信号与系统复习题(含答案)

合集下载

信号与系统复习试题(含答案)

信号与系统复习试题(含答案)
D。激励与H(s)的极点
76.某二阶LTI系统的频率响应H (j)
A.y2y3y
B。y3y2yf2
D。y3y2yf
H(s)的共轭极点在虚轴上,则它的
2,-1,H ()1,则系统函数H(s)为(
C。(s1)(s2)
(t)的傅氏变换是(
B。j(
D。j(2
A.系统在(t)作用下的全响应
C.系统单位阶跃响应的导数
6。对于一个三阶常系数线性微分方程描述的连续时间系统进行系统的时域模拟时,所需积
分器数目最少是__3个_____个。
7。一线性时不变连续因果系统是稳定系统的充分且必要条件是系统函数的极点位于S平面
的___左半平面_______。
8.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为
其中x(0)是初始状态,
f(t)为激励,y(t)为全响应,试回答该系统是否是线性的?[答案:非线性]
2.y'(t)sinty(t)f(t)试判断该微分方程表示的系统是线性的还是非线性的,
是时变的还是非时变的?[答案:线性时变的]
3.已知有限频带信号f(t)的最高频率为100Hz,若对f(2t)*f(3t)进行时域取样,
B。f(t)f(t8)
12
C.f(t)f(t8)
D。f(t3)f(t1)
69.已知一连续系统在输入f(t)的作用下的零状态响应为yzs(t)f(4t),则该系统为()
70.已知f(t)是周期为T的函数,f(t)-f (t
T)的傅里叶级数中,只可能有(
71.一个线性时不变的连续时间系统,其在某激励信号作用下的自由响应为(e
h(t)=(1et)(t),则其系统函数
15.已知一信号f(t)的频谱F(j)的带宽为,则f(2t)的频谱的带宽为

信号与系统期末考试复习题及答案(共8套)

信号与系统期末考试复习题及答案(共8套)

信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。

(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。

3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。

4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。

5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。

6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。

7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。

8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。

9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。

10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。

二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。

( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。

(完整word版)信号与系统专题练习题及答案

(完整word版)信号与系统专题练习题及答案

信号与系统专题练习题一、选择题1.设当t 〈3时,x(t)=0,则使)2()1(t x t x -+-=0的t 值为 C 。

A t>-2或t>-1 B t=1和t=2 C t>—1 D t 〉-22.设当t 〈3时,x (t)=0,则使)2()1(t x t x -⋅-=0的t 值为 D 。

A t>2或t 〉-1 B t=1和t=2 C t>—1 D t>—23.设当t<3时,x(t )=0,则使x (t/3)=0的t 值为 C 。

A t>3 B t=0 C t<9 D t=34.信号)3/4cos(3)(π+=t t x 的周期是 C 。

A π2 B π C 2/π D π/2 5.下列各表达式中正确的是 BA. )()2(t t δδ= B 。

)(21)2(t t δδ= C. )(2)2(t t δδ= D 。

)2(21)(2t t δδ=6. 已知系统的激励e(t)与响应r(t)的关系为:)1()(t e t r -= 则该系统为 B . A 线性时不变系统 B 线性时变系统 C 非线性时不变系统 D 非线性时变系统 7。

已知 系统的激励e(t )与响应r (t)的关系为:)()(2t e t r = 则该系统为 C .A 线性时不变系统B 线性时变系统C 非线性时不变系统D 非线性时变系统8。

⎰∞-=t d ττττδ2sin )( A 。

A 2u (t ) B )(4t δ C 4 D 4u (t) 10. dt t t )2(2cos 33+⋅⎰-δπ等于 B 。

A 0 B —1 C 2 D —211.线性时不变系统输出中的自由响应的形式由 A 决定A 系统函数极点的位置;B 激励信号的形式;C 系统起始状态;D 以上均不对。

12.若系统的起始状态为0,在x (t)的激励下,所得的响应为 D . A 强迫响应;B 稳态响应;C 暂态响应;D 零状态响应。

信号与系统题库答案(完整版)

信号与系统题库答案(完整版)

1 −2( s +1) 1 −2 s e (2) e s +1 s +1 e2 2cos 2 + s sin 2 − s (3) (4) ie s +1 s2 + 4 1 ⎛ 1 1⎞ ⎛ 1 2⎞ (5) 2 [1 − (1 + s )e − s ]e − s (6) ⎜ 2 + ⎟ e − s − ⎜ 2 + ⎟ e −2 s s s⎠ s⎠ ⎝s ⎝s (1)
[3]解 A 点: FA (ω ) =
1 [G1 (ω + ω0 ) + G1 (ω − ω0 )] 2 j B 点: FB (ω ) = [G1 (ω + ω0 ) − G2 (ω − ω0 )] 2 1 C 点: FC (ω ) = [ FA (ω ) + FB (ω )] ⋅ π [δ (ω + ω0 ) + δ (ω − ω0 )] 2π 1 1 1 j j = [ G1 (ω + 2ω0 ) + G1 (ω ) + G2 (ω + 2ω0 ) − G2 (ω )] 2 2 2 2 2 1 1 1 j j + [ G1 (ω ) + G1 (ω − 2ω0 ) + G2 (ω ) − G2 (ω − 2ω0 )] 2 2 2 2 2
1 1 1 j j = [ G1 (ω + 2ω0 ) + G1 (ω ) + G2 (ω + 2ω0 ) − G2 (ω )] 2 2 2 2 2 1 1 1 j j + [ G1 (ω ) + G1 (ω − 2ω0 ) + G2 (ω ) − G2 (ω − 2ω0 )] 2 2 2 2 2

信号与系统习题答案(教学参考)

信号与系统习题答案(教学参考)

《信号与系统》复习题1. 已知f(t)如图所示,求f(-3t-2)。

2. 已知f(t),为求f(t0-at),应按下列哪种运算求得正确结果?(t0和a 都为正值)3.已知f(5-2t)的波形如图,试画出f(t)的波形。

解题思路:f(5-2t)−−−−−→−=倍展宽乘22/1a f(5-2×2t)= f(5-t) −−→−反转f(5+t)−−→−5右移f(5+t-5)= f(t)4.计算下列函数值。

(1)dt t t u t t )2(00--⎰+∞∞-)(δ (2)dt t t u t t )2(0--⎰+∞∞-)(δ(3)dt t t e t ⎰+∞∞--++)(2)(δ 5.已知离散系统框图,写出差分方程。

解:2个延迟单元为二阶系统,设左边延迟单元输入为x(k) 左○∑:x(k)=f(k)-a 0*x(k-2)- a 1*x(k-1)→ x(k)+ a 1*x(k-1)+ a 0*x(k-2)=f(k) (1)右○∑: y(k)= b 2*x(k)- b 0*x(k-2) (2) 为消去x(k),将y(k)按(1)式移位。

a 1*y(k-1)= b 2* a 1*x(k-1)+ b 0* a 1*x(k-3) (3) a 0*y(k-2)= b 2* a 0*x(k-2)-b 0* a 0*x(k-4) (4) (2)、(3)、(4)三式相加:y(k)+ a 1*y(k-1)+ a 0*y(k-2)=b 2*[x(k)+ a 1*x(k-1)+a 0*x(k-2)]- b 0*[x(k-2)+a 1*x(k-3)+a 0*x(k-4)] ∴ y(k)+ a 1*y(k-1)+ a 0*y(k-2)= b 2*f(k)- b 0*f(k-2)═>差分方程6.绘出下列系统的仿真框图。

)()()()()(100122t e dt d b t e b t r a t r dt d a t r dtd +=++ 7.判断下列系统是否为线性系统。

信号与系统(带答案)

信号与系统(带答案)

第一套第1题,下列信号的分类方法不正确的是(A)A、数字信号和离散信号B、确定信号和随机信号C、周期信号和非周期信号:D、因果信号与反因果信号第2题,以下信号属于连续信号的是(B)A、e-nTB、e-at sin(ωt)C、cos(nπ)D、sin(nω0)第3题,下列说法正确的是(D)A、两个周期信号x(t),y(t)的和x(t)+y(t)一定是周期信号。

B、两个周期信号x(t),y(t)的周期分别为2和2开根号,其和信号x(t)+y(t)是周期信号。

C、两个周期信号x(t),y(t)的周期分别为2和Pi,其和信号x(t)+y(t)是周期信号。

D、两个周期信号x(t),y(t)的周期分别为2和3,其和信号x(t)+y(t)是周期信号。

第4题,将信号f(t)变换为( A ) 称为对信号f(t)的平移或移位。

A、f(t-t0)B、f( k -k0)C、f(at)D、f(-t)第五题,下列基本单元属于数乘器的是(A )A、B、C、D、第六题、下列傅里叶变换错误的是(D)А.1<-->2πδ(ω)B.ejω0t<-- > 2πδ(ω-ω0 )С.соѕ(ω0t) < -- > π[δ(ω-ω0 ) +δ (ω+ω0 )]D. ѕіn(ω0t)<-> jπ[δ(ω+ω0)+ δ(ω- ω0)]第7题、奇谐函数只含有基波和奇次谐波的正弦和余弦项,不会包含偶次谐波项。

(对)第8题、在奇函数的傅里叶级数中不会含有正弦项,只可能含有直流项和余弦项。

(错)第9题、满足均匀性和____条件的系统称为线性系统。

(叠加性)第10题.根据激励信号和内部状态的不同,系统响应可分为零输入响应和__响应(零状态)第二套1、当周期信号的周期增大时,频谱图中谱线的间隔( C)A:增大B:无法回答C:减小D:不变2、δ(t)的傅立叶变换为( A)。

A:1B: u(t)C: 0D:不存在3、已知f(t),为求f(3-2t)则下列运算正确的是(B)A:f(-2t)左移3/2B:f(-2t)右移3/2C:f(2t)左移3D:f(2t)右移3 ,4、下列说法不正确的是(D)。

信号与系统 期末复习试卷1

信号与系统 期末复习试卷1

, 22t k
第2页共4页
三、(10 分)如图所示信号 f t,其傅里叶变换
F jw F
f t,求(1)
F
0
(2)
F
jwdw
四 、( 10
分)某
LTI
系统的系统函数
H s
s2
s2 2s 1
,已知初始状态
y0 0, y 0 2, 激励 f t ut, 求该系统的完全响应。
参考答案 一、选择题(共 10 题,每题 3 分 ,共 30 分,每题给出四个答案,其中只有一 个正确的)1、D 2、A 3、C 4、B 5、D 6、D 7、D 8、A 9、B 10、A
二、填空题(共 9 小题,每空 3 分,共 30 分)
1、 0.5k uk 2、 (0.5)k1u(k)
3、
s s
2 5
5、 (t) u(t) etu(t)
8、 et cos2tut
三、(10 分)
6、 1 0.5k1 uk
9、 66 , 22k!/Sk+1 s
解:1)
F ( ) f (t)e jt dt
Atut Btut 2 Ct 2ut Dt 2ut 2
10、信号 f t te3tut 2的单边拉氏变换 Fs等于
A
2s
s
7 e 2s3 32
C
se
s
2 s 3
32
B
e 2s
s 32
D
e 2s3
ss 3
二、填空题(共 9 小题,每空 3 分,共 30 分)
1、卷积和[(0.5)k+1u(k+1)]* (1 k) =________________________

信号与系统复习题含答案完整版

信号与系统复习题含答案完整版

信号与系统复习题含答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】(C ))(t δ+(-6e -t +8e -2t)u(t) (D )3)(t δ +(-9e -t +12e -2t)u(t)6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性7、 周期序列2)455.1(0+k COS π的 周期N 等于(A) 1 (B )2 (C )3 (D ) 48、序列和()∑∞-∞=-k k 1δ等于(A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku9、单边拉普拉斯变换()se s s s F 2212-+=的愿函数等于10、信号()()23-=-t u te t f t的单边拉氏变换()s F 等于二、填空题(共9小题,每空3分,共30分) 1、 卷积和[()k+1u(k+1)]*)1(k -δ=________________________2、 单边z 变换F(z)= 12-z z的原序列f(k)=______________________ 3、 已知函数f(t)的单边拉普拉斯变换F(s)=1+s s,则函数y(t)=3e -2t·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、 频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、 单边拉普拉斯变换s s s s s F +++=2213)(的原函数 f(t)=__________________________6、 已知某离散系统的差分方程为)1(2)()2()1()(2-+=----kf k f k y k y k y ,则系统的单位序列响应h(k)=_______________________7、 已知信号f(t)的单边拉氏变换是F(s),则信号⎰-=2)()(t dxx f t y 的单边拉氏变换Y(s)=______________________________ 8、描述某连续系统方程为 该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=k t 22三(8分)已知信号()()()⎪⎩⎪⎨⎧><==↔./1,0,/1,1s rad s rad jw F j F t f ωωω设有函数()(),dtt df t s =求⎪⎭⎫ ⎝⎛2ωs 的傅里叶逆变换。

信号与系统试题及答案(大学期末考试题)

信号与系统试题及答案(大学期末考试题)

信号与系统试题及答案(大学期末考试题)一、选择题(每题2分,共40分)1. 下列哪个信号是周期信号?A. 方波B. 单位冲激信号C. 随机信号D. 正弦信号答案:A2. 信号x(t)的拉普拉斯变换为X(s)。

若x(t)的区间平均功率为P,则X(s)的区间平均功率是多少?A. PB. 2πPC. P/2D. πP答案:D3. 系统的冲激响应为h(t)=e^(-2t)sin(3t)u(t)。

则该系统为什么类型的系统?A. 线性非时变系统B. 线性时不变系统C. 非线性非时变系统D. 非线性时不变系统答案:B4. 信号x(t)通过系统h(t)并得到输出信号y(t)。

若x(t)为周期为T的信号,则y(t)也是周期为T的信号。

A. 正确B. 错误答案:A5. 下列哪个信号不是能量有限信号?A. 常值信号B. 正弦信号C. 方波D. 三角波答案:B...二、填空题(每题4分,共40分)1. 离散傅里叶变换的计算复杂度为$O(NlogN)$。

答案:NlogN2. 系统函数$H(z) = \frac{1}{1-0.5z^{-1}}$的极点为0.5。

答案:0.5...三、简答题(每题10分,共20分)1. 请简要说明信号与系统的基本概念和关系。

答案:信号是波动的物理量的数学描述,而系统是对信号进行处理的方式。

信号与系统的关系在于信号作为系统的输入,经过系统处理后得到输出信号。

信号与系统的研究可以帮助我们理解和分析各种现实世界中的波动现象。

2. 请简要说明周期信号和非周期信号的区别。

答案:周期信号是在一定时间间隔内重复出现的信号,具有周期性。

非周期信号则不能被表示为简单的周期函数,不存在固定的重复模式。

...以上是关于信号与系统试题及答案的文档。

希望能对您的大学期末考试复习有所帮助。

祝您考试顺利!。

信号与系统复习题(答案全)

信号与系统复习题(答案全)

1、 若系统的输入f (t )、输出y (t) 满足()3()4t y t e ft -=,则系统为 线性的 (线性的、非线性的)、 时变的 (时变的、时不变)、 稳定的 (稳定的、非稳定的).2、 非周期、连续时间信号具有 连续 、非周期频谱;周期、连续时间信号具有离散、非周期 频谱;非周期、离散时间信号具有 连续 、周期频谱;周期、离散时间信号具有离散、 周期 频谱。

3、 信号f(t)的占有频带为0-10KHz,被均匀采样后,能恢复原信号的最大采样周期为 5×10—5 s 。

4、 )100()(2t Sa t f =是 能量信号 (功率信号、能量信号、既非功率亦非能量信号)。

5、 ()2cos()f t t =+是 功率信号 (功率信号、能量信号、既非功率亦非能量信号)。

6、 连续信号f(t )=sint 的周期T 0= 2π ,若对f (t )以fs=1Hz 进行取样,所得离散序列f(k)=sin(k ) ,该离散序列是周期序列? 否 。

7、 周期信号2sin(/2)()j n tn n f t e n ππ+∞=-∞=∑,此信号的周期为 1s 、直流分量为 2/π 、频率为5Hz 的谐波分量的幅值为 2/5 。

8、 f (t) 的周期为0。

1s 、傅立叶级数系数**03355532F F F F F j --=====、其余为0。

试写出此信号的时域表达式f (t ) = 5 + 6 cos ( 60 π t ) - 4 sin (100 π t ) . 9、 f (k ) 为周期N=5的实数序列,若其傅立叶级数系数()205=F ()52511,πjeF -+=()54512πjeF -+=、 则F 5 (3 )= ()54512πjeF +=- 、F 5 (4 )= ()52511πj eF +=- 、F 5 (5 )= 2 ;f(k ) =())1.7254cos(62.052)9.3552cos(62.152525140525︒-⨯+︒-⨯+=∑=k k e n F n k jn πππ。

信号与系统试题库史上最全(内含答案)

信号与系统试题库史上最全(内含答案)

信号与系统考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。

一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。

[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。

[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。

[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。

[答案: ]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。

[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。

[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。

其中:)()21()(k k g k ε=。

[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。

信号与系统复习套题一答案

信号与系统复习套题一答案

《信号与系统》套题一参考答案一、简答题1、dtt df t f t f x e t y t)()()()0()(+⋅=- 其中x(0)是初始状态,为激励)(t f 为全响应,,)(t y 试回答该系统是否是线性的? 解:由于无法区分零输入响应和零状态响应,因而系统为非线性的。

3、 若信号)(t f 的最高频率为20KHz ,则信号)3()2()(2t f t f t f +=的最高频率为___________KHz ;若对信号)(2t f 进行抽样,则奈奎斯特频率s f 为 ____________KHz 。

解:本题目主要考查的是取样定理的条件:)2(21)2(ωj F t f ↔)3(31)3(ωj F t f ↔ 因而:)2(t f 的最高频率为40KHz ,)3(t f 的最高频率为60KHz)3()2()(2t f t f t f +=的最高频率为两个分信号最高频率,为60KHz ,若对信号)(2t f 进行抽样,奈奎斯特频率12022=≥m s f f KHz4、 设系统的激励为()f t ,系统的零状态响应)(t y zs 与激励之间的关系为:)()(t f t y zs -=,判断该系统是否是时不变的,并说明理由。

解:设)()(01t t f t f -=,若系统为时不变的,则必有结论)(01t t y y zs zs -=。

根据题意,由)(1t f 作用于系统的零状态响应为:)()(011t t f t y zs -=,根据信号的基本运算,)()()(0011t t f t t f t y zs +-=-=,很明显,)(01t t y y zs zs -≠,因而系统为时变的。

7、 设系统的激励为()f t ,系统的零状态响应)(t y zs 与激励之间的关系为:)1(*)()(-=k f k f k y zs ,判断该系统是否是线性的,并说明理由。

解:系统为非线性的。

因为表达式中出现了)(k f 的二次方。

信号与线性系统分析复习题及答案

信号与线性系统分析复习题及答案

信号与线性系统复习题单项选择题;1. 已知序列3()cos()5f k k π=为周期序列,其周期为 C A . 2 B. 5 C. 10 D. 122. 题2图所示()f t 的数学表达式为 B图题2A .()10sin()[()(1)]f t t t t πεε=+- B. ()10sin()[()(1)]f t t t t πεε=-- C. ()10sin()[()(2)]f t t t t πεε=-- D. ()10sin()[()(2)]f t t t t πεε=+-3.已知sin()()()t f t t dt t πδ∞-∞=⎰,其值是 AA .π B. 2π C. 3π D. 4π4.冲激函数()t δ的拉普拉斯变换为 AA . 1 B. 2 C. 3 D. 45.为了使信号无失真传输,系统的频率响应函数应为 D A . ()djwt H jw e= B. ()djwt H jw e-= C. ()djwt H jw Ke= D. ()djwt H jw Ke-=6.已知序列1()()()3kf k k ε=,其z 变换为 B A .13z z + B.13z z - C.14z z + D.14z z -7.离散因果系统的充分必要条件是 AA .0,0)(<=k k h B. 0,0)(>=k k h C. 0,0)(<<k k h D. 0,0)(>>k k h8.已知()f t 的傅里叶变换为()F jw ,则(3)f t +的傅里叶变换为 C A .()jwF jw e B. 2()j wF jw eC. 3()j wF jw eD. 4()j wF jw e9.已知)()(k k f kεα=,)2()(-=k k h δ,则()()f k h k *的值为 BA .)1(1--k k εαB. )2(2--k k εαC. )3(3--k k εαD. )4(4--k k εα10.连续时间系统的零输入响应的“零”是指 A A. 激励为零 B. 系统的初始状态为零 C. 系统的冲激响应为零 D. 系统的阶跃响应为零 11. 已知序列kjek f 3)(π=为周期序列,其周期为A . 2 B. 4 C. 6 D. 812. 题2图所示()f t 的数学表达式为A .)1()1()(--+=t t t f εε B.)1()1()(-++=t t t f εε C. )1()()(--=t t t f εε D. )1()()(-+=t t t f εε13.已知)2()(),1()(21-=-=t t f t t f εδ,则 12()()f t f t *的值是 A .)(t ε B. )1(-t ε C. )2(-t ε D. )3(-t ε14.已知ωωj j F =)(,则其对应的原函数为A .)(t δ B. )('t δ C. )(''t δ D. )('''t δ15.连续因果系统的充分必要条件是 A . 0,0)(==t t h B. 0,0)(<=t t h C. 0,0)(>=t t h D. 0,0)(≠=t t h16.单位阶跃序列)(k ε的z 变换为A .1,1<+z z z B. 1,1>+z z z C. 1,1<-z z z D. 1,1>-z z z 17.已知系统函数ss H 1)(=,则其单位冲激响应()h t 为A .)(t ε B. )(t t ε C. )(2t t ε D. )(3t t ε18.已知()f t 的拉普拉斯变换为()F s ,则)5(t f 的拉普拉斯变换为tA .)5(s F B. )5(31s F C. )5(51s F D. )5(71s F 19.已知)2()(2-=-k k f k εα,)2()(-=k k h δ,则()()f k h k *的值为A .)1(1--k k εα B. )2(2--k k εαC. )3(3--k k εαD. )4(4--k k εα20.已知)(t f 的傅里叶变换为)(ωj F ,则)(jt F 的傅里叶变换为 A. )(ωπ-fB. )(ωπfC. )(2ωπ-fD. )(2ωπf21. 下列微分或差分方程所描述的系统是时变系统的是 A . )(2)()(2)(''t f t f t y t y -=+B. )()(sin )('t f t ty t y =+C. )()]([)(2't f t y t y =+D. )()2()1()(k f k y k y k y =--+22. 已知)()(),()(21t t f t t t f εε==,则)()(21t f t f *的值是 A .)(1.02t t ε B. )(3.02t t ε C. )(5.02t t ε D. )(7.02t t ε23.符号函数)sgn(t 的频谱函数为 A .ωj 1 B. ωj 2 C. ωj 3 D. ωj 424.连续系统是稳定系统的充分必要条件是 A . M dt t h ≤⎰∞∞-)( B. M dt t h ≥⎰∞∞-)(C.M dt t h ≤⎰∞∞-)( D.M dt t h ≥⎰∞∞-)(25.已知函数)(t f 的象函数)5)(2()6()(+++=s s s s F ,则原函数)(t f 的初值为A . 0 B. 1 C. 2 D. 3 26.已知系统函数13)(+=s s H ,则该系统的单位冲激响应为 A .)(t e tε- B.)(2t e tε- C.)(3t e tε- D. )(4t e tε-27.已知)2()(),1()(1-=-=-k k h k k f k δεα,则)()(k h k f *的值为A .)(k kεα B.)1(1--k k εα C.)2(2--k k εα D. )3(3--k k εα28. 系统的零输入响应是指 A.系统无激励信号 B. 系统的初始状态为零C. 系统的激励为零,仅由系统的初始状态引起的响应D. 系统的初始状态为零,仅由系统的激励引起的响应 29.偶函数的傅里叶级数展开式中A .只有正弦项 B.只有余弦项 C. 只有偶次谐波 D. 只有奇次谐波 10. 已知信号()f t 的波形,则)2(t f 的波形为 A .将()f t 以原点为基准,沿横轴压缩到原来的12B. 将()f t 以原点为基准,沿横轴展宽到原来的2倍C. 将()f t 以原点为基准,沿横轴压缩到原来的14D. 将()f t 以原点为基准,沿横轴展宽到原来的4倍 填空题1. 已知象函数223()(1)s F s s +=+,其原函数的初值(0)f +为___________________;2.()(2)t e t t dt δ∞--∞++=⎰____________________________;3.当LTI 离散系统的激励为单位阶跃序列()k ε时,系统的零状态响应称为_________________;4.已知函数4()23F s s =+,其拉普拉斯逆变换为____________________; 5.函数()f t 的傅里叶变换存在的充分条件是________________________;6. 已知11()10.5X z z -=+(0.5)z >,则其逆变换()x n 的值是______________;7.系统函数(1)(1)()1()2z z H z z -+=-的极点是___________________________;8.已知()f t 的拉普拉斯变换为()F s ,则00()()f t t t t ε--的拉普拉斯变换为_________________; 9.如果系统的幅频响应()H jw 对所有的ω均为常数,则称该系统为__________________________; 10. 已知信号)(t f ,则其傅里叶变换的公式为______________; 11. 已知象函数223()(1)s F s s +=+,其原函数的初值(0)f +为___________________; 12.()(2)t e t t dt δ∞--∞++=⎰____________________________;13.当LTI 离散系统的激励为单位阶跃序列()k ε时,系统的零状态响应称为_________________;14.已知函数4()23F s s =+,其拉普拉斯逆变换为____________________; 15.函数()f t 的傅里叶变换存在的充分条件是________________________;16. 已知11()10.5X z z-=+(0.5)z >,则其逆变换()x n 的值是______________; 17.系统函数(1)(1)()1()2z z H z z -+=-的极点是___________________________;18.已知()f t 的拉普拉斯变换为()F s ,则00()()f t t t t ε--的拉普拉斯变换为_________________; 19.如果系统的幅频响应()H jw 对所有的ω均为常数,则称该系统为__________________________; 20. 已知信号)(t f ,则其傅里叶变换的公式为______________; 21.)(63t e tε-的单边拉普拉斯变换为_________________________;22.=-⎰∞∞-dt t t t f )()(0δ ____________________________;23.)(5t δ的频谱函数为______________________;24.一个LTI 连续时间系统,当其初始状态为零,输入为单位阶跃函数所引起的响应称为__________响应; 25.序列)()21()(k k f kε=的z 变换为___________________________;26.时间和幅值均为______________的信号称为数字信号; 27.系统函数)6.0)(4.0()1()(+-+=z z z z z H 的极点是___________________________;28.LTI 系统的全响应可分为自由响应和__________________;29. 函数)(1t f 和)(2t f 的卷积积分运算=*)()(21t f t f _______________________; 30. 已知函数23)(+=s s F ,其拉普拉斯逆变换为____________________; 简答题.;1.简述根据数学模型的不同,系统常用的几种分类;2.简述稳定系统的概念及连续时间系统时域稳定的充分必要条件; 3.简述单边拉普拉斯变换及其收敛域的定义; 4.简述时域取样定理的内容; 5.简述系统的时不变性和时变性; 6.简述频域取样定理;7.简述-0时刻系统状态的含义;8. 简述信号拉普拉斯变换的终值定理;9.简述LTI 连续系统微分方程经典解的求解过程; 10.简述傅里叶变换的卷积定理;11.简述LTI 离散系统差分方程的经典解的求解过程;12.简述信号z 变换的终值定理;13.简述全通系统及全通函数的定义; 14.简述LTI 系统的特点; 15.简述信号的基本运算 计算题1.描述离散系统的差分方程为1)1(,0)1(9.0)(=-=--y k y k y ,利用z 变换的方法求解)(k y ; 2.描述某LTI 系统的微分方程为)(3)()(3)(4)(''''t f t f t y t y t y -=++ ,求其冲激响应)(t h ;3.给定微分方程 )(3)()(2)(3)(''''t f t f t y t y t y +=++,1)0(),()(==-y t t f ε,2)0('=-y ,求其零输入响应;4.已知某LTI 离散系统的差分方程为),()1(2)(k f k y k y =--)(2)(k k f ε=, y-1=-1,求其零状态响应;5.当输入)()(k k f ε=时,某LTI 离散系统的零状态响应为)(])5.1()5.0(2[)(k k y k k zs ε-+-=,求其系统函数;6.描述某LTI 系统的方程为),(3)()(3)(4)(''''t f t f t y t y t y -=++求其冲激响应)(t h ;7.描述离散系统的差分方程为 )1()(2)2(43)1()(--=---+k f k f k y k y k y ,,求系统函数和零、极点; 8. 已知系统的微分方程为)()(3)(4)('''t f t y t y t y =++,1)0()0('==--y y )()(t t f ε=,求其零状态响应;9.用z 变换法求解方程2)1(),(1.0)1(9.0)(=-=--y k k y k y ε的全解10.已知描述某系统的微分方程)(4)()(6)(5)(''''t f t f t y t y t y +=++,求该系统的频率响应).(jw H11.已知某LTI 系统的阶跃响应)()1()(2t e t g tε--=,欲使系统的零状态响应)()1()(22t te e t y t t zs ε--+-=,求系统的输入信号)(t f ;12.利用傅里叶变换的延时和线性性质门函数的频谱可利用已知结果,求解下列信号的频谱函数;13.若描述某系统的微分方程和初始状态为 )(4)(2)(4)(5)(''''t f t f t y t y t y -=++5)0(,1)0('==--y y ,求系统的零输入响应;14.描述离散系统的差分方程为 )2()()2(21)1()(--=-+--k f k f k y k y k y , 求系统函数和零、极点;15.若描述某系统的差分方程为)()2(2)1(3)(k k y k y k y ε=-+-+,已知初始条件5.0)2(,0)1(=-=-y y ,利用z 变换法,求方程的全解;信号与线性系统分析复习题答案单项选择题1. C2.B3.A4.A5.D6.B 7 .A 8.C 9.B 10.A 11. C 12.A 13. D 14.B 15.B 16. D17. A 18.C 19. D 20.C 21.B 22.C 23. B 24.A 25.B 26.C 27. D 28.C 29. B 30. B填空题1. 22. 22e - 3. 单位阶跃响应/阶跃响应 4. )(223t et ε- 5.()f t dt ∞-∞<∞⎰6.)()5.0(k k ε- 7.128. 0()st F s e - 9. 全通系统 10. dt e t f jw F jwt⎰∞∞--=)()( 11.卷积和 12. 1 13.)()(d t t kf t y -= 14. )()()()(3121t f t f t f t f *+* 15.齐次解和特解16. 系统函数分子 17. 2 18.63-z z 19.)(2w πδ 20.齐次 21.36+s 22.)(0t f - 23. 5 24. 单位阶跃响应 25. 122-z z26. 离散 27. 0.4,-0.6 28. 强迫响应 29.τττd t f f )()(21-⎰∞∞- 30. )(32t e t ε-简答题1.答:1加法运算,信号1()f ⋅与 2()f ⋅之和是指同一瞬时两信号之值对应相加所构成的“和信号”,即12()()()f f f ⋅=⋅+⋅2乘法运算,信号1()f ⋅与 2()f ⋅之积是指同一瞬时两信号之值对应相乘所构成的“积信号”,即12()()()f f f ⋅=⋅⋅3反转运算:将信号()f t 或()f k 中的自变量t 或k 换为t -或k -,其几何含义是将信号()f ⋅以纵坐标为轴反转;4平移运算:对于连续信号()f t ,若有常数00t >,延时信号0()f t t -是将原信号沿t 轴正方向平移0t 时间,而0()f t t +是将原信号沿t 轴负方向平移0t 时间;对于离散信号()f k ,若有整常数00k >,延时信号0()f k k -是将原序列沿k 轴正方向平移0k 单位,而0()f k k +是将原序列沿k 轴负方向平移0k 单位; 5尺度变换:将信号横坐标的尺寸展宽或压缩,如信号()f t 变换为()f at ,若1a >,则信号()f at 将原信号()f t 以原点为基准,将横轴压缩到原来的1a倍,若01a <<,则()f at 表示将()f t 沿横轴展宽至1a 倍2.答:根据数学模型的不同,系统可分为4种类型. 即时系统与动态系统; 连续系统与离散系统; 线性系统与非线性系统 时变系统与时不变系统3.答:1一个系统连续的或离散的如果对任意的有界输入,其零状态响应也是有界的则称该系统是有界输入有界输出稳定系统;2连续时间系统时域稳定的充分必要条件是()h t dt M ∞-∞≤⎰4.信号的单边拉普拉斯正变换为:dt e t f s F st ⎰∞-=)()(逆变换为:ds e s F j t f jwjwst ⎰+-=δδπ)(21)(收敛域为:在s 平面上,能使0)(lim =-∞→tt et f δ满足和成立的δ的取值范围或区域,称为)(t f 或)(s F 的收敛域;5.答:一个频谱受限的信号)(t f ,如果频谱只占据m m w w ~-的范围,则信号)(t f 可以用等间隔的抽样值唯一表示;而抽样间隔必须不大于mf 21m m f w π2=,或者说,最低抽样频率为m f 2; 6.答:如果系统的参数都是常数,它们不随时间变化,则称该系统为时不变或非时变系统或常参量系统,否则称为时变系统; 描述线性时不变系统的数学模型是常系数线性微分方程或差分方程,而描述线性时变系统的数学模型是变系数线性微分或差分方程;7.答:一个在时域区间),(m m t t -以外为零的有限时间信号)(t f 的频谱函数)(jw F ,可唯一地由其在均匀间隔)21(m s s t f f <上的样点值)(s jnw F 确定;)()()(ππn wt Sa t n j F jw F m n m -=∑∞-∞=,sm f t 21=8.答:在系统分析中,一般认为输入)(t f 是在0=t 接入系统的;在-=0t 时,激励尚未接入,因而响应及其导数在该时刻的值)0()(-j y与激励无关,它们为求得0>t 时的响应)(t y 提供了以往的历史的全部信息,故-=0t 时刻的值为初始状态;9.答:若)(t f 及其导数dt t df )(可以进行拉氏变换,)(t f 的变换式为)(s F ,而且)(lim t f t ∞→存在,则信号)(t f 的终值为)(lim )(0lim s sF t f s t →∞→=;终值定理的条件是:仅当)(s sF 在s 平面的虚轴上及其右边都为解析时原点除外,终值定理才可用;10.答:1列写特征方程,根据特征方程得到特征根,根据特征根得到齐次解的表达式 2 根据激励函数的形式,设特解函数的形式,将特解代入原微分方程,求出待定系数得到特解的具体值. 3 得到微分方程全解的表达式, 代入初值,求出待定系数 4 得到微分方程的全解11.答:1时域卷积定理:若)()(),()(2211ωωj F t f j F t f ↔↔,则)()()()(2121ωωj F j F t f t f ↔* 2 频域卷积定理:若)()(),()(2211ωωj F t f j F t f ↔↔,则)()(21)()(2121ωωπj F j F t f t f *↔12..答:1列写特征方程,得到特征根,根据特征根得到齐次解的表达式 2 根据激励函数的形式,设特解的形式,将特解代入原差分方程,求出待定系数, 得到特解的具体值. 3 得到差分方程全解的表达式, 代入初始条件,求出待定系数, 4 得到差分方程的全解 13.答:终值定理适用于右边序列,可以由象函数直接求得序列的终值,而不必求得原序列;如果序列在M k < 时,0)(=k f ,设∞<<↔z z F k f α),()(且10<≤α,则序列的终值为)(1lim)(lim )(1z F zz k f f z k -==∞→∞→或写为)()1(lim )(1z F z f z -=∞→上式中是取1→z 的极限,因此终值定理要求1=z 在收敛域内10<≤α,这时)(lim k f k ∞→存在;14.答 全通系统是指如果系统的幅频响应)(jw H 对所有的w 均为常数,则该系统为全通系统,其相应的系统函数称为全通函数;凡极点位于左半开平面,零点位于右半开平面,且所有的零点与极点为一一镜像对称于jw 轴的系统函数即为全通函数;15.答:当系统的输入激励增大α 倍时,由其产生的响应也增大α倍,则称该系统是齐次的或均匀的;若两个激励之和的响应等于各个激励所引起的响应之和,则称该系统是可加的;如果系统既满足齐次性又满足可加性,则称系统是线性的;如果系统的参数都是常数,它们不随时间变化,则称该系统为时不变系统或常参量系统;同时满足线性和时不变的系统就称为线性时不变系统LTI 系统;描述线性时不变系统的数学模型是常系数线性微分差分方程;线性时不变系统还具有微分特性;计算题1解:令)()(z Y k y ↔,对差分方程取z 变换,得 0)]1()([9.0)(1=-+--y z Y z z Y将1)1(=-y 代入上式并整理,可得 9.09.09.019.0)(1-=-=-z zz z Y 取逆变换得 )()9.0()(1k k y k ε+=2.解:令零状态响应的象函数为)(s Y zs ,对方程取拉普拉斯变换得:)(3)()(3)(4)(2s F s sF s Y s sY s Y s zs zs zs -=++于是系统函数为343)()()(2++-==s s s s F s Y s H zs )()23()(3t e e t h t t ε---=3.系统的特征方程为0232=++λλ特征根为:1,221-=-=λλ 所以,零输入响应为t zi tzi zi e C e C t y --+=221)(所以:22)0(1)0(21'21=--==+=++zi zi zi zi zi zi C C y C C y故:4321=-=zi zi C C所以:t t zi e e t y --+-=43)(24.解:零状态响应满足:2)1(2)(=--k y k y zs zs ,且0)1(=-zs y 该方程的齐次解为:kzs C 2设特解为p,将特解代入原方程有:22=-p p从而解得2)(-=k y p所以22)(-=k zs zs C k y 将2)0(=zs y 代入上式,可解得4=zs C故,)()224()(k k y k zs ε-⋅=5.解:1)(-=z z z F )5.1)(5.0)(1()5.02()(2+--+=z z z z z z Y zs 75.05.02)()()(22-++==z z z z F z Y z H zs 6.解:令零状态响应的象函数为)(s Y zs ,对方程取拉普拉斯变换得:)(3)()(3)(4)(2s F s sF s Y s sY s Y s zs zs zs -=++ 系统函数为:3312)()()(+++-==s s s F s Y s H zs 故冲激响应为)()23()(3t e e t h t t ε---=7. 解:对差分方程取z 变换,设初始状态为零;则:)()2()()431(121z F z z Y z z ----=-+于是系统函数)21)(23()12()()()(-+-==z z z z z F z Y z H 其零点为21,021==ζζ, 极点为21.2321=-=p p 8. 解: 方程的齐次解为:t zs t zs e C e C 321--+方程的特解为:31 于是:31)(321++=--t zs t zs zs e C e C t y 031)0(21=++=+zs zs zs C C y 03)0(21'=--=+zs zs zs C C y得61,2121=-=zs zs C C 于是:)()312161()(3t e et y t t zs ε+-=--9. 解:令)()(z Y k y ↔,对差分方程取z 变换,得11.0)]1()([9.0)(1-=-+--z z y z Y z z Y 将2)1(=-y 代入上式,并整理得 )9.0)(1()8.19.1()(---=z z z z z Y )(])9.0(1[)(1k k y k ε++=10.解:令)()(),()(jw Y t y jw F t f ↔↔,对方程取傅里叶变换,得 )(4)()()(6)()(5)()(2jw F jw F jw jw Y jw Y jw jw Y jw +=++ 654)()()(2++-+==jw w jw jw F jw Y jw H 11. 解:)(2)()(2t e dtt dg t h t ε-==22)(+=s s H 2)2(43)(++=s s s s Y zs 2211)()()(++==s s s H s Y s F zs )()211()(2t e t f t ε-+= 12 解:)(t f 可看作两个时移后的门函数的叠合;)2()2()(22-++=t g t g t f因为)(2)(2w Sa t g ↔所以由延时性和线性性有: )2cos()(4)(2)(2)(22w w Sa e w Sa e w Sa jw F w j w j =+=- 13.解:特征方程为:0452=++λλ 4,121-=-=λλt zi t zi zi e C e C t y 421)(--+=t zi t zi zi e C e C t y 421'4)(----=令,0=t 将初始条件代入上式中,得1)0(21=+=+zi zi zi C C y 54)0(21'=--=+zi zi zi C C y 可得: 2,321-==zi zi C C0,23)(4≥-+=--t e e t y t t zi14.解:对差分方程取z 变换,设初始状态为零,则 )()1()()211(221z F z z Y z z ----=+- 211)()()(22+--==z z z z F z Y z H 其零点1,121-==ζζ;极点21212,1j p ±= 15. 解:令)()(z Y k y ↔,对差分方程取z 变换,得112111)]2()1()((2)]1()([3)(----+=-+-++-++zy y z z Y z y z Y z z Y)1)(23()(22-++=z z z z z Y )(])2(32)1(2161[)(k k y k k ε---+=。

信号与系统试题库史上最全内含答案)

信号与系统试题库史上最全内含答案)

信号与系统考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。

一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。

[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。

[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。

[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。

[答案: ]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。

[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。

[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。

其中:)()21()(k k g k ε=。

[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。

(完整版)信号与系统复习试题(含答案)

(完整版)信号与系统复习试题(含答案)

电气《信号与系统》复习参考练习题一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。

200 rad /s C 。

100 rad /s D 。

50 rad /sf如下图(a)所示,其反转右移的信号f1(t) 是( d )15、已知信号)(tf如下图所示,其表达式是()16、已知信号)(1tA、ε(t)+2ε(t-2)-ε(t-3)B、ε(t-1)+ε(t-2)-2ε(t-3)C、ε(t)+ε(t-2)-ε(t-3)D、ε(t-1)+ε(t-2)-ε(t-3)17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是()A、f(-t+1)B、f(t+1)C、f(-2t+1)D、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( c )19。

信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( ) A )0(f B )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应 D .全响应与强迫响应之差2A 、1-eB 、3eC 、3-e D 、1 27.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为( )A 。

(完整版)信号与系统练习及答案

(完整版)信号与系统练习及答案

信号与系统练习及答案一、单项选择题1.已知信号f (t )的波形如题1图所示,则f (t )的表达式为( )A .tu(t)B .(t-1)u(t-1)C .tu(t-1)D .2(t-1)u(t-1)2.积分式⎰-δ+δ++4422)]dt -(t 2(t))[23(t t 的积分结果是( ) A .14 B .24 C .26 D .283.已知f(t)的波形如题3(a )图所示,则f (5-2t)的波形为( )4.周期矩形脉冲的谱线间隔与( )A .脉冲幅度有关B .脉冲宽度有关C .脉冲周期有关D .周期和脉冲宽度有关 5.若矩形脉冲信号的宽度加宽,则它的频谱带宽( ) A .不变 B .变窄 C .变宽D .与脉冲宽度无关 6.如果两个信号分别通过系统函数为H (j ω)的系统后,得到相同的响应,那么这两个信号()A .一定相同 B .一定不同 C .只能为零 D .可以不同7.f(t)=)(t u e t 的拉氏变换为F (s )=11-s ,且收敛域为( ) A .Re[s]>0B .Re[s]<0C .Re[s]>1D .Re[s]<1 8.函数⎰-∞-δ=2t dx )x ()t (f 的单边拉氏变换F (s )等于( ) A .1 B .s 1 C .e -2s D .s1e -2s 9.单边拉氏变换F (s )=22++-s e )s (的原函数f(t)等于( ) A .e -2t u(t-1) B .e -2(t-1)u(t-1) C .e -2t u(t-2)D .e -2(t-2)u(t-2)答案: BCCCBDCDA二.填空题1.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为_________。

2.已知x(t)的傅里叶变换为X (j ω),那么x (t-t 0)的傅里叶变换为_________________。

3.如果一线性时不变系统的输入为f(t),零状态响应为y f (t )=2f (t-t 0),则该系统的单位冲激响应h(t)为_________________。

《信号与系统复习题(有答案)》

《信号与系统复习题(有答案)》

信号与系统复习题说明: 以下给出了绝大多数题目的答案, 答案是我个人做的,不保证正确性,仅供参考.请务必把复习题弄明白并结合复习题看书.请务必转发给每个同学!!!补充要点(务必搞明白):1 教材p.185例6-12 已知离散时间LTI 系统的单位冲激响应为h(n)=…,又已知输入信号x(n)=…,则系统此时的零状态响应为h(n)和x(n)的卷积.3 已知连续时间LTI 系统在输入信号为f(t)时的零状态响应为y(t),则输入信号为f(t)的导函数时对应的零状态响应为y(t)的导函数(即输入求导,对应的零状态响应也求导)4 教材p.138倒数第3行到139页上半页,请理解并记忆,必考.一、单项选择题1.信号5sin 410cos3t t ππ+为 ( A )A.周期、功率信号B.周期、能量信号C.非周期、功率信号D.非周期、能量信号2.某连续系统的输入-输出关系为2()()y t f t =,此系统为 ( C )A.线性、时不变系统B.线性、时变系统C.非线性、时不变系统D.非线性、时变系统3.某离散系统的输入-输出关系为()()2(1)y n f n f n =+-,此系统为 ( A )A.线性、时不变、因果系统B.线性、时变、因果系统C.非线性、时不变、因果系统D.非线性、时变、非因果系统4.积分(t t dt t--⎰20)()δ等于( B )A.-2δ()tB.2()u t -C.(2)u t -D.22δ()t - 5. 积分(3)t e t dt δ∞--∞-⎰等于( C )(此类题目务必做对)A.t e -B.(3)t e t δ--C. 3e -D.06.下列各式中正确的是 ( B )A.12()(2)2t t δδ=B.1(2)()2t t δδ= C. (2)()t t δδ= D. (2)2()t t δδ= 7.信号)(),(21t f t f 波形如图所示,设12()()*()f t f t f t =,则(1)f 为( D )A .1B .2C .3D .48.已知f(t)的波形如图所示,则f(5-2t)的波形为( C )9. 描述某线性时不变连续系统的微分方程为()3()()y t y t x t '+=。

信号与系统考试题及答案

信号与系统考试题及答案

信号与系统考试题及答案# 信号与系统考试题及答案一、选择题(每题2分,共20分)1. 信号f(t)=3cos(2πt + π/3)的频率是:A. 1HzB. 2HzC. 3HzD. 4Hz答案:B2. 系统是线性时不变系统(LTI),如果满足以下条件:A. 系统对所有信号都有响应B. 系统对输入信号的线性组合有响应C. 系统对时间平移的输入信号有响应D. 系统对所有条件都有响应答案:B3. 如果一个信号是周期的,那么它的傅里叶级数表示中包含:A. 只有直流分量B. 只有有限个频率分量C. 无限多个频率分量D. 没有频率分量答案:B4. 拉普拉斯变换可以用来分析:A. 仅连续时间信号B. 仅离散时间信号C. 连续时间信号和离散时间信号D. 仅离散时间系统答案:C5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. 1/tD. e^(-st)答案:A6. 一个系统是因果系统,如果:A. 它的脉冲响应是零,对于所有t<0B. 它的输出总是零C. 它的输出在任何时候都不依赖于未来的输入D. 所有上述条件答案:A7. 傅里叶变换可以用来分析:A. 仅周期信号B. 非周期信号C. 周期信号和非周期信号D. 仅离散信号答案:B8. 一个信号x(t)通过一个线性时不变系统,输出y(t)是:A. x(t)的时移版本B. x(t)的反转版本C. x(t)的缩放版本D. x(t)的卷积答案:D9. 如果一个信号的傅里叶变换存在,那么它是:A. 周期的B. 非周期的C. 有限能量的D. 有限功率的答案:C10. 系统的频率响应H(jω)是输入信号X(jω)和输出信号Y(jω)的:A. 乘积B. 差C. 比值D. 和答案:C二、简答题(每题10分,共30分)1. 解释什么是卷积,并给出卷积的基本性质。

答案:卷积是信号处理中的一个重要概念,表示一个信号与另一个信号的加权叠加。

具体来说,如果有两个信号f(t)和g(t),它们的卷积定义为f(t)与g(-t)的乘积的积分,对所有时间t进行积分。

信号与系统考试题及答案

信号与系统考试题及答案

信号与系统考试题及答案第一题:问题描述:什么是信号与系统?答案:信号与系统是电子工程和通信工程中重要的基础学科。

信号是信息的传递载体,可以是电流、电压、声音、图像等形式。

系统是对信号进行处理、传输和控制的装置或网络。

信号与系统的研究内容包括信号的产生、变换、传输、处理和控制等。

第二题:问题描述:信号的分类有哪些?答案:信号可以根据多种特征进行分类。

按照时间域和频率域可以将信号分为连续时间信号和离散时间信号;按照信号的能量和功率可以分为能量信号和功率信号;按照信号的周期性可以分为周期信号和非周期信号;按照信号的波形可以分为正弦信号、方波信号、脉冲信号等。

第三题:问题描述:什么是线性时不变系统?答案:线性时不变系统是信号与系统领域中重要的概念。

线性表示系统满足叠加性原理,即输入信号的线性组合经过系统后,输出信号也是输入信号的线性组合。

时不变表示系统的性质不随时间变化而改变。

线性时不变系统具有许多重要的性质和特点,可以通过线性时不变系统对信号进行处理和分析。

第四题:问题描述:系统的冲激响应有什么作用?答案:系统的冲激响应是描述系统特性的重要参数。

当输入信号为单位冲激函数时,系统的输出即为系统的冲激响应。

通过分析冲激响应可以得到系统的频率响应、幅频特性、相频特性等,从而对系统的性能进行评估和优化。

冲激响应还可以用于系统的卷积运算和信号的滤波等应用。

第五题:问题描述:如何对信号进行采样?答案:信号采样是将连续时间信号转换为离散时间信号的过程。

常用的采样方法包括周期采样和非周期采样。

周期采样是将连续时间信号按照一定的时间间隔进行等间隔采样;非周期采样是在信号上选取一系列采样点,采样点之间的时间间隔可以不相等。

采样频率和采样定理是采样过程中需要考虑的重要因素。

第六题:问题描述:什么是离散傅里叶变换(DFT)?答案:离散傅里叶变换是对离散时间信号进行频域分析的重要工具。

通过计算离散傅里叶变换可以将离散时间信号转换为复数序列,该复数序列包含了信号的频率成分和相位信息。

信号与系统概念复习题参考答案

信号与系统概念复习题参考答案

信号与系统复习题1、描述某系统的微分方程为 y ”(t) + 5y ’(t) + 6y(t) = f (t)y(0_)=2,y ’(0_)= -1 y(0_)= 1,y ’(0_)=0 求系统的零输入响应。

求系统的冲击相应求系统的单位阶跃响应。

解:2、系统方程 y (k)+ 4y (k – 1) + 4y (k – 2) = f (k)已知初始条件y (0)=0,y (1)= – 1;激励k k f 2)(=,k ≥0。

求方程的解。

解:特征方程为 λ2 + 4λ+ 4=0 可解得特征根λ1=λ2= – 2,其齐次解 y h(k )=(C 1k +C 2) (– 2)k 特解为 y p(k )=P (2)k , k ≥0代入差分方程得 P (2)k +4P (2)k –1+4P (2)k –2= f (k ) = 2k , 解得 P =1/4所以得特解: y p(k )=2k –2 , k ≥0故全解为 y (k )= y h+y p = (C 1k +C 2) (– 2)k + 2k –2 , k ≥0 代入初始条件解得 C 1=1 , C 2= – 1/43、系统方程为 y (k) + 3y (k –1) + 2y (k –2) = f (k)已知激励kk f 2)(=, k ≥0,初始状态y (–1)=0, y (–2)=1/2, 求系统的零输入响应、零状态响应和全响应。

解::(1)y zi(k )满足方程y zi(k ) + 3y zi(k –1)+ 2y zi(k –2)= 0y zi(–1)= y (–1)= 0, y zi(–2) = y (–2) = 1/2 首先递推求出初始值y zi(0), y zi(1),y zi(k )= – 3y zi(k –1) –2y zi(k –2) y zi(0)= –3y zi(–1) –2y zi(–2)= –1 y zi(1)= –3y zi(0) –2y zi(–1)=3 特征根为λ1= –1 ,λ2= – 2解为 y zi(k )=C zi1(– 1)k + C zi2(–2)k 将初始值代入 并解得 C zi1=1 , C zi2= – 2y zi(k )=(– 1)k – 2(– 2)k , k ≥0(2)零状态响应y zs(k ) 满足:y zs(k ) + 3y zs(k –1) + 2y zs(k –2) = f (k ) y zs(–1)= y zs(–2) = 0 递推求初始值 y zs(0), y zs(1),y zs(k ) = – 3y zs(k –1) – 2y zs(k –2) + 2k , k ≥0 y zs(0) = – 3y zs(–1) – 2y zs(–2) + 1 = 1 y zs(1) = – 3y zs(0) – 2y zs(–1) + 2 = – 1分别求出齐次解和特解,得y zs(k ) = C zs1(–1)k + C zs2(–2)k + y p(k )= C zs1(– 1)k + C zs2(– 2)k + (1/3)2k 代入初始值求得C zs1= – 1/3 , C zs2=1y zs(k )= – (– 1)k /3+ (– 2)k + (1/3)2k ,k ≥0 4、系统的方程:()()()()()12213 -+=-+-+k f k f k y k y k y()()()()()0102==-=y y k k f k ε求系统的零输入响应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试题一一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 。

A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 。

A.因果时不变B.因果时变C.非因果时不变D.非因果时变 3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u e t h t ,该系统是 。

A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 。

A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇 5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 。

A. t t 22sinB. tt π2sin C. t t 44sin D.t t π4sin6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 。

A. ∑∞-∞=-k k )52(52πωδπ B. ∑∞-∞=-k k )52(25πωδπC. ∑∞-∞=-k k )10(10πωδπD. ∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为 。

A.)}(Re{ωj e X j B. )}(Re{ωj e XC. )}(Im{ωj e X jD. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 。

A. 500B. 1000C. 0.05D. 0.001 9、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t =,其傅立叶变换)(ωj G 收敛,则x(t)是 。

A. 左边B. 右边C. 双边D. 不确定10、一系统函数1}Re{1)(->+=s s e s H s,,该系统是 。

A. 因果稳定B. 因果不稳定C. 非因果稳定D. 非因果不稳定 二. 简答题(共6题,40分)1、 (10分)下列系统是否是(1)无记忆;(2)时不变;(3)线性;(4)因果;(5)稳定,并说明理由。

(1) y(t)=x(t)sin(2t);(2)y(n)= )(n x e2、 (8分)求以下两个信号的卷积。

⎩⎨⎧<<=值其余t T t t x 001)(, ⎩⎨⎧<<=值其余t T t t t h 020)( 3、 (共12分,每小题4分)已知)()(ωj X t x ⇔,求下列信号的傅里叶变换。

(1)tx(2t) (2) (1-t)x(1-t) (3)dtt dx t )(4. 求 22)(22++=-s s e s s F s 的拉氏逆变换(5分)5、已知信号sin 4(),t f t t tππ=-∞<<∞,当对该信号取样时,试求能恢复原信号的最大抽样周期T max 。

(5分),求系统的响应。

)若(应;)求系统的单位冲激响(下列微分方程表征:系统的输入和输出,由分)一因果三、(共)()(21)(2)(15)(8)(LTI 10422t u e t x t x t y dt t dy dt t dy t -==++四、(10分)求周期矩形脉冲信号的傅立叶级数(指数形式),并大概画出其频谱图。

不是因果的。

)系统既不是稳定的又()系统是因果的;(系统是稳定的;系统的单位冲激响应)求下列每一种情况下(的零极点图;,并画出)求该系统的系统函数(下列微分方程表征:系统的输入和输出,由分)一连续时间五、(共c b a t h s H s H t x t y dt t dy dt t dy )()(2)()(1)()(2)()(LTI 2022=--试题二一、选择题(共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的)1、 卷积f 1(k+5)*f 2(k-3) 等于 。

A )f 1(k)*f 2(k) Bf 1(k)*f 2(k-8) C )f 1(k)*f 2(k+8) D)f 1(k+3)*f 2(k-3) 2、 积分dtt t ⎰∞∞--+)21()2(δ等于 。

(A )1.25 (B )2.5 (C )3 (D )5 3、 序列f(k)=-u(-k)的z 变换等于 。

αωωδα+=+==-s e L s s t L t L t 1][)][cos(1)]([22;;tt t Sa j F t u e t f tsin )(1)()()(=+=⇔=-;注:ωαωα(A )1-z z (B )-1-z z (C )11-z (D )11--z 4、 若y(t)=f(t)*h(t),则f(2t)*h(2t)等于 。

(A ))2(41t y (B ))2(21t y (C ))4(41t y (D ))4(21t y5、 已知一个线性时不变系统的阶跃相应g(t)=2e -2t u(t)+)(t δ,当输入f(t)=3e —tu(t)时,系统的零状态响应y f (t)等于(A )(-9e -t +12e -2t )u(t) (B )(3-9e -t +12e -2t )u(t) (C ))(t δ+(-6e -t +8e -2t )u(t) (D )3)(t δ +(-9e -t +12e -2t )u(t) 6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性7、 周期序列2)455.1(0+k COS π的 周期N 等于(A) 1 (B )2 (C )3 (D ) 4 8、序列和()∑∞-∞=-k k 1δ等于(A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku 9、单边拉普拉斯变换()se s s s F 2212-+=的愿函数等于()()t tu A ()()2-t tu B()()()t u t C 2- ()()()22--t u t D10、信号()()23-=-t u te t f t的单边拉氏变换()s F 等于()A ()()()232372+++-s e s s ()()223+-s e B s()()()2323++-s se C s()()332++-s s e D s 二、填空题(共9小题,每空3分,共30分) 1、 卷积和[(0.5)k+1u(k+1)]*)1(k -δ=________________________2、 单边z 变换F(z)= 12-z z的原序列f(k)=______________________3、 已知函数f(t)的单边拉普拉斯变换F(s)=1+s s,则函数y(t)=3e -2t ·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、 频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、 单边拉普拉斯变换s s s s s F +++=2213)(的原函数 f(t)=__________________________6、 已知某离散系统的差分方程为)1(2)()2()1()(2-+=----k f k f k y k y k y ,则系统的单位序列响应h(k)=_______________________ 7、 已知信号f(t)的单边拉氏变换是F(s),则信号 ⎰-=20)()(t dxx f t y 的单边拉氏变换Y(s)=______________________________ 8、描述某连续系统方程为()()()()()t f t f t y t y t y +=++''''52 该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=kt 22三(8分)已知信号()()()⎪⎩⎪⎨⎧><==↔./1,0,/1,1s rad s rad jw F j F t f ωωω设有函数()(),dt t df t s =求⎪⎭⎫ ⎝⎛2ωs 的傅里叶逆变换。

四、(10分)如图所示信号()t f ,其傅里叶变换()()[]t f jw F F =,求(1) ()0F (2)()⎰∞∞-dw jw F五、(12)分别求出像函数()25232+-=z z zz F 在下列三种收敛域下所对应的序列 (1)2〉z (2)5.0〈z (3)25.0〈〈z六、(10分)某LTI 系统的系统函数()1222++=s s s s H ,已知初始状态()(),20,00=='=--y y 激励()(),t u t f =求该系统的完全响应。

试题三一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。

每小题3分,共30分) 1.设:如图—1所示信号。

则:信号f(t)的数学表示式为( )。

(A)f(t)=t ε(t)-t ε(t-1) (B)f(t)=t ε(t)-(t-1)ε(t-1) (C)f(t)=(1-t)ε(t)-(t-1)ε(t-1)(D)f(t)=(1+t)ε(t)-(t+1)ε(t+1) 2.设:两信号f 1(t)和f 2(t)如图—2。

则:f 1(t)与f 2(t)间变换关系为( )。

(A)f 2(t)=f 1(21t+3)(B)f 2(t)=f 1(3+2t) (C)f 2(t)=f 1(5+2t)(D)f 2(t)=f 1(5+21t)3.已知:f(t)=SgN(t)的傅里叶变换为F(j ω)=ωj 2, 则:F 1(j ω)=j πSgN(ω)的傅里叶反变换f 1(t)为( )。

(A)f 1(t)=t 1 (B)f 1(t)=-t2(C)f 1(t)=-t1 (D)f 1(t)=t 24.周期性非正弦连续时间信号的频谱,其特点为( )。

(A)频谱是连续的,收敛的(B)频谱是离散的,谐波的,周期的(C)频谱是离散的,谐波的,收敛的 (D)频谱是连续的,周期的5.设:二端口网络N 可用A 参数矩阵{a ij }表示,其出端与入端特性阻抗为Z c2、Z c1,后接载Z L ,电源•U s 的频率为ωs ,内阻抗为Z s 。

则:特性阻抗Z c1、Z c2仅与( )有关。

(A){a ij },Z L (B){a ij },Z L ,Z s (C){a ij },ωs , *U s(D){a ij }6.设:f(t)↔F(j ω) 则:f 1(t)=f(at+b) ↔F 1(j ω)为( ) (A)F 1(j ω)=aF(j aω)e -jb ω(B)F 1(j ω)=a 1F(j aω)e -jbω(C)F 1(j ω)= a 1F(j aω)ω-a bj e(D)F 1(j ω)=aF(j aω)ω-ab j e7.已知某一线性时不变系统对信号X(t)的零状态响应为4dtt dX )2(-,则该系统函数H(S)=( )。

相关文档
最新文档