2≤(12)2-1,由此解得a≤138,即实数a 的取值范围为(-∞,138],故选B.]8.B [函数y =x ln|x ||x |的定义域为(-∞,0)∪(0,+∞),定义域关于原点对称.当x >0时,y =x ln|x ||x |=x ln xx =lnx ;当x <0时,y =x ln|x ||x |=x ln (-x )-x=-ln(-x ),此时函数图像与当x >0时函数y =ln x 的图像关于原点对称.故选B.]9.A [由f (x )=f (x +2)得到周期为2,当x ∈[3,4]时,f (x )=x -2为增函数,且是定义在R 上的偶函数,则f (x )在[0,1]上为减函数,由于sin 1>cos 1,所以 f (sin 1)<f (cos 1).故选A.]10.C [当x ≥0时,f (x -1)=f (x ),此时函数f (x )是周期为1的周期函数;当x <0时,f (x )=-x 2-2x +a =-(x +1)2+1+a ,对称轴为x =-1,顶点为(-1,1+a ),若a ≥0,则y =f (x )-x 在(-∞,0)上有1个零点,在[0,+∞)上有2个零点,满足题意;若-1<a <0,则y =f (x )-x 在(-∞,-1],(-1,0),[0,+∞)上各有1个零点,满足题意;若a =-1,则y =f (x )-x 在(-∞,-1],(-1,0)上各有1个零点,x =0也是零点,在(0,+∞)上无零点,满足题意;若a <-1,则至多有2个零点,不满足题意.所以实数a 的取值范围是[-1,+∞).]11.D [g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.如图所示,其递减区间是[0,1).]12.D [本题可以接受排解法.若b =0,则f (x )=ln(x 2-x ),x ∈(0,2),当x =12∈(0,2)时,f (x )无意义,故b ≠0,所以排解A ,C ;若b =14,则f (x )=ln ⎝⎛⎭⎫x 2-x +14,x ∈(0,2),当x =12∈(0,2)时,f (x )无意义,故b ≠14,所以排解B ,所以选D.] 13.-1解析 由于f (x )是奇函数,且周期为2,所以f (-2 015)+f (2 016)=-f (2 015)+f (2 016)=-f (1)+f (0),又当x ∈[0,2)时,f (x )=log 2(x +1),所以f (-2 015)+f (2 016)=-1+0=-1. 14.(-∞,-5]解析 由于当x ≥0时,f (x )=x 2,所以f (x )是[0,+∞)上的增函数,又f (x )是定义在R 上的奇函数,所以f (x )是R 上的增函数,所以若对任意x ∈[a ,a +2],不等式f (x +a )≥f (3x +1)恒成立,即对任意x ∈[a ,a +2],x +a ≥3x +1⇒a ≥2x +1.由于函数2x +1是[a ,a +2]上的增函数,所以2x +1有最大值2a +5,所以a ≥2a +5⇒a ≤-5.15.(1)y =7 020x +136x ,x ∈[50,100] (2)1810解析 (1)由题意知行车所用时间t =130x 小时,则这次行车总费用y 关于x 的表达式为y =130x ×6×(2+x 2360)+42×130x ,x ∈[50,100],即y =7 020x +136x ,x ∈[50,100]. (2)y =7 020x +136x ≥7810,当且仅当7 020x =136x ,即x =1810时等号成立,故当x =1810时,这次行车总费用最低. 16.①②④解析 ①∵对任意的x ∈R 恒有f (x +1)=f (x -1),∴f (x +2)=f [(x +1)-1]=f (x ),即2是f (x )的周期,①正确;②∵当x ∈[0,1]时,f (x )=(12)1-x =2x -1为增函数,又f (x )是定义在R 上的偶函数,∴f (x )在区间[-1,0]上单调递减,又其周期T =2,∴f (x )在(1,2)上单调递减,在(2,3)上单调递增,②正确;③由②可知,f (x )max =f (1)=21-1=20=1,f (x )min =f (0)=20-1=12,③错误;④当x ∈(3,4)时,4-x ∈(0,1),∴f (4-x )=(12)1-(4-x )=(12)x -3,又f (x )是周期为2的偶函数,∴f (4-x )=f (x )=(12)x -3,④正确.综上所述,正确结论的序号是①②④.17.解 (1)当x <0时,-x >0,f (-x )=2-x -3·2x , 又f (x )是奇函数, ∴f (-x )=-f (x ), ∴-f (x )=2-x -3·2x ,即当x <0时,f (x )=-2-x +3·2x .(2)当x <0时,由-2-x +3·2x =12,得6·22x -2x -2=0, 解得2x =23或2x =-12(舍去),∴x =1-log 23;当x >0时,由2x -3·2-x =12,得2·22x -2x -6=0,解得2x =2或2x =-32(舍去),∴x =1.综上,x =1-log 23或x =1.18.解 (1)由于f (1)=1,所以log 4(a +5)=1, 因此a +5=4,a =-1, 这时f (x )=log 4(-x 2+2x +3). 由-x 2+2x +3>0得-1<x <3,函数f (x )的定义域为(-1,3). 令g (x )=-x 2+2x +3,则g (x )在(-1,1)上递增,在(1,3)上递减. 又y =log 4x 在(0,+∞)上递增, 所以f (x )的单调递增区间是(-1,1), 递减区间是(1,3).(2)假设存在实数a ,使f (x )的最小值为0, 则h (x )=ax 2+2x +3应有最小值1,即⎩⎨⎧a >0,3a -1a =1,解得a =12.故存在实数a =12使f (x )的最小值为0.19.解 (1)g (x )=a (x -1)2+1+b -a ,由于a >0,所以g (x )在区间[2,3]上是增函数,故⎩⎪⎨⎪⎧ g (2)=1,g (3)=4,解得⎩⎪⎨⎪⎧a =1,b =0.(2)由已知可得f (x )=x +1x-2,所以f (2x )-k ·2x ≥0可化为2x +12x -2≥k ·2x ,化为1+(12x )2-2·12x ≥k ,令t =12x ,则k ≤t 2-2t +1,由于x ∈[-1,1],故t ∈[12,2],记h (t )=t 2-2t +1,由于t ∈[12,2],故h (t )max =1,所以k 的取值范围是(-∞,1]. 20.解 (1)当0<x <80,x ∈N +时, L (x )=500×1 000x 10 000-13x 2-10x -250=-13x 2+40x -250;当x ≥80,x ∈N +时,L (x )=500×1 000x 10 000-51x -10 000x +1 450-250=1 200-(x +10 000x),∴L (x )=⎩⎨⎧-13x 2+40x -250(0<x <80,x ∈N +),1 200-(x +10 000x)(x ≥80,x ∈N +).(2)当0<x <80,x ∈N +时, L (x )=-13(x -60)2+950,∴当x =60时,L (x )取得最大值L (60)=950.当x ≥80,x ∈N +时,L (x )=1 200-(x +10 000x )≤1 200-2x ·10 000x=1 200-200=1 000, ∴当x =10 000x ,即x =100时,L (x )取得最大值L (100)=1 000>950.综上所述,当x =100时,L (x )取得最大值1 000,即年产量为100千件时,该厂在这一商品的生产中所获利润最大.21.解 (1)当a =2时,f (x )=x 2+2|x -1|=⎩⎪⎨⎪⎧ x 2+2x -2,x ≥1,x 2-2x +2,x ≤1=⎩⎪⎨⎪⎧(x +1)2-3,x ≥1,(x -1)2+1,x <1,所以当x ∈[1,2]时,[f (x )]max =6,[f (x )]min =1, 当x ∈[0,1]时,[f (x )]max =2,[f (x )]min =1, 所以f (x )在[0,2]上的最大值为6,最小值为1.(2)由于f (x )=⎩⎪⎨⎪⎧x 2+ax -a ,x ≥1,x 2-ax +a ,x <1,=⎩⎨⎧(x +a 2)2-a 24-a ,x ≥1,(x -a 2)2-a24+a ,x <1,而f (x )在[0,+∞)上单调递增,所以当x ≥1时,f (x )必单调递增,得-a2≤1即a ≥-2,当0≤x <1时,f (x )亦必单调递增,得a2≤0即a ≤0,且12+a -a ≥12-a +a 恒成立. 即a 的取值范围是{a |-2≤a ≤0}. 22.解 (1)取x =y =0,则f (0+0)=2f (0), ∴f (0)=0.取y =-x ,则f (x -x )=f (x )+f (-x ),∴f (-x )=-f (x )对任意x ∈R 恒成立, ∴函数f (x )为奇函数.(2)任取x 1,x 2∈(-∞,+∞)且x 1<x 2, 则x 2-x 1>0.∴f (x 2)+f (-x 1)=f (x 2-x 1)<0, ∴f (x 2)<-f (-x 1).又∵f (x )为奇函数,∴f (x 1)>f (x 2). ∴f (x )在(-∞,+∞)上是减函数.∴对任意x ∈[-3,3],恒有f (x )≤f (-3). ∵f (3)=f (2+1)=f (2)+f (1)=3f (1) =-2×3=-6, ∴f (-3)=-f (3)=6, ∴f (x )在[-3,3]上的最大值为6. (3)∵f (x )为奇函数,∴整理原不等式得f (ax 2)+f (-2x )<f (ax )+f (-2), 进一步可得f (ax 2-2x )<f (ax -2).∵f (x )在(-∞,+∞)上是减函数,∴ax 2-2x >ax -2, 即(ax -2)(x -1)>0.∴当a =0时,x ∈(-∞,1); 当a =2时,x ∈{x |x ≠1且x ∈R }; 当a <0时,x ∈{x |2a <x <1};当0<a <2时,x ∈{x |x >2a 或x <1};当a >2时,x ∈{x |x <2a 或x >1}.综上所述,当a =0时,x ∈(-∞,1); 当a =2时,x ∈{x |x ≠1且x ∈R };当a<0时,x∈{x|2a<x<1};或x<1};当0<a<2时,x∈{x|x>2a当a>2时,x∈{x|x<2或x>1}.a。

2021高考数学新高考版一轮习题:专题3 阶段滚动检测(二) (含解析)

2021高考数学新高考版一轮习题:专题3 阶段滚动检测(二) (含解析)

一、单项选择题1.已知集合A ={x |-2≤x ≤3},B ={x |x 2-3x ≤0},则A ∪B 等于( ) A .[-2,3] B .[-2,0] C .[0,3]D .[-3,3]2.已知条件p :|x +1|>2,条件q :x >a ,且綈p 是綈q 的充分不必要条件,则实数a 的取值范围是( )A .a ≤1B .a ≥1C .a ≥-1D .a ≤-33.(2020·重庆模拟)命题p :∃x 0>0,x 0+1x 0=2,则綈p 为( )A .∀x >0,x +1x =2B .∀x >0,x +1x ≠2C .∀x ≤0,x +1x=2D .∀x ≤0,x +1x≠24.已知函数f (x )=⎩⎪⎨⎪⎧log 3(x +m )-1,x ≥0,12 019,x <0的图象经过点(3,0),则f (f (2))等于( )A .2 019 B.12 019C .2D .15.若函数f (x )=13x 3-f ′(-1)x 2+x +5,则f ′(1)的值为( )A .2B .-2C .6D .-66.三个数a =0.312,b =log 20.31,c =20.31之间的大小关系为( ) A .a <c <b B .a <b <c C .b <a <cD .b <c <a7.(2019·湖南师大附中博才实验中学月考)函数f (x )=e x +1x (1-e x )(其中e 为自然对数的底数)的图象大致为( )8.函数f (x )=2e x -a (x -1)2有且只有一个零点,则实数a 的取值范围是( ) A.⎝⎛⎭⎫e 4,1 B .(1,2e] C.⎝⎛⎭⎫0,e 32 D.⎝⎛⎭⎫-∞,e 32 二、多项选择题9.已知a >b >0,c >1,则下列各式不成立的是( ) A .sin a >sin b B .c a >c b C .a c <b cD.c -1b <c -1a10.下列命题为假命题的是( ) A .“A ∩B =A ”的充要条件是“A ⊆B ”B .若a ,b ,c ∈R ,则“ac 2>bc 2”是“a >b ”的充分不必要条件C .若椭圆x 216+y 225=1的两个焦点为F 1,F 2,且弦AB 过点F 1,则△ABF 2的周长为16D .“a =1”是“函数f (x )=a -e x1+a e x 在定义域上是奇函数”的充要条件11.在下列函数中,其中最小值为2的函数的是( ) A .y =⎪⎪⎪⎪x +1x B .y =x 2+2x 2+1C .y =log 2x +log x 2(x >0且x ≠1)D .y =tan x +1tan x ,0<x <π212.下列函数中,满足“对任意的x 1,x 2∈(0,+∞),使得f (x 1)-f (x 2)x 1-x 2<0”成立的是( )A .f (x )=-x 2-2x +1B .f (x )=x -1xC .f (x )=x +1D .f (x )=12log (2)x +1三、填空题13.已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,5]上为减函数,则实数a 的取值范围为________;当a =2时,函数f (x )在[-3,2]上的值域为________.14.在曲线f (x )=sin x -cos x ,x ∈⎝⎛⎭⎫-π2,π2的所有切线中,斜率为1的切线方程为________. 15.设函数f (x )=e x -1e x -2x ,若f (a -3)+f (2a 2)≤0,则实数a 的取值范围为________.16.对一定义域为D 的函数y =f (x )和常数c ,若对任意正实数ξ,∃x ∈D 使得0<|f (x )-c |<ξ成立,则称函数y =f (x )为“敛c 函数”,现给出如下函数:①f (x )=x (x ∈Z );②f (x )=⎝⎛⎭⎫12x+1(x ∈Z );③f (x )=log 2x ;④f (x )=x -1x .其中为“敛1函数”的有________.(填序号)四、解答题17.设函数f (x )=6+x +ln(2-x )的定义域为A ,集合B ={x |2x >1}. (1)求A ∪B ;(2)若集合{x |a <x <a +1}是A ∩B 的子集,求实数a 的取值范围.18.计算:(1)(3-1)0+(3-π)2+1318-⎛⎫⎪⎝⎭;(2)2lg 5+lg 25+2log32.19.(2019·天津调研)设函数f (x)=lgax+1(a∈R),且f (1)=0.(1)求a的值;(2)求f (x)的定义域;(3)判断f (x)在区间(0,+∞)上的单调性,并用单调性定义证明.20.为了落实国务院“提速降费”的要求,某市移动公司欲下调移动用户消费资费.已知该公司共有移动用户10万人,人均月消费50元.经测算,若人均月消费下降x %,则用户人数会增加x8万人.(1)若要保证该公司月总收入不减少,试求x 的取值范围;(2)为了布局“5G 网络”,该公司拟定投入资金进行5G 网络基站建设,投入资金方式为每位用户月消费中固定划出2元进入基站建设资金,若使该公司总盈利最大,试求x 的值.(总盈利资金=总收入资金-总投入资金)21.已知函数f (x )=13x 3+ax +b (a ,b ∈R )在x =2处取得极小值-43.(1)求函数f (x )的单调递增区间;(2)若13x 3+ax +b ≤m 2+m +103对x ∈[-4,3]恒成立,求实数m 的取值范围.22.(2019·北京四中期中)已知函数f (x )=ln x +1x .(1)求函数f (x )的单调区间;(2)设函数g (x )=(x +1)ln x -x +1,证明:当x >0且x ≠1时,x -1与g (x )同号.答案精析1.A 2.B 3.B 4.B 5.C 6.C 7.A 8.C 9.ACD 10.CD11.ABD [对于A ,y =⎪⎪⎪⎪x +1x =|x |+1|x |≥2|x |·1|x |=2,当且仅当x =±1时取等号,正确; 对于B ,y =x 2+2x 2+1=x 2+1+1x 2+1≥2,当且仅当x =0时取等号,正确;对于C ,当x ∈(0,1)时,log x 2<0,log 2x <0,得y =log 2x +log x 2(x >0且x ≠1)的最小值不可能为2,错误;对于D ,x ∈⎝⎛⎭⎫0,π2,所以tan x ∈(0,+∞),令tan x =t ,所以t ∈(0,+∞),所以y =t +1t ≥2,当且仅当t =1时取等号,正确.]12.AD [根据题意,“对任意的x 1,x 2∈(0,+∞),使得f (x 1)-f (x 2)x 1-x 2<0”,则函数f (x )在(0,+∞)上为减函数,据此依次分析选项:对于选项A ,f (x )=-x 2-2x +1为二次函数,其对称轴为x =-1,在(0,+∞)上单调递减,符合题意;对于选项B ,f (x )=x -1x ,其导数f ′(x )=1+1x 2>0,所以f (x )在(0,+∞)上单调递增,不符合题意;对于选项C ,f (x )=x +1为一次函数,所以f (x )在(0,+∞)上单调递增,不符合题意;对于选项D ,f (x )=12log (2)x +1,在(0,+∞)上单调递减,符合题意.] 13.(-∞,-4] [1,10] 14.x -y -1=0 15.⎣⎡⎦⎤-32,1 解析 根据题意,函数f (x )=e x -1e x -2x ,其导数f ′(x )=e x +1e x -2,f ′(x )=e x +1e x -2≥0恒成立,则函数f (x )在R 上为增函数,又因为f (-x )=e -x -e x +2x =-f (x ),所以f (x )为奇函数,原式等价于f (a -3)≤-f (2a 2), f (a -3)≤f (-2a 2),a -3≤-2a 2,2a 2+a -3≤0, (2a +3)(a -1)≤0,-32≤a ≤1.16.②③④解析 由新定义知,对任意正实数ξ,∃x ∈D 使得0<|f (x )-c |<ξ成立, 即0<|f (x )-c |<ξ有解.对于函数①解得,1-ξ<x <1+ξ,且x ≠1,x ∈Z ,因为ξ为任意正实数,所以无解,故函数①不是“敛1函数”;对于函数②解得,x >-log 2ξ且x ∈Z ,故函数②是“敛1函数”;对于函数③解得,21-ξ<x <21+ξ,且x ≠2,故函数③是“敛1函数”;对于函数④解得,|x |>1ξ,故函数④是“敛1函数”.因此正确答案为②③④.17.解 (1)由⎩⎪⎨⎪⎧6+x ≥0,2-x >0得,-6≤x <2,由2x >1得,x >0,∴A =[-6,2), B =(0,+∞), ∴A ∪B =[-6,+∞). (2)A ∩B =(0,2),∵集合{x |a <x <a +1}是A ∩B 的子集,∴⎩⎪⎨⎪⎧a ≥0,a +1≤2,解得0≤a ≤1,∴a 的取值范围是[0,1].18.解 (1)原式=1+|3-π|+2=1+π-3+2=π. (2)原式=lg 25+lg 25+3=lg ⎝⎛⎭⎫25×25+3=4.19.解 (1)根据题意,函数f (x )=lgax +1(a ∈R ),且f (1)=0, 则f (1)=lg a 2=0,则a2=1,解得a =2.(2)根据题意,f (x )=lg2x +1, 必有2x +1>0,解得x >-1,即函数f (x )的定义域为(-1,+∞). (3)根据题意,f (x )=lg 2x +1在(0,+∞)上的单调递减, 证明:设0<x 1<x 2, f (x 1)-f (x 2)=lg2x 1+1-lg 2x 2+1=lgx 2+1x 1+1=lg(x 2+1)-lg(x 1+1), 又由0<x 1<x 2,则lg(x 2+1)>lg(x 1+1),即f (x 1)-f (x 2)>0,即函数f (x )在(0,+∞)上单调递减. 20.解 (1)根据题意,设该公司的总收入为W 万元, 则W =50⎝⎛⎭⎫10+x 8⎝⎛⎭⎫1-x100,0<x <100, 若该公司月总收入不减少, 则有50⎝⎛⎭⎫10+x 8⎝⎛⎭⎫1-x100≥10×50, 解得0<x ≤20.(2)设该公司盈利为y 万元,则y =50⎝⎛⎭⎫10+x 8⎝⎛⎭⎫1-x 100-2⎝⎛⎭⎫10+x 8=-x216+x +480,0<x <100, 结合二次函数的性质分析可得,当x =8时,该公司的总盈利最大. 21.解 (1)f ′(x )=x 2+a , 由f ′(2)=0得a =-4,由f (2)=-43得b =4,则f (x )=13x 3-4x +4,令f ′(x )=x 2-4>0得x >2或x <-2,∴f (x )的单调递增区间为(-∞,-2),(2,+∞). (2)由f (-4)=-43,f (-2)=283,f (2)=-43,f (3)=1,所以f (x )在[-4,3]上的最大值为283,要使13x 3+ax +b ≤m 2+m +103对x ∈[-4,3]恒成立,只要f (x )max ≤m 2+m +103就可以了,即283≤m 2+m +103, 解得m ≥2或m ≤-3,所以实数m 的取值范围是(-∞,-3]∪[2,+∞). 22.(1)解 函数f (x )的定义域是(0,+∞), 又f ′(x )=1x -1x 2=x -1x 2,令f ′(x )=0,得x =1,当x 变化时,f ′(x )与f (x )的变化情况如下表,所以f (x )的单调递增区间是(1,+∞),单调递减区间是(0,1). (2)证明 函数g (x )的定义域是(0,+∞), 又g ′(x )=ln x +x +1x -1=ln x +1x =f (x ),由(1)可知,f (x )min =f (1)=1, 所以当x >0时,g ′(x )>0,所以g(x)在区间(0,+∞)上单调递增.因为g(1)=0,所以当x>1时,g(x)>g(1)=0且x-1>0;当0<x<1时,g(x)<g(1)=0且x-1<0,所以当x>0且x≠1时,x-1与g(x)同号.。

2021年高考新课标2数学(理)试卷及答案

2021年高考新课标2数学(理)试卷及答案

2021年高考新课标2数学(理)试卷及答案2021年普通高等学校招生全国统一考试理科数学(新课标卷二ⅱ)第ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设子集m={0,1,2},n=?x|x2?3x?2≤0?,则m?n=()a.{1}【答案】d【ks5u解析】b.{2}c.{0,1}d.{1,2}把m={0,1,2}中的数,代入不等式x2-3x+2≤0,经检验x=1,2满足用户。

所以挑选d.2.设复数z1,z2在复平面内的对应点关于虚轴对称,z1?2?i,则z1z2?()a.-5【答案】b【ks5u解析】b.5c.-4+id.-4-iz1=2+i,z1与z2关于虚轴对称,∴z2=-2+i,∴z1z2=-1-4=-5,故选b.3.设向量a,b满足用户|a+b|=10,|a-b|=6,则a?b=()a.1【答案】a【ks5u解析】b.2c.3d.5|a+b|=10,|a-b|=6,,∴a+b+2ab=10,a+b-2ab=6,联立方程Champsaurab=1,故挑选a.4.钝角三角形abc的面积是1,ab=1,bc=2,则ac=()22222a.5【答案】b【ks5u解析】b.5c.2d.1第1页共1页1112acsinb=?2?1?sinb=∴sinb=,2222π3ππ∴b=,或.当b=时,经计算δabc为等腰直角三角形,不符合题意,舍去。

4443π∴b=,采用余弦定理,b2=a2+c2-2accosb,Champsaurb=5.故挑选b.4?sδabc=5.某地区空气质量监测资料说明,一天的空气质量为优良的概率就是0.75,已连续两为优良的概率就是0.6,未知某天的空气质量为优良,则随后一天的空气质量为优良的概率就是()a.0.8b.0.75c.0.6d.0.45【答案】a【ks5u解析】设某天空气质量优良,则随后一个空气质量也优良的概率为p,则据题有0.6=0.75?p,解得p=0.8,故选a.6.例如图,网格纸上正方形小格的边长为1(则表示1cm),图中粗线孔颖草的就是某零件的三视图,该零件由一个底面半径为3cm,低为6cm的圆柱体毛坯焊接获得,则焊接掉部分的体积与原来毛坯体积的比值为()a.17b.5c.10d.1279273【答案】c【ks5u解析】加工前的零件半径为3,高6,∴体积v1=9π?6=54π.?加工后的零件,左半部为小圆柱,半径2,高4,右半部为大圆柱,半径为3,高为2.∴体积v2=4π?4+9π?2=34π.∴削掉部分的体积与原体积之比=54π-34π10=.故选c.54π277.继续执行右图程序框图,如果输出的x,t均为2,则输入的s=()a.4b.5c.6d.7【答案】c【ks5u解析】第2页共2页x=2,t=2,变量变化情况如下:msk131252273故选c.8.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=a.0b.1c.2d.3【答案】d【ks5u解析】f(x)=ax-ln(x+1),∴f′(x)=a-1.x+1∴f(0)=0,且f′(0)=2.联立解得a=3.故选d.?x?y?7≤0?9.设x,y满足用户约束条件?x?3y?1≤0,则z?2x?y的最大值为()?3x?y?5≥0?a.10b.8c.3d.2【答案】b【ks5u解析】图画出来区域,所述区域为三角形,经比较斜率,所述目标函数z=2x-y在两条直线x-3y+1=0与x+y-7=0的交点(5,2)处,获得最大值z=8.故挑选b.10.设f为抛物线c:y2?3x的焦点,过f且倾斜角为30°的直线交c于a,b两点,o 为坐标原点,则△oab的面积为()a.3393b.c.63d.983244【答案】d【ks5u解析】第3页共3页设点a、b分别在第一和第四象限,af=2m,bf=2n,则由抛物线的定义和直角三角形科学知识可以得,33332m=2?+3m,2n=2?-3n,Champsaurm=(2+3),n=(2-3),∴m+n=6.4422139∴sδoab=??(m+n)=.故挑选d.24411.直三棱柱abc-a1b1c1中,∠bca=90°,m,n分别是a1b1,a1c1的中点,bc=ca=cc1,则bm与an所成的角的余弦值为()a.1b.2c.10530d.1022【答案】c【ks5u解析】例如图,分别以c1b1,c1a1,c1c为x,y,z轴,创建坐标系。

2021届高考数学一轮复习第一部分考点通关练第二章函数导数及其应用考点测试10对数与对数函数含解析人教B版

2021届高考数学一轮复习第一部分考点通关练第二章函数导数及其应用考点测试10对数与对数函数含解析人教B版

考点测试10 对数与对数函数高考概览高考在本考点的常考题型为选择题,分值5分,中、低等难度考纲研读1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点 3.体会对数函数是一类重要的函数模型4.了解指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数一、基础小题1.计算log 29×log 34+2log 510+log 50.25=( ) A .0 B .2 C .4 D .6答案 D解析 由对数的运算公式和换底公式可得log 29×log 34+2log 510+log 50.25=2log 23×log 24log 23+log 5(102×0.25)=4+2=6.故选D.2.设函数f (x )=⎩⎪⎨⎪⎧4x-1,x ≤0,log 2x ,x >0,则f ⎝ ⎛⎭⎪⎫12=( )A .-1B .1C .-12D .22答案 A解析 f ⎝ ⎛⎭⎪⎫12=log 212=-1,故选A. 3.函数f (x )=lg (x +1)+lg (x -1)( ) A .是奇函数 B .是偶函数C .是非奇非偶函数D .既是奇函数又是偶函数答案 C解析 函数f (x )的定义域为{x |x >1},定义域不关于原点对称,故该函数是非奇非偶函数,故选C.4.若lg 2,lg (2x +1),lg (2x+5)成等差数列,则x 的值等于( ) A .1 B .0或18C .18D .log 23答案 D解析 由题意知lg 2+lg (2x+5)=2lg (2x+1),2(2x+5)=(2x+1)2,(2x )2-9=0,2x=3,x =log 23.故选D.5.已知a ,b ,c 分别是方程2x =-x ,log 2x =-x ,log 2x =x 的实数解,则( ) A .b <c <a B .a <b <c C .a <c <b D .c <b <a答案 B解析 由2a=-a >0,得a <0,由log 2b =-b <0,得0<b <1,由log 2c =c >0,得c >1,综上可知,a <b <c ,故选B.6.设m =log 0.30.6,n =12log 20.6,则( )A .m -n >m +n >mnB .m -n >mn >m +nC .m +n >m -n >mnD .mn >m -n >m +n答案 A解析 m =log 0.30.6>log 0.31=0,n =12log 20.6<12log 21=0,mn <0.1m +1n =log 0.60.3+log 0.64=log 0.61.2<log 0.60.6=1,即m +nmn<1,故m +n >mn .又(m -n )-(m +n )=-2n >0,所以m -n >m +n .故m -n >m +n >mn ,所以选A.7.已知log 23=a ,log 37=b ,则log 4256=( ) A.3+ab1+a +abB .3a +ba +a 2+bC.3+b1+a +bD .1+a +ab 3+ab答案 A解析 log 4256=log 256log 242=3+log 271+log 23+log 27=3+log 23·log 371+log 23+log 23·log 37=3+ab1+a +ab.故选A.8.已知函数f (x )=⎩⎪⎨⎪⎧e x -1,x <2,log 3x 2-1,x ≥2,若f (a )≥1,则a 的取值范围是( )A .[1,2)B .[1,+∞)C .[2,+∞)D .(-∞,-2]∪[1,+∞)答案 B解析 函数f (x )=⎩⎪⎨⎪⎧e x -1,x <2,log 3x 2-1,x ≥2,若f (a )≥1,可得⎩⎪⎨⎪⎧a <2,e a -1≥1或⎩⎪⎨⎪⎧a ≥2,log 3a 2-1≥1,解⎩⎪⎨⎪⎧a <2,e a -1≥1,可得1≤a <2;解⎩⎪⎨⎪⎧a ≥2,log 3a 2-1≥1,可得a ≥2.综上a ≥1.故选B.9.设x ,y ,z 均为大于1的实数,且log 2x =log 3y =log 5z ,则x 3,y 5,z 2中最小的是( ) A .z 2B .y 5C .x 3D .三个数相等答案 C解析 因为x ,y ,z 均为大于1的实数,所以log 2x =log 3y =log 5z >0,不妨设log 2x =log 3y =log 5z =t ,则t >0,x =2t,y =3t,z =5t,所以x 3=23t=8t ,y 5=35t =243t ,z 2=52t =25t,又y =x t 在(0,+∞)上单调递增,故x 3最小.故选C.10.计算:912-log95=________.答案 35解析 912-log 95=912×9-log 95=3×15=35.11.已知2x =72y=A ,且1x +1y=2,则A 的值是________.答案 7 2解析 由2x =72y=A 得x =log 2A ,y =12log 7A ,则1x +1y =1log 2A +2log 7A =log A 2+2log A 7=log A 98=2,A 2=98.又A >0,故A =98=7 2.12.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=________.答案 9解析 因为f (x )=|log 3x |,正实数m ,n 满足m <n ,且f (m )=f (n ),所以-log 3m =log 3n ,所以mn =1.因为f (x )在区间[m 2,n ]上的最大值为2,函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数,所以-log 3m 2=2或log 3n =2.若-log 3m 2=2,得m =13,则n =3,此时log 3n =1,满足题意.那么n m =3÷13=9.同理.若log 3n =2,得n =9,则m =19.此时-log 3m 2=4>2,不满足题意.综上可得n m=9.二、高考小题13.(2019·天津高考)已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c 的大小关系为( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b答案 A解析 因为y =log 5x 是增函数,所以a =log 52<log 55=0.5.因为y =log 0.5x 是减函数,所以b =log 0.50.2>log 0.50.5=1.因为y =0.5x 是减函数,所以0.5=0.51<c =0.50.2<0.50=1,即0.5<c <1.所以a <c <b .故选A.14.(2019·北京高考)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A .1010.1B .10.1C .lg 10.1D .10-10.1答案 A解析 由题意知,m 1=-26.7,m 2=-1.45,代入所给公式得-1.45-(-26.7)=52lg E 1E 2,所以lg E 1E 2=10.1,所以E 1E 2=1010.1.故选A.15.(2018·全国卷Ⅲ)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( )A .y =ln (1-x )B .y =ln (2-x )C .y =ln (1+x )D .y =ln (2+x )答案 B解析 函数y =ln x 过定点(1,0),(1,0)关于直线x =1对称的点还是(1,0),只有y =ln (2-x )过此点,故选B.16.(2016·全国卷Ⅰ)若a >b >1,0<c <1,则( ) A .a c<b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c解析 解法一:由a >b >1,0<c <1,知a c>b c,A 错误;∵0<c <1,∴-1<c -1<0,∴y =x c -1在x ∈(0,+∞)上是减函数,∴bc -1>ac -1,又ab >0,∴ab ·bc -1>ab ·ac -1,即ab c >ba c,B 错误;易知y =log c x 是减函数,∴0>log c b >log c a ,∴log b c <log a c ,D 错误;由log b c <log a c <0,得-log b c >-log a c >0,又a >b >1>0,∴-a log b c >-b log a c >0,∴a log b c <b log a c ,故选C.解法二:依题意,不妨取a =10,b =2,c =12.易验证A ,B ,D 均是错误的,只有C 正确.17.(2018·全国卷Ⅰ)已知函数f (x )=log 2(x 2+a ),若f (3)=1,则a =________. 答案 -7解析 根据题意,有f (3)=log 2(9+a )=1,可得9+a =2,所以a =-7.18.(2016·浙江高考)已知a >b >1.若log a b +log b a =52,a b =b a,则a =________,b =________.答案 4 2解析 令log a b =t ,∵a >b >1,∴0<t <1,由log a b +log b a =52得,t +1t =52,解得t =12或t =2(舍去),即log a b =12,∴b =a ,又a b =b a ,∴a a =(a )a ,即a a =a a 2,亦即a =a2,解得a =4,∴b =2.三、模拟小题19.(2020·湖南湘潭高三阶段测试)如果2log a (P -2Q )=log a P +log a Q ,那么P Q的值为( )A.14 B .4 C .6 D .4或1答案 B解析 由题意知P >0,Q >0,P >2Q .由2log a (P -2Q )=log a P +log a Q 可得log a (P -2Q )2=log a (PQ ),所以(P -2Q )2=PQ ,可化为P 2-5PQ +4Q 2=0,又因为Q >0,所以⎝ ⎛⎭⎪⎫P Q 2-5P Q+4=0,解得P Q =4或P Q=1(舍去).故选B.20.(2019·广州市高三年级调研)已知实数a =2ln 2,b =2+2ln 2,c =(ln 2)2,则a ,b ,c 的大小关系是( )A .c <b <aB .c <a <bC .b <a <cD .a <c <b解析 因为ln 2=log e 2,所以0<ln 2<1,所以c =(ln 2)2<1,而20<2ln 2<21,即1<a <2,b =2+2ln 2>2,所以c <a <b .故选B.21.(2019·大庆模拟)设函数f (x )=x 3+log 2(x +x 2+1),则对任意实数a ,b ,若a +b ≥0,则( )A .f (a )+f (b )≤0B .f (a )+f (b )≥0C .f (a )-f (b )≤0D .f (a )-f (b )≥0答案 B解析 设f (x )=x 3+log 2(x +x 2+1),其定义域为R ,f (-x )=-x 3+log 2(-x +x 2+1)=-x 3-log 2(x +x 2+1)=-f (x ),所以f (x )是奇函数,且在[0,+∞)上单调递增,故f (x )在R 上单调递增,那么a +b ≥0,即a ≥-b 时,f (a )≥f (-b ),得f (a )≥-f (b ),可得f (a )+f (b )≥0.故选B.22.(2019·安庆二模)若函数f (x )=log a x (a >0且a ≠1)的定义域与值域都是[m ,n ](m <n ),则a 的取值范围是( )A .(1,+∞)B .(e ,+∞)C .(1,e)D .答案 D解析 函数f (x )=log a x 的定义域与值域相同等价于方程log a x =x 有两个不同的实数解.因为log a x =x ⇔ln x ln a =x ⇔ln a =ln x x ,所以问题等价于直线y =ln a 与函数y =ln x x 的图象有两个交点.作函数y =ln x x 的图象,如图所示.根据图象可知,当0<ln a <1e 时,即1<a <e 1e 时,直线y =ln a 与函数y =ln xx的图象有两个交点.故选D.23.(2019·陕西咸阳高三联考)已知函数f (x )=x ·ln 1+x 1-x ,a =f ⎝ ⎛⎭⎪⎫-1π,b =f ⎝ ⎛⎭⎪⎫1e ,c=f ⎝ ⎛⎭⎪⎫14,则以下关系成立的是( )A .c <a <bB .c <b <aC .a <b <cD .a <c <b答案 A解析 因为f (x )=x ·ln 1+x1-x=x [ln (1+x )-ln (1-x )],所以f (-x )=(-x )[ln (1-x )-ln (1+x )]=x [ln (1+x )-ln (1-x )]=f (x ),所以f (x )为偶函数,所以a =f ⎝ ⎛⎭⎪⎫-1π=f ⎝ ⎛⎭⎪⎫1π.当0<x <1时,易知f (x )为增函数.又0<14<1π<1e <1,所以f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫1π<f ⎝ ⎛⎭⎪⎫1e ,即c <a <b ,故选A.24.(2019·山东省烟台市高三(上)期末)已知函数f (x )=⎩⎨⎧|log 2x -1|,0<x ≤4,3-x ,x >4,设a ,b ,c 是三个不相等的实数,且满足f (a )=f (b )=f (c ),则abc 的取值范围为________. 答案 (16,36)解析 作出函数f (x )的图象如图所示.当x >4时,由f (x )=3-x =0,得x =3,得x =9,若a ,b ,c 互不相等,不妨设a <b <c ,因为f (a )=f (b )=f (c ),所以由图象可知0<a <2<b <4,4<c <9,由f (a )=f (b ),得1-log 2a =log 2b -1,即log 2a +log 2b =2,即log 2(ab )=2,则ab =4,所以abc =4c ,因为4<c <9,所以16<4c <36,即16<abc <36,所以abc 的取值范围是(16,36).一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2020·湖北黄冈摸底)设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值.解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3,∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x ) =log 2[(1+x )(3-x )] =log 2[-(x -1)2+4],∴当x ∈[0,1]时,f (x )是增函数;当x ∈⎝ ⎛⎦⎥⎤1,32时,f (x )是减函数, 故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=2. 2.(2019·福建漳州模拟)已知函数f (x )=-x +log 21-x1+x .(1)求f ⎝⎛⎭⎪⎫12019+f ⎝ ⎛⎭⎪⎫-12019的值;(2)当x ∈(-a ,a ],其中a ∈(0,1),a 是常数时,函数f (x )是否存在最小值?若存在,求出f (x )的最小值;若不存在,请说明理由.解 (1)∵f (x )+f (-x )=log 21-x 1+x +log 21+x 1-x =log 21=0,∴f ⎝ ⎛⎭⎪⎫12019+f ⎝ ⎛⎭⎪⎫-12019=0.(2)函数f (x )存在最小值.f (x )的定义域为(-1,1), ∵f (x )=-x +log 2⎝⎛⎭⎪⎫-1+2x +1, 当x ∈(-1,1)时,f (x )为减函数,∴当a ∈(0,1),x ∈(-a ,a ]时,f (x )单调递减. ∴当x =a 时,f (x )min =-a +log 21-a1+a .3.(2019·渭南模拟)已知函数f (x )=lnx +1x -1. (1)求函数f (x )的定义域,并判断函数f (x )的奇偶性; (2)对于x ∈[2,6],f (x )=ln x +1x -1>ln mx -17-x恒成立,求实数m 的取值范围. 解 (1)由x +1x -1>0,解得x <-1或x >1, ∴函数f (x )的定义域为(-∞,-1)∪(1,+∞), 当x ∈(-∞,-1)∪(1,+∞)时,f (-x )=ln-x +1-x -1=ln x -1x +1=ln ⎝⎛⎭⎪⎫x +1x -1-1=-ln x +1x -1=-f (x ). ∴f (x )=lnx +1x -1是奇函数.(2)由于x ∈[2,6]时,f (x )=ln x +1x -1>ln mx -17-x恒成立,∴x +1x -1>m x -17-x>0恒成立, ∵x ∈[2,6],∴0<m <(x +1)(7-x )在x ∈[2,6]上恒成立. 令g (x )=(x +1)(7-x )=-(x -3)2+16,x ∈[2,6],由二次函数的性质可知,当x ∈[2,3]时函数g (x )单调递增,x ∈[3,6]时函数g (x )单调递减,∴当x ∈[2,6]时,g (x )min =g (6)=7, ∴0<m <7.故实数m 的取值范围为(0,7).4.(2019·大庆模拟)已知函数f (x )=lg ⎝⎛⎭⎪⎫x +ax-2,其中a 是大于0的常数.(1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围. 解 (1)当a >1时,定义域为(0,+∞), 当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }. (2)设g (x )=x +a x-2,当a ∈(1,4),x ∈[2,+∞)时,g ′(x )=1-a x 2=x 2-ax2>0恒成立,∴g (x )=x +a x-2在[2,+∞)上是增函数,∴f (x )=lg ⎝ ⎛⎭⎪⎫x +a x -2在[2,+∞)上的最小值为f (2)=lg a2.(3)对任意x ∈[2,+∞)恒有f (x )>0, 即x +ax-2>1对x ∈[2,+∞)恒成立, ∴a >3x -x 2,令h (x )=3x -x 2,则h (x )=3x -x 2=-⎝ ⎛⎭⎪⎫x -322+94,又h (x )在x ∈[2,+∞)上是减函数, ∴h (x )max =h (2)=2,∴a的取值范围为(2,+∞).。

2021年普通高等学校招生全国统一考试(全国新课标II卷)数学试题 (理科) word解析版

2021年普通高等学校招生全国统一考试(全国新课标II卷)数学试题 (理科) word解析版

普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷(选择题 共50分)一、 选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N 等于( ) A .{0,1,2} B .{-1,0,1,2} C .{-1,0,2,3} D .{0,1,2,3} 答案 A 解析 化简集合M 得M ={x |-1<x <3,x ∈R },则M ∩N ={0,1,2}.2.设复数z 满足(1-i)z =2i ,则z =( )A .-1+iB .-1-IC .1+iD .1-i答案 A解析 由已知得z =2i1-i =2i (1+i )(1-i )(1+i )=-1+i.3.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1等于( )A.13 B .-13 C.19 D .-19 答案 C解析 设等比数列{a n }的公比为q ,由S 3=a 2+10a 1得a 1+a 2+a 3=a 2+10a 1,即a 3=9a 1,q 2=9,又a 5=a 1q 4=9,所以a 1=19.4.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( ) A .α∥β且l ∥α B .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l 答案 D 解析 假设α∥β,由m ⊥平面α,n ⊥平面β,则m ∥n ,这与已知m ,n 为异面直线矛盾,那么α与β相交,设交线为l 1,则l 1⊥m ,l 1⊥n ,在直线m 上任取一点作n 1平行于n ,那么l 1和l 都垂直于直线m 与n 1所确定的平面,所以l 1∥l .5.已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a 等于( )A .-4B .-3C .-2D .-1 答案 D解析 (1+ax )(1+x )5中含x 2的项为:(C 25+C 15a )x 2,即C 25+C 15a =5,a =-1.6.执行右面的程序框图,如果输入的N =10,那么输出的S =( )A .1+12+13+…+110B .1+12!+13!+…+110!C .1+12+13+…+111 D .1+12!+13!+…+111!答案 B解析 k =1,T =11,S =1,k =2,T =11×2=12!,S =1+12!,k =3,T =11×2×3=13!,S =1+12!+13!,…由于N =10,即k >10时,结束循环,共执行10次.所以输出S =1+12!+13!+…+110!.7.一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,1,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )答案 A 解析 在空间直角坐标系中,先画出四面体O -ABC 的直观图,以zOx 平面为投影面,则得到正视图,所以选A.8.设a =log 36,b =log 510,c =log 714,则( )A .c >b >aB .b >c >aC .a >c >bD .a >b >c答案 D解析 设a =log 36=1+log 32=1+1log 23,b =log 510=1+log 52=1+1log 25,c =log 714=1+log 72=1+1log 27,显然a >b >c .(9)已知a >0,x ,y 满足约束条件()133x x y y a x ⎧≥⎪+≤⎨⎪≥-⎩,若z=2x+y 的最小值为1,则a=(A) 14 (B) 12(C)1 (D)210.已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( ) A .∃x 0∈R ,f (x 0)=0B .函数y =f (x )的图象是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(-∞,x 0)上单调递减D .若x 0是f (x )的极值点,则f ′(x 0)=0 答案 C解析 若c =0,则有f (0)=0,所以A 正确.由f (x )=x 3+ax 2+bx +c 得f (x )-c =x 3+ax 2+bx ,因为函数f (x )=x 3+ax 2+bx 的对称中心为(0,0),所以f (x )=x 3+ax 2+bx +c 的对称中心为(0,c ),所以B 正确.由三次函数的图象可知,若x 0是f (x )的极小值点,则极大值点在x 0的左侧,所以函数在区间(-∞,x 0 )单调递减是错误的,D 正确.选C.11.设抛物线C :y 2=2px (p ≥0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x 答案 C解析 由题意知:F ⎝⎛⎭⎫p 2,0,抛物线的准线方程为x =-p 2,则由抛物线的定义知,x M =5-p2,设以MF 为直径的圆的圆心为⎝⎛⎭⎫52,y M 2,所以圆的方程为⎝⎛⎭⎫x -522+⎝⎛⎭⎫y -y M 22=254,又因为圆过点(0,2),所以y M =4,又因为点M 在C 上,所以16=2p ⎝⎛⎭⎫5-p2,解得p =2或p =8,所以抛物线C 的方程为y 2=4x 或y 2=16x ,故选C.12.已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫1-22,12 C.⎝⎛⎭⎫1-22,13 D.⎣⎡⎭⎫13,12 答案 B二、填空题13.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 答案 2解析 由题意知:AE →·BD →=(AD →+DE →)·(AD →-AB →)=(AD →+12AB →)·(AD →-AB →)=AD →2-12AD →·AB →-12AB →2=4-0-2=2.14.从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=________. 答案 8 解析 由题意,取出的两个数只可能是1与4,2与3这两种情况,∴在n 个数中任意取出两个不同的数的总情况应该是C 2n =n (n -1)2=2÷114=28,∴n =8.15.设θ为第二象限角,若tan ⎝⎛⎭⎫θ+π4=12,则sin θ+cos θ=________. 答案 -105解析 ∵tan ⎝⎛⎭⎫θ+π4=12,∴tan θ=-13, 即{3sin θ=-cos θ,sin 2θ+cos 2θ=1,解得sin θ=1010,cos θ=-31010.∴sin θ+cos θ=-105.16.等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________. 答案 -49解析 由题意知a 1+a 10=0,a 1+a 15=103.两式相减得a 15-a 10=103=5d ,∴d =23,a 1=-3.∴nS n =n ·⎝ ⎛⎭⎪⎫na 1+n (n -1)2d =n 3-10n23=f (n ), f ′(n )=13n (3n -20).由函数的单调性知f (6)=-48,f (7)=-49. ∴nS n 的最小值为-49.三、解答题17.△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B . (1)求B ;(2)若b =2,求△ABC 面积的最大值. 解 (1)由已知及正弦定理得 sin A =sin B cos C +sin C sin B ,① 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .② 由①,②和C ∈(0,π)得sin B =cos B .又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac .由已知及余弦定理得4=a 2+c 2-2accos π4.又a 2+c 2≥2ac ,故ac ≤42-2,当且仅当a =c 时,等号成立. 因此△ABC 面积的最大值为2+1.18.如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB .(1)证明:BC 1∥平面A 1CD ;(2)求二面角D -A 1C -E 的正弦值.(1)证明 连结AC 1交A 1C 于点F ,则F 为AC 1的中点. 又D 是AB 的中点,连结DF ,则BC 1∥DF . 因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD , 所以BC 1∥平面A 1CD .(2)解 由AC =CB =22AB 得,AC ⊥BC . 以C 为坐标原点,CA →的方向为x 轴正方向,CB →的方向为y 轴正方向,CC 1→的方向为z 轴正方向,建立如图所示的空间直角坐标系C -xyz .设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2), CD →=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2). 设n =(x 1,y 1,z 1)是平面A 1CD 的法向量, 则{n ·CD →=0,n ·CA 1→=0,即{x 1+y 1=0,2x 1+2z 1=0.可取n =(1,-1,-1).同理,设m 是平面A 1CE 的法向量,则{m ·CE →=0,m ·CA 1→=0.可取m =(2,1,-2). 从而cos 〈n ,m 〉=n ·m |n ||m |=33,故sin 〈n ,m 〉=63.即二面角D -A 1C -E 的正弦值为63.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率; (3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的T 的数学期望.解 (1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000. 当X ∈[130,150]时,T =500×130=65 000. 所以T ={800X -39 000,100≤X <130,65 000,130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为T 45 000 53 00061 000 65 000 P 0.10.2 0.3 0.4所以E (T )=45 000×0.1+53 000×0.2+61 000×0.3+65 000×0.4=59 400.20.平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形的最大值.解 (1)设A (x 1,y 1),B (x 2,y 2),则 x 21a 2+y 21b 2=1① x 22a 2+y 22b 2=1②①-②,得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0.因为y 1-y 2x 1-x 2=-1,设P (x 0,y 0),因为P 为AB 的中点,且OP 的斜率为12,所以y 0=12x 0,即y 1+y 2=12(x 1+x 2).所以可以解得a 2=2b 2,即a 2=2(a 2-c 2),即a 2=2c 2, 又因为c =3,所以a 2=6,所以M 的方程为x 26+y 23=1.(2)因为CD ⊥AB ,直线AB 方程为x +y -3=0, 所以设直线CD 方程为y =x +m ,将x +y -3=0代入x 26+y 23=1得:3x 2-43x =0,即A (0,3),B ⎝⎛⎭⎫433,-33, 所以可得|AB |=463;将y =x +m 代入x 26+y 23=1得:3x 2+4mx +2m 2-6=0, 设C (x 3,y 3),D (x 4,y 4), 则|CD |=2(x 3+x 4)2-4x 3x 4=22318-2m 2,又因为Δ=16m 2-12(2m 2-6)>0,即-3<m <3,所以当m =0时,|CD |取得最大值4,所以四边形ACBD 面积的最大值为12|AB |·|CD |=863.21.已知函数f (x )=e x -ln(x +m ).(1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; (2)当m ≤2时,证明f (x )>0.(1)解 f (x )=e x -ln(x +m )⇒f ′(x )=e x -1x +m ⇒f ′(0)=e 0-10+m =0⇒m =1,定义域为{x |x >-1},f ′(x )=e x -1x +m =e x (x +1)-1x +1,令1)1()(-+=x e x g x ,则0)2()(>+='x e x g x,又0)0(=g显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增.(2)证明 令g (x )=e x -ln(x +2),则g ′(x )=e x -1x +2(x >-2).h (x )=g ′(x )=e x -1x +2(x >-2)⇒h ′(x )=e x +1(x +2)2>0,所以h (x )是增函数,h (x )=0至多只有一个实数根,又g ′(-12)=1e -132<0,g ′(0)=1-12>0,所以h (x )=g ′(x )=0的唯一实根在区间⎝⎛⎭⎫-12,0内,设g ′(x )=0的根为t ,则有g ′(t )=e t-1t +2=0⎝⎛⎭⎫-12<t <0,所以,e t =1t +2⇒t +2=e -t , 当x ∈(-2,t )时,g ′(x )<g ′(t )=0,g (x )单调递减; 当x ∈(t ,+∞)时,g ′(x )>g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t-ln(t +2)=1t +2+t =(1+t )2t +2>0,当m ≤2时,有ln(x +m )≤ln(x +2),所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0.22.[选修4-1]几何证明选讲如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,E 、F 分别为弦AB 与弦AC 上的点,且BC ·AE =DC ·AF ,B 、E 、F 、C 四点共圆.(1)证明:CA 是△ABC 外接圆的直径;(2)若DB =BE =EA ,求过B 、E 、F 、C 四点的圆的面积与△ABC 外接圆面积的比值.(1)证明 因为CD 为△ABC 外接圆的切线,所以∠DCB =∠A ,由题设知BC F A =DCEA ,故△CDB ∽△AEF , 所以∠DBC =∠EF A .因为B ,E ,F ,C 四点共圆,所以∠CFE =∠DBC , 故∠EF A =∠CFE =90°.所以∠CBA =90°,因此CA 是△ABC 外接圆的直径.(2)解 连结CE ,因为∠CBE =90°, 所以过B ,E ,F ,C 四点的圆的直径为CE ,由DB =BE ,有CE =DC , 又BC 2=DB ·BA =2DB 2, 所以CA 2=4DB 2+BC 2=6DB 2.而DC 2=DB ·DA =3DB 2,故过B ,E ,F ,C 四点的圆的面积与△ABC外接圆面积的比值为12.23.[选修4-4]坐标系与参数方程已知动点P 、Q 都在曲线C :{ x =2cos t ,y =2sin t (t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解 (1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α), 因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为{x =cos α+cos 2α,y =sin α+sin 2α,(α为参数,0<α<2π). (2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π).当α=π,d =0,故M 的轨迹过坐标原点.24.[选修4-5]不等式选讲设a 、b 、c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a ≥1.证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 得 a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1, 即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a ≥1.。

河北省衡水中学2020-2021学年第二次联考数学(理科)试卷(全国Ⅱ) (解析版)

河北省衡水中学2020-2021学年第二次联考数学(理科)试卷(全国Ⅱ) (解析版)

2021年河北省衡水中学高考数学第二次联考试卷(理科)(全国Ⅱ)一、选择题(共12小题).1.已知集合U={0,1,2,3,4,5},A={2,4,5},B={0,2,4},则A∩∁U B=()A.{5}B.{2,4}C.{0,2,5}D.{0,2,4,5} 2.已知sinα>0,cosα<0,则()A.sin2α>0B.cos2α<0C.D.3.已知复数z=a+(a﹣1)i(a∈R),则|z|的最小值为()A.B.C.D.14.直线y=2x﹣1被过点(0,1)和(2,1),且半径为的圆截得的弦长为()A.B.C.D.或5.已知一四棱锥的三视图如图所示,则该四棱锥的较长侧棱与底面所成角的正切值为()A.B.C.D.6.已知双曲线的焦点F(c,0)到渐近线的距离为,且点在双曲线上,则双曲线的方程为()A.B.C.D.7.异或运算是一种逻辑运算,异或用符号“∧”表示,在二进制下,当输入的两个量的同一数位的两个数字不同时,输出1,反之输出0.如十进制下的数10与9表示成二进制分别是1010,1001(即10=1×23+0×22+1×21+0×20,9=1×23+0×22+0×21+1×20),那么10∧9=1010∧1001=0011,现有运算12∧m=1100∧n=0001,则m的值为()A.7B.9C.11D.138.已知奇函数f(x)的定义域为R,且满足f(2+x)=f(2﹣x),以下关于函数f(x)的说法:①f(x)满足f(8﹣x)+f(x)=0;②8为f(x)的一个周期;③是满足条件的一个函数;④f(x)有无数个零点.其中正确说法的个数为()A.1B.2C.3D.49.已知三棱锥P﹣ABC的高为1,底面△ABC为等边三角形,PA=PB=PC,且P,A,B,C都在体积为的球O的表面上,则该三棱锥的底面△ABC的边长为()A.B.C.3D.10.甲、乙两人拿两颗如图所示的正四面体骰子做抛掷游戏,规则如下:由一人同时掷两个骰子,观察底面点数,若两个点数之和为5,则由原掷骰子的人继续掷;若掷出的点数之和不是5,就由对方接着掷.第一次由甲开始掷,设第n次由甲掷的概率为P n,则P10的值为()A.B.C.D.11.若P(n)表示正整数n的个位数字,a n=P(n2)﹣P(2n),数列{a n}的前n项和为S n,则S2021=()A.﹣1B.0C.1009D.101112.已知函数f(x)=e x ln|x|,a=f(﹣ln3),b=f(ln3),c=f(3e),d=f(e3),则a,b,c,d的大小顺序为()A.a>b>c>d B.d>c>b>a C.c>d>b>a D.c>d>a>b二、填空题(共4小题).13.若向量,满足=(cosθ,sinθ)(θ∈R),||=2,则|2﹣|的取值范围为.14.在一次去敬老院献爱心活动中,甲、乙、丙、丁、戊5名同学比带队老师先到,老师想知道他们到的先后顺序,甲说乙不是最早的,乙说甲不是最晚的,丙说他比乙先到.若他们说的都为真话,从上述回答分析,5人可能到的先后顺序的不同情况种数为.15.已知等差数列{a n}满足a2=3,a3是a1与a9的等比中项,则的值为.16.在长方体ABCD﹣A1B1C1D1中,AB=1,AD+AA1=2,E为棱C1D1上任意一点,给出下列四个结论:①BD1与AC不垂直;②长方体ABCD﹣A1B1C1D1外接球的表面积最小为3π;③E到平面A1B1D的距离的最大值为;④长方体ABCD﹣A1B1C1D1的表面积的最大值为6.其中所有正确结论的序号为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在四边形ABCD中,对角线AC与BD相交于点E,△ABD为等边三角形,BD=2,AC =,BC=1.(1)求∠CBD的大小;(2)求△ADE的面积.18.为贯彻“不忘立德树人初心,牢记为党育人、为国育才使命”的要求,某省推出的高考新方案是“3+1+2”模式,“3”是语文、外语、数学三科必考,“1”是在物理与历史两科中选择一科,“2”是在化学,生物,政治,地理四科中选择两科作为高考科目.某学校为做好选课走班教学,给出三种可供选择的组合进行模拟选课,其中A组合:物理、化学、生物,B组合:历史、政治、地理,C组合:物理、化学、地理根据选课数据得到,选择A组合的概率为,选择B组合的概率为,选择C组合的概率为,甲、乙、丙三位同学每人选课是相互独立的.(1)求这三位同学恰好选择互不相同组合的概率;(2)记η表示这三人中选择含地理的组合的人数,求η的分布列及数学期望.19.如图,两个全等的梯形ABCD与BAEF所在的平面互相垂直,AB⊥AD,AD∥BC,AB =AD,BC=2AD,P为CF的中点.(1)证明:DP∥平面ABFE;(2)求平面DEF与平面BCF所成的锐二面角的余弦值.20.已知曲线C的方程为.(1)求曲线C的离心率;(2)设曲线C的右焦点为F,斜率为k的动直线l过点F与曲线C交于A,B两点,线段AB的垂直平分线交x轴于点P,证明:为定值.21.已知函数f(x)=x+alnx,g(x)=x2e x,a∈R.(1)求函数f(x)的单调区间;(2)当a=2时,方程g(x)=mf(x)有两个实根,求实数m的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数)以O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)求曲线C1的普通方程及曲线C2的直角坐标方程;(2)若曲线C1上存在点P到曲线C2的距离为1,求b的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣a|+|x+b|,a,b∈R.(1)当a=4,b=1时,求不等式f(x)≤9的解集;(2)当ab>0时,f(x)的最小值为1,证明:|+|≥.参考答案一、选择题(共12小题).1.已知集合U={0,1,2,3,4,5},A={2,4,5},B={0,2,4},则A∩∁U B=()A.{5}B.{2,4}C.{0,2,5}D.{0,2,4,5}解:由题意得∁U B={1,3,5},所以A∩∁U B={5}.故选:A.2.已知sinα>0,cosα<0,则()A.sin2α>0B.cos2α<0C.D.解:由sinα>0,cosα<0,可得α∈(2kπ+,2kπ+π),k∈Z,对于A,可得sin2α=2sinαcosα<0,错误;对于B,当α∈(2kπ+,2kπ+π),k∈Z时,cosα∈(﹣1,0),此时cos2α=2cos2α﹣1∈(﹣1,1),错误;对于C,因为∈(kπ+,kπ+),k∈Z,可得,正确;对于D,因为∈(kπ+,kπ+),k∈Z,当k为偶数时,可得sin>0,错误;故选:C.3.已知复数z=a+(a﹣1)i(a∈R),则|z|的最小值为()A.B.C.D.1解:因为z=a+(a﹣1)i,所以,所以|z|的最小值为,故选:B.4.直线y=2x﹣1被过点(0,1)和(2,1),且半径为的圆截得的弦长为()A.B.C.D.或解:过点(0,1)和(2,1),半径为的圆的圆心(1,﹣1)或(1,3).过点(0,1),(2,1)且半径为的圆的方程为(x﹣1)2+(y+1)2=5或(x﹣1)2+(y﹣3)2=5,则圆心到直线y=2x﹣1的距离为或,则弦长=.故选:B.5.已知一四棱锥的三视图如图所示,则该四棱锥的较长侧棱与底面所成角的正切值为()A.B.C.D.解:设该四棱锥为P﹣ABCD,则由题意可知四棱锥P﹣ABCD满足底面ABCD为矩形,则:平面PDC⊥平面ABCD,且PC=PD=3,AB=4,AD=2.如图,过点P作PE⊥CD,则PE⊥平面ABCD,连接AE,可知∠PAE为直线PA与平面ABCD 所成的角,则,,所以.故选:C.6.已知双曲线的焦点F(c,0)到渐近线的距离为,且点在双曲线上,则双曲线的方程为()A.B.C.D.解:双曲线的焦点F(c,0)到渐近线bx±ay=0的距离为,解得,所以.又c2=a2+b2,所以b2=3a2.因为点在双曲线上,所以,所以a2=3,b2=9,所以双曲线的方程为.故选:D.7.异或运算是一种逻辑运算,异或用符号“∧”表示,在二进制下,当输入的两个量的同一数位的两个数字不同时,输出1,反之输出0.如十进制下的数10与9表示成二进制分别是1010,1001(即10=1×23+0×22+1×21+0×20,9=1×23+0×22+0×21+1×20),那么10∧9=1010∧1001=0011,现有运算12∧m=1100∧n=0001,则m的值为()A.7B.9C.11D.13解:由12∧m=1100∧n=0001,可得n=1101,表示成十进制为13,所以m=13.故选:D.8.已知奇函数f(x)的定义域为R,且满足f(2+x)=f(2﹣x),以下关于函数f(x)的说法:①f(x)满足f(8﹣x)+f(x)=0;②8为f(x)的一个周期;③是满足条件的一个函数;④f(x)有无数个零点.其中正确说法的个数为()A.1B.2C.3D.4解:因为f(2+x)=f(2﹣x),所以f(4+x)=f(﹣x),因为f(x)是奇函数,所以f(﹣x)=﹣f(x),所以f(4+x)=﹣f(x),所以f(8+x)=﹣f(x+4)=f(x),所以8为f(x)的一个周期,故②正确;由f(8+x)=f(x)可得f(8﹣x)=f(﹣x)=﹣f(x),所以f(8﹣x)+f(x)=0,故①正确;为奇函数满足f(x)+f(﹣x)=0,且一条对称轴为直线x=2,故③正确;由f(x)为奇函数且定义域为R知,f(0)=0,又f(x)为周期函数,所以f(x)有无数个零点,故④正确.故选:D.9.已知三棱锥P﹣ABC的高为1,底面△ABC为等边三角形,PA=PB=PC,且P,A,B,C都在体积为的球O的表面上,则该三棱锥的底面△ABC的边长为()A.B.C.3D.解:设球O的半径为R,由球的体积为可得,,解得R=2.因为三棱锥P﹣ABC的高h为1,所以球心O在三棱锥外.如图,设点O1为△ABC的外心,则OO1⊥平面ABC.在Rt△AO1O中,由,且OO1=R﹣h=1,得.因为△ABC为等边三角形,所以,所以.故选:C.10.甲、乙两人拿两颗如图所示的正四面体骰子做抛掷游戏,规则如下:由一人同时掷两个骰子,观察底面点数,若两个点数之和为5,则由原掷骰子的人继续掷;若掷出的点数之和不是5,就由对方接着掷.第一次由甲开始掷,设第n次由甲掷的概率为P n,则P10的值为()A.B.C.D.解:抛掷两颗正四面体骰子观察底面上的数字之和为5有4种情况,得点数之和为5的概率为,第n次由甲掷有两种情况:一是第n﹣1由甲掷,第n次由甲掷,概率为,二是第n﹣1次由乙掷,第n次由甲掷,概率为.这两种情况是互斥的,所以,即,所以,即数列是以为首项,为公比的等比数列,所以,所以.故选:A.11.若P(n)表示正整数n的个位数字,a n=P(n2)﹣P(2n),数列{a n}的前n项和为S n,则S2021=()A.﹣1B.0C.1009D.1011解:由题意得a1=﹣1,a2=0,a3=3,a4=﹣2,a5=5,a6=4,a7=5,a8=﹣2,a9=﹣7,a10=0,a11=﹣1,a12=0,…∴数列{a n}为周期数列,且周期为10,因为S10=5,所以S2021=5×202+(﹣1)=1009,故选:C.12.已知函数f(x)=e x ln|x|,a=f(﹣ln3),b=f(ln3),c=f(3e),d=f(e3),则a,b,c,d的大小顺序为()A.a>b>c>d B.d>c>b>a C.c>d>b>a D.c>d>a>b解:因为,所以a<b.因为函数f(x)=e x ln|x|在区间(0,+∞)上单调递增,所以b,c,d中b最小.构造函数g(x)=x﹣elnx,则,当x≥e时,g'(x)≥0,所以g(x)在区间[e,+∞)上单调递增,所以g(3)=3﹣eln3>g(e)=0,所以3>eln3.所以e3>3e,所以d>c,所以d>c>b>a.故选:B.二、填空题:本题共4小题,每小题5分,共20分.13.若向量,满足=(cosθ,sinθ)(θ∈R),||=2,则|2﹣|的取值范围为[0,4].解:,,设与的夹角为α,则:,∵α∈[0,π],∴0≤8﹣8cosα≤16,∴,∴的取值范围为[0,4].故答案为:[0,4].14.在一次去敬老院献爱心活动中,甲、乙、丙、丁、戊5名同学比带队老师先到,老师想知道他们到的先后顺序,甲说乙不是最早的,乙说甲不是最晚的,丙说他比乙先到.若他们说的都为真话,从上述回答分析,5人可能到的先后顺序的不同情况种数为48.解:按乙到达的名次顺序进行分类:乙第二个到达有A21A22=4种,乙第三个到达有A21A21A22=8种,乙第四个到达有A32A22=12种,乙最后到达有A44=24种,所以不同的情况种数为4+8+12+24=48.故答案为:48.15.已知等差数列{a n}满足a2=3,a3是a1与a9的等比中项,则的值为3n或(3n2+3n).解:设等差数列{a n}的公差为d,由a2=3,可得a1+d=3,①由a3是a1与a9的等比中项,可得a32=a1a9,即(a1+2d)2=a1(a1+8d),化为da1=d2,②由①②可得a1=d=或a1=3,d=0,当a1=3,d=0时,=a2+a4+…+a2n=3+3+…+3=3n;当a1=d=时,=a2+a4+…+a2n=3+6+…+3n=(3n2+3n).故答案为:3n或(3n2+3n).16.在长方体ABCD﹣A1B1C1D1中,AB=1,AD+AA1=2,E为棱C1D1上任意一点,给出下列四个结论:①BD1与AC不垂直;②长方体ABCD﹣A1B1C1D1外接球的表面积最小为3π;③E到平面A1B1D的距离的最大值为;④长方体ABCD﹣A1B1C1D1的表面积的最大值为6.其中所有正确结论的序号为②③④.解:对于①,当长方体为正方体时,BD1⊥AC,故①错误;对于②,如图,设AD=x,则AA1=2﹣x(0<x<2),所以,当x=1时,BD1的最小值为,即长方体ABCD﹣A1B1C1D1外接球的直径为,所以外接球表面积的最小值为3π,故②正确;对于③,设点E到平面A1B1D的距离为h,如图,由,可得,所以由②可知,,其中,当且仅当x=2﹣x,即x=1时等号成立,,当且仅当x=2﹣x,即x=1时等号成立,所以,当且仅当x=2﹣x,即x=1时,等号成立,故③正确;对于④,该长方体的表面积为S=2x+2x(2﹣x)+2(2﹣x)=4+4x﹣2x2=﹣2(x﹣1)2+6,当x=1时,S的最大值为6,故④正确.故答案为:②③④.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在四边形ABCD中,对角线AC与BD相交于点E,△ABD为等边三角形,BD=2,AC=,BC=1.(1)求∠CBD的大小;(2)求△ADE的面积.解:(1)在△ABC中,,由余弦定理得.因为0<∠ABC<π,所以,所以.(2)由知,BC∥AD,所以△BCE∽△DAE,所以,所以DE=2BE.因为BD=2,所以.所以.18.为贯彻“不忘立德树人初心,牢记为党育人、为国育才使命”的要求,某省推出的高考新方案是“3+1+2”模式,“3”是语文、外语、数学三科必考,“1”是在物理与历史两科中选择一科,“2”是在化学,生物,政治,地理四科中选择两科作为高考科目.某学校为做好选课走班教学,给出三种可供选择的组合进行模拟选课,其中A组合:物理、化学、生物,B组合:历史、政治、地理,C组合:物理、化学、地理根据选课数据得到,选择A组合的概率为,选择B组合的概率为,选择C组合的概率为,甲、乙、丙三位同学每人选课是相互独立的.(1)求这三位同学恰好选择互不相同组合的概率;(2)记η表示这三人中选择含地理的组合的人数,求η的分布列及数学期望.解:用A i表示第i位同学选择A组合,用B i表示第i位同学选择B组合,用∁i表示第i 位同学选择C组合,i=1,2,3.由题意可知,A i,B i,∁i互相独立,且.(1)三位同学恰好选择不同组合共有种情况,每种情况的概率相同,故三位同学恰好选择不同组合的概率为:.(2)由题意知η的所有可能取值为0,1,2,3,且η~B(3,),所以,,,,所以η的分布列为η0123P所以.19.如图,两个全等的梯形ABCD与BAEF所在的平面互相垂直,AB⊥AD,AD∥BC,AB =AD,BC=2AD,P为CF的中点.(1)证明:DP∥平面ABFE;(2)求平面DEF与平面BCF所成的锐二面角的余弦值.【解答】(1)证明:如图,取BF的中点Q,连接PQ,AQ.因为P,Q为CF,BF的中点,所以PQ∥BC,且.又因为AD∥BC,BC=2AD,所以PQ∥AD,且PQ=AD,所以四边形ADPQ为平行四边形,所以DP∥AQ.又AQ⊂平面ABFE,DP⊄平面ABFE,所以DP∥平面ABFE.(2)解:因为平面ABCD⊥平面BAEF,平面ABCD∩平面BAEF=AB,FB⊥AB,FB⊂平面BAEF,所以FB⊥平面ABCD.又BC⊂平面ABCD,所以FB⊥BC.又AB⊥FB,AB⊥BC,所以以B为坐标原点,分别以BA,BC,BF所在直线为x,y,z轴建立如图所示的空间直角坐标系.设BC=2,则.设平面DEF的一个法向量为,则,令z=1,得.易知平面BCF的一个法向量为,所以.所以平面DEF与平面BCF所成锐二面角的余弦值为.20.已知曲线C的方程为.(1)求曲线C的离心率;(2)设曲线C的右焦点为F,斜率为k的动直线l过点F与曲线C交于A,B两点,线段AB的垂直平分线交x轴于点P,证明:为定值.【解答】(1)解:由可知,点(x,y)到点(﹣1,0),(1,0)的距离之和为4,且4>2,根据椭圆的定义可知,曲线C为焦点在x轴上的椭圆.设椭圆的长轴长为2a,焦距为2c,则2a=4,2c=2,所以曲线C的离心率为.(2)证明:设椭圆的短轴长为2b,由(1)可得b2=a2﹣c2=3,所以曲线C的方程为,则F(1,0).由题意可知,动直线l的方程为y=k(x﹣1),设A(x1,y1),B(x2,y2),由,得(3+4k2)x2﹣8k2x+4(k2﹣3)=0,所以.设AB的中点为Q(x0,y0),则,.当k≠0时,线段AB的垂直平分线的方程为,令y=0,得,所以,==,所以.当k=0时,l的方程为y=0,此时,.综上,为定值.21.已知函数f(x)=x+alnx,g(x)=x2e x,a∈R.(1)求函数f(x)的单调区间;(2)当a=2时,方程g(x)=mf(x)有两个实根,求实数m的取值范围.解:(1)由题意知函数f(x)的定义域为(0,+∞),因为f(x)=x+alnx,a∈R,所以,①当a≥0时,f'(x)>0在区间(0,+∞)上恒成立,所以函数f(x)的单调递增区间为(0,+∞),无单调递减区间;②当a<0时,令f'(x)>0,得x>﹣a,令f'(x)<0,得0<x<﹣a,所以函数f(x)的单调递增区间为(﹣a,+∞),单调递减区间为(0,﹣a);综上:当a≥0时,函数f(x)的单调递增区间为(0,+∞),无单调递减区间;当a<0时,函数f(x)的单调递增区间为(﹣a,+∞),单调递减区间为(0,﹣a);(2)方程g(x)=mf(x)有两个实根,即关于x的方程x2e x﹣m(x+2lnx)=0有两个实根,即函数h(x)=x2e x﹣m(x+2lnx)有两个零点,又h(x)=x2e x﹣m(x+2lnx)=e x+2lnx﹣m(x+2lnx),令t=x+2lnx,由(1)得t是关于x的单调递增函数,且t∈R,所以只需函数u(t)=e t﹣mt有两个零点,令u(t)=0,得,令,则,易知当t∈(﹣∞,1)时,φ(t)单调递增,当t∈(1,+∞)时,φ(t)单调递减,所以当t=1时,φ(t)取得最大值,又因为当t<0时,φ(t)<0,当t>0时,φ(t)>0,φ(0)=0,则函数的图象如图所示:所以当,即m∈(e,+∞)时,函数h(x)有两个零点,所以实数m的取值范围为(e,+∞).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数)以O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)求曲线C1的普通方程及曲线C2的直角坐标方程;(2)若曲线C1上存在点P到曲线C2的距离为1,求b的取值范围.解:(1)由(α为参数),消去参数α,得曲线C1的普通方程为(x﹣1)2+(y﹣1)2=4,由,得,令x=ρcosθ,y=ρsinθ,得x﹣y=b,所以曲线C2的直角坐标方程为x﹣y﹣b=0.(2)设P(1+2cosα,1﹣2sinα),因为点P到直线x﹣y﹣b=0的距离为1,所以,化简得①.若关于α的方程①有解,则曲线C1上存在点P到曲线C2的距离为1,所以②,或③由②得,由③得,所以b的取值范围为.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣a|+|x+b|,a,b∈R.(1)当a=4,b=1时,求不等式f(x)≤9的解集;(2)当ab>0时,f(x)的最小值为1,证明:|+|≥.【解答】(1)解:由题意得f(x)=|2x﹣4|+|x+1|,当x≥2时,原不等式可化为3x﹣3≤9,解得x≤4,故2≤x≤4;(1分)当﹣1≤x<2时,原不等式可化为5﹣x≤9,解得x≥﹣4,故﹣1≤x<2;当x<﹣1时,原不等式可化为﹣3x+3≤9,解得x≥﹣2,故﹣2≤x<﹣1.综上,不等式f(x)≤9的解集为[﹣2,4].(2)证明:因为≥=,且ab>0,高中数学资料群734924357所以,当且仅当或时等号成立,高中数学资料群734924357。

2020届全国高考复习理科数学综合检测二(全国卷)(解析版)

2020届全国高考复习理科数学综合检测二(全国卷)(解析版)

2021届高考复习综合检测二(全国卷)数学(理科)考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 4 页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3 .本次考试时间120 分钟,满分150 分.4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题共60 分)一、选择题(本题共12小题,每小题 5 分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x2-x-2>0},B={x|log2x≤2},则A∩B等于()A.(-∞,-1)∪ (0,+∞ )B.(2,4]C.(0,2)D.(-1,4]2-i2.复数z=-对应的点在复平面内位于()1+iA.第一象限C.第三象限 3.七巧板是我国古代劳动人民的发明之一,被誉为“东方魔板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为()A. B. C. D.32 16 8 164.在△ ABC 中,内角A,B,C 的对边分别是a,b,c,若a2-b2=3bc,sin C=2 3sin B,则 A 等于()5.(2019 ·河南省郑州市第一中学适应性考试)已知函数 f (x)是定义在R 上的偶函数,且 f (0)B.第二象限D.第四象限A.π 2π 5 πB.3C. 3D. 6=0,当x<0时, f (x)单调递增.若实数 a 满足 f (3-|a +1|)>f9.抛物线 y 2=2px(p>0)的焦点为 F ,已知点 A 和 B 分别为抛物线上的两个动点.=120°,过弦 AB 的中点 M 作抛物线准线的垂线 MN ,垂足为 N ,则 |MN|的最大值为 ( ) |AB |A. 3 B . 1 C.233 D. 3333,则 a 的取值范围是 ( ) 3A.32,B. -∞, -3∪ -1,+∞22C.4, 3,D. -∞,4∪ -2,+∞336.一个几何体的三视图如图所示, 则这个几何体的体积为()A.6+6π 368+ 2π 3 C.69+2π 3 D. 67.已知函数 f (x)= Acos(ωx + φ) πA>0, ω>0, |φ|<2 的图象如图所示, 若函数h(x)=f (x)+1的2 π π 4 πA. 3B.2C. 3 D . π8. (2019 ·上海市吴淞中学期末 a -x 2)函数 f (x)=|x +a 1-|-x1为奇函数的充要条件是 (A . 0<a<1B . a>1C . 0<a ≤1D .a ≥1且满足∠ AFB则 两个不同零点分别为 x 1, x ,|lg|x -1|| x ≠1 ,10.(2019 ·上海市曹杨中学期末 )设定义域为 R 的函数 f (x)=则关于 x 的方0 x = 1 ,程 f 2(x)+ bf (x)+c =0有 7个不同实数根的充要条件是 ( )数 t 的取值范围是 ( )A . (-∞, 2) C .(-∞, 3)第Ⅱ卷(非选择题 共 90 分)、填空题 (本题共 4 小题,每小题 5分,共 20分.把答案填在题中横线上 )13.已知定义在 R 上的奇函数,当 x>0时, f (x)=log 2x -3x ,则 f (-1)= ________ . 14.若 (x -1)5-2x 4=a 0+ a 1(x -2)+a 2(x -2)2+ a 3(x -2)3+a 4(x - 2)4+a 5(x -2)5,则 a 2=15.设 f ′(x)和g ′(x)分别是 f (x)和g(x)的导函数,若 f ′(x) ·g ′(x)<0在区间 I 上恒成立,则1称 f (x)和 g(x)在区间 I 上单调性相反.若函数 f (x)=3x 3-2ax(a ∈R)与 g(x)=x 2+2bx(b ∈ R)在3区间 (a ,b)上单调性相反 (a>0) ,则 b - a 的最大值为 ______ .16.已知圆 O :x 2+y 2=1 与 x 轴负半轴的交点为 A , P 为直线 3x +4y - a =0 上一点,过 P作圆 O 的切线,切点为 T ,若|PA|=2|PT|,则 a 的最大值为 ______ .三、解答题 (本题共 6 小题,共 70分.解答应写出文字说明、证明过程或演算步骤 )17.(12 分)在锐角△ ABC 中, a ,b ,c 为内角 A ,B ,C 的对边,且满足 (2c -a)cos B - bcos A =0.(1)求角 B 的大小;(2)已知 c = 2,AC 边上的高 BD =3 721,求△ ABC 的面积 S 的值.A . b<0 且 c>0C .b<0 且 c = 0B . b<0 且 c<0D . b ≥ 0 且 c 11.(2020 ·哈尔滨市师范大学附属中学月考)已知 O 为△ ABC 的外接圆的圆心, 且 3O →A + 4O →B =- 5OC ,则 C 的值为 ( )πA.4πD.1212.已知函数 f (x)=ln x + x - t 2t ∈R ,若对任意的 x ∈[1,2] ,f (x)>-x ·f ′(x)恒成立,则实B. -∞, 32D. -∞,18.(12 分)如图,在长方体ABCD -A1B1C1D 1 中,AA1=1,底面ABCD 的周长4,E 为BA1 为的中点.(2)当长方体ABCD-A1B1C1D1的体积最大时,求直线BA1 与平面A1CD 所成的角θ.在椭圆 C 1 上.(1)求椭圆 C 1 的方程;(2)设 P 为椭圆 C 2上一点,过点 P 作直线交椭圆 C 1于 A ,C 两点,且 P 恰为弦 AC 的中点,则当点 P 变化时,试问△ AOC 的面积是否为常数, 若是,求出此常数, 若不是,请说明理由.20.(12 分 )当前,以“立德树人”为目标的课程改革正在有序推进.目前,国家教育主管部 门正在研制的 《新时代全面加强和改进学校体育美育工作意见》 ,以及将出台的加强劳动教育 指导意见和劳动教育指导大纲,无疑将对体美劳教育提出刚性要求.为激发学生加强体育活 动,保证学生健康成长,某校开展了校级排球比赛,现有甲乙两人进行比赛,约定每局胜者 得 1 分,负者得 0 分,比赛进行到有一人比对方多 2 分或打满 8 局时停止.设甲在每局中获1胜的概率为 p p>12 ,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为19.(12 分 )已知椭圆 C 1: 22 a x 2+b y 2=1(a>b>0)和椭圆C 2:x 2+y 2=1 的离心率相同,且点 ( 2,1)5.9.(1)求p 的值;(2)设X 表示比赛停止时已比赛的局数,求随机变量X 的分布列和均值E(X).1-xx 121.(12分)函数 f (x)=ln x+(a∈R且a≠0),g(x)=(b-1)x-xe x-(b∈R).ax x(1)讨论函数 f (x)的单调性;(2)当a=1时,若关于x的不等式 f (x)+g(x)≤-2恒成立,求实数b的取值范围.请在第22~23 题中任选一题作答.22.(10分)在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标4cos θx=2+tcos α,系,已知曲线 C 的极坐标方程为ρ=4cos θ2,直线l 的参数方程是(t 为参1-cos2θy=2+tsin α数,0≤ α<π.)(1)求曲线 C 的直角坐标方程;(2)设直线l 与曲线 C 交于A,B 两点,且线段AB 的中点为M (2,2),求α.23.(10分)已知函数 f (x)=m-|x+4|(m>0) ,且 f (x-2)≥0的解集为[-3,-1].(1)求m 的值;1 1 1(2)若a,b,c 都是正实数,且a+2b+3c=m,求证:a+2b+3c≥9.答案精析1.B [∵集合 A = {x|x 2-x - 2>0} ={ x|x<- 1或 x>2}, B ={x|log 2x ≤ 2} = { x|0<x ≤ 4} ,∴A ∩B ={x|2<x ≤4}=(2,4].]2-i2- i 1- i1- 3i 1 3i2.D [z =12-+i i,即z =21+-ii 11--ii=1-23i=12-32i ,故z 在复平面内对应的点位于第四象限.]3. C [设小正方形的边长为 1,可得阴影平行四边形的底为2,高为 22,阴影等腰直角三角形的直角边为 2,斜边为 2 2,大正方形的边长为 2 2,4. A [∵sin C =2 3sin B ,∴由正弦定理得 c =2 3b ,则 c 2= 12b 2. 又 a 2- b 2= 3bc ,那么 a 2= 7b 2, cos A =b2+2c b 2c-a2=46b 32b 2=23∵A ∈(0,π,)∴A =6π.]5. B [∵f (3-|a +1|)>f - 33 ,∴f (3-|a +1|)>f 33 =f (3 2), 又 f (x )为偶函数,且在 (- ∞ ,0)上单调递增,1∴f (x )在(0,+ ∞ )上单调递减, ∴|a +1|>2,31解得 a ∈ -∞,-32 ∪ -21,+ ∞ .]6. B [几何体为一个四棱锥与一个半圆锥的组合体,四棱锥的高为3,底面为边长为 2 的11π·21正方形;半圆锥高为 3,底面为半径为 1 的半圆,因此体积为 13× 3×22+ 13× 3× π2·=13327.A [由图象可知, A =2, 4T =23π-6π=2π,∴T =2π,ω=1,∴f (x )= 2cos (x +φ),所以 P =2× 22+ 21×2×2 2 2× 2 2由余弦定理得8+ π 36 ,故选 B.] 3π π π ∵f 6 =2cos 6+φ=2,且 |φ|<2π, ππ∴φ=- 6,f (x )=2cos x -6 ,π令 h (x )= f (x )+1= 2cos x - + 1= 0,6π1可得 cos x -6 =- 2,解得 x -π=2π+2k π,k ∈Z 或 x -π=4π+2k π,k ∈Z ,6 3 6 3x =5π+2k π,k ∈Z 或 x = 3π+2k π,k ∈Z ,62则|x 1-x 2|的最小值为 32-56=23 .]则(a +b )2-ab ≥(a +b )2- a +2 b 2= 34(a +b )2,3即|AB|2≥43(a +b )2,8.C [f (x )= a -x 2 |x +1|-1 f (- x ) = a -x 2|-x +1|-1f (x) 为奇函数,a - x 2 =- a - x 2|x + 1|- 1=-|-x +1|-1∴|x +1|+ |x -1|=2,∴-1≤x ≤1,考虑定义域 a -x 2≥0,即- a ≤ x ≤ a(a>0)且 x ≠0, 由抛物线的定义,得|AF|=|AQ|,|BF|=|BP|,在梯形 ABPQ 中, 2|MN |= |AQ|+|BP|=a +b , 由余弦定理得 |AB|2=a 2+b 2-2abcos 120 °= a 2+ b 2+ ab ,整理得 |AB|2= (a + b)2- ab , 因为 ab ≤ a +2 b2,满足 a ≤1, ∴0<a ≤1.]设|AF|=a ,|BF|=b , Q ,P ,当且仅当 a =b ,即 |AF|=|BF|时取等号,故选 D.]10.C [令 t =f (x),考虑方程 t 2+bt +c =0的根, 该方程必有两个不同实数解, 设解为 t =t 1, t=t 2,由题设方程 t1=f ( x)和方程 t 2=f (x)的解即为方程 f 2(x)+ bf (x)+c =0 的解, 因为方程 f 2(x)+bf (x)+c=0 有 7 个不同的解,根据 f (x)的图象 (如图所示 )可得,直线 y =t 1与 y =f (x)的图象有 3 个不同的公共点, 直线 y =t 2与 y =f (x)的图象有 4 个不同的公共点,故 t1=0,t 2>0,所以 c =0,t 2=- b>0 即 b<0,故选 C.]→ 1 → →且OC =- 5(3OA +4OB),→ → → 1 → → ∴OC ·OC =|OC|2= 215(3OA +4OB)2 =295|O →A|2+2254O →A ·O →B + 2165|O →B|2 =|O →C|2+2254O →A ·O →B , ∴24O →A ·O →B =0,∴∠ AOB =90°.25 如图所示,建立平面直角坐标系,设 A(0,1) ,B(1,0),由 3O →A +4O →B = (4,3)=- 5O →C ,则 C = 4π.]x 2-ln x + 1-t 212.B [∵ f ′(x)=2,11 22令 g(x)=x +x ,又 g(x)=x +x 在[1,2] 上单调递增,xx33∴g(x)min =g(1)=2,∴t <2.] 13.3解析 因为 f (1)= log 21- 3=- 3, 又 f (x)为定义在 R 上的奇函数, 所以 f (-1)=-f (1)=3. 14.- 38解析 令 x - 2=t ,则 x = t + 2.由条件可得 (t +1)5-2(t +2)4=a 0+a 1t +a 2t 2+ a 3t 3+ a 4t 4+a 5t 5, 故 t 2的系数为 C 53-2C 42×22=- 38,即 a 2=- 38.115.2解析 由题意知 f ′(x)=x 2-2a , g ′(x)=2x +2b , 函数 f (x)与 g(x) 在区间 (a , b)上单调性相反, 则(x 2- 2a)(2x +2b)<0 在 x ∈(a ,b)上恒成立, 又 0<a<b ,所以 2x + 2b>0,于是 x 2-2a<0 在 x ∈( a , b)上恒成立.可知 C4,- 3 ,5,-5 ,则CA =45,85 ,C →B = 95, 3, 5,CA ·CBcos C =|CA|×|CB|24 = 2, 4 5× 3 10 2 5 × 53625 25又对任意的 x ∈ [1,2] ,f ′ (x) ·x + f (x)>0 恒成立, ∴对任意的 x ∈ [1,2] ,2x2-2tx +1>0 恒成立,即对任意的 x ∈ [1,2] , 2x 2-2tx +1> 0 恒成立,则 t <2x +12x= x +1 2x12 x + 恒成立,x x 2易知x2-2a<0 的解集为(-2a,2a),所以(a,b)? (-2a,2a),所以b-a≤2a-a=-a-21 2+12,11当a=21,b=1 时,b-a取得最大值12.2316.3 解析易知A(-1,0),设P(x,y),由|PA|=2|PT|,可得(x+1)2+y2=4(x2+y2-1),1 16化简得x-132+y2=196,可转化为直线3x+4y-a=0 与圆x-31 2+y2=196有公共点,所以d=|1-a|≤4,5317 23 解得-137≤a≤233.23故 a 的最大值为233.317.解(1)∵(2c-a)cos B-bcos A=0,由正弦定理得(2sin C-sin A)cos B-sin Bcos A=0,∴ (2sin C-sin A)cos B=sin Bcos A,2sin Ccos B-sin(A+B)=0,1∵A+B=π-C 且sin C≠ 0,∴cos B=2,∵B∈(0,π∴B=π.311(2)∵ S△ABC=2acsin B=2BD ·b,代入c=2,BD=3721,sin B=23,得b=37a,由余弦定理得b2=a2+c2-2accos B=a2+4-2a,代入b=37a,得a2-9a+18=0,解得a=3,b=7a=6,b= 2 7,又∵三角形为锐角三角形,∴a2<c2+b2,∴a=3,b=7.证明如下:如图,连接 AB 1, C 1D , 则 AB 1C 1D 是平行四边形, ∵E 是 AB 1的中点,1∴AE ∥C 1D ,AE =2C 1D , ∴AEC1D 为梯形, A ,E , C 1,D 四点共面, 又EC 1与AD 为梯形的两腰,故 EC 1与 AD 相交.(2)设 AB =b ,AD =2-b ,VABCD -A 1B 1C 1D 1=b(2- b)×AA 1=b (2-b )≤b +22- b2=1,当且仅当 b = 2- b ,即 b =1 时取等号, 方法一 连接 BD (图略),设点 B 到平面 A 1CD 的距离为 h ,则根据等体积法 VB -A 1CD =VA 1 -BCD ,其中 S △A 1CD =21×CD ×A 1D = 22, ∴h =22, 则直线 BA 1与平面 A 1CD 所成的角 θ满足 sin方法二 分别以边 AB ,AD ,AA 1所在的直线为 x ,y ,z 轴,建立如图所示的平面直角坐标系, 则 B(1,0,0),A 1(0,0,1) ,C(1,1,0),D(0,1,0),设平面 A 1CD 的法向量为 n = (x , y , z ),11 ∴ S △ABC =2ac sin B =2×2× 3×3=3 32=218.解 (1)EC 1 与 AD 是相交直线VA 1- BCD =13S △ BCD × AA 1=16,36h1θ=BA1=2,π∵ θ∈ 0, 2 ,θ=6π.BA 1=(-1,0,1), CD =(-1,0,0), CA 1=(-1, 1,1),- x = 0, 即- x - y +z = 0,取 z = 1,则 n = (0,1,1),n ·CD = 0,则→n ·C →A 1=∴sin θ= |cos 〈B →A 1, n 〉 |= 1=2× 2=1, 2,π ∵ θ∈ 0,∴θ=6π.2 1 c 219.解 (1)由题意知, a 2+b 2=1,且a = 2 ,即 a 2= 4, b 2= 2,所以椭圆 C 1的方程为 x 4 +y 2=1.(2)是. ①当直线 AC 的斜率不存在时,必有 P ( ± 2,0),此时 |AC|=2,S△AOC= 2.② 当直线 AC 的斜率存在时,设其斜率为 k ,点 P (x 0,y 0),则 AC :y - y 0= k (x - x 0),直线 AC 与椭圆 C 1联立,得 (1+2k 2)x 2+4k (y 0-kx 0)x + 2(y 0- kx 0) 2- 4= 0,设 A 则 x 0= x1+ x2=-2k y0-k 2x0,即 x 0=-2ky 0,1+2k 2 0 02 2 21又 x 02+ 2y 20=2, ∴y 02=1+ 2k 2,S △AOC =21×|y01-+k kx02|× 1+k 216k 2 y 0- kx 0 2-4 1+2k 2 [2 y 0- kx 0 2 -4]1+ 2k 2 =2|y 0- kx 0| 2 1+ 2k 2 - 2 1+2k 2 y 0- kx 0 2=21+2k 2 |y 0| 2 1+2k 2 - 1+ 2k 2 2y 20 1+2k 2= 2|y 0| 1+ 2k 2= 2.综上, △AOC 的面积为常数 2.20.解 (1)依题意,当甲连胜 2 局或乙连胜 2 局时,第二局比赛结束时比赛结束.所以有 p 2+ (1-p )2=95,解得 p = 32或 p =13(舍).(2)依题意知, X 的所有可能值为 2,4,6,8.5 设每两局比赛为一轮, 则该轮结束时比赛停止的概率为 59.若该轮结束时比赛还将继续, 则甲、 乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.4从而有 P(X = 2)=59,5 5 20 P(X =4)= 1-9 × 9=81,所以随机变量 X 的分布列为21.解 (1)∵ f (x)=ln x +a 1x -1a ,1 1 ax - 1 ∴f ′ (x)= - 2=2 (x>0) , x ax 2 ax 2当 a<0 时, f ′(x)>0,∴f (x)在(0,+ ∞ )上单调递增,1当 a>0 时,由 f ′ (x)>0 得 x> ; a1由 f ′ (x)<0 得 0<x< ,a11∴f (x)在 0,1a 上单调递减,在 a 1,+ ∞ 上单调递增. aa11 综上,当a<0时,f (x)在(0,+ ∞ )上单调递增;当a>0时,f (x)在 0,1 上单调递减,在 1,+∞aa 上单调递增.(2)由题意,当 a = 1 时,不等式 f (x)+g(x)≤-2,11即 ln x + -1+(b - 1)x -xe x - ≤-2,xxln x 1即 b -1≤ e x -ln x x - 1x 在 (0,+ ∞)上恒成立,xx1 令 u(x)= x 2e x + ln x ,则 u ′ (x)= (x 2+ 2x)e x+ x >0,x∴u(x)在(0,+∞)上单调递增,P(X =6)= 1- 59 × 1-5 ×5=80,9 9 729 P(X =8)=×5-1×5-1-5 ×1= 64. -9 729.则 E(X)=2× 59+4×2810+6×78209+8×64 729 2 522729 . 令 h(x)= e x - ln xxx1, x ,则 h ′(x)= e x - 1- lnx x 2+x 2=x 2e x + ln xx 2又 u (1)= e>0, u 1 = e -ln 2<0,∴u(x)有唯一零点 x 0 2<x 0<1 , 所以 u(x 0)=0,即 x 0ex 0=-ln x0,(*)x 0当 x ∈(0,x 0)时,u(x)<0,即 h ′ (x)<0 , h(x)单调递减; x ∈(x 0,+∞)时,u(x)>0,即 h ′( x)>0 , h(x)单调递增, ∴h(x 0)为 h(x)在定义域内的最小值.x 1令k(x)=xe x 2<x<1,则方程 (*)等价于 k(x)=k(-ln x),1又易知 k(x)单调递增,所以 x =-ln x ,e x = x 1,x∴h(x)的最小值为∴ b - 1≤ 1,即 b ≤2, ∴实数 b 的取值范围是 (-∞,2].4cos θ22.解 (1)曲线 C :ρ=2θ,即ρsin 2θ=4cos θ,于是有ρ2sin 2θ=4ρcos θ, 化为直角坐标方程为 y 2=4x.y 2=4x ,(2)方法一 联立 x =2+tcos α,y =2+tsin α,则(2+tsin α)2=4(2+tcos α), 即 t 2sin 2α+ (4sin α- 4cos α)t - 4= 0.由 AB 的中点为 M(2,2),得 t 1+ t 2=0,有 4sin α- 4cos α=0, 所以 k =tan α=1,π由 0≤α<π 得α= .方法二 设 A(x 1, y 1), B(x 2, y 2),则(y 1+ y 2)( y 1- y 2)= 4(x 1- x 2),y 1-y 2 y 1+y 2=4,∴k =tan α==1,x 1-x 2由 0≤α<π得α=π.方法三设 A4,y1,B 4,y2 (y 1<y 2),则由 M(2,2)是 AB 的中点,得4+4=4, ? y 1+y 2=4,ln x 0 1 1-x0 124y 21= 4x 1,y1y2=0,y1+y2=4y1<y2,∴y1=0,y2=4,知A(0,0),B(4,4),π ∴k=tan α=1,由0≤α<π 得α=.4方法四依题意设直线l:y-2=k(x-2),与y2=4x联立得y-2=k y4-2 ,即ky2-4y-8k+8=0.4由y1+y2==4,得k=tan α=1,k因为0≤α<π ,所以α=4π.23.(1)解依题意 f (x-2)=m-|x+2|≥0,即|x+2|≤m,则-m-2≤x≤-2+m,-m-2=-3,∴m=1.-2+m=-1,1 1 1(2)证明∵a1+21b+31c=1(a,b,c>0),∴a+2b+3c=(a+2b+3c) 1a+21b+31c =3+a+2b+a+3c+2b+3c≥9,2b a 3c a 3c 2b3当且仅当a=2b=3c,即a=3,b=2,c=1时取等号.4。

2021届高三数学(文理通用)一轮复习题型专题训练:《函数的单调性》(二)(含解析)

2021届高三数学(文理通用)一轮复习题型专题训练:《函数的单调性》(二)(含解析)

《函数的单调性》(二)考查内容:主要涉及利用单调性求函数的最值问题一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数y =11x -在[2,3]上的最小值为( ) A .2B .12C .13D .-122.函数()[]243,1,4f x x x x =-+∈,则()f x 的最小值为( ) A .-1B .0C .3D .-23.用{}min ,a b 表示,a b 两个数中的最小值.设{}()min 4,6f x x x =---,则()f x 的最大值为( ) A .4-B .5-C .6-D .10-4.已知函数()211x f x x +=-,其定义域是[)8,4--,则下列说法正确的是() A .()f x 有最大值53,无最小值B .()f x 有最大值53,最小值75C .()f x 有最大值75,无最小值D .()f x 无最大值,最小值755.设函数()2251x x f x x -+=-在区间[]2,9上的最大值和最小值分别为M 、m ,则m M +=( ).A .272B .13C .252D .126.函数()2()lg 1lg(1)f x x x =---在[]2,9上的最大值为( )A .0B .1C .2D .37.函数223y x x =-+在闭区间[0,]m 上有最大值3,最小值为2, m 的取值范围是 A .(,2]-∞B .[0,2]C .[1,2]D .[1,)+∞8.若函数()221f x x ax a =-+-在[]0,2上最小值为-1,则a =( )A .1或2B .1C .1或65D .-29.已知函数221(),()()2x f x x g x m x =+=-,若任意的[]11,2x ∈,存在[]21,1x ∈-,使得()()12f x g x ≥,则实数m 的取值范围是( )A .)5,2⎡-+∞⎢⎣B .[)1,-+∞C .[)4,-+∞D.12⎡⎫-+∞⎪⎢⎣⎭10.已知函数()221f x x ax =-+,[]1,x a ∈-,且()f x 最大值为()f a ,则实数a 的取值范围为( ) A .(],4-∞- B .(][),12,-∞-⋃+∞ C .[)2,+∞D .[)4,-+∞11.设函数()()2111x a x f x lnx x ⎧--≤⎪=⎨>⎪⎩,,,,若()()1f x f ≥恒成立,则实数a 的取值范围为( )A .[]12, B .[]02,C .[)1+∞,D .[)2+∞, 12.已知m R ∈,函数()31x f x m m x +=-+-在[]2,5x ∈上的最大值是5,则m 的取值范围是( ) A .7,2⎛⎤-∞ ⎥⎝⎦B .5,2⎛⎤-∞ ⎥⎝⎦C .[]2,5D .[)2,+∞二.填空题13.函数2()42x x f x +=- (12)x -≤≤的最小值为______ . 14.函数()1f x x=的最小值是_____________.15.函数2()2f x x x a =-+在区间[1,2]-上的最大值是7,则实数a 的值为__16.已知函数2212,1,()4,1,x ax x f x x a x x ⎧-+⎪=⎨++>⎪⎩,若()f x 的最小值为(1)f ,则实数a 的取值范围是________.三.解答题(解答应写出文字说明、证明过程或演算步骤) 17.已知函数1(),[3,5]2x f x x x -=∈+, (1)判断函数()f x 的单调性,并证明; (2)求函数()f x 的最大值和最小值.18.求下列函数的最大值和最小值:(1)1y x =-+;(2)2,[1,4]y x x x =+∈; (3)4,[2,8]y x x x=-∈;(4)1121,,212y x x x ⎛⎫=-+∈-∞- ⎪+⎝⎭.19.已知函数()2f x x ax b =-++的图象关于直线2x =对称且()10f =.(1)求a 、b 的值;(2)求函数()f x 在区间[]3,3-上的最小值和最大值.20.已知二次函数2(3)1(0)y mx m x m =-+-≠.(1)如果二次函数恒有两个不同的零点,求m 的取值范围; (2)当0m >时,讨论二次函数在区间[0,2]上的最小值.21.已知函数22()x x af x x-+=.(1)当4a =时,求函数()f x 在(0,)x ∈+∞上的最小值;(2)若对任意的(0,),()0x f x ∈+∞>恒成立.试求实数a 的取值范围; (3)若0a >时,求函数()f x 在[2,)+∞上的最小值.22.已知奇函数()f x 的定义域为[1,1]-,当[1,0)x ∈-时,1()2xf x ⎛⎫=- ⎪⎝⎭. (1)求函数()f x 在(0,1]上的值域;(2)若(0,1]x ∈时,函数2()2()1y f x af x =-+的最小值.23.已知函数()()21f x x x a x R =--+∈ (1)当1a =时,求函数()y f x =的零点; (2)当30,2a ⎛⎫∈ ⎪⎝⎭,求函数()y f x =在[]1,2x ∈上的最大值.《函数的单调性》(二)解析1.【解析】y =11x -在[2,3]上单调递减,所以x=3时取最小值为12,选B. 2.【解析】由二次函数的性质可得函数2()43f x x x =-+的图象开口朝上, 对称轴为2x =,所以函数()f x 在[1,2]上单调递减,在[2,4]上单调递增, 所以当[]1,4x ∈时,min ()(2)4831f x f ==-+=-.故选:A. 3.【解析】由题意,函数()4,16,1x x f x x x --≥⎧=⎨-<⎩,因当1x ≥时,函数()f x 为减函数;当1x <时,函数()f x 为增函数. 所以,当1x =时,函数()f x 取最大值,最大值为()15f =-.故选:B. 4.【解析】因为函数()()2132132111x x f x x x x -++===+---,所以()f x 在[)8,4--上单调递减,则()f x 在8x =-处取得最大值,最大值为53,4x =-取不到函数值,即最小值取不到.故选A .5.【解析】()()()22142541111f x x x x x x x x -+-+===-+---; 因为[]2,9x ∈,所以[]11,8x -∈,令1x t -=,则[]1,8t ∈; 因为()[]4,1,8t t ty f x ==+∈, 根据对勾函数性质可知当2t =时,函数有最小值为4; 当8t =时,函数有最大值为172.所以252m M +=.故选:C.6.【解析】函数()()2()lg 1lg(1)lg 1f x x x x =---=+,函数在区间[]2,9上是增函数,所以函数的最大值为:(9)lg(91)1f =+=.故选:B. 7.【解析】作出函数()f x 的图象,如图所示,当1x =时,y 最小,最小值是2,当2x =时,3y =,函数2()23=-+f x x x 在闭区间[0,]m 上上有最大值3,最小值2, 则实数m 的取值范围是[1,2].故选:C .8.【解析】:函数2()21f x x ax a =-+-图象的对称轴为x a =,图象开口向上, (1)当0a 时,函数()f x 在[]0,2上单调递增.则()(0)1min f x f a ==-,由11a -=-,得2a =,不符合0a ;(2)当02a <<时.则222()()211min f x f a a a a a a ==-+-=--+,由211a a --+=-,得2a =-或1a =,02a <<,1a 符合;(3)当2a 时,函数2()21f x x ax a =-+-在[]0,2上单调递减,()()244155min f x f a a a ∴==-+-=-,由551a -=-,得65a =, 2a ,∴65a =不符合, 综上可得1a =.故选:B .9.【解析】由于12x⎛⎫ ⎪⎝⎭是单调递减函数,故()g x 是单调递减函数, 由于[]21,1x ∈-,故()g x 的最小值为()112g m =-, 对()f x 求导得()222f x x x'=-, 令()0f x '=,可得1x =,且1x >时,()f x 为增函数, 故()f x 的最小值为()1123f =+=,要使得()()12f x g x ≥,则有132m ≥-,解得52m ≥-.故选:A 10.【解析】当10a -<<时,对称轴4ax =,易得在[]1,x a ∈-时,()f x 单减,()f x 最大值为()1f -,不满足条件;当0a <时,()(1)f a f ≥-,即(1)44a aa -≥--,2a ≥,故选:C 11.【解析】 ()()2111x a x f x lnx x ⎧--≤⎪=⎨>⎪⎩,,,,若()()1f x f ≥恒成立,()1f ∴是()f x 的最小值,由二次函数性质可得对称轴1a ≥,由分段函数性质得()2111a ln --≤,得02a ≤≤,综上,12a ≤≤,故选A .12.【解析】因为34111x y x x +==+--在[]2,5x ∈上单调递减,因此3251+≤≤-x x ; 若2m ≤,则3()1x f x x +=-的最大值为5,符合题意;若25<≤m 时,()f x 的最大值为()2f 与()5f 中较大的, 由()()25=f f ,即52-+=-+m m m m ,解得72m =, 显然722<≤m 时,()f x 的最大值为5,72m >时,()f x 的最大值不为定值。

2021新高考数学全国Ⅱ卷真题(含答案-解析版)

2021新高考数学全国Ⅱ卷真题(含答案-解析版)

2021年全国统一高考数学试卷(新高考全国Ⅱ卷)使用省份:海南、辽宁、重庆一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数2i13i--在复平面内对应的点所在的象限为()A.第一象限 B.第二象限C.第三象限D.第四象限【答案】A 【解析】【分析】利用复数的除法可化简2i13i--,从而可求对应的点的位置.【详解】()()2i 13i 2i 55i 1i13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫ ⎪⎝⎭,该点在第一象限,故选:A.2.设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A.{3} B.{1,6}C.{5,6}D.{1,3}【答案】B 【解析】【分析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.3.抛物线22(0)y px p =>的焦点到直线1y x =+,则p =()A.1 B.2C. D.4【答案】B 【解析】【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值.【详解】抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,其到直线10x y -+=的距离:d ==解得:2p =(6p =-舍去).故选:B.4.北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为()A.26% B.34%C.42%D.50%【答案】C 【解析】【分析】由题意结合所给的表面积公式和球的表面积公式整理计算即可求得最终结果.【详解】由题意可得,S 占地球表面积的百分比约为:226400164003600002(1.cos )1cos 44242%22r r πααπ---+==≈=.故选:C .5.正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A.20+B. C.563D.3【答案】D 【解析】【分析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解.【详解】作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为2,所以该棱台的高()2222222h =--下底面面积116S =,上底面面积24S =,所以该棱台的体积((121211282164642333V h S S S S =+=+=.故选:D.6.某物理量的测量结果服从正态分布()210,N σ,下列结论中不正确的是()A.σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B.σ越小,该物理量在一次测量中大于10的概率为0.5C.σ越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D.σ越小,该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等【答案】D 【解析】【分析】由正态分布密度曲线的特征逐项判断即可得解.【详解】对于A ,2σ为数据的方差,所以σ越小,数据在10μ=附近越集中,所以测量结果落在()9.9,10.1内的概率越大,故A 正确;对于B ,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为0.5,故B 正确;对于C ,由正态分布密度曲线的对称性可知该物理量一次测量结果大于10.01的概率与小于9.99的概率相等,故C 正确;对于D ,因为该物理量一次测量结果落在()9.9,10.0的概率与落在()10.2,10.3的概率不同,所以一次测量结果落在()9.9,10.2的概率与落在()10,10.3的概率不同,故D 错误.故选:D .7.已知5log 2a =,8log 3b =,12c =,则下列判断正确的是()A.c b a <<B.b a c<< C.a c b<< D.a b c<<【答案】C 【解析】【分析】对数函数的单调性可比较a 、b 与c 的大小关系,由此可得出结论.【详解】55881log 2log log log 32a b =<==<=,即a c b <<.故选:C.8.已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则()A.102f ⎛⎫-= ⎪⎝⎭B.()10f -=C.()20f =D.()40f =【答案】B 【解析】【分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论.【详解】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-,因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+,所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+,故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==,故()()110f f -=-=,其它三个选项未知.故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列统计量中,能度量样本12,,,n x x x 的离散程度的是()A.样本12,,,n x x x 的标准差B.样本12,,,n x x x 的中位数C.样本12,,,n x x x 的极差D.样本12,,,n x x x 的平均数【答案】AC 【解析】【分析】考查所给的选项哪些是考查数据的离散程度,哪些是考查数据的集中趋势即可确定正确选项.【详解】由标准差的定义可知,标准差考查的是数据的离散程度;由中位数的定义可知,中位数考查的是数据的集中趋势;由极差的定义可知,极差考查的是数据的离散程度;由平均数的定义可知,平均数考查的是数据的集中趋势;故选:AC.10.如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足MN OP ⊥的是()A. B.C. D.【答案】BC 【解析】【分析】根据线面垂直的判定定理可得BC 的正误,平移直线MN 构造所考虑的线线角后可判断AD 的正误.【详解】设正方体的棱长为2,对于A ,如图(1)所示,连接AC ,则//MN AC ,故POC ∠(或其补角)为异面直线,OP MN 所成的角,在直角三角形OPC ,OC =1CP =,故2tan2POC ∠==,故MN OP ⊥不成立,故A 错误.对于B ,如图(2)所示,取NT 的中点为Q ,连接PQ ,OQ ,则OQ NT ⊥,PQ MN ⊥,由正方体SBCM NADT -可得SN ⊥平面ANDT ,而OQ ⊂平面ANDT ,故SN OQ ⊥,而SN MN N = ,故OQ ⊥平面SNTM ,又MN ⊂平面SNTM ,OQ MN ⊥,而OQ PQ Q = ,所以MN ⊥平面OPQ ,而PO ⊂平面OPQ ,故MN OP ⊥,故B 正确.对于C ,如图(3),连接BD ,则//BD MN ,由B 的判断可得OP BD ⊥,故OP MN ⊥,故C 正确.对于D ,如图(4),取AD 的中点Q ,AB 的中点K ,连接,,,,AC PQ OQ PK OK ,则//AC MN ,因为DP PC =,故//PQ AC ,故//PQ MN ,所以QPO ∠或其补角为异面直线,PO MN 所成的角,因为正方体的棱长为2,故122PQ AC ==,22123OQ AO AQ =+=+=22415PO PK OK =+=+=,222QO PQ OP <+,故QPO ∠不是直角,故,PO MN 不垂直,故D 错误.故选:BC.11.已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是()A.若点A 在圆C 上,则直线l 与圆C 相切B.若点A 在圆C 内,则直线l 与圆C 相离C.若点A 在圆C 外,则直线l 与圆C 相离D.若点A 在直线l 上,则直线l 与圆C 相切【答案】ABD 【解析】【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解.【详解】圆心()0,0C 到直线l 的距离2d =若点(),A a b 在圆C 上,则222a b r +=,所以2d r =,则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以2d r =,则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以2<d r =,则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +,所以2d r =,直线l 与圆C 相切,故D 正确.故选:ABD.12.设正整数010112222k k k k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则()A.()()2n n ωω=B.()()231n n ωω+=+C.()()8543n n ωω+=+D.()21n nω-=【答案】ACD 【解析】【分析】利用()n ω的定义可判断ACD 选项的正误,利用特殊值法可判断B 选项的正误.【详解】对于A 选项,()01k n a a a ω=+++ ,12101122222kk k k n a a a a +-=⋅+⋅++⋅+⋅ ,所以,()()012k n a a a n ωω=+++= ,A 选项正确;对于B 选项,取2n =,012237121212n +==⋅+⋅+⋅,()73ω∴=,而0120212=⋅+⋅,则()21ω=,即()()721ωω≠+,B 选项错误;对于C 选项,3430234301018522251212222k k k k n a a a a a a +++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅++⋅ ,所以,()01852k n a a a ω+=++++ ,2320123201014322231212222k k k k n a a a a a a +++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅++⋅ ,所以,()01432k n a a a ω+=++++ ,因此,()()8543n n ωω+=+,C 选项正确;对于D 选项,01121222n n --=+++ ,故()21nn ω-=,D 选项正确.故选:ACD.三、填空题:本题共4小题,每小题5分,共20分.13.已知双曲线()222210,0x y a b a b-=>>的离心率为2,则该双曲线的渐近线方程为_______________【答案】y =【解析】【分析】由双曲线离心率公式可得223b a=,再由渐近线方程即可得解.【详解】因为双曲线()222210,0x y a b a b-=>>的离心率为2,所以2e ===,所以223b a =,所以该双曲线的渐近线方程为by x a=±=.故答案为:y =.【点睛】本题考查了双曲线离心率的应用及渐近线的求解,考查了运算求解能力,属于基础题.14.写出一个同时具有下列性质①②③的函数():f x _______.①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()'f x 是奇函数.【答案】()4f x x =(答案不唯一,()()2*nxN f n x =∈均满足)【解析】【分析】根据幂函数的性质可得所求的()f x .【详解】取()4f x x =,则()()()()44421121122x f x f x x x x f x x ===,满足①,()34f x x '=,0x >时有()0f x '>,满足②,()34f x x '=的定义域为R ,又()()34f x x f x ''-=-=-,故()f x '是奇函数,满足③.故答案为:()4f x x =(答案不唯一,()()2*nxN f n x =∈均满足)15.已知向量0a b c ++= ,1a = ,2b c == ,a b b c c a ⋅+⋅+⋅=_______.【答案】92-【解析】【分析】由已知可得()20a b c++=,展开化简后可得结果.【详解】由已知可得()()()22222920a b c a b c a b b c c a a b b c c a ++=+++⋅+⋅+⋅=+⋅+⋅+⋅=,因此,92a b b c c a ⋅+⋅+⋅=- .故答案为:92-.16.已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______.【答案】()0,1【解析】【分析】结合导数的几何意义可得120x x +=,结合直线方程及两点间距离公式可得1A x M =,2B x N =,化简即可得解.【详解】由题意,()1011,0,xx x e x f x e e x <=⎧---≥⎪=⎨⎪⎩,则()0,,0xx x f x e e x ⎧-⎪=<>⎨'⎪⎩,所以点()11,1xA x e -和点()22,1xB x e -,12,x xAM BN k e k e =-=,所以12121,0xx e ex x -⋅=-+=,所以()()111111,0:,11xx x xe e x x e AM e y M x -+=---+,所以1x AM ==,同理2B x N =,所以()10,1x e N AM B ===∈=.故答案为:()0,1【点睛】关键点点睛:解决本题的关键是利用导数的几何意义转化条件120x x +=,消去一个变量后,运算即可得解.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==.(1)求数列{}n a 的通项公式n a ;(2)求使n n S a >成立的n 的最小值.【答案】(1)26n a n =-;(2)7.【解析】【分析】(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值.【详解】(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-,从而:22d d -=-,由于公差不为零,故:2d =,数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214262n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->,解得:1n <或6n >,又n 为正整数,故n 的最小值为7.【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.18.在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.【答案】(1)1574;(2)存在,且2a =.【解析】【分析】(1)由正弦定理可得出23c a =,结合已知条件求出a 的值,进一步可求得b 、c 的值,利用余弦定理以及同角三角函数的基本关系求出sin B ,再利用三角形的面积公式可求得结果;(2)分析可知,角C 为钝角,由cos 0C <结合三角形三边关系可求得整数a 的值.【详解】(1)因为2sin 3sin C A =,则()2223c a a =+=,则4a =,故5b =,6c =,2221cos 28a b c C ab +-==,所以,C 为锐角,则sin 8C ==,因此,11sin 452284ABC S ab C ==⨯⨯⨯=△;(2)显然c b a >>,若ABC 为钝角三角形,则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===<++,解得13a -<<,则0<<3a ,由三角形三边关系可得12a a a ++>+,可得1a >,a Z ∈ ,故2a =.19.在四棱锥Q ABCD -中,底面ABCD 是正方形,若2,3AD QD QA QC ====.(1)证明:平面QAD ⊥平面ABCD ;(2)求二面角B QD A --的平面角的余弦值.【答案】(1)证明见解析;(2)23.【解析】【分析】(1)取AD 的中点为O ,连接,QO CO ,可证QO ⊥平面ABCD ,从而得到面QAD ⊥面ABCD .(2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥,建如图所示的空间坐标系,求出平面QAD 、平面BQD 的法向量后可求二面角的余弦值.【详解】(1)取AD 的中点为O ,连接,QO CO .因为QA QD =,OA OD =,则QO ⊥AD ,而2,AD QA ==2QO ==.在正方形ABCD 中,因为2AD =,故1DO =,故CO =因为3QC =,故222QC QO OC =+,故QOC 为直角三角形且QO OC ⊥,因为OC AD O = ,故QO ⊥平面ABCD ,因为QO ⊂平面QAD ,故平面QAD ⊥平面ABCD .(2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥,结合(1)中的QO ⊥平面ABCD ,故可建如图所示的空间坐标系.则()()()0,1,0,0,0,2,2,1,0D Q B -,故()()2,1,2,2,2,0BQ BD =-=-.设平面QBD 的法向量(),,n x y z =,则00n BQ n BD ⎧⋅=⎨⋅=⎩即220220x y z x y -++=⎧⎨-+=⎩,取1x =,则11,2y z ==,故11,1,2n ⎛⎫= ⎪⎝⎭ .而平面QAD 的法向量为()1,0,0m = ,故12cos ,3312m n ==⨯ .二面角B QD A --的平面角为锐角,故其余弦值为23.20.已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为(2,0)F ,且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||3MN =.【答案】(1)2213x y +=;(2)证明见解析.【解析】【分析】(1)由离心率公式可得3a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN =充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k =+,联立直线与椭圆方程结合弦长公式可得22413k=+1k =±,即可得解.【详解】(1)由题意,椭圆半焦距c =且3c e a ==,所以a =又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意;当直线MN 的斜率存在时,设()()1122,,,M x y N x y ,必要性:若M ,N ,F三点共线,可设直线(:MN y k x =-即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以1212,324x x x x +=⋅=,所以MN ==所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=,由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=,所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN==213k=+=化简得()22310k-=,所以1k=±,所以1kb=⎧⎪⎨=⎪⎩或1kb=-⎧⎪⎨=⎪⎩,所以直线:MN y x=或y x=-,所以直线MN过点F,M,N,F三点共线,充分性成立;所以M,N,F三点共线的充要条件是||MN=.【点睛】关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重. 21.一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,()(0,1,2,3)iP X i p i===.(1)已知01230.4,0.3,0.2,0.1p p p p====,求()E X;(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:230123p p x p x p x x+++=的一个最小正实根,求证:当()1E X≤时,1p=,当()1E X>时,1p<;(3)根据你的理解说明(2)问结论的实际含义.【答案】(1)1;(2)见解析;(3)见解析.【解析】【分析】(1)利用公式计算可得()E X.(2)利用导数讨论函数的单调性,结合()10f=及极值点的范围可得()f x的最小正零点.(3)利用期望的意义及根的范围可得相应的理解说明.【详解】(1)()00.410.320.230.11E X=⨯+⨯+⨯+⨯=.(2)设()()3232101f x p x p x p x p=++-+,因为32101p p p p+++=,故()()32322030f x p x p x p p p x p=+-+++,若()1E X ≤,则123231p p p ++≤,故2302p p p +≤.()()23220332f x p x p x p p p '=+-++,因为()()20300f p p p '=-++<,()230120f p p p '=+-≤,故()f x '有两个不同零点12,x x ,且1201x x <<≤,且()()12,,x x x ∈-∞⋃+∞时,()0f x '>;()12,x x x ∈时,()0f x '<;故()f x 在()1,x -∞,()2,x +∞上为增函数,在()12,x x 上为减函数,若21x =,因为()f x 在()2,x +∞为增函数且()10f =,而当()20,x x ∈时,因为()f x 在()12,x x 上为减函数,故()()()210f x f x f >==,故1为230123p p x p x p x x +++=的一个最小正实根,若21>x ,因为()10f =且在()20,x 上为减函数,故1为230123p p x p x p x x +++=的一个最小正实根,综上,若()1E X ≤,则1p =.若()1E X >,则123231p p p ++>,故2302p p p +>.此时()()20300f p p p '=-++<,()230120f p p p '=+->,故()f x '有两个不同零点34,x x ,且3401x x <<<,且()()34,,x x x ∈-∞+∞ 时,()0f x '>;()34,x x x ∈时,()0f x '<;故()f x 在()3,x -∞,()4,x +∞上为增函数,在()34,x x 上为减函数,而()10f =,故()40f x <,又()000f p =>,故()f x 在()40,x 存在一个零点p ,且1p <.所以p 为230123p p x p x p x x +++=的一个最小正实根,此时1p <,故当()1E X >时,1p <.(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1.22.已知函数2()(1)x f x x e ax b =--+.(1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 有一个零点①21,222e a b a <≤>;②10,22a b a <<≤.【答案】(1)答案见解析;(2)证明见解析.【解析】【分析】(1)首先求得导函数的解析式,然后分类讨论确定函数的单调性即可;(2)由题意结合(1)中函数的单调性和函数零点存在定理即可证得题中的结论.【详解】(1)由函数的解析式可得:()()'2xf x x e a =-,当0a ≤时,若(),0x ∈-∞,则()()'0,f x f x <单调递减,若()0,x ∈+∞,则()()'0,f x f x >单调递增;当102a <<时,若()(),ln 2x a ∈-∞,则()()'0,f x f x >单调递增,若()()ln 2,0x a ∈,则()()'0,f x f x <单调递减,若()0,x ∈+∞,则()()'0,f x f x >单调递增;当12a =时,()()'0,f x f x ≥在R 上单调递增;当12a >时,若(),0x ∈-∞,则()()'0,f x f x >单调递增,若()()0,ln 2x a ∈,则()()'0,f x f x <单调递减,若()()ln 2,x a ∈+∞,则()()'0,f x f x >单调递增;(2)若选择条件①:由于2122e a < ,故212a e <≤,则()21,010b af b >>=->,而()()210b f b b e ab b --=----<,而函数在区间(),0-∞上单调递增,故函数在区间(),0-∞上有一个零点.()()()()2ln 22ln 21ln 2f a a a a a b =--+⎡⎤⎡⎤⎣⎦⎣⎦()()22ln 21ln 22a a a a a>--+⎡⎤⎡⎤⎣⎦⎣⎦()()ln 22ln 2a a a =-⎡⎤⎣⎦,由于2122e a < ,212a e <≤,故()()ln 22ln 20a a a -≥⎡⎤⎣⎦,结合函数的单调性可知函数在区间()0,∞+上没有零点.综上可得,题中的结论成立.若选择条件②:由于102a <<,故21a <,则()01210f b a =-≤-<,当0b ≥时,24,42e a ><,()2240f e a b =-+>,而函数在区间()0,∞+上单调递增,故函数在区间()0,∞+上有一个零点.当0b <时,构造函数()1xH x e x =--,则()1xH x e '=-,当(),0x ∈-∞时,()()0,H x H x '<单调递减,当()0,x ∈+∞时,()()0,H x H x '>单调递增,注意到()00H =,故()0H x ≥恒成立,从而有:1x e x ≥+,此时:()()()()22111x f x x e ax b x x ax b =---≥-+-+()()211a x b =-+-,当x ()()2110a x b -+->,取01x =+,则()00f x >,即:()00,10f f ⎫<+>⎪⎪⎭,而函数在区间()0,∞+上单调递增,故函数在区间()0,∞+上有一个零点.()()()()2ln 22ln 21ln 2f a a a a a b =--+⎡⎤⎡⎤⎣⎦⎣⎦()()22ln 21ln 22a a a a a ≤--+⎡⎤⎡⎤⎣⎦⎣⎦()()22ln 2ln 2a a a a =-⎡⎤⎣⎦由于12a<<,021a<<,故()()ln22ln20a a a-<⎡⎤⎣⎦,结合函数的单调性可知函数在区间(),0-∞上没有零点.综上可得,题中的结论成立.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.。

2021届高考数学一轮复习(文理通用)-测试卷20 椭圆(B)-单元过关测试卷(原卷+解析)

2021届高考数学一轮复习(文理通用)-测试卷20 椭圆(B)-单元过关测试卷(原卷+解析)

2021届高考数学一轮复习(文理通用)单元过关测试卷椭圆(B )(测试卷20)满分:150分 测试时间:120分钟一、选择题(每小题5分,共60分,每小题有四个选项,只有一个正确)1.直线y =x +2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是( )A.(1,+∞)B.(1,3)∪(3,+∞)C.(3,+∞)D.(0,3)∪(3,+∞)2.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A.相交B.相切C.相离D.不确定3.设直线y =kx 与椭圆x 24+y 23=1相交于A ,B 两点,分别过A ,B 两点向x 轴作垂线,若垂足恰为椭圆的两个焦点,则k 等于( ) A.±32B.±23C.±12D.±24.椭圆4x 2+9y 2=144内有一点P (3,2),则以P 为中点的弦所在直线的斜率为( ) A.-23B.-32C.-49D.-945.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A .2B .455C .4105D .81056.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)及点B (0,a ),过点B 与椭圆相切的直线交x 轴的负半轴于点A ,F 为椭圆的右焦点,则∠ABF =( ) A.60°B.90°C.120°D.150°7.倾斜角为π4的直线经过椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F ,与椭圆交于A ,B 两点,且AF ―→=2FB ―→,则该椭圆的离心率为( )A .32B .23C .22D .338.已知P (x 0,y 0)是椭圆C :x 24+y 2=1上的一点,F 1,F 2是C 的两个焦点,若PF 1→·PF 2→<0,则x 0的取值范围是( )A.⎝ ⎛⎭⎪⎫-263,263B.⎝ ⎛⎭⎪⎫-233,233C.⎝ ⎛⎭⎪⎫-33,33D.⎝ ⎛⎭⎪⎫-63,63 9.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A.2B.455C.4105D.810510.已知点P 是椭圆x 216+y 28=1上的动点,F 1,F 2分别是椭圆的左、右焦点,O 是坐标原点,若M 是∠F 1PF 2的平分线上一点,且F 1M ―→·MP ―→=0,则|OM ―→|的取值范围是( )A .[0,3)B .(0,22)C .[22,3)D .(0,4]11.已知圆M :(x -2)2+y 2=1经过椭圆C :x 2m +y 23=1(m >3)的一个焦点,圆M 与椭圆C 的公共点为A ,B ,点P 为圆M 上一动点,则P 到直线AB 的距离的最大值为( )A.210-5B.210-4C.410-11D.410-1012.在平面直角坐标系xOy 中,直线x +2y -22=0与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相切,且椭圆C 的右焦点F (c ,0)关于直线l :y =cbx 的对称点E 在椭圆C 上,则△OEF 的面积为( )A.12B.32C.1D.2二、填空题(每小题5分,共20分)13.已知椭圆y 2a 2+x 2b2=1(a >b >0)的右顶点为A (1,0),过其焦点且垂直于长轴的弦长为1,则椭圆方程为________________________.14.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右顶点为A ,经过原点的直线l 交椭圆C 于P ,Q 两点,若|PQ |=a ,AP ⊥PQ ,则椭圆C 的离心率为________.15.已知椭圆的方程是x 2+2y 2-4=0,则以M (1,1)为中点的弦所在直线方程是________.16.已知直线l :y =kx +2过椭圆x 2a 2+y 2b2=1(a >b >0)的上顶点B 和左焦点F ,且被圆x 2+y 2=4截得的弦长为L ,若L ≥455,则椭圆离心率e 的取值范围是________.三、解答题(六大题,共70分) 17.(10分)已知椭圆x 22+y 2=1,(1)过A (2,1)的直线l 与椭圆相交,求l 被截得的弦的中点轨迹方程;(2)求过点P ⎝ ⎛⎭⎪⎫12,12且被P 点平分的弦所在直线的方程. 18.(12分)已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4∶5.19.(12分)已知A ,B 分别为椭圆C :y 2a 2+x 2b2=1(a >b >0)在x 轴正半轴、y 轴正半轴上的顶点,原点O 到直线AB 的距离为2217,且|AB |=7.(1)求椭圆C 的离心率;(2)直线l :y =kx +m 与圆x 2+y 2=2相切,并与椭圆C 交于M ,N 两点,若|MN |=1227,求k 的值.20.(12分)已知P 点坐标为(0,-2),点A ,B 分别为椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右顶点,直线BP交E 于点Q ,△ABP 是等腰直角三角形,且PQ →=32QB →.(1)求椭圆E 的方程;(2)设过点P 的动直线l 与E 相交于M ,N 两点,当坐标原点O 位于以MN 为直径的圆外时,求直线l 斜率的取值范围.21.(12分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1),且离心率e =32.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点,求△PAB 的面积的最大值.22.(12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,且点F 1到椭圆C 上任意一点的最大距离为3,椭圆C 的离心率为12.(1)求椭圆C 的标准方程;(2)是否存在斜率为-1的直线l 与以线段F 1F 2为直径的圆相交于A ,B 两点,与椭圆相交于C ,D ,且|CD ||AB |=837?若存在,求出直线l 的方程;若不存在,说明理由.2021届高考数学一轮复习(文理通用)单元过关测试卷椭圆(B )(测试卷20)满分:150分 测试时间:120分钟一、选择题(每小题5分,共60分,每小题有四个选项,只有一个正确)1.直线y =x +2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是( )A.(1,+∞)B.(1,3)∪(3,+∞)C.(3,+∞)D.(0,3)∪(3,+∞)【答案】 B【解析】 由⎩⎪⎨⎪⎧y =x +2,x 2m +y 23=1,得(m +3)x 2+4mx +m =0.由Δ>0且m ≠3及m >0得m >1且m ≠3.2.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A.相交B.相切C.相离D.不确定【答案】 A【解析】 直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交. 3.设直线y =kx 与椭圆x 24+y 23=1相交于A ,B 两点,分别过A ,B 两点向x 轴作垂线,若垂足恰为椭圆的两个焦点,则k 等于( ) A.±32B.±23C.±12D.±2【答案】 A【解析】 由题意可知,点A 与点B 的横坐标即为焦点的横坐标,又c =1,当k >0时,不妨设A ,B 两点的坐标分别为(-1,y 1),(1,y 2),代入椭圆方程得y 1=-32,y 2=32,解得k =32;同理可得当k <0时k =-32.4.椭圆4x 2+9y 2=144内有一点P (3,2),则以P 为中点的弦所在直线的斜率为( ) A.-23B.-32C.-49D.-94【答案】 A【解析】 设以P 为中点的弦所在的直线与椭圆交于点A (x 1,y 1),B (x 2,y 2),斜率为k ,则4x 21+9y 21=144,4x 22+9y 22=144,两式相减得4(x 1+x 2)(x 1-x 2)+9(y 1+y 2)(y 1-y 2)=0,又x 1+x 2=6,y 1+y 2=4,y 1-y 2x 1-x 2=k ,代入解得k =-23.5.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A .2B .455C .4105D .8105【答案】C【解析】设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t消去y ,得5x 2+8tx +4(t 2-1)=0,则x 1+x 2=-85t ,x 1x 2=4t 2-15.∴|AB |=1+k 2|x 1-x 2| =1+k 2·x 1+x 22-4x 1x 2=2·⎝ ⎛⎭⎪⎫-85t 2-4×4t 2-15 =425·5-t 2, 当t =0时,|AB |max =4105.6.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)及点B (0,a ),过点B 与椭圆相切的直线交x 轴的负半轴于点A ,F 为椭圆的右焦点,则∠ABF =( ) A.60° B.90°C.120°D.150°【答案】 B【解析】由题意知,切线的斜率存在,设切线方程y =kx +a (k >0),与椭圆方程联立⎩⎪⎨⎪⎧y =kx +a ,x 2a 2+y 2b2=1,消去y 整理得(b 2+a 2k 2)x 2+2ka 3x +a 4-a 2b 2=0, 由Δ=(2ka 3)2-4(b 2+a 2k 2)(a 4-a 2b 2)=0,得k =c a ,从而y =c a x +a 交x 轴于点A ⎝ ⎛⎭⎪⎫-a 2c ,0,又F (c ,0),易知·=0,故∠ABF =90°.7.倾斜角为π4的直线经过椭圆x 2a 2+y2b2=1(a >b >0)的右焦点F ,与椭圆交于A ,B 两点,且=2,则该椭圆的离心率为( )A .32B .23C .22D .33【答案】B【解析】由题可知,直线的方程为y =x -c ,与椭圆方程联立⎩⎪⎨⎪⎧x 2a 2+y 2b2=1,y =x -c ,得(b 2+a 2)y 2+2b 2cy -b 4=0,由于直线过椭圆的右焦点,故必与椭圆有交点,则Δ>0.设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 1+y 2=-2b 2c a 2+b2,y 1y 2=-b4a 2+b 2,又=2,∴(c -x 1,-y 1)=2(x 2-c ,y 2), ∴-y 1=2y 2,可得⎩⎪⎨⎪⎧-y 2=-2b 2c a 2+b2,-2y 22=-b4a 2+b2.∴12=4c 2a 2+b2,∴e =23,故选B. 8.已知P (x 0,y 0)是椭圆C :x 24+y 2=1上的一点,F 1,F 2是C 的两个焦点,若·<0,则x 0的取值范围是( )A.⎝ ⎛⎭⎪⎫-263,263B.⎝ ⎛⎭⎪⎫-233,233C.⎝ ⎛⎭⎪⎫-33,33D.⎝ ⎛⎭⎪⎫-63,63 【答案】 A【解析】 由题意可知F 1(-3,0),F 2(3,0),则·=(x 0+3)(x 0-3)+y 20=x 20+y 20-3<0.因为点P 在椭圆上,所以y 2=1-x 204.所以x 20+⎝ ⎛⎭⎪⎫1-x 204-3<0,解得-263<x 0<263,即x 0的取值范围是⎝ ⎛⎭⎪⎫-263,263.9.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A.2B.455C.4105D.8105【答案】 C【解析】 设直线l 的方程为y =x +t ,代入x 24+y 2=1,消去y 得54x 2+2tx +t 2-1=0,由题意知Δ=(2t )2-5(t 2-1)>0即t 2<5,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8t 5,x 1x 2=4(t 2-1)5,|AB |=(1+12)[(x 1+x 2)2-4x 1x 2]=4255-t 2≤4105(当且仅当t =0时取等号). 10.已知点P 是椭圆x 216+y 28=1上的动点,F 1,F 2分别是椭圆的左、右焦点,O 是坐标原点,若M 是∠F 1PF 2的平分线上一点,且·=0,则||的取值范围是( )A .[0,3)B .(0,22)C .[22,3)D .(0,4]【答案】B【解析】如图,延长F 1M 交PF 2的延长线于点G .∵·=0,∴⊥.又MP 为∠F 1PF 2的平分线,∴|PF 1|=|PG |,且M 为F 1G 的中点. ∵O 为F 1F 2中点,∴OM 綊12F 2G .∵|F 2G |=||PF 2|-|PG ||=||PF 1|-|PF 2||, ∴||=12|2a -2|PF 2||=|4-|PF 2||.∵4-22<|PF 2|<4或4<|PF 2|<4+22, ∴||∈(0,22).11.已知圆M :(x -2)2+y 2=1经过椭圆C :x 2m +y 23=1(m >3)的一个焦点,圆M 与椭圆C 的公共点为A ,B ,点P 为圆M 上一动点,则P 到直线AB 的距离的最大值为( )A.210-5B.210-4C.410-11D.410-10【答案】 A【解析】 易知圆M 与x 轴的交点为(1,0),(3,0),∴m -3=1或m -3=9,则m =4或m =12.当m =12时,圆M 与椭圆C 无交点,舍去.所以m =4.联立⎩⎪⎨⎪⎧(x -2)2+y 2=1,x 24+y 23=1,得x 2-16x +24=0.又x ≤2,所以x=8-210.故点P 到直线AB 距离的最大值为3-(8-210)=210-5.12.在平面直角坐标系xOy 中,直线x +2y -22=0与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相切,且椭圆C 的右焦点F (c ,0)关于直线l :y =cbx 的对称点E 在椭圆C 上,则△OEF 的面积为( )A.12B.32C.1D.2【答案】 C【解析】 联立方程可得⎩⎪⎨⎪⎧x +2y -22=0,x 2a 2+y 2b2=1,消去x ,化简得(a 2+2b 2)y 2-8b 2y +b 2(8-a 2)=0,由Δ=0得2b 2+a 2-8=0.设F ′为椭圆C 的左焦点,连接F ′E ,易知F ′E ∥l ,所以F ′E ⊥EF ,又点F 到直线l 的距离d =c 2c 2+b 2=c 2a ,所以|EF |=2c 2a ,|F ′E |=2a -|EF |=2b 2a ,在Rt △F ′EF 中,|F ′E |2+|EF |2=|F ′F |2,化简得2b 2=a 2,代入2b 2+a 2-8=0得b 2=2,a =2,所以|EF |=|F ′E |=2,所以S △OEF =12S △F ′EF =1.二、填空题(每小题5分,共20分)13.已知椭圆y 2a 2+x 2b2=1(a >b >0)的右顶点为A (1,0),过其焦点且垂直于长轴的弦长为1,则椭圆方程为________________________. 【答案】y 24+x 2=1【解析】 因为椭圆y 2a 2+x 2b2=1的右顶点为A (1,0),所以b =1,焦点坐标为(0,c ),因为过焦点且垂直于长轴的弦长为1,所以2b 2a =1,a =2,所以椭圆方程为y 24+x 2=1.14.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右顶点为A ,经过原点的直线l 交椭圆C 于P ,Q 两点,若|PQ |=a ,AP⊥PQ ,则椭圆C 的离心率为________. 【答案】255【解析】 不妨设点P 在第一象限,O 为坐标原点,由对称性可得|OP |=|PQ |2=a2,因为AP ⊥PQ ,所以在Rt△POA 中,cos ∠POA =|OP ||OA |=12,故∠POA =60°,易得P ⎝ ⎛⎭⎪⎫a 4,3a 4,代入椭圆方程得116+3a 216b 2=1,故a 2=5b 2=5(a 2-c 2),所以椭圆C 的离心率e =255.15.已知椭圆的方程是x 2+2y 2-4=0,则以M (1,1)为中点的弦所在直线方程是________. 【答案】 x +2y -3=0【解析】 由题意知,以M (1,1)为中点的弦所在直线的斜率存在,设其方程为y =kx +b , 则有k +b =1,即b =1-k ,即y =kx +(1-k ),联立方程组⎩⎪⎨⎪⎧x 2+2y 2-4=0,y =kx +(1-k ),则有(1+2k 2)x 2+(4k -4k 2)x +(2k 2-4k -2)=0,所以x 1+x 22=12·4k 2-4k 1+2k2=1,解得k =-12(满足Δ>0),故b =32,所以y =-12x +32,即x +2y -3=0.16.已知直线l :y =kx +2过椭圆x 2a 2+y 2b2=1(a >b >0)的上顶点B 和左焦点F ,且被圆x 2+y 2=4截得的弦长为L ,若L ≥455,则椭圆离心率e 的取值范围是________.【答案】 ⎝⎛⎦⎥⎤0,255【解析】 依题意,知b =2,kc =2.设圆心到直线l 的距离为d ,则L =24-d 2≥455,解得d 2≤165.又因为d =21+k 2,所以11+k 2≤45, 解得k 2≥14.于是e 2=c 2a 2=c 2b 2+c 2=11+k 2,所以0<e 2≤45,又由0<e <1,解得0<e ≤255. 三、解答题(六大题,共70分) 17.(10分)已知椭圆x 22+y 2=1,(1)过A (2,1)的直线l 与椭圆相交,求l 被截得的弦的中点轨迹方程;(2)求过点P ⎝ ⎛⎭⎪⎫12,12且被P 点平分的弦所在直线的方程. 【解析】 (1)设弦的端点为P (x 1,y 1),Q (x 2,y 2),其中点是M (x ,y ),则x 2+x 1=2x ,y 2+y 1=2y ,由于点P ,Q 在椭圆上,则有:⎩⎪⎨⎪⎧x 212+y 21=1,①x222+y 22=1,②①-②得y 2-y 1x 2-x 1=-x 2+x 12(y 2+y 1)=-x2y, 所以-x 2y =y -1x -2,化简得x 2-2x +2y 2-2y =0(包含在椭圆x 22+y 2=1内部的部分).(2)由(1)可得弦所在直线的斜率为k =-x 2y =-12,因此所求直线方程是y -12=-12⎝ ⎛⎭⎪⎫x -12,化简得2x +4y-3=0.18.(12分)已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4∶5.【解析】(1)解 设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0).由题意得⎩⎪⎨⎪⎧a =2,c a =32,解得c = 3.所以b 2=a 2-c 2=1.所以椭圆C 的方程为x 24+y 2=1.(2)证明 设M (m ,n ),则D (m ,0),N (m ,-n ). 由题设知m ≠±2,且n ≠0. 直线AM 的斜率k AM =nm +2,故直线DE 的斜率k DE =-m +2n. 所以直线DE 的方程为y =-m +2n(x -m ). 直线BN 的方程为y =n2-m(x -2).联立⎩⎪⎨⎪⎧y =-m +2n (x -m ),y =n 2-m (x -2),解得点E 的纵坐标y E =-n (4-m 2)4-m 2+n2.由点M 在椭圆C 上,得4-m 2=4n 2, 所以y E =-45n .又S △BDE =12|BD |·|y E |=25|BD |·|n |,S △BDN =12|BD |·|n |.所以△BDE 与△BDN 的面积之比为4∶5.19.(12分)已知A ,B 分别为椭圆C :y 2a 2+x 2b2=1(a >b >0)在x 轴正半轴、y 轴正半轴上的顶点,原点O 到直线AB 的距离为2217,且|AB |=7.(1)求椭圆C 的离心率;(2)直线l :y =kx +m 与圆x 2+y 2=2相切,并与椭圆C 交于M ,N 两点,若|MN |=1227,求k 的值.【解析】 (1)由题设知,A (b ,0),B (0,a ),直线AB 的方程为x b +y a=1,又|AB |=a 2+b 2=7,ab a 2+b 2=2217,a >b >0, 计算得出a =2,b =3,则椭圆C 的离心率为e =1-b 2a 2=12.(2)由(1)知椭圆方程为y 24+x 23=1,设M (x 1,y 1),N (x 2,y 2),则⎩⎪⎨⎪⎧y 24+x23=1,y =kx +m消去y 得,(3k 2+4)x 2+6kmx +3m 2-12=0,直线l 与椭圆相交,则Δ>0,即48(3k 2-m 2+4)>0, 且x 1+x 2=-6km 3k 2+4,x 1x 2=3m 2-123k 2+4.又直线l 与圆x 2+y 2=2相切, 则|m |k 2+1=2,即m 2=2(k 2+1). 而|MN |=1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·48(3k 2-m 2+4)3k 2+4=1+k 2·48(k 2+2)3k 2+4=43·k 4+3k 2+23k 2+4, 又|MN |=1227,所以43·k 4+3k 2+23k 2+4=1227, 即5k 4-3k 2-2=0,解得k =±1,且满足Δ>0,故k 的值为±1.20.(12分)已知P 点坐标为(0,-2),点A ,B 分别为椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右顶点,直线BP交E 于点Q ,△ABP 是等腰直角三角形,且=32.(1)求椭圆E 的方程;(2)设过点P 的动直线l 与E 相交于M ,N 两点,当坐标原点O 位于以MN 为直径的圆外时,求直线l 斜率的取值范围.【解析】 (1)由△ABP 是等腰直角三角形,得a =2,B (2,0).设Q (x 0,y 0),则由=32,得⎩⎪⎨⎪⎧x 0=65,y 0=-45,代入椭圆方程得b 2=1, 所以椭圆E 的方程为x 24+y 2=1. (2)依题意得,直线l 的斜率存在,方程设为y =kx -2.联立⎩⎪⎨⎪⎧y =kx -2,x 24+y 2=1, 消去y 并整理得(1+4k 2)x 2-16kx +12=0.(*)因直线l 与E 有两个交点,即方程(*)有不等的两实根,故Δ=(-16k )2-48(1+4k 2)>0,解得k 2>34.设M (x 1,y 1),N (x 2,y 2),由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=16k1+4k2,x 1x 2=121+4k 2,因坐标原点O 位于以MN 为直径的圆外, 所以·>0,即x 1x 2+y 1y 2>0,又由x 1x 2+y 1y 2=x 1x 2+(kx 1-2)(kx 2-2) =(1+k 2)x 1x 2-2k (x 1+x 2)+4=(1+k 2)·121+4k 2-2k ·16k 1+4k 2+4>0,解得k 2<4,综上可得34<k 2<4,则32<k <2或-2<k <-32. 则满足条件的斜率k 的取值范围为⎝ ⎛⎭⎪⎫-2,-32∪⎝ ⎛⎭⎪⎫32,2. 21.(12分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1),且离心率e =32.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点,求△PAB 的面积的最大值.【解析】 (1)因为e 2=c 2a 2=a 2-b 2a 2=34,所以a 2=4b 2.又椭圆C :x 2a 2+y 2b2=1(a >b >0)过点P (2,1),所以4a 2+1b2=1.所以a 2=8,b 2=2.故所求椭圆方程为x 28+y 22=1.(2)设l 的方程为y =12x +m ,点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =12x +m ,x 28+y22=1消去y 整理,得x 2+2mx +2m 2-4=0.所以x 1+x 2=-2m ,x 1x 2=2m 2-4.又直线l 与椭圆相交,所以Δ=4m 2-8m 2+16>0,解得|m |<2. 则|AB |=1+14×(x 1+x 2)2-4x 1x 2=5(4-m 2). 点P 到直线l 的距离d =|m |1+14=2|m |5. 所以S △PAB =12d |AB |=12×2|m |5×5(4-m 2)=m 2(4-m 2)≤m 2+4-m 22=2.当且仅当m 2=2,即m =±2时,△PAB 的面积取得最大值为2.22.(12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,且点F 1到椭圆C 上任意一点的最大距离为3,椭圆C 的离心率为12.(1)求椭圆C 的标准方程;(2)是否存在斜率为-1的直线l 与以线段F 1F 2为直径的圆相交于A ,B 两点,与椭圆相交于C ,D ,且|CD ||AB |=837?若存在,求出直线l 的方程;若不存在,说明理由. 【解析】 (1)根据题意,设F 1,F 2的坐标分别为(-c ,0),(c ,0),由题意可得⎩⎪⎨⎪⎧a +c =3,c a =12,解得a =2,c =1,则b 2=a 2-c 2=3, 故椭圆C 的标准方程为x 24+y 23=1.(2)假设存在斜率为-1的直线l ,设为y =-x +m , 由(1)知F 1,F 2的坐标分别为(-1,0),(1,0),所以以线段F 1F 2为直径的圆为x 2+y 2=1,由题意知圆心(0,0)到直线l 的距离d =|-m |2<1,得|m |< 2. |AB |=21-d 2=21-m 22=2×2-m 2,联立得⎩⎪⎨⎪⎧x 24+y 23=1,y =-x +m ,消去y ,得7x 2-8mx +4m 2-12=0,由题意得Δ=(-8m )2-4×7(4m 2-12)=336-48m 2=48(7-m 2)>0,解得m 2<7, 设C (x 1,y 1),D (x 2,y 2), 则x 1+x 2=8m 7,x 1x 2=4m 2-127,|CD |=2|x 1-x 2|=2×⎝ ⎛⎭⎪⎫8m 72-4×4m 2-127=2×336-48m 249=467×7-m 2=837|AB |=837×2×2-m 2,解得m 2=13<7,得m =±33.即存在符合条件的直线l ,其方程为y =-x ±33.。

2021届高三数学(文科)一轮复习通关检测卷全国卷(一)(解析版)

2021届高三数学(文科)一轮复习通关检测卷全国卷(一)(解析版)

2021届高三数学(文科)一轮复习通关检测卷全国卷(一)【满分:150分】一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,则复数313i 12iz -=-的共轭复数z 在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.如图,U 是全集,,,M P S 是U 的三个子集,则阴影部分所表示的集合是( )A.()M P S ⋂⋂B.()M P S ⋂⋃C.()()U M P S ⋂⋂D.()()U M P S ⋂⋃3.函数()2sin sin2f x x x =-在[]0,2π的零点个数为( ) A .2B .3C .4D .54.函 数cos sin y x x x =+在区间[-π,+π]上的图像可能是( ) A. B.C. D.5.已知154432,2,log 2p q s ===,则,,p q s 的大小关系为( ) A.q s p <<B.q p s <<C.s p q <<D.s q p <<6.已知π3sin 245x ⎛⎫-= ⎪⎝⎭.则sin 4x 的值为( )A.725B.725±C.1825D.1825±7.执行右面的程序框图,若输入的00k a ==,,则输出的k 为:( )A.2B.3C.4D.58.已知向量(3,1)a =,b 是不平行于x 轴的单位向量,且3a b ⋅=,则b 等于( )A.12⎫⎪⎪⎝⎭B.12⎛ ⎝⎭C.14⎛ ⎝⎭D.(1,0)9.若变量,x y 满足约束条件10,210,10,x y x y x y -+≥⎧⎪--≤⎨⎪++≥⎩则目标函数2z x y =+的最小值为()A.4B.1-C.2-D.3-10.已知,a b 是方程20x x -的两个不等实数根,则点(),P a b 与圆22:8C x y +=的位置关系是( ) A.点P 在圆内B.点P 在圆上C.点P 在圆外D.无法确定11.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,,2(),F F a c b P -=是椭圆 C 上的动点.若12PF F 的面积的最大值为S ,则2Sc=( )B.145C.43D.16912.已知函数()223f x x ax ax b =+++的图像在点()()1,1f 处的切线方程为12y x m =-+.若函数()f x 至少有两个不同的零点,则实数b 的取值范围是( )A.()5,27-B.[]5,27-C.(]1,3-D.[]1,3-二、填空题:本题共4小题,每小题5分,共20分.13.曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________.14.若sin cos αα+则sin 2α的值为__________. 15.从数学内部看,推动几何学发展的矛盾有很多,比如“直与曲的矛盾”,随着几何学的发展,人们逐渐探究曲与直的相互转化,比如:“化圆为方”解决了曲、直两个图形可以等积的问题. 如图,设等腰直角三角形ABC 中,,90AB BC ABC =∠=︒,以A C 为直径作半圆,再以为直径作半圆AmB ,那么可 以探究月牙形面积(图中黑色阴影部分)与AOB △面积(图中灰色阴影部分)之间的关系,在这种关系下,若向 整个几何图形中随机投掷一点,那么该点落在图中阴影部分的概率为___________.16.已知抛物线2:2(0)C y px p =>的焦点为F ,点A 是抛物线C 上一点,以点A 为圆心,23AF 为半径的圆与y 轴相切,且截线段AF,则p =_______. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分)已知各项均为正数的等差数列{}n a 和等比数列{}n b 满足111a b ==,且236a a ⋅=,238b b a ⋅=(1)求数列{}n a ,{}n b 的通项公式.(2)若2221log n n n c a b +=,求12n c c c ++⋯+.18. (12分)某学校用简单随机抽样方法抽取了30名同学,对其每月平均课外阅读时间(单位:小时)进行调查,所得数据的茎叶图如图:若将月均课外阅读时间不低于30小时的学生称为“读书迷”. (1).将频率视为概率,估计该校900名学生中“读书迷”有多少人?(2).从已抽取的7名“读书迷”中随机抽取男、女“读书迷”各1人,参加读书日宣传活动. (i)共有多少种不同的抽取方法?(ii)求抽取的男、女两位“读书迷”月均读书时间相差不超过2小时的概率.19. (12分)如图,在四棱锥P ABCD -中,90,60ABC ACD BAC CAD ∠=∠=︒∠=∠=︒,PA ⊥平面,2,1ABCD PA AB ==.设,M N 分别为,PD AD 的中点.(1)求证:平面CMN 平面PAB .(2)求三棱锥P ABM -的体积.20. (12分)已知椭圆2222:1(0)x y C a b a b +=>>,且经过点⎝⎭. (1)求椭圆C 的标准方程;(2)若过点()0,2P 的直线交椭圆C 于,A B 两点,求OAB (O 为原点)面积的最大值.21. (12分)已知函数2()ln 2()f x a x x a =+-∈R . (1)求函数()f x 的单调区间;(2)若函数()f x 在1x =处的切线方程为45y x =-,且当对于任意实数[1,2]λ∈时,存在正实数12,x x ,使得()()()1212x x f x f x λ+=+,求12x x +的最小正整数.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22. [选修4 – 4:坐标系与参数方程](10分) 已知曲线12,C C 的参数方程分别为2124cos ,4sin x C y θθ⎧=⎪⎨=⎪⎩:(θ为参数),211x t t C y t t ⎧=+⎪⎪⎨⎪=-⎪⎩,:(t 为参数). (1)将12,C C 的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设12,C C 的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程. 23. [选修4 – 5:不等式选讲](10分)已知函数()112f x x a x =-++的最小值为2. (1).求实数a 的值;(2).若0a >,求不等式()4f x ≤的解集.答案以及解析一、选择题 1.答案:C解析:由题设得313i (13i)(12i)55i1i 12i (12i)(12i)5z -++-+====-+--+,故1i z =--,其在复平面内对应的点位于第三象限,故选C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021届高三数学(理科)一轮复习通关检测卷全国卷(二)【满分:150分】一、单项选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,a ∈R ,若复数3i z a =-+的共轭复数在复平面内对应的点位于第三象限,且5z z ⋅=,则z =( ) A.34i --B.34i -+C.32i -+D.32i --2.已知集合{}{}*2|4,,|40M x x x N x x x =≤∈=-<N ,则M N ⋂=( )A.{}0,1,2,3,4B.{}1,2,3,4C.{}1,2,3D.{}0,1,2,33.从分别标有1,2,,9⋅⋅⋅的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( ) A.518B.49 C.59D.794.已知,αβ是两个不同的平面,,m n 是两条不同的直线,则下列说法中正确的是( ) A.若,,m n m n αβ⊥⊥⊥,则αβ⊥ B.若,m ααβ⊥⊥,则m βC.若,m ααβ⊥,则m β⊥D.若,,m n αβαβ,则mn5.已知0.50.50.70.5,0.3,log 0.2a b c ===,则,,a b c 的大小关系是( ) A.c a b <<B.b a c <<C.c b a <<D.a b c <<6.设函数()ln |21|ln |21|f x x x =+--,则()f x ( ) A.是偶函数,且在1(,)2+∞单调递增B.是奇函数,且在11(,)22-单调递减C.是偶函数,且在1(,)2-∞-单调递增D.是奇函数,且在1(,)2-∞-单调递减7.已知52()()x a x x+-的展开式中所有项的系数和为-2,则展开式中的常数项为( )A.80B.-80C.40D.-408.已知等比数列{}n a 的前n 项和2n n S a =+,且2log n n b a a =-,则数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T =( )A.321nn + B.21nn + C.21nn + D.1n n + 9.已知函数π()sin()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象的相邻两条对称轴之间的距离为π2,将函数()y f x =的图象向右平移π6个单位长度后,得到的图象关于原点对称,那么函数()y f x =的图象( ) A.关于点π,06⎛⎫- ⎪⎝⎭对称B.关于点π,06⎛⎫⎪⎝⎭对称C.关于直线π12x =-对称 D.关于直线π6x =对称 10.椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为12, F F ,过点1F 的直线交椭圆于,A B 两点,交y 轴于点C ,若1F ,C 是线段AB 的三等分点,2F AB △的周长为E 的标准方程为( )A. 22154x y +=B. 22153x y +=C. 22152x y +=D. 2215x y +=11.已知在三棱锥P ABC -中,2ππ,36PA PB APB ACB ==∠=∠=, 则当点C 到平面PAB 的距离最大时,三棱锥P ABC -外接球的体积为( )12.已知函数()f x 的导函数为'()f x ,对任意的实数x 都有'()2()e ()x f x x a f x =-+,且(0)1f =,若()f x 在(1,1)-上有极值点,则实数a 的取值范围是( )A.3(,]4-∞B.3(,)4-∞C.(0,1)D.(0,1]二、填空题:本题共4小题,每小题5分,共20分.13.已知空间向量,,|||5,,,,135λ===+=+〈︒〉=a b a b m a b n a b a b ,若⊥m n ,则λ的值为_____________.14.在ABC 中,角,,A B C 所对的边分别为,,a b c ,满足2230,ABCa cb S -+==,且60A =︒,则ABC 的周长为______________.15.在直三棱柱111ABC A B C -中,1π,1,2BAC AB AC AA ∠====,则异面直线AB 与1CB 所成的角为____________.16.已知抛物线()220y px p =>的顶点在原点上,焦点()1,0F ,准线与x 轴的交点为K ,点P为抛物线上一点,PK =,KPF 的内切圆为圆C ,则圆C 的半径为____________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. (一)必考题:共60分.17. (12分)已知等差数列{}n a 的前n 项和为n S ,且1536225,16S a a =+=.(1)证明:是等差数列;(2)设2n n n b a =⋅,求数列{}n b 的前n 项和n T .18. (12分)笔、墨、纸、砚是中国独有的文书工具,即文房四宝笔、墨、纸、砚之名,起源于南北朝时期,其中“纸”指的是宣纸,“始于唐代、产于泾县”,因唐代泾县隶属宣州管辖,故因地得名宣纸,宣纸按质量等级分类可分为正牌和副牌(优等品和合格品).某公司生产的宣纸为纯手工制作,年产宣纸10000刀,该公司按照某种质量指标x 给宣纸确定质量等级,如下表所示:公司在所生产的宣纸中随机抽取了一刀(100张)进行检验,得到的频率分布直方图如图所示.已知每张正牌宣纸的利润为10元,副牌宣纸的利润为5元,废品宣纸的利润为10-元.(1)试估计该公司生产宣纸的年利润;(2)该公司预备购买一种售价为100万元的机器改进生产工艺,这种机器使用寿命为一年,不影响产量,这种机器生产的宣纸的质量指标x 服从正态分布2(50)2N ,,改进工艺后正牌和副牌宣纸的利润都将受到不同程度的影响,观测的数据如下表所示:将频率视为概率,请判断该公司是否应该购买这种机器,并说明理由.附:若2()Z N μσ~,,则0().6826P Z μσμσ-<≤+=,220.95()44P Z σμσμ-<≤+=,330.99()74p Z σμσμ-<≤+=.19. (12分)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD ,设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC .(2)已知1PD AD ==,Q 为l 上的点,QB =求PB 与平面QCD 所成角的正弦值.20. (12分)双曲线2221(0)y x b b-=>的左、右焦点分别为1F ,2F ,直线l 过2F 且与双曲线交于A ,B 两点. (1)若l 的倾斜角为2π,1F AB △是等边三角形,求双曲线的渐近线方程;(2)设b l 的斜率存在,且11()0F A F B AB +⋅=,求l 的斜率. 21. (12分)已知函数()()()ln 1f x x ax a =+-∈R . (1)讨论函数()f x 的单调性;(2)若()()2112g x x x a f x =--+-,设()1122,x x x x <是函数()g x 的两个极值点,若32a ≥,求证:()()12152ln 28x g x g -≥-. (二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22. [选修4 – 4:坐标系与参数方程](10分)在平面直角坐标系中,曲线1C 的方程为2219x y +=.以坐标原点为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为28sin 150ρρθ-+=.(1)写出曲线1C 的参数方程和曲线2C 的直角坐标方程;(2)设点P 在曲线1C 上,点Q 在曲线2C 上,求PQ 的最大值. 23. [选修4 – 5:不等式选讲](10分) 已知函数()1(2)f x ax a x =---.(1)当3a =时,求不等式()0f x >的解集;(2)若函数()f x 的图象与x 轴没有交点,求实数a 的取值范围.答案以及解析一、单项选择题 1.答案:B解析:由5z z ⋅=可得22(3)25a -+=,解得4a =或4a =-.34i z ∴=-+或34i z =--.z 的共轭复数在复平面内对应的点位于第三象限,z ∴在复平面内对应的点位于第二象限,34i z ∴=-+.故选B.2.答案:C 解析:因为{}{}{}(){}{}2|41,2,3,4,|4040|0|4M x x x N x x x x x x x x =≤∈==-<=-<=<<*N ,,所以{}1,2,3M N ⋂=.故选C. 3.答案:C解析:∵9张卡片中有5张奇数卡片,4张偶数卡片,且为不放回地随机抽取, ∴P (第一次抽到奇数,第二次抽到偶数)5459818=⨯=,P (第一次抽到偶数,第二次抽到奇数)4559818=⨯=.∴P (抽到的2张卡片上的数奇偶性不同)55518189=+=.故选C. 4.答案:A解析:B 选项中,可能有m β⊂,故B 错误;C 选项中,m 与β不一定垂直,可能相交,也可能平行,还可能m β⊂,故C 错误;若,,m αβαβ,则,m n 可能相交,也可能异面,故D 错误.综上所述,故选A. 5.答案:B解析:因为0.5y x =在(0,)+∞上是增函数,且0.50.3>,所以0.50.50.50.3>,即a b >,0.70.7log 0.2log 0.71c =>=,而00.510.50.5=>,所以b a c <<.故选B.6.答案:D解析:由210210x x +≠⎧⎨-≠⎩得函数()f x 的定义域为11112222⎛⎫⎛⎫⎛⎫-∞-⋃-⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,其关于原点对称,因为()ln |2()1|ln |2()1|ln |21|ln |21|()f x x x x x f x -=-+---=--+=-,所以函数()f x 为奇函数,排除A ,C.当1122x ⎛⎫∈- ⎪⎝⎭,时,()ln(21)ln(12)f x x x =+--,易知函数()f x 单调递增,排除B.当12x ⎛⎫∈-∞- ⎪⎝⎭,时,212()ln(21)ln(12)ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,易知函数()f x 单调递减,故选D. 7.答案:B解析:由已知,令1x =,则所有项的系数和为52(1)(1)(1)21a a +-=-+=-,则1a =,52()x x -展开式的通项5521552()(2)r r r r rr r T C x C x x --+=⋅-=⋅-,因而,当521r -=-,即3r =时,52(1)()x x x+-展开式中的常数项为335(2)80C ⨯-=-,故选B.8.答案:D解析:由等比数列{}n a 的前n 项和2n n S a =+,得112213322,2,4S a a a S S a S S ==+=-==-=,2213,4(2)4a a a a =⋅∴=+⨯,解得11,1a a =-∴=,21,2n n S n =-∴时,11121212n n n n n n a S S ---=-=--+=(11a =满足上式),121log 21,1n n n b n b n -+∴=+==+,则11111(1)1n n b b n n n n +==-++,11111111223111n nT n n n n ∴=-+-++-=-=+++,故选D. 9.答案:A解析:两条相邻对称轴之间的距离为ππ,,π,2222T T ω∴=∴=∴=.π()sin(2)||2f x x ϕϕ⎛⎫∴=+< ⎪⎝⎭.将()y f x =的图像向右平移π6个单位长度后,得到ππ()sin 2sin 263y g x x x ϕϕ⎡⎤⎛⎫⎛⎫==-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图像.函数()y g x =的图像关于原点对称,π(0)sin 03g ϕ⎛⎫∴=-+= ⎪⎝⎭,ππ()3k k ϕ∴=+∈Z .又πππ||,,()sin 2233f x x ϕϕ⎛⎫<∴=∴=+ ⎪⎝⎭.令ππ2π()32x k k +=+∈Z ,得ππ()122k x k =+∈Z ,∴因此C ,D 项错误.令π2π()3x k k +=∈Z ,得ππ()62k x k =-+∈Z ,∴函数()y f x =的图像的对称中心为ππ,0()62k k ⎛⎫-+∈ ⎪⎝⎭Z .∴A 项正确,B 项错误.故选A. 10.答案:A解析:由椭圆的定义,得12122AF AF BF BF a +=+=,所以2F AB △的周长为12124AF AF BF BF a +++==a =,所以椭圆222:15x y E b+=.不妨令点C 是1F A 的中点,点A 在第一象限,因为()1, 0F c -,所以点A 的横坐标为c ,所以22215c y b +=,得2A c ⎛ ⎝,所以22,2,C B c ⎛⎛- ⎝⎝.把点B 的坐标代入椭圆E 的方程,得42242015b c b +=,即2241520c b +=,化简得222016b c =-.又225b c =-,所以2220165c c -=-,得21c =,所以24b =,所以椭圆E 的标准方程为22154x y +=.故选A. 11.答案:B解析:当平面CAB ⊥平面PAB 时,点C 到平面PAB 的距离最大,记点,D E 分别为,PAB ACB 的外心,过两个三角形的外心作三角形所在平面的垂线,两垂线交于点O ,则点O 为三棱锥P ABC -外接球的球心,AO 即为球的半径.因为2π,3APB PA PB ∠==,所以由余弦定理得222412cos 243324AB PA PB PA PB APB ⎛⎫=+-⋅∠=+--= ⎪⎝⎭, 解得2AB =. 在ACB 中,π6ACB ∠=,则π3AEB ∠=, 由正弦定理可得221sin 2AB AE ACB ==∠,解得2AE EB EC ===.记AB 的中点为F,则13OE DF PF AB ====,故R OA ===故三棱锥P ABC -外接球的体积3413395239πππ3334V R ==⨯⨯=,故选B.12.答案:C解析:由'()2()e ()x f x x a f x =-+得()[]'2()e x f x x a =-,所以2()2exf x x ax c =-+(c 为常数),2()(2)e x f x x ax c =-+又(0)1f =,所以1c =,所以2()(2)e x f x x ax c =-+,2'()[2(1)12]e x f x x a x a =-+-,设2()2(1)12g x x a x a =--+-,因为()f x 在(1,1)-上有极值点,所以'()f x 在(1,1)-上变号零点,即()g x 在(1,1)-上有变号零点,因为(1)0g -=,所以0111(1)440a g a ∆>⎧⎪-<-<⎨⎪=->⎩,解得01a <<,故选C. 二、填空题 13.答案:310-解析:由题意,知||||cos,515⎛⋅=〈〉=⨯=-⎝⎭a b a b a b.由⊥m n,得()()0λ+⋅+=a b a b,即221815(1)250λλλλ+⋅+⋅+=-++=a ab a b b,解得310λ=-. 14.答案:7+解析:60,A=︒∴由余弦定理得222a b c bc=+-.又22230,30,3a cb b b b b c-+=∴-+=∴=-(b为边长,故0b≠).11sin22ABCS bc A bc==210,3100bc c c∴=∴--=,解得5c=或2c=-(舍去).2,b a ABC∴==的周长为7+15.答案:π3解析:将直三棱柱111ABC A B C-补成长方体1111ABDC A B D C-,连接1B D.1,CD AB DCB∴∠即为异面直线AB与1CB所成的角,CD ⊥平面11BDD B,1DB⊂平面11BDD B,1CD B D∴⊥.11DD AA==111B D BD AC===,1B D∴=12B C∴=.∴在1Rt B CD中,111cos2CDDCBB C∠==.又1π0,2DCB⎛⎫∠∈ ⎪⎝⎭,1π3DCB∴∠=.16.答案:2解析:如图,过点P 作准线的垂线交准线于点M .焦点()1,0F ,∴准线方程为1x =-,抛物线方程为24y x =.由抛物线的定义可知,PF PM =.又PK =,.PK ∴=∴在Rt PMK 中,PM MK =.设(),P x y ,则1y MK PM x ===+,(),1P x x ∴+.点P 在抛物线上,()214x x ∴+=,解得1x =.()1,2P ∴,KPF ∴为直角三角形,2PF KF ==,PK =设圆C 的半径为r ,则()22r -=2r =三、解答题17.答案:(1)设数列{}n a 的公差为d ,则15815225S a ==,解得815a =.所以3682730716a a a d d +=-=-=,解得2d =,所以1871a a d =-=.所以2(1)22n n n S n n -=+⋅=.n =.因为当1n =1=,当2n ≥(1)1n n =--=,故是首项为1,公差为1的等差数列.(2)由(1)可知21n a n =-,故2(21)2n n n n b a n =⋅=-⋅.故123123252(21)2n n T n =⋅+⋅+⋅++-⋅,23412123252(21)2n n T n +=⋅+⋅+⋅++-⋅,两式相减可得()123122222(21)2n n n T n +-=+⋅+++--⋅=()11141222(21)2(32)2612n n n n n -++-+⋅--⋅=-⋅--,故1(23)26n n T n +=-⋅+.18.答案:(1)由频率分布直方图可知,一刀(10张)宣纸中有正牌宣纸1000.1440⨯⨯=(张),副牌宣纸1000.054240⨯⨯⨯=(张),废品宣纸1000.0254220⨯⨯⨯=(张), 所以估计该公司生产一刀宣纸的利润为40104052010400⨯+⨯-⨯=元, 又400100004000000⨯=,所以估计该公司生产宣纸的年利润为400万元.(2)因为x 服从正态分布2(50)2N ,, 所以4852()0.6826P x <≤=,4456()0.9974P x <≤=, ()()444852560.9740.68260.3148P x P x <≤<≤=-=⋃.设一张宣纸的利润为X 元,则X 的取值为12,8,3,10-, 所以()120.30.68260.20478P X ==⨯=,()80.70.68260.20.3148P X ==⨯+⨯0.477820.062960.54078=+= ()30.80.31480.25184P X ==⨯=,()()()()10112830.0026P X P X P x P X =-=-=-=-==, 所以X 的分布列为所以120.2047880.5407830.25184100.00267.51312EX =⨯+⨯+⨯-⨯=,所以改进生产工艺后,该公司生产一刀宣纸的利润为7.51312100100651.312⨯-=(万元), 因为651.312400>,所以该公司应该购买这种机器. 19.答案:(1) 平面PAD平面PBC l =,BC平面APD ,BCl ∴,PD ⊥平面ABCD ,∴PD BC ⊥,正方形ABCD ,∴BC DC ⊥,又PD DC D =,∴BC ⊥平面PDC ,∴l ⊥平面PDC .(2)建立如图所示的空间直角坐标系.因为1PD AD ==,则有()()()()()0,0,0,0,1,0,0,0,1,1,0,0,1,1,0D C P A B .设(),0,1Q m ,则有()0,1,0DC =,()(),,0,11,1,1DQ m PB ==-,因为QB =,1m =,设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎪⎨⋅=⎪⎩,即00y x z =⎧⎨+=⎩,令1x =,得1z =-,所以平面QCD 的一个法向量为()1,0,1n =-,则cos ||||n PB n PB n PB ⋅⋅===. 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦20.答案:(1)设(),A AA x y .由题意,2(0)F c ,,c =,()22241A y b cb =-=,因为1F AB ∆是等边三角形,所以2A c y =,即()24413bb +=,解得22b =.故双曲线的渐近线方程为y =.(2)由已知,()12,0F -,()22,0F .设()11,A x y ,()22,B x y ,直线():2l y k x =-.显然0k ≠.由()22132y x y k x -==-⎧⎪⎨⎪⎩,得()222234430k x k x k --++=. 因为l 与双曲线交于两点,所以230k -≠,且()23610k∆=+>.设AB 的中点为(),M M M x y .由11()0F A F B AB +⋅=,知1F M AB ⊥, 故11F M k k ⋅=-.而2122223M x x k x k +==-,()2623M M k y k x k =-=-,12323F M k k k =-, 所以23123k k k ⋅=--,得235k =,故l的斜率为5±. 21.答案:(1)由题意得,函数()f x 的定义域为()1-+∞,,()11f x a x '=-+. 当0a ≤时,()101f x a x '=->+, ∴函数()f x 在()1-+∞,上单调递增.当0a >时,令()0f x '=,得11x a=-+.若11,1x a ⎛⎫∈--+ ⎪⎝⎭,则()0f x '>,此时函数()f x 单调递增;若11,x a ⎛⎫∈-++∞ ⎪⎝⎭,则()0f x '<,此时函数()f x 单调递减.综上,当0a ≤时,函数()f x 在()1-+∞,上单调递增;当0a >时,函数()f x 在11,1a ⎛⎫--+ ⎪⎝⎭上单调递增,在11,a ⎛⎫-++∞ ⎪⎝⎭上单调递减.(2)()()21ln 12g x x x a x =+-+,0x >,()()11g x x a x '∴=+-+()211x a x x-++=.由()0g x '=得()2110x a x -++=,121x x a ∴+=+,121x x =,211x x ∴=.32a ≥,111115210x x x x ⎧+≥⎪⎪∴⎨⎪<<⎪⎩,解得1102x <≤.()()12x g x g ∴-()()()221121221ln12x x x a x x x =+--+-21121112ln 2x x x ⎛⎫=-- ⎪⎝⎭. 设()221112ln 022h x x x x x ⎛⎫⎛⎫=--<≤ ⎪⎪⎝⎭⎝⎭,则()()22331210xh x x x x x-'=--=-<,∴函数()h x 在10,2⎛⎤⎥⎝⎦上单调递减.∴当112x =时,()min 1152ln 228h x h ⎛⎫==- ⎪⎝⎭. 32a ∴≥时,()()12152ln 28x g x g -≥-成立.22.答案:(1)曲线1C 的参数方程为3cos ,sin x y ϕϕ=⎧⎨=⎩(ϕ为参数).2C 的直角坐标方程为228150x y y +-+=,即22(4)1x y +-=.(2)由(1)知,曲线2C 是以2(0,4)C 为圆心,1为半径的圆. 设(3cos ,sin )P ϕϕ,则2PC==当1sin 2ϕ=-时,2PC因为21PQ PC ≤+,当且仅当2,,P Q C 三点共线,且2C 在线段PQ 上时,等号成立.所以max 1PQ =.23.答案:(1)当3a =时,不等式可化为310x x -->,即31x x ->,31x x ∴-<-或31x x ->,解得14x <或12x >. (2)当0a >时,121,,()12(1)1,.x x af x a x x a ⎧-≥⎪⎪=⎨⎪-+<⎪⎩要使函数()f x 的图像与 x 轴没有交点,只需210,2(1)0,a a ⎧->⎪⎨⎪-≤⎩即12a ≤<;当0a =时,()21f x x =+,函数()f x 的图像与x 轴有交点; 当0a <时,121,,()12(1)1,.x x af x a x x a ⎧-≤⎪⎪=⎨⎪-+>⎪⎩要使函数()f x 的图像与 x 轴没有交点,只需210,2(1)0,a a ⎧-<⎪⎨⎪-≤⎩此时a 无解.综上所述,函数()f x 的图像与x 轴没有交点时,实数a 的取值范围为12a ≤<.。

相关文档
最新文档