弹塑性力学 第四章 弹性力学的求解方法

合集下载

第四章 结构弹塑性分析

第四章 结构弹塑性分析
( ≠ 0) ,其余应力为零。
Mises(畸变能)屈服条件为:
σi =
1 (σ x − σ y ) 2 + (σ y − σ z ) 2 + (σ z − σ x ) 2 + 6(τ 2 xy + τ 2 yz + τ 2 zx ) 2 1 = σ 2 + σ 2 + 6τ 2 ) = σ 2 + 3τ 2 ) = σ s 2
Ex4.1 集中荷载(如图示)作用下,求:1) 弹塑性状态时的弹塑性分界线; 2)求极限 P0 = ?
同济大学水利工程系
李遇春编
图 4.3
3、混凝土板的屈服线理论(塑性计算) 混凝土板在极端荷载作用下(如核爆炸、罕遇强烈地震等)可采用塑性法设计,设计 的原则:允许结构破坏,但保证结构不坍塌。 (1) 屈服线假定: 1) 板在行将破坏时,在最大弯矩处形成屈服线。
(4.18)
在小变形下, τ 比 σ 小得多,所以 σ 2 + 3τ 2 ) ≈ σ ,于是屈服条件可近似写为:
σ =σs
根据平截面假设 ε x = ky , k 为曲率,小变形下 k = −
d 2v εx = −y 2 dx
(4.19)
d 2v , v 为 y 方向上的位移(挠度) 。所以: dx 2
(4.20)
假定材料为理想弹塑性材料,于是发生塑性变形后,弹性区应力为:
σ = Eε x = − Ey
塑性区应力为:
d 2v dx 2
(4.21)
σ = ±σ s
应力首先在上下边达到屈服值,塑性区逐渐向内扩展。设
(4.22)
y = ±ξ ( x ) 为弹塑性分界面,则:
同济大学水利工程系

弹塑性力学线弹性力学问题的基本解法和一般性原理

弹塑性力学线弹性力学问题的基本解法和一般性原理

w ij ij Eijkl kl 线性关系 各向同性 ij
指标符号表示
ij 2G ij ij kk
E ( ij ij kk ) (1 ) 1
2019/1/3 7
§5-1 基本方程和边界条件的汇总
X l x m yx n zx n1 11 n2 21 n3 31
Y l xy m y n zy n1 12 n2 22 n3 32
Z l xz m yz n z n1 13 n2 23 n3 33
§5-1 基本方程和边界条件的汇总
在第二、三、四章较全面的讨论了弹性变 形体在承受外力作用时,发生变形和抗力(内
力),这些变形和内力应遵循的三个基本规律,
从而导出了待求物理量(应力、应变、位移)
所须满足的基本方程,共十五个,现汇总如下。
2019/1/3
1
§5-1 基本方程和边界条件的汇总
1.1 基本方程汇总
当 S = S时称为微分方程第一边值问题;
当 Su = S时称为偏微分方程第二边值问题; 当 Su +S = S 称为偏微分方程第三边值问题。
2019/1/3
11
§5-2 位移法
弹性力学问题的待求函数共15个(ij、 ij 、 ui),如果一视同仁的同等看待,由给定的边界 条件下求偏微分方程组的定解是不可能的。由 物理量所满足的方程组中显示出来)。
2
yz
xy
y yz zx xy ( )2 y x y z zx
2
2 zx z yz xy ( )2 z x y z yx
2019/1/3
6

6弹塑性4_弹性基本问题与解法_2012课件第一部分

6弹塑性4_弹性基本问题与解法_2012课件第一部分

第四章一、线性弹性理论适定问题的基本方程和边界条件对于线弹性体小变形的线性问题,建立了一组线性方程组可以描述为在S 为边界的域V 上以u ,ε,σ作为求解变量的偏微分方程边值问题:微分提法2变分提法积分提法第四章第四章适定问题:第四章均匀变形状态()()1222111 1d d E c d d E c νν−=−=第四章弹性力学的基本方程和解法一、线性弹性理论适定问题的基本方程和边界条件 适定问题与非适定问题简例蓝色:边界给定量红色:边界未知量6适定问题例一第四章蓝色:边界给定量红色:边界未知量7适定问题例二第四章蓝色:边界给定量红色:边界未知量8适定问题例三边界全部给定面力时约束刚体位移才能求得确定位移边界全部给定面力时给定面力和体积力必须整体平衡第四章蓝色:边界给定量红色:边界未知量9非适定问题例一有多余边界条件情况一般无解第四章蓝色:边界给定量红色:边界未知量10非适定问题例二边界条件识别(逆问题)复杂!第四章 1.3 界面连续条件第四章弹性力学的基本方程和解法一、线性弹性理论适定问题的基本方程和边界条件II I u u =IIIi i u u =位移面力3个条件0t t =+II I 0II II I I =+ji j ji j n n σσIII S IIS +−u3个条件+12∀X ∈S It I I t0)(II I I =−ji ji j n σσ界面连续条件应为边界条件个数的两倍I S第四章第四章第四章第四章第四章第四章第四章第四章第四章第四章第四章。

《弹塑性力学》第四章 应力应变关系(本构方程)-精品文档42页

《弹塑性力学》第四章 应力应变关系(本构方程)-精品文档42页
ji,j+ fi = 0 ij =( ui,j+ uj,i)/2
28.09.2019
2
第四章 应力应变关系(本构方程)
共9个方程,但需确定的未知函数共15个:
ui,ij=ji, ij=ji,
还需要根据材料的物理性质来建立应力与 应变间的关系:
ij = ji = fij ( kl )
Wijij
——W为
的函数。
ij
28.09.2019
11
§4-1 应变能、应变能密度与弹性材料的
本构关系
因为W只取决于弹性体的初始应变状态和最 终应变状态,与变形过程(加载路线)无关,
所以W 为它的全微分
W

W
ij
ij
28.09.2019
12
§4-1 应变能、应变能密度与弹性材料的
时刻达到 t +t:位移有增量 uuiei
应变增量 ijeiej 外力功增量:A Vfu d V S F u d S
28.09.2019
8
§4-1 应变能、应变能密度与弹性材料的
A 本构f关u 系d VF u d :函S 数增量
则 [C] 为对称矩阵 [C]= [C]T。
28.09.2019
19
§4-2 线弹性体的本构关系
2.1 各向异性材料 Eijkl 的独立系数为21个——材料为各向
异性线弹性材料。
*对各向异性材料的本构关系可见,剪应 变引起正应力,正应变也产生剪应力。 弹性材料性质一般都具有某些对称性, 利用对称可进一步简化 [C] 中系数。
V
S
Vfiuid V sF iuid SU V Wd
应变能增量A 中有体积分和面积分,利用

弹塑性力学第四章

弹塑性力学第四章


x

y
)
2019/7/26
36
§4-3 各向同性材料弹性常数

yz

2(1 )
E
yz

xy

2(1
E
)

xy

zx

2(1
E
)
zx
采用指标
符号表示:
ij

1 E
(1 ) ij
ij kk
ij

E
1
ij
1 2
ij kk
2G
0 0 0

2G
0
0
0


2G 0 0 0

2G 0
0



2G 0



2G
2019/7/26
31
§4-3 各向同性材料弹性常数
3.1 本构关系用、G表示
采用指标符号表示:
ij 2Gij ij kk 2Gij iⅠj
2019/7/26
16
§4-2 线弹性体的本构关系
2.1 各向异性材料 Eijkl 减少为66=36个独立系数,用矩阵 表示本构关系
{}=[c]{}
11
22
33
23
31
T 12
11
22
33
23
31
T 12
x3 弹性主轴
材料主轴,并取另一坐标
系x’i ,且x’1 = x1,x’2=x2,
x2
x’3=-x3。在两个坐标下,

弹塑性力学第四章弹性本构关系资料

弹塑性力学第四章弹性本构关系资料
产生的x方向应变:
产生的x方向应变:
叠加
产生的x方向应变:
同理:
剪应变:
物理方程:
说明:
1.方程表示了各向同性材料的应力与应 变的关系,称为广义Hooke定义。也称 为本构关系或物理方程。
2.方程组在线弹性条件下成立。
. 体积应变与体积弹性模量
令: 则: 令:
sm称为平均应力; q 称为体积应变
eij
1 2G
sij
(4.40)
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个
因此应力偏张量形式的广义虎克定律,即
eij
1 2G
sij
em
1 3K
sm
(4.41)
用应变表示应力:
或: ✓ 各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
式(2)中的系数 有36个.
称为弹性常数,共
由均匀性假设,弹性体各点作用同样应力 时,必产生同样的应变,反之亦然.因此 为 常数,其数值由弹性体材料的性质而定.
式(2)推导过程未引用各向同性假设, 故可适用于极端各向异性体、正交各向异性体、 二维各向同性体以及各向同性体等.
式(2)可用矩阵表示
式(3)可用简写为 称为弹性矩阵.
三、. 弹性常数
1. 极端各向异性体:
物体内的任一点, 沿各个方向的性能都不相 同, 则称为极端各向异性体. (这种物体的材料极 少见)
即使在极端各向异性条件下, 式(2)中的36个 弹性常数也不是全部独立.

第四章-弹塑性力学问题的微分提法与基本解法

第四章-弹塑性力学问题的微分提法与基本解法
◇ 位移解法 ◇ 应力解法 弹塑性力学问题的几个基本原理: ◇ 解的唯一性原理 ◇ 圣维南原理 ◇ 线弹性问题的叠加原理
2021/6/9
5
第四章 弹塑性力学问题的微分提法与基本解法
基本方程——平衡(运动)微分方程(Navier方程)
x
x
xy
y
xz
z
X
0(
2u
t
2
)
yx
x
y
y
yz
以及
xl1 yxl1
xyl2 yl2
xzl3 yzl3
X Y
zxl1
zyl2
zl3
Z
u u,v v,w w
给定面力边界 给定位移边界
2021/6/9
20
第四章 弹塑性力学问题的微分提法与基本解法
弹性力学问题的基本解法——基本思想
从几何方程和本构方程中可以发现,6个应力分量、6个 应变分量和3个位移分量之间不是彼此无关的。比如说,只要 知道了位移分量,通过Cauchy方程,就可得到应变分量,再 通过本构方程,就可确定应力分量;反之,如果知道了应力 分量,则可通过本构方程求得应变分量,不过这时求得的应 变分量必须满足一组补充方程,即应变协调方程,以保证固 体在变形后的连续性,然后再通过对Cauchy方程的积分求位 移分量。可见,在求解一个弹性力学问题时,并不需要同时 求出所有的未知函数。
⑵ 将上式代入平衡微分方程,可得
若注意到
G(ui, jj
u j,ij ) uk ,kj ij
Xi
0(
2ui t 2
)
则有
u j,ij (u j, j ),i ,i
uk,kj ij uk,ki (uk,k ),i ,i

弹塑性力学 弹性与塑性力学的解题方法

弹塑性力学  弹性与塑性力学的解题方法
既能找出变形体中各点的应力分量,也能找出相 对的位移增量分量。
➢主应力法
➢ 主应力法是金属塑性成形中所经常使用的 一种简化方法。在分析问题时,认为剪应 力对材料的屈服影响很小,因而在屈服条 件中略去剪应力,这时平面应变问题中的 屈服条件可简化为
x - y = 2k
➢ 在分析中,还假设应力在一个方向的分布 是均匀的。因此在计算中,数学形式比较 简便。
➢ 平面应力问题,平面应变问题,结果转换 ➢ 平面问题的平衡方程(无体力)
x
xy
0
x y
yx x
y
y
0
➢ 艾里(Airy)应力函数
x
2
y 2
,
y
2
x 2
,
xy
2
xy
➢ 用应力函数表示的物理方程
➢ 变形协调条件
x
1 2G(1
)
2
y 2
2
x 2
y
2G
1 (1
)
2
x 2
几种应力函数所对应的边界条件
➢ = ax + by + c 矩形弹性体处于无应力状态,
即在边界上无面力。
➢ = ax2 + bxy + cy2 矩形弹性体受双向荷载。
a > 0, c > 0, b = 0
a = c = 0, b 0
➢ = ax3 + bx2y + cxy2 + dy3 复杂应力状态, 当a = c = b = 0, d 0时,xy = 6dy,为纯弯
2
y 2
xy
1 G
2
xy
4 x
y 4
4 y
x 4

弹塑性力学___第四章_弹性力学的求解方法

弹塑性力学___第四章_弹性力学的求解方法

叠加原理:弹性体受几组外力同时作用时的解等于每一组外力单 独作用时对应解的和。
叠加原理成立的条件:小变形条件(平衡、几何方程才 为线性的),弹性本构方程(虎克定律)。
4-5塑性力学最简单的问题、求解塑性力学的问题
在塑性力学中,有些问题在平衡方程和屈服条件 中的未知函数和议程式的数目相等,因而结合边 界条件一般便可找出弹塑性体或结构中应力分布 的规律。而应变和位移再根据本构方程和几何方 程或连续性条件分别求出。这种仅通过平衡方程、 屈服条件就能完全确定应力场的问题属静定问题 (称为塑性力学最简单问题)
(2)应变协调方程(变形连续必条件)(变形相容条件)
可缩写为:
上述方程是六个应变分量 保证三个位移分量 连续函数(保持连续)的条件。 为单值
3、本构方程(物性方程)
(1)在弹性变形阶段,且屈服函数 则有
如用应变表示应力,则有
为了与塑性变形本构方程对比,也可将本构方程表示为
(2)在弹塑性变形阶段,屈服函数
1. 平衡(或运动方程)
若等式右式不等零,即表示物体内质点处于运动状态, 则根据理论力学中的达朗伯原理需将上式右端等于括号 内的惯性力项。 方程只表明物体内一点的应力状态与其邻点的应力 状态之间在平衡(或运动)时所满足的关系。
2. 几何方程与应变协调方程
(1)几何方程
此式表明在小变形条件下,物体内一点附近的变形情况和该点的 应变状态之间的关系。
第四章 弹塑性力学基础理论的建立及基本解法
§4-1 弹塑性力学基本理论的建立 弹塑性力学的任务:研究各种具体几何尺寸的
弹性、弹塑性体或刚塑性体在各种几何约束及 承受不同外力作用时、发生于其内部的应力分 布与变形(或位移)规律。
与材料力学一样,弹塑性力学所求解的大多 数问题是超静定问题,因此其基础理论的 建立来自三个方面的客观规律:平衡方 程 ;几何方程 ;本构方程

弹塑性力学弹性力学的求解方法模板

弹塑性力学弹性力学的求解方法模板
部分应力分量作为基本未知量混合求解。
位移法、应力法、混合法统称为直接求解法。
由于这些方法在数学上的困难和复杂性,人们又研究了 各种解题方法:(1)逆解法(2)半逆解法(或凑合解 法)(3)迭代法
? 求解物理量: 6个应力分量 6 个应变分量 3 个位移分量
共15个未知量
用于求解的方程:平衡微分方程 3个
叠加原理 实际结构件往往同时受到几组载荷作用,如果直接求所有载荷作 用下的弹性力学问题的解,可能很复杂。而求单一载荷作用下的 弹性力学问题的解,一般更简单。
通过求不同单一载荷作用下的弹性力学问题的解,再用叠加 方法获得复杂载荷的解的过程称为 解的叠加原理。
叠加原理:弹性体受几组外力同时作用时的解等于每一组外力单 独作用时对应解的和。
(2)应变协调方程(变形连续必条件)(变形相容条件)
可缩写为: 上述方程是六个应变分量 保证三个位移分量 为单值 连续函数(保持连续)的条件。
3、本构方程(物性方程)
(1)在弹性变形阶段,且屈服函数
则有
如用应变表示应力,则有
为了与塑性变形本构方程对 弹塑性力学基础理论的建立及基本解法
§4-1 弹塑性力学基本理论的建立 弹塑性力学的任务:研究各种具体几何尺寸的
弹性、弹塑性体或刚塑性体在各种几何约束及 承受不同外力作用时、发生于其内部的应力分 布与变形(或位移)规律。
与材料力学一样,弹塑性力学所求解的大多 数问题是超静定问题,因此其基础理论的 建立来自三个方面的客观规律:?平衡方 程 ;?几何方程 ;?本构方程
叠加原理成立的条件 :小变形条件 (平衡、几何方程才 为线性的), 弹性本构方程 (虎克定律)。
4-5塑性力学最简单的问题、求解塑性力学的问题
在塑性力学中,有些问题在平衡方程和屈服条件 中的未知函数和议程式的数目相等,因而结合边 界条件一般便可找出弹塑性体或结构中应力分布 的规律。而应变和位移再根据本构方程和几何方 程或连续性条件分别求出。这种仅通过平衡方程、 屈服条件就能完全确定应力场的问题属静定问题 (称为塑性力学最简单问题)

弹塑性力学第四章弹性力学的求解方法

弹塑性力学第四章弹性力学的求解方法

微分方程并求解,最后根据边界条件确定待定常数。
逆解法求解空间问题
逆解法的基本思想
从已知的空间应力或位移函数出发,反推得到弹性体的形状和边界条件。
适用于具有特定应力或位移分布的空间问题
如无限大体、半无限大体等具有特殊应力或位移分布的空间问题。
求解步骤
假设空间应力或位移函数,根据弹性力学基本方程推导得到弹性体的形状和边界条件,并 验证假设的合理性。
04
半解析法在弹性力学中的应用
有限差分法基本原理及步骤
差分原理
有限差分法基于差分原理,将连续问 题离散化,通过求解差分方程得到近 似解。
网格划分
将求解区域划分为规则的网格,每个 网格节点对应一个未知数。
差分格式
根据问题的性质和精度要求,选择合 适的差分格式,如向前差分、向后差 分、中心差分等。
边界处理
电测实验方法介绍及优缺点分析
电阻应变片法
利用电阻应变片将试件表面的应变转换 为电阻变化,通过测量电路获取应变信 息。该方法具有测量精度高、稳定性好 、适用于各种环境和试件形状的优点, 但需要粘贴应变片并进行温度补偿,且 只能进行点测量。
VS
电容传感器法
利用电容传感器将试件表面的位移或应变 转换为电容变化,通过测量电路获取相关 信息。电容传感器法具有非接触、高灵敏 度、宽频响等优点,但易受环境干扰,且 需要进行复杂的电路设计和信号处理。
04 边界条件处理 根据边界条件对总体刚度矩阵和荷载向量进行修正。
05
求解线性方程组
求解总体刚度矩阵和荷载向量构成的线性方程组,得 到节点位移。
边界元法基本原理及步骤
边界积分方程
边界离散化
单元分析
总体合成
求解线性方程组

清华大学研究生弹塑性力学讲义 5弹塑性_弹性力学的基本方程与解法

清华大学研究生弹塑性力学讲义 5弹塑性_弹性力学的基本方程与解法

弹塑性力学第四章 弹性力学的基本方程与解法一、线性弹性理论适定问题的基本方程和边界条件对于在空间占有体积域V 的线弹性体在外加恒定载荷和固定几何约束条件下引起的小变形问题,若以, ,u εσ作为求解变量,则可以建立如下偏微分方程边值问题: 几何方程()1,,2ij i j j i u u ε=+ ()12∇+∇u u ε= (1a)广义胡克定律 ij ijkl kl E σε= :E σ=ε(1b)平衡方程 ,0ij j i f σ+= ∇⋅+=f 0σ V∀∈x (1c)以上方程均要求在域内各点均满足。

边界条件 u u i i = ∀∈x S ui (2a)n t j ji i σ= ∀∈x S ti(2b)对于适定问题,即不仅要求保证解存在唯一,而且有较好的稳定性。

当载荷或边界条件给定值有微小摄动时,应能保证问题解的变化也是微小的。

对于边界条件的提法就有严格的要求。

即要求:S S S S S ui ti ui ti U I ==∅(2c)对于各向同性材料,其广义胡克定律可具体写成 σλεδεij kk ij ij G =+2 ()tr 2G λ+I σ=εε (3a)()11ij ij kk ij E ενσνσδ⎡⎤=+−⎣⎦ ()()1tr Eνν=⎡⎤⎣⎦I ε1+σ−σ (3b)以上就域内方程来说,一共是对于u ,,σ ε的15个独立分量u i ij ij ,, σε的15个方程。

对于边界条件来说,三维问题每点有三个边界条件,而且是在三个正交方向上每个方向有一个边界条件,这个边界条件或者给定位移、或者给定面力。

这三个正交第四章 弹性力学的基本方程与解法方向可以是整体笛卡儿坐标系的三个方向,也可以是边界自然坐标系的三个方向(即法向和两个切向)。

从更一般来说,除去给定位移或面力外,还有另一种线性的边界条件t K u c i ij j i +=(4)这是一种弹性约束条件。

用这个条件可以取代给定位移或给定面力的条件。

弹性与塑性力学总结

弹性与塑性力学总结

4.2弹性力学问题可分为三类 第一类问题:宜用应力解法 第二类问题:宜用位移解法: 第三类问题:宜用混合解法
4.3拉梅方程(位移表示的平衡方程)
(λ +G)θ, j +G 2ui + fi = 0 ∇
4.4密歇尔、贝尔特拉密方程(应力协调方程)
1 1+ µ ∇ σij + Θ,ij =− [µδij fkk −(1− µ2 )( fi, j +) f j,i ] 1+ µ 1− µ
1.3应力张量
σx τxy τxz σij = τ yx σy τ yz τzx τzy σz σx −σm τxy τxz σm 0 0 = τ yx σy −σm τ yz + 0 σm 0 τzx τzy σz −σm 0 0 σm Sx Sxy Sxz σm 0 0 = Syx Sy Syz + 0 σm 0 Szx Szy Sz 0 0 σm = Sij +σmδij
弹性力学总结 1 应力理论 2 应变理论 3弹性应力应变关系 4弹性理论的解题方法 5弹性力学平面问题
1 应力理论 1.1应力矢量的定义
1.2一点应力状态的描述 应力张量完全确定了一点的应力状态
σx τxy τxz σij = τ yx σy τ yz =σmδij + Sij τzx τzy σz
' 2
S1 =σ1 −σm S2 =σ2 −σm S3 =σ3 −σm
1.7三类边界条件
•应力边界条件
px =σx l + τxy m +τxz n py = τyx l + σy m +τyz n

弹塑性力学定理和公式

弹塑性力学定理和公式

弹塑性⼒学定理和公式应⼒应变关系弹性模量||⼴义虎克定律1.弹性模量对于应⼒分量与应变分量成线性关系的各向同性弹性体,常⽤的弹性常数包括:a弹性模量单向拉伸或压缩时正应⼒与线应变之⽐,即b切变模量切应⼒与相应的切应变之⽐,即c体积弹性模量三向平均应⼒与体积应变θ(=εx+εy+εz)之⽐,即d泊松⽐单向正应⼒引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之⽐,即此外还有拉梅常数λ。

对于各向同性材料,这五个常数中只有两个是独⽴的。

常⽤弹性常数之间的关系见表3-1 弹性常数间的关系。

室温下弹性常数的典型值见表3-2 弹性常数的典型值。

2.⼴义虎克定律线弹性材料在复杂应⼒状态下的应⼒应变关系称为⼴义虎克定律。

它是由实验确定,通常称为物性⽅程,反映弹性体变形的物理本质。

A各向同性材料的⼴义虎克定律表达式(见表3-3 ⼴义胡克定律表达式)对于圆柱坐标和球坐标,表中三向应⼒公式中的x 、y、z分别⽤r、θ、z和r、θ、φ代替。

对于平⾯极坐标,表中平⾯应⼒和平⾯应变公式中的x、y、z⽤r、θ、z代替。

B⽤偏量形式和体积弹性定律表⽰的⼴义虎克定律应⼒和应变量分解为球量和偏量两部分时,虎克定律可写成更简单的形式,即体积弹性定律应⼒偏量与应变偏量关系式在直⾓坐标中,i,j=x,y,z;在圆柱坐标中,i,j=r,θ,z,在球坐标中i,j=r,θ,φ。

弹性⼒学基本⽅程及其解法弹性⼒学基本⽅程|| 边界条件|| 按位移求解的弹性⼒学基本⽅法|| 按应⼒求解的弹性⼒学基本⽅程|| 平⾯问题的基本⽅程|| 基本⽅程的解法|| ⼆维和三维问题常⽤的应⼒、位移公式1.弹性⼒学基本⽅程在弹性⼒学⼀般问题中,需要确定15个未知量,即6个应⼒分量,6个应变分量和3个位移分量。

这15个未知量可由15个线性⽅程确定,即(1)3个平衡⽅程[式(2-1-22)],或⽤脚标形式简写为(2)6个变形⼏何⽅程[式(2-1-29)],或简写为(3)6个物性⽅程[式(3-5)或式(3-6)],简写为或2.边界条件弹性⼒学⼀般问题的解,在物体部满⾜上述线性⽅程组,在边界上必须满⾜给定的边界条件。

工程弹塑性力学第四章弹性理论的解题方法.ppt

工程弹塑性力学第四章弹性理论的解题方法.ppt
(1)叠加原理
设线弹性体体积为V,表面为S,如果两组外力(体 力和面力)同时作用在物体上所产生的效果(应力、应 变和位移)等于它们分别作用所产生的效果之和。
由于线弹性力学的求解方程(15个)均为线性微分 (代数)方程,很容易证明这个原理成立。 对于非线性问题,此原理不能。
线弹性力学的几个原理
(2)解的唯一性定理
上述位移法、应力法和混合法统称为直接解法。 尽管这些方法的建立在理论上有着重大意义,但在实 际解题过程中却很少原原本本地按上述步骤去做,原 因还是在于数学上的困难和复杂性。在弹塑性力学解 题方法中经常采用如下方法:
(1)逆解法:设位移或应力的函数式是已知的,
然后代入上述有关方程中求得应变和应力或应变和位
考虑用位移表示的平衡方程式(4-9)拉梅方程,在不 考虑惯性力项时有:
( G),i G2ui fi 0
对式(a)求导一次,有:
( G),ii G2ui,i 0
(a)
( 2G)2 0
2 0
即体应变满足拉普拉斯方程,为调和函数。
J4U.4ST常体江积苏力科下技应大力学和位Jia移ngsu的Univ特ersit点y of Science and Technology
(4)物理方程 (本构方程)
各向异性材料:
ij Cijkl kl
Cijkl Cklij C jikl Cijlk
各向同性材料:
ij 2G ij ij
ii 11 22 33
或者
ij

1 2G


ij

3

2G
J1 ij
注意事项:
(1) 必须满足静力等效条件;

弹塑性力学 弹性力学求解方法

弹塑性力学 弹性力学求解方法

2 I1 0 2 x 2 I1 0 2 y 2 I1 0 2 z
2 I1 2 xy 0 1 xy 2 I1 2 yz 0 1 yz 2 I1 2 zx 0 1 xz

以应力分量表 示的控制方程


弹性力学求解方法 弹性力学解的基本性质
• 叠加原理 两组不同外力同时作用在同一物体上的解,等于这两组外 力分别单独作用时的解的叠加,且与作用顺序无关。 叠加原理用于位移边界时要求总位移满足给定的位移边 界条件,而单独的位移不一定满足边界条件 叠加原理是线弹性理论中普遍适用的一般性原理,对于 非线性问题不成立,如:大变形情况、非线性弹性或弹 塑性材料以及荷载随变形而变的非保守力系或边界用非 线性弹簧支承的情况。
xy l y m zy n T y xz l yz m z n T z
xl yx m zx n T x
ቤተ መጻሕፍቲ ባይዱ
ux u x uy u y uz u z
混合边界条件 一部分边界给定表面力作用,而另一部分边界上给 定已知位移约束。
弹性力学求解方法 弹性力学解的基本性质
• 解的唯一性定理 在给定荷载作用下,处于平衡状态的弹性体,其内部各点 的应力、应变解是唯一的,如果物体的整体刚体位移受到 约束,则位移解也是唯一的。 无论用什么方法求得的解,只要能满足全部基本方程和 边界条件,就一定是问题的真解; 涉及到温度荷载时解的唯一性定理依然成立; 无如果弹性体存在初应力,则解就不是唯一的。
• 几何方程 u x u x u y xy yx x x y x u y u y u z yz zy y y y z u z u z u x zx xz z z x z

弹塑性力学第四章弹性力学的求解方法

弹塑性力学第四章弹性力学的求解方法
提法三:若作用在物体局部表面上的外力,用一个静力等效 的力系(具有相同的主矢和主矩)代替,则离此区域较 远的部分所受影响可以忽略不计。
• 利用圣维南原理可放宽边界条件,扩大弹 性力学的解题范围。
END
1. 位移法:以位移作为基本未知量用,位移表述平
衡方程——位移法控制方程
2. 应力法:以应力作为基本未知量。将相容方程用 应力表示——应力控制方程
3. 应力函数法:先引入应力函数,相容方程用应力
函数表示法:将几何方程代入物理方程,得到用位移
表示的应力分量,再将应力分量代入平衡方程和应力边 界条件,即得到空间问题的位移法控制方程。不需要用 相容方程。
3、对非线弹性或弹塑形材料,应力应变关系是非线 性的,叠加原理不成立。
4、对载荷随变形而变的非保守力系或边界为 用非线性弹簧支承的情况,边界条件是非 线性的,叠加原理也将失效。
二. 解的唯一性定理:
在给定载荷作用下,处于平衡状态的弹性体, 其内部各点的应力、应变解是唯一的,如物体刚 体位移受到约束,则位移解也是唯一的。
无论何方法求得的解,只要能满足全部基本方 程和边界条件,就一定是问题的真解。
三.圣维南原理: 提法一:若在物体的一小部分区域上作用一自平衡力系,则
此力系对物体内距该力系作用区域较远的部分不产生 影响只在该力系作用的区域附近才引起应力和变形。
提法二:若在物体的一小部分区域上作用一自平衡力系,该 力系在物体中引起的应力将随离力系作用部分的距离 的增大而迅速衰减,在距离相当远处,其值很小,可 忽略不计。
位移控制方程指标表示:
力边界条件也可用位移表述。
3个位移表述的平衡微分方程,包含3个位 移未知数。
结合边界条件,解上述方程,可求出位移分 量,由几何方程求应变,再由本构方程求应力。

弹塑性力学-第4章_本构方程

弹塑性力学-第4章_本构方程

第四章本构方程在前面的章节中,已经建立了变形体的平衡微分方程和几何方程,分别是从静力学方面和从几何学方面考察了变形体的受力和变形。

但是只有这些方程还不足以解决变形体内的应力和变形问题。

对于变形体,未知变量包括6个应力分量,6个应变分量和3个位移分量,一共有15个未知函数,而平衡方程和几何方程一共是9个,未知函数的个数多于方程数。

因此还必须研究物体的物理性质,即应力与应变之间的关系。

通常称这种关系为变形体的本构方程,或称为物性方程。

塑性本构包括三个方面:1、屈服条件,2、流动法则,3、硬化关系;其中屈服条件:判断何时达到屈服,流动法则:屈服后塑性应变增量的方向,也即各分量的比值,硬化规律:决定给定的应力增量引起的塑性应变增量大小。

以上构成塑性本构关系。

4.1弹性应变能函数变形固体的平衡问题不仅需要运动微分方程、应变—位移方程(即变形几何方程)还需要将应变分量和应力张量分量联系起来,方能给定物体的材料抵抗各种形式变形的规律。

该规律的理论解释需要对分子间力的本质有深入的认识,该分子力力图使固体粒子间保持—定的距离,也就是需要对固体中应力分量和应变分量有深入的认识。

这种作用机理在非常接近稳定状态的气体中己弄清楚,但对于弹性体情况,目前科学技术发展水平还不能解决这一难题。

如要通过实验探求物体内部的应力和应变的关系,则总是从一些量的测量来推理得到,在一般情况下,这些量并非应力或应变的分量(例如平均应变、体积压缩、物体表面一线元的伸长等等).因此,在现时应力与应变关系主要是通过直接实验建立。

然而该关系中的某些固有的一般特性可以在理沦上加以说朋,如能量守恒定律为应力-应变关系的理论研究提供了基础。

1.1应变能密度假设变形的过程是绝热的,也就是在变形过程中系统没有热的损失,而且假设物体中任意无穷小单元改变其体积和形状所消耗的功与其从未变形状态到最终变形状态的转换方式无关。

这个条件是弹性的另一种定义。

换句话说,就是假设物体粒子互相作用过程中的耗散(非保守)力的作用与保守力的作用相比是可以忽略的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

说明: 1、数学上可证明, 当为线弹性小变形情况,求解的 基本方程和边界条件为线性,叠加原理成立。 2、对大变形情况,几何方程出现二次非线性项,平 衡微分方程将受到变形的影响,叠加原理不再适 用。 3、对非线弹性或弹塑形材料,应力应变关系是非线 性的,叠加原理不成立。 4、对载荷随变形而变的非保守力系或边界为
1. 位移法:将几何方程代入物理方程,得到用位移
表示的应力分量,再将应力分量代入平衡方程和应力边 界条件,即得到空间问题的位移法控制方程。不需要用 相容位移表述。 3个位移表述的平衡微分方程,包含3个位 移未知数。 结合边界条件,解上述方程,可求出位移分 量,由几何方程求应变,再由本构方程求应力。
第四章 弹性力学问题的求解方法
§7-1 弹性力学基本方程
1. 平衡微分方程方程
2. 几何方程
3. 物理方程
各种弹性常数之间的关系
4. 相容方程
• 求解物理量:6个应力分量 6个应变分量 3个位移分量
共15个未知量
用于求解的方程:平衡微分方程 3个 几何方程 6个
共15个方程
本构方程
6个
用非线性弹簧支承的情况,边界条件是非 线性的,叠加原理也将失效。
二. 解的唯一性定理:
在给定载荷作用下,处于平衡状态的弹性体, 其内部各点的应力、应变解是唯一的,如物体刚 体位移受到约束,则位移解也是唯一的。 无论何方法求得的解,只要能满足全部基本方 程和边界条件,就一定是问题的真解。
三.圣维南原理: 提法一:若在物体的一小部分区域上作用一自平衡力系,则 此力系对物体内距该力系作用区域较远的部分不产生 影响只在该力系作用的区域附近才引起应力和变形。 提法二:若在物体的一小部分区域上作用一自平衡力系,该 力系在物体中引起的应力将随离力系作用部分的距离 的增大而迅速衰减,在距离相当远处,其值很小,可 忽略不计。 提法三:若作用在物体局部表面上的外力,用一个静力等效 的力系(具有相同的主矢和主矩)代替,则离此区域较 远的部分所受影响可以忽略不计。
2. 应力解法:将由应力表示的应变本构方程式代 入协调方程式,得应力表示的协调方程(应力控 制方程)。
1 ij kk ,ij 0 1
2
3. 应力函数法:先引入应力函数,满足微分平衡方
程。由微分平衡方程得应力函数与应力分量的关系, 再将用应力函数表示的应力分量代入相容方程,得到 一组用应力函数表示的相容方程,即应力函数表示的 控制方程。
§7-2 弹性力学求解方法
• 求解弹性力学问题有位移法、应力法和应力函 数法三种方法。
1. 位移法:以位移作为基本未知量用,位移表述平
衡方程——位移法控制方程
2. 应力法:以应力作为基本未知量。将相容方程用 应力表示——应力控制方程 3. 应力函数法:先引入应力函数,相容方程用应力
函数表示——应力函数表示的控制方程。
15个基本方程求解15个未知量,数学上有解。 协调方程是应变解的条件,保证变形前后物体连续。 微分方程求解过程需要积分,积分常数由边界条件确 定。
5. 边界条件:
位移边界条件:对于给定的表面Su,其上沿 x,y,z方向给定位移为 ,则 应力边界条件:给定表面上的面力为
弹性力学问题求解也称为弹性力学边值问题求解
§7-1 弹性力学解的性质
一、解的叠加原理 实际结构件往往同时受到几组载荷作用,如果 直接求所有载荷作用下的弹性力学问题的解,可 能很复杂。而求单一载荷作用下的弹性力学问题 的解,一般更简单。 通过求不同单一载荷作用下的弹性力学问题的 解,再用叠加方法获得复杂载荷的解的过程称为 解的叠加原理。 叠加原理:弹性体受几组外力同时作用时的解 等于每一组外力单独作用时对应解的和。
• 利用圣维南原理可放宽边界条件,扩大弹 性力学的解题范围。
END
相关文档
最新文档