3.1.3 空间向量的数量积运算(一)

合集下载

3.1.3空间向量的数量积运算课件人教新课标5

3.1.3空间向量的数量积运算课件人教新课标5
又|1 |= 2,| |= 2,
1 ·
所以 cos<1 , >=
|1 |||
=
1
2× 2
1
2
= .
因为<1 , >∈[0°,180°],
所以<1 , >=60°,所以向量1 与 的夹角为 60°.
3.1.3
问题导学
空间向量的数量积运算
课前预习导学
且|cos<a,b>|≤1,所以 D 正确.
3.1.3
问题导学
空间向量的数量积运算
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂检测
2.如图,在长方体 ABCD-A1B1C1D1 中,AB=AA1=2,AD=4,E 为侧面
AB1 的中心,F 为 A1D1 的中点.
2.有关数量积的运算应注意的问题:
(1)与数乘运算区分开,数乘运算的结果仍是向量,数量积的结果为
数量;
(2)书写规范:不能写成 a×b,也不能写成 ab.
3.1.3
问题导学
空间向量的数量积运算
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂检测
=|c|2-|a|2=0.
3.1.3
问题导学
空间向量的数量积运算
当堂检测
(3) ·1 =
1
1
(-) +
2
2
1
+
2
1
2
1
1
=- |a|2+ |b|2=2.
2

3.1.3空间向量的数量积运算 课件

3.1.3空间向量的数量积运算 课件

=12+1×1×cos 60° -2×1×1×cos 60° +1×1×cos 60° +12-2×1×1×cos 60° =1. → → → (3)|OA+OB+OC|= → → → OA+OB+OC2
= 12+12+12+2×1×1×cos 60° ×3= 6.
研一研· 问题探究、课堂更高效
研一研· 问题探究、课堂更高效
3.1.3 例 1 已知长方体 ABCD—A1B1C1D1 中,AB=AA1= 2,AD
= 4, E 为侧面 AB1 的中心, F 为 A1D1 的中点.试计算: → → → → → → (1)BC· ED1;(2)BF· AB1; (3)EF· FC1. → → → 解 如图,设AB=a,AD=b,AA1=c,
跟踪训练 2
如图所示,已知平行六面体
ABCD— A1B1C1D1 的底面 ABCD 是菱形, 且∠ C1CB=∠ C1CD=∠ BCD= 60° .求证: CC1⊥ BD. → → → 证明 设CB=a,CD=b,CC1=c,则|a|=|b|.
→ → → → → ∵BD=CD-CB=b-a, ∴BD· CC1=(b-a)· c=b· c-a· c =|b||c|cos 60° -|a||c|cos 60° =0, → → ∴C1C⊥BD,即 C1C⊥BD.
研一研· 问题探究、课堂更高效
小结
3.1.3 求向量的模,可以转化为求向量的数量积,求两点
间的距离或某条线段的长度,可以转化为求对应向量的模, 其中的关键是将线段长度用向量的模表示出来.
跟踪训练 3 如图所示,已知线段 AB 在平面 α 内,线段 AC⊥α,线段 BD⊥AB,线段 DD′⊥α 于 D′, 如果∠ DBD′=30° ,AB = a, AC= BD=b,求 CD 的长. → → 解 易知 AC⊥AB.,<CA,BD>=60° , → → → → → → ∵|CD|2=CD· CD=(CA+AB+BD)2 →2 →2 → 2 → → → → → → =|CA| +|AB| +|BD| +2(CA· AB+CA· BD+AB· BD)=

3.1.3空间向量的数量积运算课件人教新课标3

3.1.3空间向量的数量积运算课件人教新课标3

略解:⑴ MN MO ON
1 OA 1 (OB OC )= 1 (a b c)
22
2
MP OP OM = 1 (c a) 2
⑵易知 a b b c
ca
1,
a
2
2
b
2
c
1 ,∴ MN
MP
1
2
418
练习 2.在长方体 ABCD─A1B1C1D1 中, AB 2 , BC 2 ,
2
2
b
① a | a |2 即 | a | a (求线段的长度);
② a b a b 0 (垂直的判断);
a
b
a,b
③ cos a, b a b (求角度). ab
以上结论说明,可以从向量角度有效地分析有关 垂直、长度、角度等问题.
20
AA1 6 ,且记 AB a , AD b , AA1 c ,
D1
C1
⑴用 a 、b 、c 表示 BD1, B1C ;
A1
B1
⑵求异面直线 BD1 和 B1C 所成角的余弦值.
解:⑴ BD1 BA AD DD1 = a b c
D
C
B1C B1B BC c b
A
B
⑵∵ a b b c c a 0 , a 2 4, b 2 4, c 2 36 ,
⑷如果 a, b ,则称 a 与 b 垂直,记为 a b
2 异面直线及所成的角?
(0, ]
2
3
2)两个向量的数量积 已 知 空 间 两 个 非 零 向 量 a 、b , 则
a b cosa, b 叫做 a 、b 的数量积,记作 a b . 即 a b a b cosa, b .
注:①两个向量的数量积是数量,而不是向量. ②规定:零向量与任意向量的数量积等于零. 类比平面向量,你能说 出 a b 的几何意义吗?

空间向量数量积运算第一课时练习题含详细答案

空间向量数量积运算第一课时练习题含详细答案

3.1.3空间向量的数量积运算一、选择题1.若A 、B 、C 、D 为空间四个不同的点,则下列各式为零向量的是 ( ) ①22AB BC CD DC +++ ②2233AB BC CD DA AC ++++ ③AB CA BD ++④AB CB CD AD -+-A .①②B .②③C .②④D .①④2、在空间四边形ABCD 中,若AB a =,BD b =,AC c =,则CD 等于 ( ) A .()a b c -- B .()c b a -- C .a b c -- D .()b c a --3、已知向量 a 和向量 b 的数量积为- 3,且| a |=1,| b |=2,则向量 a 和向量 b 的夹角( ) A .30° B .60° C . 120° D .150°4、已知空间向量 a , b 满足条件:( a +3 b )⊥(7 a -5 b ),且(a -4 b )⊥(7 a -2 b ),则空间向量 a , b 的夹角<a , b >( )A .等于30°B .等于45°C .等于60°D .不确定5、若a ,b 为非零向量,则a·b =|a |·|b |是a 与b 平行的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 5、解析:因为a ,b 为非零向量,又a ·b =|a ||b |cos 〈a ,b 〉=|a ||b |, 所以cos 〈a ,b 〉=1.所以〈a ,b 〉=0,即a 与b 平行; 反之,若a 与b 平行,当〈a,b 〉=π时, a ·b =-|a |·|b |≠|a |·|b |,由此知应选A. 6、若a 与b 是垂直的,则a ·b 的值一定是( )A.大于0B.等于零C.小于0D.不能确定 7、在下列条件中,使M 与A 、B 、C 一定共面的是( ) A.OC OB OA OM --=2 B.OC OB OA OM 213151++=C.0=++MC MB MAD. 0=+++OC OB OA OM 8、 a 、b 是非零向量,则〈a ,b 〉的范围是 ( )A.(0,2π)B.[0,2π]C.(0,π)D.[0,π]9、已知|a |=22,|b|=22,a . b =-2,则a 、b 所夹的角为( )A. 0B. 4πC. 2πD. 34π10.设A 、B 、C 、D 是空间不共面的四点,且满足000=•=•=•AD AB ,AD AC ,AC AB ,则∆BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定二、填空题1、在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC →+BB 1→)-D 1C 1→;③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→.其中能够化简为向量BD 1→的是________. 2.已知平行六面体ABCD -A ′B ′CD ′,则下列四式中: ①AB →-CB →=AC →;②AC ′→=AB →+B ′C ′→+CC ′→;③AA ′→=CC ′→; ④AB →+BB ′→+BC →+C ′C →=AC ′→. 正确式子的序号是________.3.已知空间向量a 、b 、c 满足a +b +c =0,|a |=3,|b |=1,|c |=4,则a ·b +b ·c +c ·a 的值为________.4.若AB →·BE →=AB →·BC →,则AB →与CE →的位置关系为5.在空间四边形ABCD 中,A B →·C D →+B C →·A D →+C A →·B D →=________.6.已知|a |=32,|b |=4,a 与b 的夹角为135°,m =a +b ,n =a +λb ,则m ⊥n ,则λ=________.小组: 组号: 姓名:__________一、选择题(本题共10小题,每题5分,共50分) 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(共6小题,每题5分,共30分)请把正确答案填写在相应的位置上.1、__________2、___________3、_____________4、_____________5、_____________6、_____________ 三、解答题1、正方体ABCD —A 1B 1C 1D 1中,求证:BD 1⊥平面ACB 1.2、如图,在空间四边形OABC 中,8OA =,6AB =,4AC =,5BC =,45OAC ∠=,60OAB ∠=,求OA 与BC 的夹角的余弦值.在直角坐标系xOy 中,以O 为圆心的圆与直线x -3y =4相切.(1)求圆O 的方程;(2)圆O 与x 轴相交于A ,B 两点,圆内的动点P 满足PA ,PO ,PB 成等比数列,求PA →·PB→的取值范围.答案:一、选择:1---5 CDDCA 6-----10 BCBDB10.B ;解析:过点A 的棱两两垂直,通过设棱长应用余弦定理可得三角形为锐角三角形二、填空:1、解析:①中(A 1D 1→-A 1A →)-AB →=AD 1→-AB →=BD 1→;②中(BC →+BB 1→)-D 1C 1→=BC 1→-D 1C 1→=BD 1→;③中(AD →-AB →)-2DD 1→=BD →-2DD 1→≠BD 1→;④中(B 1D 1→+A 1A →)+DD 1→=B 1D →+DD 1→=B 1D 1→≠BD 1→,所以①②正确.答案:①②2、解析:AB →-CB →=AB →+BC →=AC →,①正确;AB →+B ′C ′→+CC ′→=AB →+BC →+CC ′→=AC ′→,②正确;③正确;(AB →+BB ′→)+BC →+C ′C →=AB ′→+B ′C ′→+C ′C →=AC ′→+C ′C →=AC →,故④错误.答案:①②③ 3、解析:∵a +b +c =0,∴(a +b +c )2=0,∴a 2+b 2+c 2+2(a·b +b·c +c·a )=0,∴a·b +b·c +c·a =-32+12+422=-13.答案:-134、解析:AB →·BE →=AB →·BC →,则AB →·(BE →-BC →)=AB →·CE →=0.∴AB →⊥CE →.5、解析: 设A B →=b ,A C →=c ,A D →=d ,则C D →=d -c ,B D →=d -b ,BC →=c -b .原式=0. 6、解析: m ·n =(a +b )·(a +λb )=|a |2+λa ·b +a ·b +λ|b |2=18+λ×32×4×cos 135°+32×4×cos 135°+λ×16=6-12λ+16λ=6+4λ,∵m ⊥n ,∴6+4λ=0,∴λ=-32三、解答题:1、.证明:先证明BD 1⊥AC∵1BD = BC + CD +1DD ,AC = AB +BC ∴1BD ·AC =(BC + CD +1DD )·(AB +BC )=BC ·BC + CD ·AB =BC ·BC -AB ·AB =|BC |2-|AB |2=0∴BD 1⊥AC ,同理可证BD 1⊥AB 1,于是BD 1⊥平面ACB 1 2、解:∵BC AC AB =-,∴OA BC OA AC OA AB ⋅=⋅-⋅||||cos ,||||cos ,OA AC OA AC OA AB OA AB =⋅⋅<>-⋅⋅<>84cos13586cos12024162=⨯⨯-⨯⨯=-∴24162322cos ,855||||OA BC OA BC OA BC ⋅--<>===⨯⋅, 所以,OA 与BC 的夹角的余弦值为3225-. 附加解析 (1)依题设,圆O 的半径r 等于原点O 到直线x -3y =4的距离,即r =41+3=2.得圆O 的方程为x 2+y 2=4.(2)不妨设A (x 1,0),B (x 2,0),x 1<x 2.由x 2=4即得A (-2,0),B (2,0). 设P (x ,y ),由|PA |、|PO |、|PB |成等比数列,得(x +2)2+y 2·(x -2)2+y 2=x 2+y 2, 即x 2-y 2=2. PA →·PB →=(-2-x ,-y )·(2-x ,-y ) =x 2-4+y 2=2(y 2-1).由于点P 在圆O 内,故⎩⎨⎧x 2+y 2<4x 2-y 2=2.由此得y 2<1.所以PA →·PB→的取值范围为[-2,0).DCBA备选:2、棱长为a 的正四面体ABCD 中,AB BC •+AC BD •的值等于( B ) A .0B.232aC. 22aD.23a7.已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →=0且AB →|AB →| ·AC →|AC →|=12 , 则△ABC 为( C )A.三边均不相等的三角形B.直角三角形C.等腰非等边三角形D.等边三角形8.如右图,在四边形ABCD 中,4||||||=++DC BD AB ,4||||||||=⋅+⋅DC BD BD AB ,0=⋅=⋅DC BD BD AB , 则AC DC AB ⋅+)(的值为( C ) A 、2 B 、22 C 、4D 、241.如图1,a 、b 是两个空间向量,则AC →与A ′C ′→是________向量,AB →与B ′A ′→是________向量.1、答案:相等 相反1、A 是△BCD 所在平面外一点,M 、N 分别是△ABC 和△ACD 的重心.若BD =4,试求MN 的长.解析:1、连结AM 并延长与BC 相交于E ,又连结AN 并延长与CD 相交于E ,则E 、F 分别为BC 及CD 之中点. 现在MN =AE AF AM AN 3232-=- =EF AE AF 32)(32=- =)(32CE CF - =CB CD CB CD -=-(31)2121(32) =BD 31∴MN =|MN |=31|BD |=31BD =34。

高中数学A版3.1.3空间向量的数量积运算优秀课件

高中数学A版3.1.3空间向量的数量积运算优秀课件
(1)证明两直线垂直; (2)求两点之间的距离或线段长度; (3)证明线面垂直; (4)求两直线所成角的余弦值等等.
高考链接
1.(2006年四川卷)如图,已知正六边
形P1P2P3P4P5P6 ,下列向量的数量积中最
大的是___A___. A. P1P2 ·P1P3
B. P1P2·P1P4
C. P1P2·P1P5 D. P1P2·P1P6
方法三:数形结合法,发现形的特殊性.
(2)已知 a 2 2 , b 2 , a b 2
2
则a,b所成的夹角为__1_3_5___.
分析:根据两向量夹角公式
a·b = a b cosa ,b (0 a,b π)
可得到所求结果.
2.选择
设a,b,c是任意的非零空间向量,且
a b = a b cosθ
向量的夹角: 0 θO a
A
B
2.平面向量的数量积的主要性质
设a,b是两个非零向量
(1)a⊥b a×b=0数量积为零是判
定两非零向量垂直的充要条件;
(2)当a与b同向时, a·b=|a|·|b|;当a与b 反向时, a·b=-|a|·|b|;特别地,a a = a 2 或 a = a a 用于计算向量的模;
2
2
AB' = AB + AA' = 2FG
FG / /AB'
由①知 EG∥AC
∴平面EFG//平面AB’C.
习题答案
1. B
2. 解:因为 AC = AB + AD + AA,
所以 | AC |2= ( AB + AD + AA )2
=| AB |2 + | AD |2 + | AA |2 + 2( AB·AD + AB·AA+ AD·AA )

3.1.3 空间向量的数量积运算

3.1.3 空间向量的数量积运算

数乘向量与向量数量积的结合律
交换律
λ( a · b) (λa)· b=______
b· a a· b=____
a· b+a· c a· (b+c)=________
分配律
知识点2:空间向量数量积的性质 a· b=0 ①若a,b是非零向量,则a⊥b⇔______ |a|· |b| ;若反向,则a· -|a|· |b| . ②若 a 与 b 同向,则 a · b = b = 两个向量 2 | a | 特别地,a· a= 或|a|= a· a 数量积的 a· b 性质 |a||b| ③若θ为a,b的夹角,则cos θ=_____
(1)空间向量的夹角
→ → ①定义:已知两个非零向量 a,b,在空间任取一点 O,作OA=a,OB= b,则 ∠AOB 叫做向量 a,b 的夹角,记作〈a,b〉. π ②范围:〈a,b〉∈ [0,π] .特别地:当〈a,b〉= 2 时,a⊥b.
知识点1:空间向量数量积的概念 (2)定义:已知两个非零向量a,b,则|a||b|cos〈a,b〉叫做a,b的数量积, 记作a· b. (3)数量积的运算律
=12+22+12+2×(1×2×cos 120°+0+2×1×cos 120°)=2,
→ ∴|EF|= 2,∴EF 的长为 2.
1
2
3
4
5
课堂小结
空间向量数量积的性质可以看成定义的引申和拓展,空间向量数量积与向
量的模和夹角有关,更多的是以它为工具,解决立体几何中与夹角和距离
相关的问题:
①求空间两点间的距离或线段的长度的问题可以转化为求相应向量的模的
问题;
②求空间两条直线所成的角的问题可以转化为求两条直线对应向量的夹角
的问题,但要注意空间两条直线所成的角与对应向量的夹角的取值范围;

§3.1.3空间向量的数量积运算教学设计

§3.1.3空间向量的数量积运算教学设计

§3.1.3 空间向量的数量积运算一.教学目标1.知识与技能(幻灯片2)(1)通过类比平面向量数量积的运算,掌握空间向量数量积的概念、性质和运算律; (2)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体 几何问题转化为向量问题;(3)通过向量的运算,研究空间中点、线、面之间的位置关系以及它们之间的距离和夹角等问题。

2.过程与方法引导学生注重知识间的联系,不断地与平面向量和立体几何知识进行类比,做到温故而知新,并且经历向量及其运算由平面到空间的推广过程,使学生的思维过程螺旋上升。

3.情感态度与价值观通过本节课的学习,使学生对于以往的知识有一个全新的认识,培养学生积极探索数学的本质,提高学生的数学素养。

二.教学重点空间向量数量积的概念以及实际应用。

三.教学难点建立空间向量与空间图形的内在联系; 四.教学过程 教学环节教学过程设计意图新 课 引入同学们,你们还记得平面向量数量积的定义吗?你能类比平面向量所成夹角说一说什么是空间中两条向量夹角及范围吗?注重了与旧知识的联系,使学生对知识的理解更为透彻。

学生容易对向量夹角和两直线夹角产生混淆,这里要对范围进行明确。

(幻灯片4) 讲 授 新 课零向量与任何向量的数量积为0。

性质1:这个性质是证明两向量垂直的依据;性质2: 这个性质是求向量模的依据。

思考:类比平面向量,你能说出空间向量数量积的几何意义吗?(幻灯片9)空间向量数量积和平面向量数量积相似,在教学中可采用类比的方法,并且还要向学生再次强调数量积的结果为常数,而不是向量。

空间向量数量积的几何意义同平面向量数量积是一样的。

只要让同学们理解空间中任意两个向量都是共面向量,此时就可以把空间向量的数量积转化为平面向量上来了。

(幻灯片5--8)(幻灯片10)=空间向量数量积的概念:已知两个非零向量a,,则a cos a,叫做a,的数量积.记作,即a cos a,.b b b b a b a b b b 22cos ,a a a a a a a a === cos 的几何意义:数量积等于的长度与在方向上的投影的乘积。

3.1.3 空间向量的数量积运算

3.1.3 空间向量的数量积运算

AB1 . BC1 (BB1 BA).(BB1 BC)
A
C
2
BB1 BA. BC 1
2
2.COS 60。
B
AB1 C1B
4、如图,在平行六面体ABCD A' B'C' D'中,AB 4,
AD 3, AA' 5,BAD 90,BAA' DAA' 60,
求AC '的 长.
D'
当a b 0 a,b夹角为钝角( )
四.空间向量数量积在立体几何中的应用:
【例1】已知:PO, PA分别是平面的垂线、斜线,
OA是PA在平面内的射影,l , 且l OA.
求证:l PA
证明:取直线l的方向向量a
P
l OA,a OA 0
PO ,且l ,
PO l PO a 0
三、课堂练习
1、已知| a | 2 2 , | b | 2 , a b 2,则a , b所夹的 2
角 为__1_3_5_0___.
2、判断真假:
(1)若a b 0,则a 0,b 0 ( )
(2) (a b) c a (b c)
()
(3)
2
p
2
q
(
p q)2
()
(4) 当a b 0 a,b 夹角为锐角,
2
2)空间向量的数量积
已知两个非零向量a、b,则 | a || b | cos a, b 叫做
向量a, b的数量积, 记作:a b,即 a b | a || b | cos a, b
注: ①两个向量的数量积是数量,可以正,负或0,而不是向量. ②规定:零向量与任意向量的数量积为0.
思考: 类比平面向量,你能说出a b的几何意义吗?

北师大版选修2-1高中数学3.1.3空间向量的数量积word教案1

北师大版选修2-1高中数学3.1.3空间向量的数量积word教案1
补充:
1.已知向量 ,向量 与 的夹角都是 ,且 ,
试求:( 1) ;(2) ;(3) .
3.向量的数量积:
已知向量 ,那么 叫做 的数量积,记作 ,即 .
已知向量 和轴 , 是 上与 同方向的单位向量,作点 在 上的射影 ,作点 在 上的射影 ,那么 叫做向量 在轴 上或在 上的正射影;能够证明 的长度 .
4.空间向量数量积的性质:
(1) .
(2)
(3) .
5.空间向量数量积运算律:
(1) .
例3.如图,在空间四边形 中, , , , , , ,求 与 的夹角的余弦值。
解:∵ ,

∴ ,
因此, 与 的夹角的余弦值为 .
说明: 由图形知向量的夹角99页练习第一、二、3题。
六.教学反思:空 间向量数量积的概念和性质。
七.作业:讲义第106页第3、4题
教学进程
学生探讨进程:(一)温习:空间向量大体定理及其推论;
(二)新课讲解:
1.空间向量的夹角及其表示
已知两非零向量 ,在空间任取一点 ,作 ,那么 叫做向量 与 的夹角,记作 ;且规 定 ,显然有 ;
若 ,那么称 与 相互垂直,记作: ;
2.向量 的模:
设 ,那么有向线段 的长度叫做向量 的长度或模,记作: ;
.空间向 量的数量积(1)
教学目标:1.把握空间向量夹角和模的概念及表示方式;
2.把握两个向量的数量积的计算方式,并能利用两个向量的数量积解决立 体几何中的一些简单问题。[
教学重、难点:空间数量积的计算方式、几何意义、立体几何问题的转化。
教具预备:与教材内容相关的资料 。
教学假想:激发学生的学习热情,激发学生的求知欲,培育严谨的学习态度,培育踊跃进取的精神.

《3.1.3空间向量的数量积运算》ppt课件

《3.1.3空间向量的数量积运算》ppt课件

(4)错误.在△ABC中,向量 BA,BC 的夹角为∠B,而向量 AB,BC 的夹角与向量 BA,BC 的夹角互补,故此等式不正确. 答案:(1)× (2)× (3)× (4)×
2.做一做(请把正确的答案写在横线上)
(1)若向量a与b满足|a|=1,|b|=2且a与b的夹角为 ,则
3
a·b=
.
(2)已知|a|=
2 ,|b|=
2 2
,a·b=-
2 2
,则a与b的夹角

.
(3)已知a,b是空间两个向量,若|a|=2,|b|=2,|a-b|= 7 ,
则cos<a,b>=
.
【解析】(1)a·b=|a||b|cos〈a,b〉=1×2× 1 =1.
2
答案:1
(2)由a·b=|a||b|cos〈a,b〉= 2 2 ×cos〈a,b〉
【解析】EF
FC1

[1 2
c

a

1 2
b]
(1 2
b

a)
1 (a b c) (1 b a)
2
2
1 a 2 1 b 2 2. 24
【方法技巧】 1.空间向量运算的两种方法 (1)利用定义:利用a·b=|a||b|cos〈a,b〉并结合运算律进 行计算. (2)利用图形:计算两个向量的数量积,可先将各向量移到同 一顶点,利用图形寻找夹角,再代入数量积公式进行运算.
形△OAB,△BOC求 OE与 BF 的模.
2. PC
2
PC .
【自主解答】(1)设 OA=a,OB =b,
OC =c且|a|=|b|=|c|=1,
易知∠AOB=∠BOC=∠AOC= ,

3.1.3 空间向量的数量积运算

3.1.3 空间向量的数量积运算

=13
������������
+
1 3
������������
+
1 3
������������ .
∴������������·(������������ + ������������ + ������������)=
1 3
������������
+
1 3
������������
+
1 3
������������
思路分析求出每个向量的模及其夹角,然后按照数量积的定义求 解,必要时,对向量进行分解.
探究一
探究二
探究三
探究四
当堂检测
解(1)������������ ·������������=|������������||������������|cos <������������, ������������>
例 2 如图,在正方体 ABCD-A1B1C1D1 中,求向量������������1与������������的夹角 的大小.
思路分析求两个向量的夹角,可以把其中一个向量平移到与另一
个向量的起点重合,从而转化为求平面角的大小;也可以用两个向
量的数量积定义a·b=|a||b|cos
<a,b>,求出cos
因 所为 以△向D量1A������C������1为与等���������边���的三夹角角形为,所π3.以∠D1AC=π3,即<������������1, ������������>=π3. (方法 2)设正方体的棱长为 1,
则������������1 ·������������=(������������ + ������������1)·(������������ + ������������)

3.1.3空间向量的数量积运算(优秀经典公开课比赛教案)

3.1.3空间向量的数量积运算(优秀经典公开课比赛教案)

3.1.3空间向量的数量积运算一、教材分析:“3.1空间向量及其运算”包括空间向量的定义、空间向量的加减运算、空间向量的数乘运算、空间向量的数量积运算、空间向量的正交分解及其坐标表示、空间向量运算的坐标表示等内容。

在学生掌握了空间向量加法运算的基础上,学习空间向量的数乘运算应无困难。

教科书在本小节首先类比平面向量的数乘运算引入空间向量的数乘运算以及数乘运算的分配律和结合律。

进而分别给出了空间向量共线和共面的定义,并进一步研究了空间向量共线和共面的问题。

二、教学目标:1、掌握空间向量夹角和模的概念及表示方法;2、掌握两个向量数量积的概念、性质和计算方法及运算律;3、掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题.三、教学重点:两个向量的数量积的计算方法及其应用.四、教学难点:向量运算在几何证明与计算中的应用.五、教学准备1、课时安排:1课时2、学情分析:3、教具选择:六、教学方法:七、教学过程1、自主导学:2、合作探究(一)、复习引入1.复习平面向量数量积定义:2. 平面向量中有两个平面向量的数量积,与其类似,空间两个向量也有数量积.(二)、新课讲授1. 两个非零向量夹角的概念:已知两个非零向量a 与b ,在空间中任取一点O ,作OA =a ,OB =b ,则∠AOB 叫做向量a 与b 的夹角,记作<a ,b >.说明:⑴规定:0≤<a ,b >π≤. 当<a 、b >=0时,a 与b同向; 当<a 、b >=π时,a 与b 反向;当<a 、b >=2π时,称a 与b 垂直,记a ⊥b . ⑵ 两个向量的夹角唯一确定且<a ,b >=<b ,a>.⑶ 注意:①在两向量的夹角定义中,两向量必须是同起点的.②<a ,b >≠(a ,b )2. 两个向量的数量积:已知空间两个向量a 与b ,|a ||b |cos <a 、b >叫做向量a 、b 的数量积,记作a ·b ,即 a ·b =|a ||b |cos <a ,b >. 说明:⑴零向量与任一向量的数量积为0,即0·a =0;⑵符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替. 几何意义:已知向量AB =a 和轴l ,e 是l 上和l 同方向的单位向量.作点A 在l 上的射影A ′,点B 在l 上的射影B ′,则''A B 叫做向量AB 在轴l 上或在e 方向上的正射影,简称射影.可以证明:''A B =|AB |cos <a ,e >=a ·e .说明:一个向量在轴上的投影的概念,就是a ·e 的几何意义.3. 空间数量积的性质:根据定义,空间向量的数量积和平面向量的数量积一样,具有以下性质:⑴a ·e =|a |·cos <a ,e >; ⑵a ⊥b ⇔a ·b =0⑶当a 与b 同向时,a ·b =|a |·|b |; 当a 与b 反向时,a ·b =-|a |·|b |.特别地,a ·a =|a |2或|a |=2a a a ⋅=.⑷cos <a ,b >=a ba b ⋅⋅; ⑸|a ·b |≤|a |·|b |.4. 空间向量数量积的运算律:与平面向量的数量积一样,空间向量的数量积有如下运算律:⑴(λa )·b =λ(a ·b )=a ·(λb ) (数乘结合律); ⑵ a ·b =b ·a (交换律);⑶a ·(b +c )=a ·b +a ·c (分配律)说明:⑴(a ·b )c ≠a (b ·с);⑵有如下常用性质:a 2=|a |2,(a +b )2=a 2+2a ·b +b 2例题讲解:课本91页:例2、例33、巩固训练:课本92页:练习4、拓展延伸:5、师生合作总结:(1)空间向量夹角和模的概念及表示方法(2)两个向量数量积的概念、性质和计算方法及运算律;八、课外作业:课本97页:习题3.1 A组 4九、板书设计:。

数学:3.1.3《空间向量的数量积运算》PPT课件(1) 2

数学:3.1.3《空间向量的数量积运算》PPT课件(1) 2

A
E
F
B
D
C
三、典型例题-------证垂直
(教材P91例3)已知m,n是平面内的两条相交直 线,直线l与的交点为B,且l⊥m,l⊥n, 求证:l⊥
分析:由定义可知,只需证l
与平面内任意直线g垂直。
l
lm
g m
gn n
l
lm
g m
gn n
证明:在内作不与m、n重合的任一 条直线g,在l、m、n、g上取非零向 量l、m、n、g,因m与n相交,得向量 m、n不平行,由共面向量定理 可知,存在唯一的有序实数对
即空间直线由空间一点及直线的方向向量唯一确定.
uuur uuur
如图 OA、O不B共线,
uuur uuur
uuur uuur uuur
AP t AB(t R),则可以用OA、OB表示OP如下: O
uuur uuur uuur uuur uuur uuur uuur uuur
OP OA AP OA t AB OA t(OB OA)
注意:(教材P90思考) 数量积不满足消去率和结合律
(a b) c a (b c)
二、 课堂练习
3.如图:已知空间四边形 ABCD的每条边和对角线长都 等于1,点E、F 分别是 AB、AD的中点。 计算:(1)EF BA (2) EF BD (3) EF DC (4) EF AC
C' 解:Q AC AB AD AA
uuuur uuur uuur uuur | AC |2 ( AB AD AA)2
uuur uuur uuur | AB |2 | AD |2 | AA |2
uuur uuur uuur uuur uuur uuur 2( ABgAD ABgAA ADgAA) 42 32 52 2(0 10 7.5)

人教课标版高中数学选修2-1:《空间向量的数量积运算》教案-新版

人教课标版高中数学选修2-1:《空间向量的数量积运算》教案-新版

3.1.3 空间向量的数量积运算一、教学目标(一)核心素养通过本节课的学习,同学们能掌握空间向量数量积运算的法则及运算律,能借助图形进行空间向量的运算,并通过空间几何体加深对运算的理解.会利用数量积的性质求空间向量的夹角和模,并能熟练应用于立体几何证明与求值.(二)学习目标1.了解向量夹角的定义,掌握空间向量数量积的运算法则及运算律.2.掌握利用数量积求空间向量夹角和模的方法.3.培养学生数形结合的思想和空间想象能力,并能解决向量的综合问题.(三)学习重点1.空间向量的数量积运算法则及运算律.2.空间向量的模长公式和夹角公式.3.空间向量数量积在立体几何中的应用.(四)学习难点1.利用空间向量的数量积求模与夹角.2.将立体几何问题转化为空间向量的数量积问题.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第90页至第91页,填空: 已知两个非零向量a ,b ,在空间任取一点O ,作a OA =,b OB =,则AOB ∠叫做向量a ,的夹角,记作><,. 如果2,π>=<,那么向量,互相垂直,记作⊥. 已知两个非零向量,,则><b a b a ,cos ||||叫做,的的数量积,记作⋅. 零向量与任何向量数量积为0. 特别地,⋅=><,cos ||||2||=.(2)写一写:和平面向量类似,空间向量的数量积满足哪些运算律? ①数乘结合律:)()(b a b a ⋅=⋅λλ, ②交换律:⋅=⋅, ③分配率:⋅+⋅=+⋅)(.和平面向量类似,空间向量的数量积有哪些性质? ①若为单位向量,则⋅=><,cos ||; ②若,⊥⇔⋅0=; ③==a ||;④若,为非零向量,则>=<,cos ||||a ba b ⋅; ⑤||||||≤⋅(当且仅当a ,b 共线时等号成立). 2.预习自测(1)已知向量,满足:3||=,2||=,⋅6-=,则>=<,( )A .0B .3πC .2πD .π 【知识点】空间向量的夹角公式.【解题过程】∵6cos ,123||||a b a b a b ⋅-<>===-⨯rr r r r r ,∴>=<b a ,π.【思路点拨】理解并熟记空间向量的夹角公式.【答案】D .(2)在正三棱柱111C B A ABC -中,若12BB AB =,则1AB 与B C 1所成角的大小为()A . 60B . 90C . 75D . 105【知识点】空间向量的垂直.【解题过程】设m BB =||1,则m AB 2||=,∴C AB 11⋅)()(11C BB +⋅+=C BB 11⋅+⋅= 180cos 60cos 22⋅⋅+⋅⋅=m m m m 022=-=m m ,故1AB 与B C 1所成角的大小为 90.【思路点拨】空间向量的垂直的充要条件数量积等于0.【答案】B .(3)在平行六面体1111D C B A ABCD -中,4=AB ,3=AD ,51=AA , 90=∠BAD ,6011=∠=∠DAA BAA ,则=||1AC .【知识点】空间向量的模长. 【解题过程】=21||AC 2121)(AA AC ++=112122222AA AA AA ⋅+⋅+⋅+++=21532215420534222⨯⨯⨯+⨯⨯⨯++++=85=,故=||1AC 85.【思路点拨】利用空间向量的模长公式,转化为数量积的运算. 【答案】85.(4)已知线段AB ,BD 在平面α内,AB BD ⊥,线段α⊥AC ,且a AB =,b BD =,c AC =,则C ,D 间的距离为 .【知识点】空间向量的模长. 【解题过程】222)(||++==⋅+⋅+⋅+++=222222000222+++++=c b a 222c b a ++=,故C ,D 间的距离为222c b a ++.【思路点拨】利用空间向量的模长公式,转化为数量积的运算. 【答案】222c b a ++.(二)课堂设计1.知识回顾(1)空间向量线性运算法则和运算律;(2)共线向量定理的两种表达形式;(3)共面向量定理的两种表达形式.2.问题探究探究一 由平面向量类比空间向量的数量积运算★●活动① 类比提炼概念前面我们说过,两个非零向量a r ,b r 一定是共面向量.那在平面向量中,我们是怎样定义两个向量的夹角的呢?(抢答) 已知两个非零向量,,在空间任取一点O ,作OA a =uu r r ,OB b =uu u r r ,则AOB ∠叫做向量,的夹角,记作><,.如果2,π>=<,那么向量,互相垂直,记作⊥.也就是说,两个空间向量夹角的定义与平面向量一致.【设计意图】两个非零向量一定是共面,因此向量夹角的概念自然地从平面到空间,让学生体会概念的类比过程,为数量积的定义作好准备.●活动② 巩固理解,深入探究同样的,那数量积的定义呢?(抢答) 已知两个非零向量a ,b ,则><,cos ||||叫做a ,b 的的数量积(inner product ),记作a b ⋅r r .零向量与任何向量数量积为0.特别地,2=||||cos ,||a a a a a a a ⋅<>=r r r r r r r .【设计意图】通过抢答,使学生深入探究,进而得到数量积定义.●活动③ 深入探究,发现规律和平面向量类似,空间向量的数量积满足哪些运算律?(抢答) ①数乘结合律:)()(⋅=⋅λλ, ②交换律:⋅=⋅, ③分配率:⋅+⋅=+⋅)(.【设计意图】类比平面向量,得出空间向量数量积的运算律,理解更加深入.探究二 探究空间向量数量积的性质★▲●活动① 类比探究,研究性质和平面向量类似,空间向量的数量积有哪些性质?(抢答) ①若为单位向量,则=||cos ,a e a a e ⋅<>r r r r r ;(解释:1||=,转化为投影) ②若,为非零向量,则0a b a b ⊥⇔⋅=r r r r ;(解释:,cos 022a b ππ<>==r r ,)③||==;(解释:,0cos 01a b <>==r r ,) ④若,为非零向量,则||||,cos b a b a >=<;(解释:定义的变形式) ⑤||||||≤⋅(当且仅当,共线时等号成立).(解释:,[0,]cos ,[1,1]a b a b π<>∈<>∈-r r r r ,)【设计意图】通过类比,得到空间向量数量积的各种性质,并给予合理解释,突破难点. ●活动② 巩固理解,深入探究以上五个性质中,大家认为最重要的有哪些,它们有什么作用?(抢答)第②条,0a b a b ⊥⇔⋅=r r r r ,可用于证明空间向量垂直;第③条,||=,是空间向量的模长公式;第④条,||||,cos b a b a >=<,是空间向量的夹角公式.【设计意图】让学生进行思考,在深刻理解性质的同时,指出公式的作用,为后面的计算打好基础.探究三 探究空间向量数量积的具体应用★▲●活动① 归纳梳理、理解提升通过前面的学习,由于两个向量必然共面,所以空间向量数量积的运算法则和运算律和平面向量基本一致.同时,我们理解了数量积的三个重要应用是?(抢答)模长、垂直、夹角.它们都是向量a ,b 的二次运算,是非线性的.【设计意图】通过学生归纳知识点和定理,培养学生数学对比、归类、整理意识. ●活动② 互动交流、初步实践例1 设,,是任意的非零向量,且它们相互不共线,下列命题中:①()()0a b c c a b ⋅-⋅=r r r r r r ;②=||22a b b a =r r r r ; ④22||4||9)23()23(-=-⋅+.正确的是( )A .①②B .②③C .③④D .②④【知识点】空间向量的数量积运算法则和运算律.【数学思想】转化思想.【解题过程】向量的数量积不满足结合律,所以①不正确;由向量的数量积的定义知,②正确;,不一定共线,向量不一定相等,所以③不正确;利用数量积的运算律,④正确.【思路点拨】空间向量数量积运算不满足结合律.【答案】D .同类训练 已知空间四边形ABCD 的每条边和对角线长都等于a ,点E ,F ,G 分别为AB ,AD ,DC 的中点,则以下运算结果为2a 的是( )A .⋅2B .⋅2C .CA FG ⋅2D .CB EF ⋅2【知识点】空间几何体中向量的数量积运算.【数学思想】数形结合思想. 【解题过程】由已知可得3,π>=<, 所以><=⋅,cos ||||22223cos 2a a ==π. 【思路点拨】在空间几何体中先找出向量的夹角再根据定义计算.【答案】B .【设计意图】通过空间几何体中的向量,让学生对数量积的定义和运算更加熟练. 活动③ 巩固基础、检查反馈例2 已知空间四边形OABC 中,OB =OC ,且3π=∠=∠AOC AOB ,则><BC OA ,cos 的值为( )A .0B .21C .22D .23 【知识点】空间向量的线性表示及夹角公式.【数学思想】数形结合思想. 【解题过程】设a OA =,b OB =,c OC =,由已知得3,,π>=>=<<,且||||=. 所以()OA BC a c b a c a b ⋅=⋅-=⋅-⋅uu r uu u r r r r r r r r 3cos ||||3cos ||||ππ-=0|)||(|||21=-=, 所以0||||,cos =>=<BC OA .【思路点拨】求向量夹角的重点就是求数量积和模长.【答案】A .同类训练 已知空间向量,,两两夹角为 60,其模都为1,则|2|+-等于( )A .5B .5C .6D .6【知识点】空间向量的模长公式.【数学思想】转化思想. 【解题过程】∵1||||||===c b a , 60,,,>=>=<>=<<a c c b b a ,∴21=⋅=⋅=⋅, ∴2|2|+-a c c b b a c b a ⋅+⋅-⋅-++=4424222214214212411⨯+⨯-⨯-++=5=, ∴|2|+-5=. 【思路点拨】先计算⋅,⋅,⋅,再利用模长公式展开计算.【答案】A .【设计意图】运用向量的夹角和模长公式,学生对数量积的运算更加熟练,基础更加牢固. ●活动④ 强化提升、灵活应用例3 已知PO ,P A 分别是平面α的垂线、斜线,AO 是P A 在平面α内的射影,α⊂l 且OA l ⊥,求证:PA l ⊥.【知识点】利用空间向量数量积解决直线垂直问题.【数学思想】数形结合思想.【解题过程】取直线l 的方向向量,同时取向量PA ,,∵OA l ⊥,∴0=⋅.∵α⊥PO ,且α⊂l ,∴PO l ⊥,∴0=⋅. 又∵=⋅)(+⋅0=⋅+⋅=,∴PA l ⊥.【思路点拨】将向量用,来表示,从而利用数量积解决垂直问题.这是三垂线定理的向量证法,同理也可用来证明:若PA l ⊥,则OA l ⊥.【答案】见解题过程.同类训练 已知m ,n 是平面α内的两条相交直线,如果m l ⊥,n l ⊥,求证:α⊥l .【知识点】利用空间向量数量积解决线面垂直问题.【数学思想】数形结合思想.【解题过程】在α内任作一直线g ,分别在l ,m ,n ,g 上取非零向量l ,m ,,. ∵m 与n 相交,∴向量,不平行,由向量共面的充要条件知,存在唯一的有序实数对),(y x ,使y x +=. ∵0=⋅m l ,0=⋅n l ,∴y x ⋅+⋅=⋅0=,即g l ⊥.∴l 垂直于α内的任意直线,∴α⊥l .【思路点拨】将α内的任意直线的方向向量表示为,的线性组合,从而利用数量积证明0=⋅g l ,再由线面垂直的定义可证.这是线面垂直判定定理的向量证法.【答案】见解题过程.【设计意图】垂直问题的证明是常见题型,通过数量积的计算,避免了立体几何中辅助线的添加,极大地降低了难度.3. 课堂总结知识梳理(1)已知两个非零向量,,在空间任取一点O ,作=,=,则AOB ∠叫做向量,的夹角,记作><,.如果2,π>=<b a ,那么向量,互相垂直,记作⊥. (2)已知两个非零向量,,则><,cos ||||叫做,的的数量积(inner product ),记作⋅.零向量与任何向量数量积为0.特别地,⋅=><,cos ||||2||=.空间向量的数量积满足的运算律有:①数乘结合律:)()(⋅=⋅λλ,②交换律:⋅=⋅,③分配率:⋅+⋅=+⋅)(.(3)空间向量的数量积的性质有:①若e 为单位向量,则a e ⋅=><,cos ||;②若a ,b 为非零向量,则a b ⊥⇔a b ⋅0=;③||==a ,b 为非零向量,则||||,cos b a >=<;⑤||||||≤⋅(当且仅当,共线时等号成立).重难点归纳(1)空间向量的数量积是向量的二维计算,是三个实数的乘积,不满足结合律.(2)空间向量的数量积主要解决向量的垂直,模长和夹角问题,在立体几何中应用非常广泛.(三)课后作业基础型 自主突破1.下列命题中正确的是( )A .222)(⋅=⋅ B .||||||≤⋅C .)()(⋅⋅=⋅⋅D .若)(-⊥,则0=⋅=⋅【知识点】向量数量积的概念和运算.【数学思想】转化思想. 【解题过程】对于A 项,><=⋅,cos )(222222≤,故A 错误;对于C 项,数量积不满足结合律,故C 错误;对于D 项,有0)(=-⋅,所以⋅=⋅,但不一定等于0,故D 错误.B 项是数量积的性质.【思路点拨】深刻理解各种概念和运算.【答案】B . 2.已知,为单位向量,其夹角为 60,则=⋅-)2(( )A .1-B .0C .1D .2【知识点】向量数量积的运算.【数学思想】转化思想. 【解题过程】∵1||||==,>=<, 60, ∴=⋅-)2(22-⋅0||60cos ||||22=-= .【思路点拨】熟练掌握空间向量数量积的运算法则.【答案】B . 3.在三棱锥BCD A -中,2===AD AC AB , 90=∠BAD , 60=∠BAC ,则=⋅( )A .2-B .2C .32-D .32 【知识点】空间向量数量积的运算.【数学思想】数形结合思想. 【解题过程】=⋅)(-⋅⋅-⋅= 60cos 220⨯⨯-=2-=.【思路点拨】在空间几何体中找到夹角再根据定义计算.【答案】A .4.在三棱锥ABC D -中,已知)()2(AC AB DA DC DB -⋅-+0=,则ABC ∆是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形 【知识点】空间向量数量积的运算.【数学思想】转化思想. 【解题过程】∵)()2(-⋅-+)()(-⋅-+-=0)()(22=-=-⋅+=AC AB AC AB AC AB ,∴22||||AC AB =,即AC AB =.【思路点拨】熟练掌握空间向量数量积的各种变形.【答案】B .5.已知A ,B ,C 为圆O 上的三点,若+=与的夹角 为 .【知识点】空间向量的夹角.【数学思想】数形结合思想.【解题过程】∵+=,∴点O 是BC 中点,故BC 为直径,根据圆的性质,有 90=∠BAC ,即<AB ,> 90=.【思路点拨】利用几何性质,点O 是BC 中点,BAC ∠是直角所对的圆周角.【答案】 90. 6.已知,,中每两个向量的夹角都是3π,且4||=a ,6||=b ,2||=c ,试求出||++的值.【知识点】向量模长公式.【数学思想】转化思想. 【解题过程】∵2||++⋅+⋅+⋅+++=222222422664264222⨯+⨯+⨯+++=100=,∴||++10=. 【思路点拨】利用模长公式进行数量积的计算.【答案】10.能力型 师生共研7.已知23|=a ,4|=b ,+=,λ+=,43,π>=<,若⊥, 则=λ .【知识点】向量垂直与数量积的关系. 【数学思想】转化思想.【解题过程】∵⊥,∴0=⋅,即⋅+)(0)(=+λ,则0)1(22=⋅+++λλ,即043cos 234)1(4)23(22=⨯⨯⨯+++πλλ,∴064=+λ,23-=λ. 【思路点拨】利用向量垂直的性质,列出方程求解.【答案】23-. 8.直三棱柱111C B A ABC -中, 90=∠BCA ,M ,N 分别是11B A ,11C A 的中点,1CC CA BC ==,则BM 与AN 所成角的余弦值为( )A .101 B .52 C .1030 D .22 【知识点】向量夹角公式求空间几何体中异面直线所成角. 【数学思想】数形结合思想.【解题过程】设=.=,CC =1,1||||||===,∴0=⋅=⋅=⋅,∵BM +=,+=,∴BM ⋅432=+=,又∵26||=BM ,25||=AN ,∴<cos ⋅>||||AN BM =1030252643=⨯=. 【思路点拨】将与用.,表示,再利用向量夹角公式得到所求角的余弦值.【答案】C .探究型 多维突破9.在正三棱柱111C B A ABC -中,若侧面对角线11BC AB ⊥,求证:11AB C A ⊥. 【知识点】在空间几何体中利用数量积解决直线垂直问题. 【数学思想】数形结合思想.【解题过程】设=,=,BB =1,m ==||||,n =||, ∵11BC AB ⊥,且11BB AB AB +=+-=,=1BC +, ∴11BC AB ⋅⋅+-=)()(+2+⋅-=02122=-=m n ,∴222n m =, ∴A AB 11⋅⋅+-=)()(1BC AB A A ++⋅+-=)()(+--b a c a ⋅--=22021222=--=m n m ,∴11AB C A ⊥. 【思路点拨】将1AB ,1BC ,C A 1用,,表示,再把垂直关系与数量积为零进行转化. 【答案】见解题过程.10.三棱柱111 C B A ABC -中,2221===AC AB AA , 6011=∠=∠=∠BAC AC A AB A ,在平行四边形C C BB 11内是否存在一点O ,使得⊥O A 1平面C C BB 11?若存在,试确定O 点的位置;若不存在,说明理由.【知识点】利用数量积运算解决动点存在性问题. 【数学思想】数形结合思想.【解题过程】设a AB =,b AC =,AA =1,假设存在点O ,使得⊥O A 1平面C C BB 11,不妨设n BB m +=1,则)(n m -+=m n n ++-=,而+=m n n ++-=)1(,∴11AA A -=m n n )1()1(-++-=, 要使⊥O A 1平面C C BB 11,只需⊥O A 11BB ,⊥O A 1BC ,即01=⋅A ,0)(1=-⋅A , ∴])1()1[(m n n -++-0=⋅c ,])1()1[(m n n -++-0)(=-⋅,解得43=m ,21=n ,+=O ,使得⊥O A 1平面C C BB 11.【思路点拨】在平面C C BB 11内将表示为n BB m +1,利用垂直条件列式解出m ,n 的值,从而确定点O 的位置.【答案】见解题过程.自助餐1.下列命题中,①a =||m m ⋅=⋅)()(λλ;③⋅+=+⋅)()(;④a b b a 22=. 其中真命题的个数为( )A .1个B .2个C .3个D .4个【知识点】向量数量积的概念和运算. 【数学思想】转化思想.【解题过程】①②③正确,④不正确,因为与的方向不一定相同,故不一定相等. 【思路点拨】深刻理解各种概念和运算. 【答案】C .2.已知向量,满足2||=,2||=,且与-2互相垂直,则>=<, .【知识点】向量数量积的运算,夹角公式. 【数学思想】转化思想.【解题过程】∵与a b -2互相垂直,∴0)2(=-⋅,即022=-⋅,∴2=⋅b a ,∴22||||,cos =>=<b a ,故 45,>=<b a . 【思路点拨】先求出b a ⋅,再利用向量夹角公式.【答案】 45.3.设A ,B ,C ,D 是空间不共面的四点,且满足0=⋅,0=⋅,0=⋅,则BCD ∆( )A .是钝角三角形B .是锐角三角形C .是直角三角形D .无形状不确定【知识点】数量积定义的应用.【数学思想】转化思想【解题过程】∵⋅)()(-⋅-=2+⋅-⋅-⋅=02>=,∴0||||,cos >>=<BD BC ,故CBD ∠为锐角,同理BCD ∠与BDC ∠均为锐角. 【思路点拨】锐角、钝角可由数量积的正负进行判定. 【答案】B .4.已知a ,b 是两异面直线,A ,a B ∈,C ,b D ∈,b AC ⊥,b BD ⊥,且2=AB ,1=CD ,则直线a ,b 所成的角为( ) A . 30B . 60C . 90D . 45【知识点】利用向量夹角公式计算异面直线所成角. 【数学思想】数形结合思想.【解题过程】∵++=,∴⋅++=⋅)(12==,故21||||,cos =>=<CD AB ,即 60,>=<CD AB . 【思路点拨】先求出⋅,再利用向量夹角公式. 【答案】B .5.在一个直二面角βα--l 的棱上有两点A ,B ,AC ,BD 分别是这个二面角的两个面内垂直于l 的线段,且4=AB ,6=AC ,8=BD ,则CD 的长为 . 【知识点】向量模长的计算. 【数学思想】转化思想.【解题过程】∵++=,∴22)(++=⋅+⋅+⋅+++=222222116864222=++=,∴292||=CD .【思路点拨】将拆分成已知长度的向量,再使用向量模长公式. 【答案】292.6.在长方体1111D C B A ABCD -中,设11==AA AD ,2=AB ,P 是11D C 的中点,则C B 1与A 1所成角的大小为 .【知识点】向量夹角公式的运用. 【数学思想】数形结合思想.【解题过程】∵A B 11⋅()(1AA ⋅+-=2=1=,由题意得211==C B PA ,则21||||,cos 1111=>=<P A C B A B ,故 60,11>=<P A C B . 【思路点拨】灵活运用向量夹角公式,关键是计算出A B 11⋅.【答案】 60.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a、 b a b cos a , b 叫做 a 、 b 的数量积,记作 a b 即 a的数量积 已 知 空 间 两 个 非 零 向 量
, 则 .
注:①两个向量的数量积是数量,而不是向量. ②规定:零向量与任意向量的数量积等于零.
课堂练习
1. 已 知 a 2 2 , b 2 2 ,a b

2
,
则a 与b
135 的夹角大小为_____.
0, b 0
2.判断真假: 1)若 a b 0 , 则 a
2) (a b ) c a (b c ) 2 2 2 3) p q ( p q) 2 2 4) p q p q p q
(4)空间向量的数量积满足的运算律
⑴、⑵是显然成立的 思考:你能证明分配律成立吗?
另外 a b a 及a b 0 ¿ c ¿ b c a 0或 b 0
练习运算
数量积不满足结合律即 (a b ) c a ( b c ) 注意:
A'
B'
D C
4 3 5 2 ( 0 1 0 7 .5 )
2 2 2
A B
85 | A C |
85
空间向量的数量积运算(一)
引 入 数量积运 算定义 课堂练习
思考1数量 积的性质
思考2数量 积的运算律
空间向量的数量积运算(一)
F

S
W= |F| |s| cos
根据功的计算,我们定义了平面两向量的 数量积运算.一旦定义出来,我们发现这种运 算非常有用,它能解决有关长度和角度问题.
2 2 | A C | ( A B A D A A ) 2 2 2 | AB | | AD | | AA | 2 ( A B A D A B A A A D A A )
A
A1
a b
B1
类比平面向量,你能说 出 a b 的几何意义吗?
如图 是 在 向上的射影向量.
B
A1 B 1
b
a

(3)空间两个向量的数量积性质 显然,对于非零向量 a 、 , e 是单位向 b 量有下列性质: ① a e a co s a , e ;
( )
( ) ( ) ( )
A B C D A B C D
AB 4
A D 3 , A A 5 , B A D 90 , B A A D A A 60
AC
D' C'
解: A C A B A D A A
空间向量数量积
类似地,我们可以定义空间向量的数量积运算: 1)两个向量的夹角的定义:
如图,已知两个非零向量 a 、 ,在空间任取 b 一点 O ,作 O A a , O B b ,则角 A O B 叫做向 量 a 与 b 的夹角,记作: a , b . A a ⑴范围: 0 ≤ a , b ≤ a B O a , b =0 时, a 与 b 同向; b b a , b =π 时, a 与 b 反向 ⑵ a , b = b , a ⑶如果 a , b ,则称 a 与 b 垂直,记为 a b 2
②a b a b 0 ;

注:
a
2
a a
也就是说
a
2 a
.
性质② 是证明两向量垂直的依据;
性质③是求向量的长度(模)的依据;
运算律是否成立
这些运算律 ⑴ ( a ) b (a b ) 成立,说明数量积 ⑵ a b b a (交换律) 不仅有用,而且运 ⑶ a ( b c ) a b a c (分配律) 算 起 来 还 极 为 方 便
相关文档
最新文档