主成分分析分析法
主成分分析法全
• 如果我们将xl 轴和x2轴先平移,再同时 按逆时针方向旋转角度,得到新坐标轴Fl和 F2。Fl和F2是两个新变量。
根据旋转变换的公式:
y y1 1 x1xc1soin sx2 xs2cio ns
y y 1 2 cs o in sc si o n s x x 1 2 U x
设有P维正交向量 a1 a11, a21,, ap1
F1 a11X1 L ap1X p aX
1
V
(F1)
a1a1
a1U
2
Ua1
p
1
a1
u1
,
u2
,L,
up
2
O
u1
u2 M
a1
p
up
p
iauiuia i1
p
i (aui )2 i1
1ip1(aui )2
1)贡献率:第i个主成分的方差在全部方差中所占
比重
i
p
i 1
i
,称为贡献率
,反映了原来P个指标多大
的信息,有多大的综合能力 。
2)累积贡献率:前k个主成分共有多大的综合能力, 用这k个主成分的方差和在全部方差中所占比重
k
p
i i
i1
i1
来描述,称为累积贡献率。
我们进行主成分分析的目的之一是希望用尽可能 少的主成分F1,F2,…,Fk(k≤p)代替原来的P个指 标。到底应该选择多少个主成分,在实际工作中,主 成分个数的多少取决于能够反映原来变量80%以上的信 息量为依据,即当累积贡献率≥80%时的主成分的个数 就足够了。最常见的情况是主成分为2到3个。
F 1
主 成
F2
•• • • •
分 分 析 的 几 何
主成分分析法
主成分分析法主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。
这些涉及的因素一般称为指标,在多元统计分析中也称为变量。
因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。
在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。
主成分分析正是适应这一要求产生的,是解决这类题的理想工具。
主成分分析法是一种数学变换的方法, 它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。
在数学变换中保持变量的总方差不变,使第一变量具有最大的方差,称为第一主成分,第二变量的方差次大,并且和第一变量不相关,称为第二主成分。
依次类推,I 个变量就有I个主成分。
这种方法避免了在综合评分等方法中权重确定的主观性和随意性,评价结果比较符合实际情况;同时,主成份分量表现为原变量的线性组合,如果最后综合指标包括所有分量,则可以得到精确的结果,百分之百地保留原变量提供的变差信息,即使舍弃若干分量,也可以保证将85%以上的变差信息体现在综合评分中,使评价结果真实可靠。
是在实际中应用得比较广的一种方法。
由于其第一主成份(因子)在所有的主成分中包含信息量最大,很多学者在研究综合评价问题时常采用第一主成分来比较不同实体间的差别。
综上所述,该方法的优点主要体现在两个方面:1.权重确定的客观性;2.评价结果真实可靠。
1.主成分分析的基本原理主成分分析:把原来多个变量划为少数几个综合指标的一种统计分析方法,是一种降维处理技术。
)记原来的变量指标为x1,x2,…,xP,它们的综合指标——新变量指标为z1,z2,…,zm(m≤p),则z1,z2,…,zm分别称为原变量指标x1,x2,…,xP的第一,第二,…,第m 主成分,在实际问题的分析中,常挑选前几个最大的主成分。
主成分分析法
主成分分析法一、主成分分析(principal components analysis )也称为主分量分析,是由Holtelling 于1933年首先提出的。
主成分分析是利用降维的思想,把多指标转化为少数几个综合指标的多元统计分析方法。
二、应用背景:对同一个体进行多项观察时,必定涉及多个随机变量X1,X2,…,Xp ,它们都是相关的, 一时难以综合。
这时就需要借助主成分分析 (principal component analysis)来概括诸多信息的主要方面。
我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质。
任何一个度量指标的好坏除了可靠、真实之外,还必须能充分反映个体间的变异。
如果有一项指标,不同个体的取值都大同小异,那么该指标不能用来区分不同的个体。
由这一点来看,一项指标在个体间的变异越大越好。
因此我们把“变异大”作为“好”的标准来寻求综合指标。
例1、考察对象股票业绩(这里单个股票为观察个体)。
(1)确定影响股票业绩主要因素:主营业务收入(X1),主营业务利润(X2)利润总额(X3),净利润(X4),总资产(X5),净资产(X6),净资产收益率(X7),每股权益(X8),每股收益(X9),每股公积金(X10),速动比率(X11)作为变量。
因此对单个股票来说,用11个随机变量综合刻化。
但这些因素过多,各因素区别不明显,有交叉反映。
通过主成分分析,可降为少数几个综合指标加以刻化。
(2)考察20支不同的股票。
从数学角度看,每种影响因素是随机变量(X i ),观察一支股票便得到影响该股票的11个随机变量取值;观察20支股票,便得到了20×11的原始数据阵X20×11(略)。
三、问题:作为主成分?严格的数学定义?相应的性质有哪些?主成分取多少?1、主成分的一般定义设有随机变量X1,X2,…,Xp , 其样本均数记为1X ,2X ,…,p X,样本标准差记为S1,S2,…,Sp 。
主成分分析法及其应用
主成分分析法及其应用一、本文概述主成分分析法(Principal Component Analysis,简称PCA)是一种广泛应用于数据降维和特征提取的统计方法。
它通过正交变换将原始数据集中的多个变量转换为少数几个互不相关的主成分,这些主成分能够最大程度地保留原始数据集中的信息。
本文旨在全面介绍主成分分析法的基本原理、实现步骤以及在各个领域中的应用案例。
我们将详细阐述主成分分析法的数学基础和算法流程,包括协方差矩阵、特征值、特征向量等关键概念的计算方法。
然后,我们将通过实例演示如何使用主成分分析法进行数据降维和特征提取,以及如何通过可视化工具展示降维后的数据效果。
我们将探讨主成分分析法在机器学习、图像处理、生物信息学、社会科学等多个领域中的实际应用,展示其在数据分析和处理中的重要价值和潜力。
二、主成分分析法的基本原理主成分分析法(Principal Component Analysis,简称PCA)是一种在多个变量中找出主要影响因素,并通过降维技术把多个变量转化为少数几个互不相关的综合变量的统计方法。
这种方法在保持数据信息损失最小的原则下,通过正交变换将原始数据转化为一个新的坐标系统,使得在这个新的坐标系统中,任何数据的最大方差都投影在第一主成分上,第二大的方差都投影在第二主成分上,以此类推。
变量降维:在多数情况下,原始数据集中可能存在多个变量,这些变量之间可能存在相关性。
主成分分析通过构造新的变量(即主成分),这些新变量是原始变量的线性组合,并且新变量之间互不相关,从而将原始的高维数据空间降维到低维空间,实现数据的简化。
方差最大化:主成分分析的另一个重要原理是方差最大化。
这意味着,第一个主成分将捕获数据中的最大方差,第二个主成分捕获第二大方差,以此类推。
通过这种方式,主成分分析能够识别出数据中的主要变化方向和模式。
数据解释性:主成分分析生成的主成分是对原始数据的线性变换,因此,每个主成分都可以被解释为原始变量的某种组合。
主成分分析法
主成分的导出
确定主成分的个数 (1)粗略决定欲保留的方差百分。 (2)若某个主成分的方差大于1,就保留它。
累积贡献率:
i k 1 p k 1 k
(i 1,2, , p )
k
主成分的导出
相关矩阵R的特征向量为一个正交矩阵L,即
l11 l 21 L l p1 l12 l22 l p2 l1 p L1 L l2 p 2 L3 l pp L4
的分布大体为椭圆形,如图1所示:
x2
o
x1
图1 样本分布图
预备知识:向 量
Y
2b
bOBiblioteka a2aXaX bY,2aX 2bY, , kaX kbY, 等方向都是同一个方向
主成分分析法的原理
• 创建 y1
y1 a11 x1 a12 x2
a a 1
2 11 2 12
y2 l21 x1 l22 x2 l2 p x p y p l p1 x1 l p 2 x2 l pp x p
Y LX ( L为正交变换矩阵) 其矩阵表示形式为:
主成分的导出
假定X为已标准化的样本数据矩阵,对于n个样本,X的 矩阵可表示为
x11 x 21 X x p1
x i的总贡献率 i
y2
主成分分析法的应用
• 由表4可以看出,第一行 y1 对应的因子负荷量均为正数,表 示各门课程成绩提高都可以使 y1 增加,可以认为主成分 y1 全面反映了学生智力的整体情况。对应于 y1 的所有因子负荷 量 ji 数值相近,而且14 最大,这表明 y1 不仅能反映学生的全 面智能,而且物理课的成绩在智能评价中占有重要位置。 • 第二主成分 y2 的因子负荷量有正有负,语文和外语的为正, 数学和物理的为负,这样变量被分为两组。有表可以看出个 变量间相互关系的强弱,语文和外语反映文科类课程水平, 数学和物理反应理工科类的课程水平。
主成分分析法
四、主成份分析法旳环节
1)数据归一化处理:数据原则化(Z) 2)Βιβλιοθήκη 算有关系数矩阵R: 3)计算特征值;
特征值越大阐明主要程度越大。
4)计算主成份贡献率及方差旳合计贡献率; 5)计算主成份载荷与特征向量:
主成份旳负荷值大小反应了主成份因子对可测变量旳影响程 度;载荷值越大阐明此变量对主成份旳解释越多,及贡献越大。
• 因子分析 优点:第一它不是对原有变量旳取舍,而是根据原始变 量旳信息进行重新组合,找出影响变量旳共同因子,化简 数据;第二,它经过旋转使得因子变量更具有可解释性, 命名清楚性高。 缺陷 :在计算因子得分时,采用旳是最小二乘法,此法 有时可能会失效。
总之,主成份分析是因子分析旳一种特例。
谢 谢 观 看!
旋转后旳主成份因子载荷矩阵
景区满意度旋转前后成份矩阵图对比
5、碎石图分析
选用主成份旳个数,急转处是拟定主成份旳个数处。
景区满意度碎石图
八、与因子分析法旳区别
1、基本概念
➢ 主成份分析就是将多项指标转化为少数几项综合 指标,用综合指标来解释多变量旳方差- 协方差构 造。综合指标即为主成份。所得出旳少数几种主 成份,要尽量多地保存原始变量旳信息,且彼此 不有关。
注意:进行主成份旳变量之间必须要有有关性, 经过分析后变量之间独立。
二、主成份分析法基本原理
主成份分析就是设法将原来众多具有一定有关性 旳变量(如p个变量),重新组合成一组新旳相互无 关旳综合变量来替代原来变量。怎么处理?
一般数学上旳处理就是将原来p个变量作线性组合 作为新旳综合变量。怎样选择?
假如将选用旳第一种线性组合即第一种综合变量 记为F1,自然希望F1尽量多旳反应原来变量旳信 息。怎样反应?
主成分分析法例子
x7 0.79 0.009 -0.93 -0.046 0.672 0.658 1 -0.03 0.89
x8 0.156 -0.078 -0.109 -0.031 0.098 0.222 -0.03 1
0.29
x9 0.744 0.094 -0.924 0.073 0.747 0.707 0.89 0.29
▲贡献率:
i
p
k
k 1
(i 1,2,, p)
▲合计贡献率:
i
k
k 1
p
k
k 1
(i 1,2,, p)
一般取合计贡献率达85—95%旳特征值 1, 2 ,, m
所相应旳第一、第二、…、第m(m≤p)个主成份。
④各主成份旳得分
l11 l12 l1p x1
Z
l21
l22
l2
p
x2
二主成份z2代表了人均资源量。
③第三主成份z3,与x8呈显出旳正有关程度 最高,其次是x6,而与x7呈负有关,所以能 够以为第三主成份在一定程度上代表了农业 经济构造。
显然,用三个主成份z1、z2、z3替代原来9个变量(x1, x2,…,x9),描述农业生态经济系统,能够使问题更进
一步简化、明了。
x4
0.0042
0.868
0.0037
75.346
x5
0.813
0.444
-0.0011
85.811
x6
0.819
0.179
0.125
71.843
x7
0.933
-0.133
-0.251
95.118
x8
0.197
-0.1
0.97
98.971
主成分分析法
主成分分析法主成分分析(Principal Component Analysis,简称PCA)是一种常用的降维方法,它通过线性变换将高维数据转换为低维数据,从而提取出数据的最主要特征。
本文将详细介绍主成分分析的原理、应用以及算法流程。
一、原理主成分分析是一种基于统计学的数据降维方法。
其基本思想是将原始数据通过线性变换,得到一组新的不相关变量,即主成分,用来代替原始变量。
这些主成分在不同维度上的方差依次递减,即第一主成分包含最多的原始变量信息,第二主成分包含不重叠的信息量,以此类推。
主成分分析的目标是最大化原始数据的方差,从而保留尽可能多的信息。
首先,通过计算协方差矩阵来评估各个变量之间的相关性,然后通过特征值分解找出协方差矩阵的特征向量,即主成分。
最后,根据特征值的大小来选择保留的主成分个数。
二、应用主成分分析广泛应用于数据预处理、特征提取和数据可视化等领域。
以下是主成分分析的几个典型应用:1. 数据降维:主成分分析可以将高维数据转换为低维数据,从而减少计算量和存储空间,并提高模型的计算效率。
2. 特征提取:主成分分析可以将原始数据中高度相关的特征转换为互不相关的主成分,保留了原始数据的主要信息。
这样可以提高模型的训练速度和泛化能力。
3. 图像压缩:主成分分析可以将图像的冗余信息去除,从而实现图像的压缩和存储。
通过保留图像中的主要特征,可以在减少存储空间的同时保持图像的质量。
4. 数据可视化:主成分分析可以将高维数据映射到二维空间,从而实现数据的可视化。
通过显示主成分的分布,可以更好地理解数据之间的关系,并发现数据中的模式和异常。
三、算法流程主成分分析的算法流程如下:1. 数据标准化:将原始数据进行标准化处理,使得每个变量具有相同的尺度,从而避免变量之间的差异对主成分的影响。
2. 计算协方差矩阵:根据标准化后的数据计算协方差矩阵,该矩阵表示各个变量之间的相关性。
3. 特征值分解:对协方差矩阵进行特征值分解,得到特征值和特征向量。
主成分分析方法
主成分分析方法主成分分析方法是常用的一种统计分析方法,主要用于进行数据压缩或减少数据的维数[2]。
它是对一组相关的变量进行线性变换,得到一组维数不变但彼此互不相关的变量,亦即一组主成分。
由于各主成分是不相关的,因此可以认为它们是一组独立变量。
一般图像的线性变换可用下式表示:Y=TX (1)式中:X为待变换图像数据矩阵,Y为变换后的数据矩阵;T为实现这一线性变换的变换矩阵。
如果变换矩阵T是正交矩阵,并且它是由原始图像数据矩阵X的协方差矩阵S的特征向量所组成,则(1)式的线性变换称为主成分分析,并且变换后的数据矩阵的每一行矢量为主成分分析的一个主成分。
主成分分析的优点是消除了波段间的相互关系,减少了各波段提供信息的交叉和冗余,有利于分析。
同时,在分析过程中得到主要波段的合理权重,具有很好的客观性。
主成分分析法的主要步骤如下:(1)根据原始图像数据矩阵X,求出它的协方差矩阵S 以矩阵的形式表示多波段图像的原始数据如下:X=x11x12,x1nx21x22,x2ns s s sxn1xn1,xnn=[xij]m@n(2)矩阵X中,m,n分别为波段数和每幅图像中的像元数,矩阵中的每一行矢量表示一个波段的图像。
矩阵X的协方差矩阵S为:S=1n[X-Xl][X-Xl]T(3)式中:l=[1 1 , 1]1@n(4)X=[x1 x2 , x3]T(5)xi=1nEnk=1xik(第i波段的均值) (6)(2)求协方差矩阵S的特征值Ki和特征向量Ui,并组成变换矩阵T 求解特征方程(KI-S)U=0; 然后将特征值Ki按由小到大的顺序排列,求出对应特征值的单位特征向量Ui,以Ui为列构成矩阵U,U矩阵的转置矩阵,即UT为所求的变换矩阵T。
经过主成分变换后得到的新变量的各个行向量依次被称为第一主成分、第二主成分,,第m主成分,这时将新变量恢复为二维图像,便得到m个主成分图像。
主成分分析法
4,主成分分析法主成分分析(Principal Component Analysis,PCA),是一种统计方法。
通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。
主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。
信息的大小通常用离差平方和或方差来衡量。
②主成分的解释其含义一般多少带有点模糊性,不像原始变量的含义那么清楚、确切,这是变量降维过程中不得不付出的代价。
因此,提取的主成分个数m通常应明显小于原始变量个数p(除非p本身较小),否则维数降低的“利”可能抵不过主成分含义不如原始变量清楚的“弊”。
③当主成分的因子负荷的符号有正有负时,综合评价函数意义就不明确。
4.4主成分分析法的运用叶晓枫,王志良,【2】在介绍主成分分析方法的基本思想及计算方法基础上,对水资源调配评价指标进行了降维计算. 结果显示筛选出的指标对原指标具有较好的代表性,简化了水资源评价问题的难度。
傅湘,纪昌明【3】,针对模糊综合评判法在综合评价中存在的主观随意性问题,提出采用主成分分析法进行区域水资源承载能力综合评价。
对各区域的灌溉率、水资源利用率、水资源开发程度、供水模数、需水模数、人均供水量和生态环境用水率达七个主要因索进行了分析;根据主成分分析法的原理,运用少数几个新的综合指标对原来的七个指标所包含的信息进行最佳综合与简化,研究其在各区域水资源开发利用过程中的不同贡献及综合效应。
周莨棋,徐向阳等【4】,针对传统主成分分析法用于水资源综合评价中存在一些问题,包括指标评价中的“线性”问题、无法体现评价指标主观重要性以及评价范围无法确定。
进行了改进,采用改进的极差正规方法对数据进行规格化,用规格化后的数据加入了主观重要性权进行协方差计算,对协方差特征向量采用正负理想点进行检验。
陈腊娇,冯利华等【5】,将主成分分析方法引入到水资源承载力研究中,并以浙江省为例,在现有资料的基础上,利用主成分分析的方法,定量分析影响水资源承载力变化的最主要的驱动因子。
主成分分析法简介
主成份分析法(Principal Component Analysis,PCA )也称主分量分析或矩阵数据分析,是统计分析常用的一种重要的方法,在系统评价、质量管理和发展对策等许多方面都有应用。
它利用数理统计方法找出系统中的主要因素和各因素之间的相互关系,由于系统地相互关系性,当出现异常情况时或对系统进行分析时,抓住几个主要参数的状态,就能把握系统的全局,这几个参数放映了问题的综合的指标,也就是系统的主要因素。
主成分分析法是一种把系统的多个变量转化为较少的几个综合指标的统计分析方法,因而可将多变量的高维空间转化为低维的综合指标问题,能放映系统信息量最大的综合指标为第一主成分,其次为第二主成分。
主成分的个数一般按需放映的全部信息的百分比来决定,几个主成分之间是互不相关的。
主成分分析法的主要作用是:发现隐含于系统内部的结构,找出存在于原有各变量之间的内在联系,并简化变量;对变量样本进行分类,根据指标的得分值在指标轴空间进行分类处理。
主成分分析是数学上对数据降维的一种方法。
其基本思想是设法将原来众多的具有一定相关性的指标X 1,X 2,…,X P (比如p 个指标),重新组合成一组较少个数的互不相关的综合指标F m 来代替原来指标。
那么综合指标应该如何去提取,使其既能最大程度的反映原变量X P 所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。
设F 1表示原变量的第一个线性组合所形成的主成分指标,即11112121...p p F a X a X a X =+++,由数学知识可知,每一个主成分所提取的信息量可用其方差来度量,其方差Var(F 1)越大,表示F 1包含的信息越多。
常常希望第一主成分F 1所含的信息量最大,因此在所有的线性组合中选取的F 11应该是X 1,X 2,…,X P 的所有线性组合中方差最大的,故称F 1为第一主成分。
如果第一主成分不足以代表原来p 个指标的信息,再考虑选取第二个主成分指标F 2,为有效地反映原信息,F 1已有的信息就不需要再出现在F 2中,即F 2与F 1要保持独立、不相关,用数学语言表达就是其协方差Cov(F 1, F 2)=0,所以F 2是与F 1不相关的X 1,X 2,…,X P 的所有线性组合中方差最大的,故称F 2为第二主成分,依此类推构造出的F 1、F 2、……、F m 为原变量指标X 1,X 2,…,X P 第一、第二、……、第m 个主成分。
主成分分析方法PPT课件
X
x21
x22
x2
p
xn1
xn 2
xnp
❖ 当p较大时,在p维空间中考察问题比较麻烦。 为了克服这一困难,就需要进行降维处理. 要求:较少的几个综合指标尽量多地反映原来较 多变量指标所反映的信息,同时它们之间又是彼 此独立的
例,成绩数据
❖ 100个学生的数学、物理、化学、语文、历 史、英语的成绩如下表(部分)。
p
lk2j 1, (k 1,2,, m)
j 1
Rlk lk (R E)lk 0
计算主成分贡献率及累计贡献率
▲贡献率:
k
p
i
(k 1,2,, p)
i 1
▲累计贡献率:
k
p
j1 j / i1 i
一般取累计贡献率达85—95%的特征值 1, 2 ,, m 所对应的第一、第二、…、第m(m≤p)个主成分
6
6
样方
1
物种X1 1
物种X2 5
2 3 4 5 6 总和 2 0 2 -4 -1 0 2 1 0 -4 -4 0
种X2
X2
12
10
8
6
4
2
0
0
1
2
3
4
5
6
7
种X1
6 5 4 3 2 1 0 -5 -4 -3 -2 -1-1 0 1 2 3 4 5 6 -2 -3 -4 -5
X1
中心化后的原始数据矩阵
X
1 5
2 2
0 1
2 0
4 4
1 4
❖ 把坐标轴X1、 X2刚性地旋转 一个角度,得
到图中新坐标
轴Y1和Y2
X2
6
主成分分析法
§7.பைடு நூலகம் 样本的主成分
一、样本主成分的定义
二、从 S
出发求主成分 ˆ 三、从 R 出发求主成分 四、主成分分析的应用 五、若干补充及应用中需注意的问题
一、样本主成分的定义
若向量 a1在约束条件 a1a1 1 下,使得的样本方差
2 1 n a1x j a1x n 1 j 1
* 3
yi*在原变量 x1 , x2 , x3 上的载荷相对大小与例 可见, 7.2.2中 yi 在 x1 , x2 , x3 上的载荷相对大小之间有着非
常大的差异。这说明,标准化后的结论完全可能会 发生很大的变化,因此标准化不是无关紧要的。
§7.3 样本的主成分
我们可以从协差阵 Σ 或相关阵 R 出发求得主成分。 但在实际问题中, Σ 或 R一般都是未知的,需要通 过样本来进行估计。设数据矩阵为
S
主成分得分
ˆ ˆi yi t x x , i 1, 2,, p 若将各观测值 x j 代替上式中的观测值向量 x ,则第i
在实际应用中,我们常常让 x j 减去 x ,使样本数据 中心化。这不影响样本协差阵 S ,在前面的论述中 惟一需要变化的是,将第 i 主成分改写成中心化的 形式,即
* 2
x3 3 x1 1 x2 2 y 0.741 0.142 0.656 4 1 10 0.185 x1 1 0.142 x2 2 0.066 x3 3
2.主成分的总方差 由于
tr A tr TΣT tr ΣTT tr Σ
故
主成分分析法
主成分分析法主成分分析旨在利用降维的思想,把多指标转化为少数几个综合指标。
在这个问题中为了全面、系统地分析问题,必须考虑众多影响因素。
因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。
主成分分析法的方法:1、原始指标数据的标准化采集p 维随机向量x = (x1,X2,...,X p)T)n 个样品x i =(x i1,x i2,...,x ip)T,i=1,2,…,n,n>p,构造样本阵,对样本阵元进行如下标准化变换:其中,得标准化阵Z。
2、对标准化阵Z 求相关系数矩阵其中,。
3、解样本相关矩阵R 的特征方程得p 个特征根,确定主成分按确定m 值,使信息的利用率达85%以上,对每个λj,j=1,2,...,m, 解方程组Rb = λj b得单位特征向量。
4、将标准化后的指标变量转换为主成分U1称为第一主成分,U2称为第二主成分,…,U p称为第p 主成分。
5 、对m 个主成分进行综合评价对m 个主成分进行加权求和,即得最终评价值,权数为每个主成分的方差贡献率。
题目中给出了八种元素,我们想将八种元素归类,分为至少两个类别,一边之后进行分析。
因此根据主成分分析法,对八种元素分类。
应用软件,先将数据标准化,之后可以得出:相关系数矩阵,方差分解主成分提取分析表以及起始因子载荷矩阵和评分,如下图所示:结论:根据以上结果,可以把八种重金属元素分为:Cd,Cu,Hg,Pb,Zn和Cr,As,Ni两类,与前面一种方法结果相似。
事实上分析问题的方法与模型很多,得出的结果也会有差异,因此可以结合两种不同的方法,根据具体问题,将结论融合得出结论。
为此,我们通过分析决定以第一种方法的分类标准来分析之后的问题。
因为在查阅资料后,发现这样分出的两个类别与实际比较相符,而且污染的原因也大致相似,所计算出的数据也与之较为相符。
主成分分析法
人均GDP→ x1 第二产业增加值比重→ x3 第三产业从业人员比重→ x5 城市化水平→ x7
人均第三产业增加值→ x2 第三产业增加值比重→ x4 第三产业固定资产投资比重→ x6
2、计算各指标之间的相关系数矩阵
x1
x2
Rij
x3 x4
x5
x6
x7
x1
x2
1 0.988
0.988 1
0.339 0.241
216.39 291.52 225.25 196.37 226.51 217.09 181.38 194.04 188.09 211.55 220.91 242.16 193.46 228.44 175.23 236.29
8.128 8.135 18.352 16.861 18.279 19.793 4.005 9.11 19.409 11.102 4.383 10.706 11.419 9.521 18.106 26.724
3.5 主成分分析法
本节主要内容:
❖ 主成分分析的基本原理 ❖ 主成分分析的计算步骤 ❖ 主成分分析方法应用实例 ❖ 主成分分析方法的SPSS实现
主成分分析法
概念:把原来多个变量划为少数几个综合指标 的一种统计分析方法,是一种降维处理技术.
一个研究对象,往往是多要素的复杂系统。变量太多无疑会增 加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少 的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留 原来较多的变量所反应的信息,这样问题就简5 5.176 5.643 4.881 4.066 4.484 5.721 3.133 4.615 6.053 6.442 7.881 5.789 7.162
0.011 0.012 0.034 0.055 0.076 0.001 0.015 0.002 5.055 0.01 0.011 0.154 0.012 0.069 0.048 0.092
主成分分析法
§7.1
引言 §7.2 总体的主成分 §7.3 样本的主成分
§7.1 引言
主成分分析(或称主分量分析,principal component analysis)由皮尔逊(Pearson,1901)首先引入,后来 被霍特林(Hotelling,1933)发展了。 主成分分析是一种通过降维技术把多个变量化为少 数几个主成分(即综合变量)的统计分析方法。这些 主成分能够反映原始变量的绝大部分信息,它们通 常表示为原始变量的某种线性组合。 主成分分析的一般目的是:(1)变量的降维;(2)主成 分的解释。
现比较本例中从R 出发和例7.2.2中从 Σ 出发的主成 分计算结果。从R 出发的 y1* 的贡献率0.705明显小于 从 Σ 出发的 y1的贡献率0.938,事实上,原始变量方 差之间的差异越大,这一点也就倾向于越明显, * * * (7.2.15)式有助于我们理解之。 y1 , y2 , y3 可用标准 化前的原变量表达如下: x3 3 x1 1 x2 2 *
Cov y1 , y2 0 我们在此条件和约束条件 a2a 2 1 下寻求向量a 2 ,使 得 V y2 a2 Σa2 达到最大,所求的 y2 称为第二主成
分。求得的第二主成分为
y2 t12 x1 t22 x2 t p 2 x p t x 2
3.原始变量 xi 与主成分 yk 之间的相关系数 k xi , yk tik , i, k 1, 2,, p ii
在实际应用中,通常我们只对 xi (i 1, 2,, p) 与 yk (k 1, 2,, m) 的相关系数感兴趣。
三、从相关阵出发求主成分
《主成分分析法》课件
主成分分析法的目的是减少数据的维 度,同时保留数据中的主要信息,以 便更好地理解和分析数据。
历史与发展
1901年
由英国统计学家Karl Pearson提出主成分的概 念。
1933年
美国统计学家Harold Hotelling将主成分分析 法应用于心理学和教育学领域。
20世纪70年代
随着计算机技术的发展,主成分分析法在各个领域得到广泛应用。
04
主成分分析法的步骤
数据标准化
总结词
消除量纲和数量级对分析的影响
详细描述
在进行主成分分析之前,需要对数据进行标准化处理,即将各指标的均值调整为0,标准差调整为1, 以消除不同量纲和数量级对分析的影响。
计算相关系数矩阵
总结词
衡量变量间的相关性
VS
详细描述
通过计算原变量之间的相关系数矩阵,可 以了解各变量之间的相关性。相关系数矩 阵中的元素表示各指标之间的相关系数, 用于衡量变量间的线性关系。
详细描述
市场细分是主成分分析法在市场营销领域中的重要应 用。通过对市场数据进行主成分分析,可以提取出影 响市场需求的共同因素,进而将市场划分为不同的子 市场。这种分析方法有助于企业识别不同子市场的需 求特点、消费行为和竞争状况,为制定针对性的营销 策略提供依据。
实例二:客户分类
要点一
总结词
利用主成分分析法对客户进行分类,有助于企业更好地了 解客户群体特征,提高客户满意度和忠诚度。
01
数学模型
主成分分析通过线性变换将原始 变量转换为彼此独立的主成分, 这种变换是线性的。
变换矩阵
02
03
特征向量
线性变换需要一个变换矩阵,该 矩阵由原始变量和主成分之间的 系数构成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 主成分分析方法
地理环境是多要素的复杂系统,在我们进行地理系统分析时,多变量问题
是经常会遇到的。
变量太多,无疑会增加分析问题的难度与复杂性, 而且在许多 实际问题中,多个变量之间是具有一定的相关关系的。
因此,我们就会很自然地 想到,能否在各个变量之间相关关系研究的基础上, 用较少的新变量代替原来较 多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信 息?事实上,这种想法是可以实现的,本节拟介绍的主成分分析方法就是综合处 理这种问题的一种强有力的方法。
第一节主成分分析方法的原理
主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法, 从数学角度来看,这是一种降维处理技术。
假定有n 个地理样本,每个样本共有 p 个变量描述,这样就构成了一个 n xp 阶的地理数据矩阵:
如何从这么多变量的数据中抓住地理事物的内在规律性呢?要解决这一问 题,自然要在p 维空间中加以考察,这是比较麻烦的。
为了克服这一困难,就需 要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,
而且使
这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息, 同时它们之 间又是彼此独立的。
那么,这些综合指标(即新变量 )应如何选取呢?显然,其 最简单的形式就是取原来变量指标的线性组合, 适当调整组合系数,使新的变量 指标之间相互独立且代表性最好。
如果记原来的变量指标为X i , 为 X i ,X 2,…,zm (mep)。
贝U
坷"】內+G 衍++l]p%
X 2,…,X P ,它们的综合指标 新变量指标
在(2)式中,系数l j由下列原则来决定:
(1)乙与z j (i工j ;i , j=1 , 2,…,m)相互无关;
(2) ............................................................................................................... z i是x i,X2,…,X P的一切线性组合中方差最大者;Z2是与z i不相关的X i, X2,…,X P的所有线性组合中方差最大者;;Z m是与Z i,乙, ..................................... Z m-1都不
相关的X i, X2,…,X P的所有线性组合中方差最大者。
这样决定的新变量指标z i, Z2,…,zm分别称为原变量指标X i, X2,…,X P 的第一,第二,…,第m主成分。
其中,乙在总方差中占的比例最大,z2,Z3,…, z m的方差依次递减。
在实际问题的分析中,常挑选前几个最大的主成分,这样既减少了变量的数目,又抓住了主要矛盾,简化了变量之间的关系。
从以上分析可以看出,找主成分就是确定原来变量X j (j=i , 2,…,P)在诸
主成分Z i (i=i , 2,…,m)上的载荷l j (i=i , 2,…,m j=i , 2,…,p),从数学上容
易知道,它们分别是X i, X2,…,X P的相关矩阵的m个较大的特征值所对应的特征向量。
第二节主成分分析的解法
主成分分析的计算步骤
通过上述主成分分析的基本原理的介绍,我们可以把主成分分析计算步骤归纳如下:
(i) 计算相关系数矩阵
IP J
在公式(3)中,九(i , j=i , 2,…,p)为原来变量X i与X j的相关系数,其计算公式为
因为R是实对称矩阵(即r j=r j),所以只需计算其上三角元素或下三角元素即可。
(2) 计算特征值与特征向量
首先解特征方程丨入I-R | =0求出特征值入「(i=1 , 2,…,p),并使其按大小顺序排列,即入i> X 2》…,》入p>0;然后分别求出对应于特征值入i的特征向量e (i=1,2,…,p)。
(3) 计算主成分贡献率及累计贡献率
P > P
主咸分颂献率7 2”「p),累计贡献率工丫“工化。
k-l k-l b
・
「般取累计贡献率达85-95%的特征值X 1,X 2,…,X m所对应的第一,第•…,第m(m< p)个主成分。
(4) 计算主成分载荷
由此可以进一步计算主成分得分:
Z11
\
2 =Z21光…
M M:1
% …4皿J
第三节主成分分析应用实例
主成分分析实例
对于某区域地貌-水文系统,其57个流域盆地的九项地理要素:X1为流域盆地总高度(m)X2为流域盆地山口的海拔高度(m),X3为流域盆地周长(m),X4为河道总长度(km),X5为河
表2-14 某57个流域盆地地理要素数据
道总数,X6为平均分叉率,X7为河谷最大坡度(度),X8为河源数及X9为流域盆地面积(km2)的原始数据如表2-14所示。
张超先生(1984)曾用这些地理要素的原始数据对该区域地貌-水文系统作了主成分分析。
下面,我们将其作为主成分分析方法在地理学研究中的一个应用实例介绍给读者,以供参考。
表2-15相关系数矩阵
(1)首先将表2-14中的原始数据作标准化处理,由公式(4)计算得相关系数矩阵(见表2-15)o
(2)由相关系数矩阵计算特征值,以及各个主成分的贡献率与累计贡献率(见表2-16)。
由表2-16可知,第一,第二,第三主成分的累计贡献率已高达86.5 %,故只需求出第一,第二,第三主成分乙,Z2, Z3即可。
表2-16 特征值及主成分贡献率
(3)对于特征值入1=5.043,入2=1.746,入3=0.997分别求出其特征向量8, e2,e3,并计算各变量X1,X2,……,X9在各主成分上的载荷得到主成分载荷矩阵
(见表2-17)o
表2-仃主成分载荷矩阵
从表2-17可以看出,第一主成分Z1与X i, X3, X4, X5, X8, X9有较大的正相关,这是由于这六个地理要素与流域盆地的规模有关,因此第一主成分可以被认为是流域盆地规模的代表:第二主成分乙与X2有较大的正相关,与X7有较大的负相关,而这两个地理要素是与流域切割程度有关的,因此第二主成分可以被认为是流域侵蚀状况的代表;第三主成分Z3与X6有较大的正相关,而地理要素X6是流域比较独立的特性一一河系形态的表征,因此,第三主成成可以被认为是代表河系形态的主成分。
以上分析结果表明,根据主成分载荷,该区域地貌-水文系统的九项地理要素可以被归为三类,即流域盆地的规模,流域侵蚀状况和流域河系形态。
如果选取其中相关系数绝对值最大者作为代表,则流域面积,流域盆地出口的海拔高度和分叉率可作为这三类地理要素的代表,利用这三个要素代替原来九个要素进行区域地貌-水文系统分析,可以使问题大大地简化。