2020年6月宁德市初三质检数学试题
2020年宁德市初中毕业学考试数学试题参考答案及评分标准
2020年宁德市初中毕业学考试数学试题参考答案及评分标准数学试题参考答案及评分标准〔1〕本解答给出了一种或几种解法供参考,假如考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分。
〔2〕对解答题,当考生的解答在某一步显现错误时,假如后续部分的解答未改变该题的立意,可酌情给分,但原那么上不超过后面应得的分数的一半;假如有较严峻的错误,就不给分。
〔3〕解答右端所注分数表示考生正确作完该步应得的累加分数。
〔4〕评分只给整数分,选择题和填空题均不给中间分。
一.填空题〔每题3分,共36分〕1、3;2、〔x -1〕(x +1);3、135º;4、3.12×107;5、1,2;6、8;7、I =6R;8、1;9、70;10、8;11、只要与点D 有关的正确结论都给分,例如:DO =OE 、DC =EB 、△ODB ≌△OEC 、△ADC ≌△AEB 、∠ODB =∠CEO 、∠DOB =∠EOC 、∠CDA =∠AEB 、AD AB =AE AC 、AD DB =AE EC等;12、27π。
二.选择题〔每题4分,共24分〕13、B ;14、A ;15、C ;16、D ;17、A ;18、C三.简答题〔本小题总分值8分〕19、〔此题总分值8分〕解:原式=-8+1+2………………6分=-5………………………………8分20.〔此题总分值8分〕⎩⎪⎨⎪⎧x +y =9………………①3〔x +y 〕+2x =33……② 解法一:把(x +y)=9代入②得3×9+2x =33∴x =3………………4分把x =3代入①得y =6……………7分∴原方程组的解是⎩⎪⎨⎪⎧x =3y =6…………8分 解法二:由①得y =9-x …………③…………1分把③代入②得 3(x +9-x)+2x =33∴x =3………………4分把x =3代入③得y =6………………7分∴原方程组的解是⎩⎪⎨⎪⎧x =3y =6……………8分 21.〔此题总分值10分〕解法一:我选择证明△EBN ≌△FDM ………………3分证明:□ABCD 中,AB ∥CD ,∠B =∠D ,AB =CD ………………6分∴∠E =∠F ………………7分又∵AE =CF∴BE =DF ………………8分∴△EBN ≌△FDM ………………10分解法二:我选择证明△EAM ≌△FCN ………………3分证明:□ABCD 中,AB ∥CD ,∠DAB =∠BCD ………………5分∴∠E =∠F ,∠EAM =∠FCN ………………7分又∵AE =CF ………………8分∴△EAM ≌△FCN ………………10分22.〔此题总分值10分〕〔1〕符合要求即得5分。
【精选3份合集】福建省宁德市2019-2020学年中考数学学业质量监测试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A.0.7米B.1.5米C.2.2米D.2.4米2.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差()A.10分钟B.13分钟C.15分钟D.19分钟3.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是A.5个B.4个C.3个D.2个4.如图,在直角坐标系中,直线122y x=-与坐标轴交于A、B两点,与双曲线2kyx=(0x>)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①ΔADBΔADCS S=;②当0<x <3时,12y y ; ③如图,当x=3时,EF=83;④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小. 其中正确结论的个数是( )A .1B .2C .3D .45.对于二次函数,下列说法正确的是( )A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3C .图像的顶点坐标为(-2,-7)D .图像与x 轴有两个交点6.在Rt △ABC 中∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,c =3a ,tanA 的值为( ) A .13B .24C .2D .37.已知数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣b|的结果是( )A .a+bB .﹣a ﹣cC .a+cD .a+2b ﹣c8.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为 A .2B .3C .4D .59.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA =6,则△PCD 的周长为( )A .8B .6C .12D .1010.菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于( ) A .3.5B .4C .7D .14二、填空题(本题包括8个小题)11.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .12.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.13.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)14.⊙O 的半径为10cm ,AB,CD 是⊙O 的两条弦,且AB ∥CD ,AB=16cm,CD=12cm .则AB 与CD 之间的距离是 cm . 15.关于x 的不等式组3515-12x x a ->⎧⎨≤⎩有2个整数解,则a 的取值范围是____________.16.可燃冰是一种新型能源,它的密度很小,31cm 可燃冰的质量仅为0.00092kg .数字0.00092用科学记数法表示是__________.17.如图,CE 是▱ABCD 的边AB 的垂直平分线,垂足为点O ,CE 与DA 的延长线交于点E .连接AC ,BE ,DO ,DO 与AC 交于点F ,则下列结论: ①四边形ACBE 是菱形; ②∠ACD =∠BAE ; ③AF :BE =2:1;④S 四边形AFOE :S △COD =2:1.其中正确的结论有_____.(填写所有正确结论的序号)18.如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则∠BOM =_______.三、解答题(本题包括8个小题)19.(6分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.求证:DE是⊙O的切线.求DE的长.20.(6分)如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).21.(6分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E求证:△ACD≌△AED;若∠B=30°,CD=1,求BD的长.22.(8分)为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?23.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m 名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:m=;请补全上面的条形统计图;在图2中,“乒乓球”所对应扇形的圆心角的度数为;已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.24.(10分)解方程311(1)(2)xx x x-=--+.25.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.求证:BC是⊙O的切线;设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;若BE=8,sinB=513,求DG的长,26.(12分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是.猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.2.D【解析】【分析】设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.【详解】设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案为D.【点睛】本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.3.B【解析】【详解】解:∵二次函数y=ax 3+bx+c (a≠3)过点(3,3)和(﹣3,3), ∴c=3,a ﹣b+c=3.①∵抛物线的对称轴在y 轴右侧, ∴bx 2a=-,x >3. ∴a 与b 异号. ∴ab <3,正确.②∵抛物线与x 轴有两个不同的交点, ∴b 3﹣4ac >3. ∵c=3,∴b 3﹣4a >3,即b 3>4a .正确. ④∵抛物线开口向下,∴a <3. ∵ab <3,∴b >3.∵a ﹣b+c=3,c=3,∴a=b ﹣3.∴b ﹣3<3,即b <3.∴3<b <3,正确. ③∵a ﹣b+c=3,∴a+c=b . ∴a+b+c=3b >3. ∵b <3,c=3,a <3,∴a+b+c=a+b+3<a+3+3=a+3<3+3=3. ∴3<a+b+c <3,正确.⑤抛物线y=ax 3+bx+c 与x 轴的一个交点为(﹣3,3),设另一个交点为(x 3,3),则x 3>3, 由图可知,当﹣3<x <x 3时,y >3;当x >x 3时,y <3. ∴当x >﹣3时,y >3的结论错误.综上所述,正确的结论有①②③④.故选B . 4.C 【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确; ∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x=,由函数图象得:当0<x <2时,12y y <,选项②错误;当x=3时,14y =,243y =,即EF=443-=83,选项③正确;当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C . 考点:反比例函数与一次函数的交点问题. 5.B 【解析】 【详解】 二次函数22114(2)344y x x x =-+-=---, 所以二次函数的开口向下,当x <2,y 随x 的增大而增大,选项A 错误; 当x=2时,取得最大值,最大值为-3,选项B 正确; 顶点坐标为(2,-3),选项C 错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x 轴没有交点,选项D 错误, 故答案选B.考点:二次函数的性质. 6.B 【解析】 【分析】根据勾股定理和三角函数即可解答. 【详解】解:已知在Rt △ABC 中∠C=90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,c=3a ,设a=x,则即=4. 故选B. 【点睛】本题考查勾股定理和三角函数,熟悉掌握是解题关键. 7.C 【解析】 【分析】首先根据数轴可以得到a 、b 、c 的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可. 【详解】解:通过数轴得到a <0,c <0,b >0,|a|<|b|<|c|, ∴a+b >0,c ﹣b <0∴|a+b|﹣|c ﹣b|=a+b ﹣b+c=a+c ,故答案为a+c . 故选A . 8.D 【解析】∵方程2x+a ﹣9=0的解是x=2,∴2×2+a ﹣9=0, 解得a=1.故选D . 9.C 【解析】 【分析】由切线长定理可求得PA =PB ,AC =CE ,BD =ED ,则可求得答案. 【详解】∵PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E , ∴PA =PB =6,AC =EC ,BD =ED ,∴PC+CD+PD =PC+CE+DE+PD =PA+AC+PD+BD =PA+PB =6+6=12, 即△PCD 的周长为12, 故选:C . 【点睛】本题主要考查切线的性质,利用切线长定理求得PA =PB 、AC =CE 和BD =ED 是解题的关键. 10.A 【解析】 【分析】根据菱形的四条边都相等求出AB ,菱形的对角线互相平分可得OB=OD ,然后判断出OH 是△ABD 的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH 12=AB . 【详解】∵菱形ABCD 的周长为28,∴AB=28÷4=7,OB=OD . ∵H 为AD 边中点,∴OH 是△ABD 的中位线,∴OH 12=AB 12=⨯7=3.1.故选A . 【点睛】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.二、填空题(本题包括8个小题) 11.45【解析】 【详解】试题分析:根据概率的意义,用符合条件的数量除以总数即可,即1024105-=. 考点:概率 12.20000 【解析】 试题分析:1000÷10200=20000(条). 考点:用样本估计总体. 13.12y y > 【解析】抛物线()2y x 11=-+的对称轴为:x=1, ∴当x>1时,y 随x 的增大而增大. ∴若x 1>x 2>1 时,y 1>y 2 . 故答案为> 14.2或14 【解析】 【分析】分两种情况进行讨论:①弦AB 和CD 在圆心同侧;②弦AB 和CD 在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可. 【详解】①当弦AB 和CD 在圆心同侧时,如图,∵AB=16cm ,CD=12cm , ∴AE=8cm ,CF=6cm , ∵OA=OC=10cm , ∴EO=6cm ,OF=8cm , ∴EF=OF−OE=2cm ;②当弦AB 和CD 在圆心异侧时,如图,∵AB=16cm ,CD=12cm , ∴AF=8cm ,CE=6cm , ∵OA=OC=10cm , ∴OF=6cm ,OE=8cm , ∴EF=OF+OE=14cm.∴AB 与CD 之间的距离为14cm 或2cm. 故答案为:2或14. 15.8⩽a<13; 【解析】 【分析】首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围. 【详解】解不等式3x−5>1,得:x>2, 解不等式5x−a ⩽12,得:x ⩽125a + , ∵不等式组有2个整数解, ∴其整数解为3和4, 则4⩽125a +<5, 解得:8⩽a<13, 故答案为:8⩽a<13 【点睛】此题考查一元一次不等式组的整数解,掌握运算法则是解题关键 16.9.2×10﹣1. 【解析】 【分析】根据科学记数法的正确表示为()10110na a ⨯≤<,由题意可得0.00092用科学记数法表示是9.2×10﹣1. 【详解】根据科学记数法的正确表示形式可得: 0.00092用科学记数法表示是9.2×10﹣1.故答案为: 9.2×10﹣1.【点睛】本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式. 17.①②④. 【解析】 【分析】根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可. 【详解】∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB=CD , ∵EC 垂直平分AB , ∴OA=OB=12AB=12DC ,CD ⊥CE , ∵OA ∥DC , ∴EA EO OA ED EC CD ===12, ∴AE=AD ,OE=OC , ∵OA=OB ,OE=OC ,∴四边形ACBE 是平行四边形, ∵AB ⊥EC ,∴四边形ACBE 是菱形,故①正确, ∵∠DCE=90°,DA=AE , ∴AC=AD=AE ,∴∠ACD=∠ADC=∠BAE ,故②正确, ∵OA ∥CD ,∴AF OA 1CF CD 2==, ∴AF AF 1AC BE 3==,故③错误, 设△AOF 的面积为a ,则△OFC 的面积为2a ,△CDF 的面积为4a ,△AOC 的面积=△AOE 的面积=1a , ∴四边形AFOE 的面积为4a ,△ODC 的面积为6a ∴S 四边形AFOE :S △COD =2:1.故④正确.故答案是:①②④.【点睛】此题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.18.48°【解析】【分析】连接OA,分别求出正五边形ABCDE和正三角形AMN的中心角,结合图形计算即可.【详解】连接OA,∵五边形ABCDE是正五边形,∴∠AOB=3605︒=72°,∵△AMN是正三角形,∴∠AOM=3603︒=120°,∴∠BOM=∠AOM-∠AOB=48°,故答案为48°.点睛:本题考查的是正多边形与圆的有关计算,掌握正多边形的中心角的计算公式是解题的关键.三、解答题(本题包括8个小题)19.(1)详见解析;(2)4.【解析】试题分析:(1)连结OD,由AD平分∠BAC,OA=OD,可证得∠ODA=∠DAE,由平行线的性质可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切线;(2)过点O作OF⊥AC于点F,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED是矩形,即可得DE=OF=4.试题解析:(1)连结OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC∴OE⊥DE∴DE是⊙O的切线;(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF=,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.考点:切线的判定;垂径定理;勾股定理;矩形的判定及性质.20.(1)34.(2)公平.【解析】【详解】试题分析:(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.试题解析:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是34;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=12,因此这个游戏公平.考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法. 21.(1)见解析(2)BD=2【解析】解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°.∵在Rt△ACD和Rt△AED中,AD AD {CD DE==,∴Rt△ACD≌Rt△AED(HL).(2)∵Rt△ACD≌Rt△AED ,CD=1,∴DC=DE=1.∵DE⊥AB,∴∠DEB=90°.∵∠B=30°,∴BD=2DE=2.(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.22.(1)()3084{?48(8)x xyxx≤≤=>;(2)至少需要30分钟后生才能进入教室.(3)这次消毒是有效的.【解析】【分析】(1)药物燃烧时,设出y 与x 之间的解析式y=k 1x ,把点(8,6)代入即可,从图上读出x 的取值范围;药物燃烧后,设出y 与x 之间的解析式y=2k x,把点(8,6)代入即可; (2)把y=1.6代入反比例函数解析式,求出相应的x ;(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x ,两数之差与10进行比较,大于或等于10就有效. 【详解】解:(1)设药物燃烧时y 关于x 的函数关系式为y=k 1x (k 1>0)代入(8,6)为6=8k 1 ∴k 1=34设药物燃烧后y 关于x 的函数关系式为y=2k x (k 2>0)代入(8,6)为6=2k 8, ∴k 2=48∴药物燃烧时y 关于x 的函数关系式为3y x 4=(0≤x≤8)药物燃烧后y 关于x 的函数关系式为48y x=(x >8)∴()30x 84y 48(8)xx x ⎧≤≤⎪⎪⎨=⎪>⎪⎩(2)结合实际,令48y x=中y≤1.6得x≥30 即从消毒开始,至少需要30分钟后生才能进入教室. (3)把y=3代入3y x 4=,得:x=4 把y=3代入48y x=,得:x=16 ∵16﹣4=12所以这次消毒是有效的. 【点睛】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式. 23.(1)150,(2)36°,(3)1. 【解析】 【分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可.【详解】(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×15150=36°;(4)1200×20%=1人,答:估计该校约有1名学生最喜爱足球活动.故答案为150,36°,1.【点睛】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.24.原分式方程无解.【解析】【分析】根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证. 【详解】方程两边乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3即:x2+2x﹣x2﹣x+2=3整理,得x=1检验:当x=1时,(x﹣1)(x+2)=0,∴原方程无解.【点睛】本题考查解分式方程,解题的关键是明确解放式方程的计算方法.25.(1)证明见解析;xy 3013.【解析】 【分析】(1)连接OD ,由AD 为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD 与AC 平行,得到OD 与BC 垂直,即可得证;(2)连接DF ,由(1)得到BC 为圆O 的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD 与三角形ADF 相似,由相似得比例,即可表示出AD ;(3)连接EF ,设圆的半径为r ,由sinB 的值,利用锐角三角函数定义求出r 的值,由直径所对的圆周角为直角,得到EF 与BC 平行,得到sin ∠AEF=sinB ,进而求出DG 的长即可. 【详解】(1)如图,连接OD , ∵AD 为∠BAC 的角平分线, ∴∠BAD=∠CAD , ∵OA=OD , ∴∠ODA=∠OAD , ∴∠ODA=∠CAD , ∴OD ∥AC , ∵∠C=90°, ∴∠ODC=90°, ∴OD ⊥BC ,∴BC 为圆O 的切线;(2)连接DF ,由(1)知BC 为圆O 的切线, ∴∠FDC=∠DAF , ∴∠CDA=∠CFD , ∴∠AFD=∠ADB , ∵∠BAD=∠DAF , ∴△ABD ∽△ADF ,∴ABAD AD AF=,即AD 2=AB•AF=xy ,则;(3)连接EF ,在Rt △BOD 中,sinB=513OD OB =, 设圆的半径为r ,可得5813r r =+, 解得:r=5,∴AE=10,AB=18, ∵AE 是直径, ∴∠AFE=∠C=90°, ∴EF ∥BC , ∴∠AEF=∠B ,∴sin ∠AEF=513AF AE =, ∴AF=AE•sin ∠AEF=10×513=5013,∵AF ∥OD ,∴501013513AG AF DG OD ===,即DG=1323AD , ∴AD=503013·1813AB AF =⨯=, 则DG=133********⨯=.【点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.26.解:(1)①DE ∥AC .②12S S =.(1)12S S =仍然成立,证明见解析;(3)3或2. 【解析】 【详解】(1)①由旋转可知:AC=DC ,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC 是等边三角形. ∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE ∥AC .②过D 作DN ⊥AC 交AC 于点N ,过E 作EM ⊥AC 交AC 延长线于M ,过C 作CF ⊥AB 交AB 于点F .由①可知:△ADC 是等边三角形, DE ∥AC ,∴DN=CF,DN=EM . ∴CF=EM .∵∠C=90°,∠B =30° ∴AB=1AC . 又∵AD=AC ∴BD=AC . ∵1211S CF BD S AC EM 22=⋅=⋅, ∴12S S =.(1)如图,过点D 作DM ⊥BC 于M ,过点A 作AN ⊥CE 交EC 的延长线于N ,∵△DEC 是由△ABC 绕点C 旋转得到, ∴BC=CE ,AC=CD ,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°, ∴∠ACN=∠DCM ,∵在△ACN 和△DCM 中,ACN DCMCMD N AC CD ∠∠⎧⎪∠∠⎨⎪⎩=== ,∴△ACN ≌△DCM (AAS ), ∴AN=DM ,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等), 即S 1=S 1;(3)如图,过点D 作DF 1∥BE ,易求四边形BEDF 1是菱形, 所以BE=DF 1,且BE 、DF 1上的高相等, 此时S △DCF1=S △BDE ;过点D 作DF 1⊥BD, ∵∠ABC=20°,F 1D ∥BE , ∴∠F 1F 1D=∠ABC=20°, ∵BF 1=DF 1,∠F 1BD=12∠ABC=30°,∠F 1DB=90°, ∴∠F 1DF 1=∠ABC=20°, ∴△DF 1F 1是等边三角形,∴DF 1=DF 1,过点D 作DG ⊥BC 于G ,∵BD=CD ,∠ABC=20°,点D 是角平分线上一点, ∴∠DBC=∠DCB=12×20°=30°,BG=12BC=92, ∴BD=33∴∠CDF 1=180°-∠BCD=180°-30°=150°, ∠CDF 1=320°-150°-20°=150°, ∴∠CDF 1=∠CDF 1, ∵在△CDF 1和△CDF 1中,1212DF DF CDF CDF CD CD ⎧⎪∠⎨⎪⎩===, ∴△CDF 1≌△CDF 1(SAS ), ∴点F 1也是所求的点,∵∠ABC=20°,点D 是角平分线上一点,DE ∥AB , ∴∠DBC=∠BDE=∠ABD=12×20°=30°, 又∵BD=33, ∴BE=12×33÷cos30°=3, ∴BF 1=3,BF 1=BF 1+F 1F 1=3+3=2, 故BF 的长为3或2.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.对于一组统计数据1,1,6,5,1.下列说法错误的是( ) A .众数是1B .平均数是4C .方差是1.6D .中位数是62.若ab <0,则正比例函数y=ax 与反比例函数y=bx在同一坐标系中的大致图象可能是( ) A . B . C . D .3.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM 周长的最小值为( )A .6B .8C .10D .124.如图,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠BED 的正切值等于( )A 25B 5C .2D .125.下列调查中,最适合采用全面调查(普查)的是( ) A .对我市中学生每周课外阅读时间情况的调查 B .对我市市民知晓“礼让行人”交通新规情况的调查 C .对我市中学生观看电影《厉害了,我的国》情况的调查 D .对我国首艘国产航母002型各零部件质量情况的调查 6.估计624的值应在( ) A .5和6之间B .6和7之间C .7和8之间D .8和9之间7.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>;230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④8.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a ﹣b ,x ﹣y ,x+y ,a+b ,x 2﹣y 2,a 2﹣b 2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x 2﹣y 2)a 2﹣(x 2﹣y 2)b 2因式分解,结果呈现的密码信息可能是( ) A .我爱美B .宜晶游C .爱我宜昌D .美我宜昌9.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了( ) A .2x%B .1+2x%C .(1+x%)x%D .(2+x%)x%10.下列命题是假命题的是( )A .有一个外角是120°的等腰三角形是等边三角形B .等边三角形有3条对称轴C .有两边和一角对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等 二、填空题(本题包括8个小题) 11.函数11y x =-的自变量的取值范围是.12.如图,一艘轮船自西向东航行,航行到A 处测得小岛C 位于北偏东60°方向上,继续向东航行10海里到达点B 处,测得小岛C 在轮船的北偏东15°方向上,此时轮船与小岛C 的距离为_________海里.(结果保留根号)13.观察下列的“蜂窝图”按照它呈现的规律第n 个图案中的“”的个数是_____(用含n 的代数式表示)14.如图,ABC ∆中,∠BAC 75=︒,7BC =,ABC ∆的面积为14,D 为BC 边上一动点(不与B ,C 重合),将ABD ∆和ACD ∆分别沿直线AB ,AC 翻折得到ABE ∆和ACF ∆,那么△AEF 的面积的最小值为____.15.如图,在Rt △ABC 中,∠B=90°,∠A=30°,以点A 为圆心,BC 长为半径画弧交AB 于点D ,分别以点A 、D 为圆心,AB 长为半径画弧,两弧交于点E ,连接AE ,DE ,则∠EAD 的余弦值是______.16.若A (﹣3,y 1),B (﹣2,y 2),C (1,y 3)三点都在y=1x-的图象上,则y l ,y 2,y 3的大小关系是_____.(用“<”号填空)17.如图,四边形ABCD 中,E ,F ,G ,H 分别是边AB 、BC 、CD 、DA 的中点.若四边形EFGH 为菱形,则对角线AC 、BD 应满足条件_____.18.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.三、解答题(本题包括8个小题)19.(6分)某公司为了扩大经营,决定购进6台机器用于生产某活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲 乙 价格(万元/台)75每台日产量(个) 100 60(1)按该公司要求可以有几种购买方案?如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?20.(6分)如图,半圆D 的直径AB =4,线段OA =7,O 为原点,点B 在数轴的正半轴上运动,点B 在数轴上所表示的数为m .当半圆D 与数轴相切时,m = .半圆D 与数轴有两个公共点,设另一个公共点是C .①直接写出m 的取值范围是 .②当BC =2时,求△AOB 与半圆D 的公共部分的面积.当△AOB 的内心、外心与某一个顶点在同一条直线上时,求tan ∠AOB 的值.21.(6分)如图,直线y =﹣x+2与反比例函数ky x=(k≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D .求a ,b 的值及反比例函数的解析式;若点P 在直线y =﹣x+2上,且S △ACP =S △BDP ,请求出此时点P 的坐标;在x 轴正半轴上是否存在点M ,使得△MAB 为等腰三角形?若存在,请直接写出M 点的坐标;若不存在,说明理由.22.(8分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的A 点和东人工岛上的B 点间的距离约为5.6千米,点C 是与西人工岛相连的大桥上的一点,A ,B ,C 在一条直线上.如图,一艘观光船沿与大桥AC 段垂直的方向航行,到达P 点时观测两个人工岛,分别测得PA ,PB 与观光船航向PD 的夹角18DPA ∠=︒,53DPB ∠=︒,求此时观光船到大桥AC 段的距离PD 的长(参考数据:180.31sin ︒≈,180.95cos ︒≈,180.33tan ︒≈,530.80sin ︒≈,530.60cos ︒≈,53 1.33tan ︒≈).23.(8分)在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求EFAK的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.24.(10分)某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告.已知当这种商品每月的广告费用为m(千元)时,每月销售量将是原销售量的p倍,且p =.试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!25.(10分)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.26.(12分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.求y与x之间的函数关系式,并写出自变量x的取值范围;求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【分析】根据中位数、众数、方差等的概念计算即可得解.【详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2=15[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D.考点:1.众数;2.平均数;1.方差;4.中位数.2.D【解析】【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选。
福建省宁德市2020中考数学学业质量监测试题
2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.如图,AB ∥CD ,点E 在CA 的延长线上.若∠BAE=40°,则∠ACD 的大小为( )A .150°B .140°C .130°D .120°2.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D .230ax bx c ++-=有两个不相等的实数根 3.如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E ;B 、E 是半圆弧的三等分点,BD 的长为43π,则图中阴影部分的面积为( )A .4633π-B .8933π-C .3323π-D .8633π- 4.若分式有意义,则x 的取值范围是( ) A .x >3 B .x <3 C .x≠3 D .x=35.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )A .∠α=60°,∠α的补角∠β=120°,∠β>∠αB .∠α=90°,∠α的补角∠β=90°,∠β=∠αC .∠α=100°,∠α的补角∠β=80°,∠β<∠αD .两个角互为邻补角6.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6 m7.如图,△ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y=kx在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8 C.2≤k≤16D.8≤k≤168.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.1806x+=1206x-B.1806x-=1206x+C.1806x+=120xD.180x=1206x-9.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°10.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC =3,DE=2,则EF的长为()A.4 B..5 C.6 D.8二、填空题(本题包括8个小题)11.如图,CD 是Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则∠A 等于____度.12.甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2014~2018年,这两家公司中销售量增长较快的是_____公司(填“甲”或“乙”).13.如图,宽为(1020)m m <<的长方形图案由8个相同的小长方形拼成,若小长方形的边长为整数,则m 的值为__________.14.如图,矩形ABCD 中,8AB =,4BC =,将矩形沿AC 折叠,点D 落在点'D 处.则重叠部分AFC ∆的面积为______.15.某航班每次飞行约有111名乘客,若飞机失事的概率为p=1.111 15,一家保险公司要为乘客保险,许诺飞机一旦失事,向每位乘客赔偿41万元人民币. 平均来说,保险公司应向每位乘客至少收取_____元保险费才能保证不亏本.16.如图,△ABC ≌△ADE ,∠EAC =40°,则∠B =_______°.17.已知关于x 方程x 2﹣3x+a=0有一个根为1,则方程的另一个根为_____.18.对于任意实数m 、n ,定义一种运算m ※n=mn ﹣m ﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=1.请根据上述定义解决问题:若a <2※x <7,且解集中有两个整数解,则a 的取值范围是_____. 三、解答题(本题包括8个小题)19.(6分)如图,在ABC ∆中,D 是BC 的中点,过点D 的直线GF 交AC 于点F ,交AC 的平行线BG 于点G ,ED DF ⊥交AB 于点E ,连接EG 、EF .求证:BG CF =;请你判断BE CF +与EF 的大小关系,并说明理由.20.(6分)如图,在△ABC 中,∠C=90°,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB ,于点E求证:△ACD ≌△AED ;若∠B=30°,CD=1,求BD 的长.21.(6分)解方程:3x x --239x -=1 22.(8分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C 表示)开展社会实践活动,车到达A 地后,发现C 地恰好在A 地的正北方向,且距离A 地13千米,导航显示车辆应沿北偏东60°方向行驶至B 地,再沿北偏西37°方向行驶一段距离才能到达C 地,求B 、C 两地的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)23.(8分)某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?24.(10分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:项目服装普通话主题演讲技巧选手李明85 70 80 85张华90 75 75 80结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.25.(10分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。
2020年宁德初中数学质检 (2).doc
考生严禁填涂,监考教师填涂,缺考标志 [ ] 1.答题前,考生先将自己的学校、班级、姓名、班级座号和准考证号填写清楚。
2.考生作答时,请将答案写在答题卡上。
并按照题号在各题的答题区域内作答,超出答题区域书写的答案无效。
3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
4.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
5.保持卡面清洁,不折叠、不破损。
考试结束后,将答题卡交回。
注 意 事项 01 [A] [B] [C] [D] 02 [A] [B] [C] [D]03 [A] [B] [C] [D] 04 [A] [B] [C] [D]05 [A] [B] [C] [D]一、二、11. 12. 13. 14. 15. 16. 三、17.(本题满分8分) 计算:14cos30212-︒+- 解:18.(本题满分8分) 解:20.(本题满分8分) 解:(1) 名;2020宁德市初中毕业班质量检测 数学答题卡 学校___________________班级___________________ 姓名___________________ 座号___________________ 考场___________________贴条形码区域 准考证号:06 [A] [B] [C] [D] 07 [A] [B] [C] [D] 08 [A] [B] [C] [D] 09 [A] [B] [C] [D] 10 [A] [B] [C] [D] 19.(本题满分8分) 解:21.(本题满分8分) 解:CFEDBAGADFHB EGC图1CDBAE 图2 图1活动项目人数/人AB C D 4 6 8 10 12 14 16作图区提示:作图痕迹要用黑色签字笔描黑作图区提示:作图痕迹要用黑色签字笔描黑。
2020年宁德市初中毕业班质量检测数学试卷含答案
2020年宁德市初中毕业班质量检测数 学 试 题(满分:150分;考试时间:120分钟)友情提示:1.所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效;2.抛物线2y ax bx c =++的顶点坐标是(2ba -,244acba-).一、选择题(本大题有10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂) 1.-2的倒数是A .-2B .2C .21 D .12-2.如图,若a ∥b ,则下列选项中,能直接利用“两直线平行,内错角相等”判定∠1=∠2的是A .B .C .D .3.下列运算正确的是A .523a a a =+B .a a a =-23C .623a a a =⨯D .a a a =÷234.在下列调查中,适宜采用普查的是A .了解某校九(1)班学生视力情况B .调查2020年央视春晚的收视率C .检测一批电灯泡的使用寿命D .了解我市中学生课余上网时间5.如图,下列几何体中,左视图不是矩形的是A .B .C .D .6.化简2111x x x ---的结果是A .1x -B .11x +C .1x +D .1x x - 121 21 212a baba ba b7.某商场利用摸奖开展促销活动,中奖率为13,则下列说法正确的是A .若摸奖三次,则至少中奖一次B .若连续摸奖两次,则不会都中奖C .若只摸奖一次,则也有可能中奖D .若连续摸奖两次都不中奖,则第三次一定中奖 8.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,且AC =BD ,则下列条件能判定四边形ABCD 为矩形的是 A .AB =CD B .OA =OC ,OB =OD C .AC ⊥BDD .AB ∥CD ,AD =BC9.如图,在4×4的正方形网格中,已有四个小正方形被涂黑.若将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形,则该小正方形的位置可以是 A .(一,2) B .(二,4) C .(三,2)D .(四,4)10.某市需要铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时,每天铺设管道的长度比原计划增加10%,结果提前6天完成.求实际每天铺设管道的长度与实际施工天数.小宇同学根据题意列出方程:6606606(110%)x x -=+.则方程中未知数x 所表示的量是 A .实际每天铺设管道的长度 B .实际施工的天数 C .原计划每天铺设管道的长度D .原计划施工的天数二、填空题(本大题有6小题,每小题4分,共24分.请将答案填入答题卡...的相应位置) 11.计算:113+()2--=________.12.分解因式:236x x -=________.13.“十二五”期间,我市累计新增城镇就业人口147 000人,147 000用科学记数法表示为________.14.如图,有甲,乙两个可以自由转动的转盘,若同时转动,则停止后指针都落在阴影区域内的概率是________.D第8题图 2 3 41甲乙第14题图15.如图,在离地面高度5米处引拉线固定电线杆,拉线和地面成50°角,则拉线AC 的长为________米(精确到0.1米).16.如图,已知矩形ABCD 中,AB =4,AD =3,P 是以CD 为直径的半圆上的一个动点,连接BP ,则BP 的最大值是________.三、解答题(本大题有9小题,共86分.请在答题卡...的相应位置作答) 17.(本题满分7分)化简:2(3)(2)a a a +-+.18.(本题满分7分)求不等式组21,223x x x +⎧⎪-⎨⎪⎩<≤的整数解.19.(本题满分8分)如图,M 为正方形ABCD 边AB 上一点,DN ⊥DM 交BC 的延长线于点N . 求证:AM =CN .20.(本题满分8分)某校九年级共有四个班,各班人数比例如图1所示.在一次数学考试中,四个班的平均成绩如图2所示.(1)四个班平均成绩的中位数是________;(2)下列说法:① 3班85分以上人数最少;② 1,3两班的平均分差距最小;③ 本次考试年段成绩最高的学生在4班.其中正确的是________(填序号); (3)若用公式2m nx +=(m ,n 分别表示各班平均成绩)分别计算1,2两班和3,4两班的平均成绩,哪两班的计算结果会与实际平均成绩相同,请说明理由.图2第15题图1班 2班 4班 3班 a % b % 图1c %c %B第16题图21 3A BC D MN21.(本题满分10分)如图,已知△ABC 中,∠ABC =∠ACB ,以点B 为圆心,BC 长为半径的弧分别交AC ,AB 于点D ,E ,连接BD ,ED . (1)写出图中所有的等腰三角形;(2)若∠AED =114°,求∠ABD 和∠ACB 的度数.22.(本题满分10分)如图1,在矩形ABCD 中,动点P 从点A 出发,沿A →D →C →B 的路径运动.设点P 运动的路程为x ,△P AB 的面积为y .图2反映的是点P 在A →D →C 运动过程中,y 与x 的函数关系.请根据图象回答以下问题: (1)矩形ABCD 的边AD =________,AB =________;(2)写出点P 在C →B 运动过程中y 与x 的函数关系式,并在图2中补全函数图象.23.(本题满分10分)如图,已知△ABC ,以AB 为直径的⊙O 交AC 于点D ,CBD A ∠=∠.(1)求证:BC 为⊙O 的切线;(2)若E 为AB ⌒中点,BD =6,3sin 5BED ∠=,求BE 的长.ABECD图1图224.(本题满分12分)如图,直线12y kx=+与x轴交于点A(m,0)(m>4),与y轴交于点B,抛物线224cy ax ax=-+(a<0)经过A,B两点.P为线段AB上一点,过点P作PQ∥y轴交抛物线于点Q.(1)当m=5时,①求抛物线的关系式;②设点P的横坐标为x,用含x的代数式表示PQ的长,并求当x为何值时,PQ=85;(2)若PQ长的最大值为16,试讨论关于x的一元二次方程hkxaxax=--42的解的个数与h的取值范围的关系.25.(本题满分14分)我们把有一组邻边相等,一组对边平行但不相等的四边形称作 “准菱形”.(1)证明“准菱形”性质:“准菱形”的一条对角线平分一个内角.(要求:根据图1写出已知,求证,证明) 已知: 求证: 证明:(2)已知,在△ABC 中,∠A=90°,AB =3,AC =4.若点D ,E 分别在边BC ,AC 上,且四边形ABDE 为“准菱形”.请在下列给出的△ABC 中,作出满足条件的所有“准菱形”ABDE ,并写出相应DE 的长.(所给△ABC 不一定都用,不够可添)2020年宁德市初中毕业班质量检测数学试题参考答案及评分标准⑴本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分. ⑵对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分.⑶解答右端所注分数表示考生正确作完该步应得的累加分数. ⑷评分只给整数分,选择题和填空题均不给中间分. 一、选择题:(本大题有10小题,每小题4分,满分40分)1.D 2.B 3.D 4.A 5.A 6.C 7.C 8.B 9.B 10.CABCD图1CAB DE = ________CAB DE =________CABDE =________CAB DE = ________二、填空题:(本大题有6小题,每小题4分,满分24分)11.5 12.3(2)x x - 13.51.4710⨯ 14.12 15.6.5 16.2三、解答题(本大题共9小题,共86分.请在答题卡...的相应位置作答) 17.(本题满分7分)解:原式=22692a a a a ++--, ··························································· 4分= 49a +. ···································································· 7分18.(本题满分7分)21,2 2.3x x x +⎧⎪⎨-⎪⎩<①≤②解:解不等式①,得 1x <. ································································ 2分解不等式②,得 4x ≥-. ······························································ 4分 在同一数轴上表示不等式①②的解集,如图∴原不等式组的解集为41x -≤<. ························································ 6分 ∴原不等式组的整数解为-4,-3,-2,-1,0. ··········································· 7分 19.(本题满分8分)证明:∵四边形ABCD 是正方形,∴AD =CD ,∠A =∠ADC=∠BCD=90°. ······· 2分 ∴∠DCN =90°.∴∠DCN =∠A . ······································································ 4分 ∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3. ·············································································· 6分 ∴△ADM ≌△DCN . ······························································· 7分 ∴AM =CN . ··············································································· 8分20.(本题满分8分)(1)69; ······················································································ 2分 (2)②; ······················································································ 5分 (3)用公式2m nx +=计算3,4两班的平均成绩,结果会与实际平均成绩相同,因为213 ACDM N3,4两班权重(人数或比例)相同. ················································ 8分21.(本题满分10分)(1)答:等腰三角形有:△ABC ,△BCD ,△BED ; ··································· 3分 (2)解:∵∠AED =114°,∴∠BED =180°-∠AED=66°. ······· 4分 ∵BD =BE ,∴∠BDE =∠BED=66°.∴∠A BD =180°-66°×2=48°. ······ 6分 解法一:设∠ACB =x °,∴∠ABC =∠ACB =x °. ∴∠A =180°-2x °. ∵BC =BD ,∴∠BDC =∠ACB =x °. 又∵∠BDC 为△ABD 的外角,∴∠BDC =∠A+∠ABD . ·························································· 8分 ∴x =180-2x +48,解得:x =76.∴∠ACB =76°. ·································································· 10分 解法二:设∠ACB =x °,∴∠ABC =∠ACB =x °. ∴∠DBC =x °-48°. ∵BC =BD ,∴∠BDC =∠ACB =x °. ··························································· 8分 又∵∠DBC +∠BCD +∠BDC =180°, ∴x -48+x +x =180,解得:x =76.∴∠ACB =76°. ·································································· 10分22.(本题满分10分)(1) 2,4;(每空2分) ········································································ 4分 (2) 当点P 在C →B 运动过程中,PB =8-x ,∴14(8)2APB y S x ∆==⨯⨯-,即:216y x =-+(68x ≤≤).······· 8分 正确作出图象. ·························· 10分ABECD图2(提示:学生未对函数关系式化简,未写出取值范围不扣分) 23.(本题满分10分)解:(1)∵AB 是⊙O 的直径,∴ ∠ADB =90°. ····································1分 ∴∠A+∠ABD=90°. 又∵∠A=∠CBD , ∴∠CBD+∠ABD=90°. ∴∠ABC =90°.∴AB ⊥BC . ·········································4分 又∵AB 是⊙O 的直径,∴BC 为⊙O 的切线.·····························5分 (2)连接AE .∵AB 是⊙O 的直径, ∴∠AEB =∠ADB =90°. ∵∠BAD=∠BED , ∴3sin sin 5BAD BED ∠=∠=. ························································· 6分 ∴在Rt ABD △中,3sin 5BD BAD AB ∠==. ∵6BD =,∴AB=10. ··················································································· 8分 ∵E 为AB ⌒中点, ∴AE =BE .∴AEB △是等腰直角三角形. ∴∠BAE =45°.∴sin 10BE AB BAE =∠==g . ···········24.(本题满分12分)解:(1)①∵m =5,∴点A 的坐标为(5,0). 将x=0代入12y kx =+,得y =2. ∴点B 的坐标为(0,2).将A (5,0),B (0,2)代入224y ax ax c =-+ B252002.a a c c -+=⎧⎨=⎩, ···································································· 2分 解得 252.a c ⎧=-⎪⎨⎪=⎩,∴抛物线的表达式为2228255y x x =-++. ········································· 4分②将A (5,0)代入12y kx =+,解得:25k =-.∴一次函数的表达为1225y x =-+. ··················································· 5分∴点P 的坐标为2(,2)5x x -+.又∵PQ ∥y 轴,∴点Q 的坐标为228(,2)55x x x -++.∴22822(2)555PQ x x x =-++--+,2225x x =-+. ······································································· 7分∵85PQ =,∴228255x x -+=.解得:11x =,24x =.∴当x =1或x =4时,85PQ =. ·························································· 9分(2)设22214(2)4S y y ax ax c kx ax ax kx =-=-+-+=--.∴S 为x 的二次函数 ∵PQ 长的最大值为16, ∴S 最大值为16. ∵a <0,∴由二次函数的图象性质可知当h =16时,一元二次方程h kx ax ax =--42有一个解; 当h >16时,一元二次方程h kx ax ax =--42无解;当h <16时,一元二次方程h kx ax ax =--42有两个解. ···················· 12分数学试题 第 11 页 共 11 页 (提示:学生答对一种情况即得2分,未说明理由不扣分)25.(本题满分14分)解:(1)已知:如图,“准菱形”ABCD中,AB =AD ,AD ∥BC, (AD BC ≠). ·································································································· 2分 求证:BD 平分∠ABC . ··································································· 3分 证明:∵AB =AD ,∴∠ABD=∠BDA .又∵AD ∥BC ,∴∠DBC=∠BDA .∴∠ABD=∠DBC . 即BD 平分∠ABC . ········································································ 6分(2)可以作出如下四种图形: ····························································· 14分(提示:正确作出一个图形并给出对应的DE 值得2分.若作图不规范适当扣分,最多扣2分)A B C D图1 B 34DE = B 65DE = 127DE = B 158DE =。
2020福建省宁德市中考数学学业质量监测试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .23(2)3y x =++ B .23(2)3y x =-+ C .23(2)3y x =+- D .23(2)3y x =--2.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是( )A .B .C .D .3.如果1∠与2∠互补,2∠与3∠互余,则1∠与3∠的关系是( )A .13∠=∠B .11803∠=-∠C .1903∠=+∠D .以上都不对4.如图,下列条件不能判定△ADB ∽△ABC 的是( )A .∠ABD=∠ACBB .∠ADB=∠ABC C .AB 2=AD•ACD . AD AB AB BC= 5.如图,有一张三角形纸片ABC ,已知∠B =∠C =x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )A .B .C.D.6.已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是( )A.∠NOQ=42°B.∠NOP=132°C.∠PON比∠MOQ大D.∠MOQ与∠MOP互补7.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55 135 149 191 乙55 135 151 110 某同学分析上表后得出如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是()A.①②B.②③C.①③D.①②③8.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是().A.AD AEDB EC=B.AB ACAD AE=C.AC ECAB DB=D.AD DEDB BC=9.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是()A.3 B.﹣1 C.﹣3 D.﹣2A.3m B.33m C.23m D.4m 二、填空题(本题包括8个小题)11.因式分解:3a2-6a+3=________.12.已知扇形的弧长为2π,圆心角为60°,则它的半径为________.13.如图所示,点C在反比例函数ky(x0)x=>的图象上,过点C的直线与x轴、y轴分别交于点A、B,且AB BC=,已知AOB的面积为1,则k的值为______.14.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大、小和尚各有,人,则可以列方程组__________.15.一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0°<α<180°).被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为16.若2,则x2+2x+1=__________.17.因式分解:x2y-4y3=________.18.若一个等腰三角形的周长为26,一边长为6,则它的腰长为____.三、解答题(本题包括8个小题)19.(6分)立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.当10≤x<60时,求y关于x的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;20.(6分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A =∠ADE.求证:DE是⊙O的切线;若AD=16,DE=10,求BC的长.21.(6分)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:请将以上两幅统计图补充完整;若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_ ▲人达标;若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?22.(8分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:坡顶A到地面PO的距离;古塔BC的高度(结果精确到1米).分别以E,F为圆心,大于12EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA的度数______.24.(10分)如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y=kx(k≠0)的图象经过点B.求反比例函数的解析式;若点E恰好落在反比例函数y=kx上,求平行四边形OBDC的面积.25.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.求∠ABC 的度数;求证:AE是⊙O的切线;当BC=4时,求劣弧AC的长.26.(12分)如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .2.A【解析】【分析】对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.【详解】解:由主视图的定义可知A 选项中的图形为该立体图形的主视图,故选择A.【点睛】本题考查了三视图的概念.3.C【解析】【分析】根据∠1与∠2互补,∠2与∠1互余,先把∠1、∠1都用∠2来表示,再进行运算.【详解】∵∠1+∠2=180°∴∠1=180°-∠2又∵∠2+∠1=90°∴∠1=90°-∠2∴∠1-∠1=90°,即∠1=90°+∠1.故选C .【点睛】此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度.4.D【解析】【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴AC ABAB AD,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、ADAB=ABBC不能判定△ADB∽△ABC,故此选项符合题意.故选D.【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.5.C【解析】【分析】根据全等三角形的判定定理进行判断.【详解】解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选C.【点睛】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.6.C【解析】试题分析:如图所示:∠NOQ=138°,选项A错误;∠NOP=48°,选项B错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,选项C正确;由以上可得,∠MOQ与∠MOP不互补,选项D错误.故答案选C.考点:角的度量.7.D【解析】分析:根据平均数、中位数、方差的定义即可判断;详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大.故①②③正确,故选D.点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.D根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.【详解】由DE ∥BC ,可得△ADE ∽△ABC ,并可得:AD AE DB EC =,AB AC AD AE =,AC EC AB DB=,故A ,B ,C 正确;D 错误; 故选D .【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质.9.C【解析】试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根.设m 、n 是方程x 2+kx ﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选C .【考点】根与系数的关系;一元二次方程的解.10.B【解析】【分析】因为三角形ABC 和三角形AB′C′均为直角三角形,且BC 、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB ,进而得出∠C′AB′的度数,然后可以求出鱼线B'C'长度.【详解】解:∵sin ∠CAB =BC AC ==∴∠CAB =45°.∵∠C′AC =15°,∴∠C′AB′=60°.∴sin60°=''62B C =,解得:B′C′=.故选:B .【点睛】此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题.二、填空题(本题包括8个小题)11.3(a -1)2先提公因式,再套用完全平方公式.【详解】解:3a 2-6a+3=3(a 2-2a+1)=3(a-1)2.【点睛】考点:提公因式法与公式法的综合运用.12.6.【解析】分析: 设扇形的半径为r ,根据扇形的面积公式及扇形的面积列出方程,求解即可.详解: 设扇形的半径为r , 根据题意得:60r =2180ππ, 解得 :r=6故答案为6.点睛: 此题考查弧长公式,关键是根据弧长公式解答.13.1【解析】【分析】根据题意可以设出点A 的坐标,从而以得到点C 和点B 的坐标,再根据AOB 的面积为1,即可求得k 的值.【详解】解:设点A 的坐标为()a,0-,过点C 的直线与x 轴,y 轴分别交于点A ,B ,且AB BC =,AOB 的面积为1, ∴点k C a,a ⎛⎫ ⎪⎝⎭, ∴点B 的坐标为k 0,2a ⎛⎫ ⎪⎝⎭, 1k a 122a∴⋅⋅=, 解得,k 4=,故答案为:1.【点睛】本题考查了反比例函数系数k 的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特14.【解析】【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程组即可.【详解】设大和尚x人,小和尚y人,由题意可得.故答案为.【点睛】本题考查了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程组.15.7 2°或144°【解析】【详解】∵五次操作后,发现赛车回到出发点,∴正好走了一个正五边形,因为原地逆时针方向旋转角a(0°<α<180°),那么朝左和朝右就是两个不同的结论所以∴角α=(5-2)•180°÷5=108°,则180°-108°=72°或者角α=(5-2)•180°÷5=108°,180°-72°÷2=144°16.2【解析】【分析】先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.【详解】∵2,∴x2+2x+1=(x+1)22-1+1)2=2,故答案为:2.【点睛】本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.17.y(x++2y)(x-2y)【解析】【分析】首先提公因式y ,再利用平方差进行分解即可.【详解】原式()224(2)(2)y x y y x y x y =-=-+.故答案是:y (x+2y )(x-2y ).【点睛】考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.18.1【解析】【分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【详解】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形;②当6为底边时,则腰长=(26-6)÷2=1,因为6-6<1<6+6,所以能构成三角形;故腰长为1.故答案为:1.【点睛】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.三、解答题(本题包括8个小题)19.(1)y =150﹣x ; (2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.【解析】【分析】(1)若购买x 双(10<x <1),每件的单价=140﹣(购买数量﹣10),依此可得y 关于x 的函数关系式; (2)①设第一批购买x 双,则第二批购买(100﹣x )双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则1≤100﹣x <75;当40<x <1时,则40<100﹣x <1. ②把两次的花费与第一次购买的双数用函数表示出来.【详解】解:(1)购买x 双(10<x <1)时,y =140﹣(x ﹣10)=150﹣x .故y 关于x 的函数关系式是y =150﹣x ;(2)①设第一批购买x 双,则第二批购买(100﹣x )双.当25<x≤40时,则1≤100﹣x<75,则x(150﹣x)+80(100﹣x)=9200,解得x1=30,x2=40;当40<x<1时,则40<100﹣x<1,则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,解得x=30或x=70,但40<x<1,所以无解;答:第一批购买数量为30双或40双.②设第一次购买x双,则第二次购买(100﹣x)双,设两次花费w元.当25<x≤40时w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,∴x=26时,w有最小值,最小值为9144元;当40<x<1时,w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,∴x=41或59时,w有最小值,最小值为9838元,综上所述:第一次买26双,第二次买74双最省钱,最少9144元.【点睛】考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.20.(1)证明见解析;(2)15.【解析】【分析】(1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.(2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC 中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.【详解】(1)证明:连结OD,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB,∴∠B=∠BDO,∵∠ADE=∠A,∴∠ADE+∠BDO=90°,∴∠ODE=90°.∴DE是⊙O的切线;(2)连结CD,∵∠ADE=∠A,∴AE=DE.∵BC是⊙O的直径,∠ACB=90°.∴EC是⊙O的切线.∴DE=EC.∴AE=EC,又∵DE=10,∴AC=2DE=20,在Rt△ADC中,22-=201612设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴22+=.12915【点睛】考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.21.(1)见解析;(2)1;(3)估计全校达标的学生有10人【解析】【分析】(1)成绩一般的学生占的百分比=1-成绩优秀的百分比-成绩不合格的百分比,测试的学生总数=不合格的人数÷不合格人数的百分比,继而求出成绩优秀的人数.(2)将成绩一般和优秀的人数相加即可;(3)该校学生文明礼仪知识测试中成绩达标的人数=1200×成绩达标的学生所占的百分比.【详解】解:(1)成绩一般的学生占的百分比=1﹣20%﹣50%=30%,测试的学生总数=24÷20%=120人,成绩优秀的人数=120×50%=60人,所补充图形如下所示:(2)该校被抽取的学生中达标的人数=36+60=1.(3)1200×(50%+30%)=10(人).答:估计全校达标的学生有10人.22. (1)坡顶A 到地面PQ 的距离为10米;()2移动信号发射塔BC 的高度约为19米.【解析】【分析】延长BC 交OP 于H.在Rt △APD 中解直角三角形求出AD =10.PD =24.由题意BH =PH.设BC =x.则x+10=24+DH.推出AC =DH =x ﹣14.在Rt △ABC 中.根据tan76°=BC AC,构建方程求出x 即可. 【详解】延长BC 交OP 于H .∵斜坡AP 的坡度为1:2.4,∴512AD PD =, 设AD =5k,则PD =12k,由勾股定理,得AP =13k,∴13k =26,解得k =2,∴AD =10,∵BC ⊥AC,AC ∥PO,∴BH ⊥PO,∴四边形ADHC 是矩形,CH =AD =10,AC =DH,∵∠BPD =45°,∴PH =BH,设BC =x,则x+10=24+DH,∴AC =DH =x ﹣14,在Rt △ABC 中,tan76°=BC AC ,即14x x -≈4.1. 解得:x≈18.7,经检验x≈18.7是原方程的解.答:古塔BC 的高度约为18.7米.【点睛】本题主要考查了解直角三角形,用到的知识点是勾股定理,锐角三角函数,坡角与坡角等,解决本题的关键是作出辅助线,构造直角三角形.23.∠CMA =35°.【解析】【分析】根据两直线平行,同旁内角互补得出70CAB ∠=︒,再根据AM 是CAB ∠的平分线,即可得出MAB ∠的度数,再由两直线平行,内错角相等即可得出结论.【详解】∵AB ∥CD ,∴∠ACD+∠CAB=180°.又∵∠ACD=110°,∴∠CAB=70°,由作法知,AM 是CAB ∠的平分线,∴1352MAB CAB ∠=∠=︒. 又∵AB ∥CD ,∴∠CMA=∠BAM=35°.【点睛】本题考查了角平分线的作法和意义,平行线的性质等知识解决问题.解题时注意:两直线平行,内错角相等.24.(1)y=12x ;(2)1; 【解析】【分析】(1)把点B 的坐标代入反比例解析式求得k 值,即可求得反比例函数的解析式;(2)根据点B (3,4)、C (m ,0)的坐标求得边BC 的中点E 坐标为(32m +,2),将点E 的坐标代入反比例函数的解析式求得m 的值,根据平行四边形的面积公式即可求解.【详解】(1)把B 坐标代入反比例解析式得:k=12,则反比例函数解析式为y=; (2)∵B (3,4),C (m ,0),∴边BC 的中点E 坐标为(,2),将点E的坐标代入反比例函数得2=,解得:m=9,则平行四边形OBCD的面积=9×4=1.【点睛】本题为反比例函数的综合应用,考查的知识点有待定系数法、平行四边形的性质、中点的求法.在(1)中注意待定系数法的应用,在(2)中用m表示出E点的坐标是解题的关键.25.(1)60°;(2)证明略;(3)8 3【解析】【分析】(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°;(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC的长.【详解】(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵OB=OC,∠ABC=60°,∴△OBC是等边三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的长为120180Rπ=1204180π=83π.【点睛】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.26.证明见试题解析.【解析】试题分析:首先根据∠ACD=∠BCE得出∠ACB=∠DCE,结合已知条件利用SAS判定△ABC和△DEC全等,从而得出答案.试题解析:∵∠ACD=∠BCE ∴∠ACB=∠DCE 又∵AC=DC BC=EC ∴△ABC≌△DEC ∴∠A=∠D考点:三角形全等的证明2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是( )A .B .C .D .2.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,则不等式()()0kx b mx n ++>的解集为( )A .x >2B .0<x <4C .﹣1<x <4D .x <﹣1 或 x >43.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有( )个〇.A .6055B .6056C .6057D .60584.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31 5.下列各式:33②177;2682;2432;其中错误的有( ).A .3个B .2个C .1个D .0个6.在△ABC 中,∠C =90°,tanA =,△ABC 的周长为60,那么△ABC 的面积为( )A .60B .30C .240D .1207.将2001×1999变形正确的是( )A .20002﹣1B .20002+1C .20002+2×2000+1D .20002﹣2×2000+18.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A .m≥1B .m≤1C .m >1D .m <19.如图,在正方形ABCD 外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( )A .75°B .60°C .55°D .45°10.下列解方程去分母正确的是( )A .由,得2x ﹣1=3﹣3xB .由,得2x ﹣2﹣x =﹣4C .由,得2y-15=3yD .由,得3(y+1)=2y+6二、填空题(本题包括8个小题)11.已知关于x 的一元二次方程20x mx n ++=的两个实数根分别是x 1 =-2,x 2 =4,则+m n 的值为________.12.在平面直角坐标系中,将点A (﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.13.一个多边形的每个内角都等于150°,则这个多边形是_____边形.14.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是_______. 15.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC ,则线段 AC 的长为________.16.关于x的分式方程211x ax+=+的解为负数,则a的取值范围是_________.17.因式分解:32a ab-=_______________.18.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为________.三、解答题(本题包括8个小题)19.(6分)定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图.A B C笔试85 95 90口试80 85(1)请将表和图中的空缺部分补充完整;图中B同学对应的扇形圆心角为度;竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为,B同学得票数为,C同学得票数为;若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断当选.(从A、B、C、选择一个填空)20.(6分)如图,在矩形ABCD中,AB=1DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=1.求线段EC的长;求图中阴影部分的面积.21.(6分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长.22.(8分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价(元/只)售价(元/只)甲种节能灯30 40乙种节能灯35 50()1求甲、乙两种节能灯各进多少只?()2全部售完100只节能灯后,该商场获利多少元?23.(8分)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.24.(10分)某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?25.(10分)如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.求证:△ADE∽△MAB;求DE的长.26.(12分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20%,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台.求甲、乙两种品牌空调的进货价;该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元/台,乙种品牌空调的售价为3500元/台.请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.【详解】解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.故选:B.【点睛】本题重点考查三视图的定义以及考查学生的空间想象能力.2.C【解析】【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【详解】∵直线y1=kx+b与直线y2=mx+n分别交x轴于点A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集为﹣1<x<4,故选C.【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.3.D【解析】【分析】设第n 个图形有a n 个O(n 为正整数),观察图形,根据各图形中O 的个数的变化可找出"a n =1+3n(n 为正整数)",再代入a=2019即可得出结论【详解】设第n 个图形有a n 个〇(n 为正整数),观察图形,可知:a 1=1+3×1,a 2=1+3×2,a 3=1+3×3,a 4=1+3×4,…,∴a n =1+3n(n 为正整数),∴a 2019=1+3×2019=1.故选:D .【点睛】此题考查规律型:图形的变化,解题关键在于找到规律4.C【解析】【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n (n+1)和12(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值.【详解】∵A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和.故选:C .【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5.A【解析】②17 ,错误;不能计算;④243=22,正确.故选A.6.D【解析】【分析】由tanA的值,利用锐角三角函数定义设出BC与AC,进而利用勾股定理表示出AB,由周长为60求出x 的值,确定出两直角边,即可求出三角形面积.【详解】如图所示,由tanA=,设BC=12x,AC=5x,根据勾股定理得:AB=13x,由题意得:12x+5x+13x=60,解得:x=2,∴BC=24,AC=10,则△ABC面积为120,故选D.【点睛】此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键.7.A【解析】【分析】原式变形后,利用平方差公式计算即可得出答案.【详解】解:原式=(2000+1)×(2000-1)=20002-1,故选A.【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.8.D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x2x m0-+=有两个不相同的实数根,∴()2240m=-->,解得:m<1.故选D.点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.9.B【解析】【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.【详解】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=12(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.10.D【解析】【分析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【详解】。
[合集3份试卷]2020福建省宁德市中考数学学业质量监测试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某圆锥的主视图是一个边长为3cm的等边三角形,那么这个圆锥的侧面积是()A.4.5πcm2B.3cm2C.4πcm2D.3πcm22.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同3.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为( )A.22B.3C.1 D.64.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.5.某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是()A.74 B.44 C.42 D.406.如图所示的正方体的展开图是()A.B.C.D.7.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-38.如图,小明要测量河内小岛B到河边公路l的距离,在A点测得30BAD∠=︒,在C点测得60BCD∠=︒,又测得50AC=米,则小岛B到公路l的距离为()米.A.25 B.253C.10033D.25253+9.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.610.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.二、填空题(本题包括8个小题)11.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.12.方程22310x x+-=的两个根为1x、2x,则1211+x x的值等于______.13.关于x的方程x2-3x+2=0的两根为x1,x2,则x1+x2+x1x2的值为______.14.若2216a b-=,13a b-=,则+a b的值为________ .15.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快50千米,提速后从北京到上海运行时间缩短了30分钟.已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为__.16.一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为______________.17.如图,在▱ABCD 中,E 在AB 上,CE 、BD 交于F ,若AE :BE=4:3,且BF=2,则DF=_____18.A 、B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h 的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.三、解答题(本题包括8个小题)19.(6分)如图,某校准备给长12米,宽8米的矩形ABCD 室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形PQFG ),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点O 为矩形和菱形的对称中心,OP AB ,2OQ OP =,12AE PM =,为了美观,要求区域Ⅱ的面积不超过矩形ABCD 面积的18,若设OP x =米.甲 乙 丙 单价(元/米2)2m 5n 2m (1)当3x =时,求区域Ⅱ的面积.计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当x 为多少时,室内光线亮度最好,并求此时白色区域的面积.②三种瓷砖的单价列表如下,,m n 均为正整数,若当2x =米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时m =__________,n =__________.20.(6分) 如图,已知正方形ABCD ,E 是AB 延长线上一点,F 是DC 延长线上一点,且满足BF =EF ,将线段EF 绕点F 顺时针旋转90°得FG ,过点B 作FG 的平行线,交DA 的延长线于点N ,连接NG .求证:BE=2CF;试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.21.(6分)如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.求证:△ADE≌△BFE;若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.22.(8分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方23米处的点C出发,沿斜面坡度1:3i 的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34.计算结果保留根号)23.(8分)为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).这次调查中,一共调查了________名学生;请补全两幅统计图;若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.24.(10分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?25.(10分)如图,AB为⊙O的直径,D为⊙O上一点,以AD为斜边作△ADC,使∠C=90°,∠CAD=∠DAB 求证:DC是⊙O的切线;若AB=9,AD=6,求DC的长.26.(12分)如图,平面直角坐标系中,直线AB:13y x b=-+交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).求直线AB 的解析式和点B的坐标;求△ABP的面积(用含n的代数式表示);当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】【分析】根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长×母线长÷2求出即可.【详解】∵圆锥的轴截面是一个边长为3cm的等边三角形,∴底面半径=1.5cm,底面周长=3πcm,∴圆锥的侧面积=×3π×3=4.5πcm2,故选A.【点睛】此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长×母线长÷2得出.2.B【解析】【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.3.C【解析】【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=2AM=2,再根据角平分线性质得BM=MH=2,则AB=2+2,于是利用正方形的性质得到AC=2AB=22+2,OC=12AC=2+1,所以CH=AC-AH=2+2,然后证明△CON∽△CHM,再利用相似比可计算出ON的长.【详解】试题分析:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴AH=MH=22AM=222,∵CM平分∠ACB,∴2∴2∴222)2+2,∴OC=12AC=2+1,CH=AC ﹣AH=22+2﹣2=2+2, ∵BD ⊥AC ,∴ON ∥MH ,∴△CON ∽△CHM ,∴ON OC MH CH =,即21222+=+, ∴ON=1.故选C .【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.4.C【解析】【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【详解】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选C .【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.5.C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.6.A【解析】【分析】有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.【详解】把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A 正确.故选A【点睛】本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.7.B 【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a 、b 即可.详解:(x+1)(x-3)=x 2-3x+x-3 =x 2-2x-3所以a=2,b=-3,故选B .点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键. 8.B 【解析】【详解】解:过点B 作BE ⊥AD 于E .设BE=x .∵∠BCD=60°,tan ∠BCE BE CE =, 33CE x ∴=, 在直角△ABE 中,3x ,AC=50米,33503x x -=, 解得253x =即小岛B 到公路l 的距离为253故选B.9.D【解析】【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.10.D【解析】【详解】∵ab>0,∴a、b同号.当a>0,b>0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a<0,b<0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求.故选B.二、填空题(本题包括8个小题)11.3.1或4.32或4.2【解析】【分析】在Rt△ABC中,通过解直角三角形可得出AC=5、S△ABC=1,找出所有可能的分割方法,并求出剪出的等腰三角形的面积即可.【详解】在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴=5,S△ABC=12AB•BC=1.沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=APAC•S△ABC=35×1=3.1;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC 的高BD ,则BD=·34 2.45AB BC AC ⨯==, ∴AD=DP=223 2.4-=1.2,∴AP=2AD=3.1,∴S 等腰△ABP =AP AC •S △ABC =3.65×1=4.32; ③当CB=CP=4时,如图3所示,S 等腰△BCP =CP AC •S △ABC =45×1=4.2; 综上所述:等腰三角形的面积可能为3.1或4.32或4.2,故答案为:3.1或4.32或4.2.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.12.1.【解析】【分析】根据一元二次方程根与系数的关系求解即可.【详解】解:根据题意得1232x x +=-,1212x x =-, 所以1211+x x =1212x x x x +=3212--=1. 故答案为1.【点睛】本题考查了根与系数的关系:若1x 、2x 是一元二次方程20ax bx c ++=(a≠0)的两根时,12b x x a +=-,12c x x a=. 13.5 【解析】试题分析:利用根与系数的关系进行求解即可.解:∵x 1,x 2是方程x 2-3x +2=0的两根,∴x 1+ x 2=3b a -=,x 1x 2=2c a=, ∴x 1+x 2+x 1x 2=3+2=5.故答案为:5.14.-12. 【解析】分析:已知第一个等式左边利用平方差公式化简,将a ﹣b 的值代入即可求出a+b 的值.详解:∵a 2﹣b 2=(a+b )(a ﹣b )=16,a ﹣b=13,∴a+b=12. 故答案为12. 点睛:本题考查了平方差公式,熟练掌握平方差公式是解答本题的关键.15.132013201502x x -=- 【解析】【分析】设“复兴号”的速度为x 千米/时,则原来列车的速度为(x-50)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x 千米/时,则原来列车的速度为(x-50)千米/时, 根据题意得132013201502x x -=-. 故答案为132013201502x x -=-. 【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系. 16.2【解析】分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.详解:解方程x 2-10x+21=0得x 1=3、x 2=1,∵3<第三边的边长<9,∴第三边的边长为1.∴这个三角形的周长是3+6+1=2.故答案为2.点睛:本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.17.143. 【解析】【详解】解:令AE=4x ,BE=3x ,∴AB=7x.∵四边形ABCD 为平行四边形,∴CD=AB=7x ,CD ∥AB ,∴△BEF ∽△DCF. ∴3377BF BE x DF CD x ===, ∴DF=143 【点睛】本题考查平行四边形的性质及相似三角形的判定与性质,掌握定理正确推理论证是本题的解题关键. 18.165【解析】【分析】由图象得出解析式后联立方程组解答即可.【详解】由图象可得:y 甲=4t (0≤t≤5);y 乙=()()2112916(24)t t t t <⎧-≤≤⎨-≤⎩;由方程组4916y t y t ⎧⎨-⎩==,解得t=165. 故答案为165. 【点睛】此题考查一次函数的应用,关键是由图象得出解析式解答.三、解答题(本题包括8个小题)19.(1)8m 2;(2)68m 2;(3) 40,8【解析】【分析】(1)根据中心对称图形性质和,OP AB ,12OM AB =,12AE PM =可得42x AE -=,即可解当83x =时,4个全等直角三角形的面积;(2)白色区域面积即是矩形面积减去一二部分的面积,分别用含x 的代数式表示出菱形和四个全等直角三角形的面积,列出含有x 的解析式表示白色区域面积,并化成顶点式,根据04OP <<,06OQ <≤,1968II S ≤⨯,求出自变量的取值范围,再根据二次函数的增减性即可解答; (3)计算出x=2时各部分面积以及用含m 、n 的代数式表示出费用,因为m,n 均为正整数,解得m=40,n=8.【详解】(1) ∵O 为长方形和菱形的对称中心,OP AB ,∴142OM AB == ∵12AE PM =,OP PM OM +=,∴42x AE -= ∴当83x =时,41223AE -==,21124468223II S AM AE m =⨯⋅=⨯⨯⨯= (2)∵()2211442422I S OP OQ x x x m =⨯⋅=⨯⋅=,()214(246)2II S AM AE x m =⨯⋅=- ∴I III I I S AB BC S S =⋅--=-()22234672474.254x x x m ⎛⎫++=--+ ⎪⎝⎭, ∵04OP <<,06OQ <≤,1968II S ≤⨯ ∴040261246968x x x ⎧⎪<<⎪<≤⎨⎪⎪-≤⨯⎩解不等式组得23x ≤≤,∵40a =-<,结合图像,当34x ≥时,III S 随x 的增大而减小. ∴当2x =时, III S 取得最大值为()2242627268m -⨯+⨯+= (3)∵当2x =时,S Ⅰ=4x 2=16 m 2,246II S x =-=12 m 2,III S =68m 2,总费用:16×2m+12×5n+68×2m=7200,化简得:5n+14m=600,因为m,n 均为正整数,解得m=40,n=8.【点睛】本题考查中心对称图形性质,菱形、直角三角形的面积计算,二次函数的最值问题,解题关键是用含x 的二次函数解析式表示出白色区面积.20.(1)见解析;(2)四边形BFGN 是菱形,理由见解析.【解析】【分析】(1)过F 作FH ⊥BE 于点H ,可证明四边形BCFH 为矩形,可得到BH =CF ,且H 为BE 中点,可得BE =2CF ;(2)由条件可证明△ABN ≌△HFE ,可得BN =EF ,可得到BN =GF ,且BN ∥FG ,可证得四边形BFGN 为菱形.【详解】(1)证明:过F作FH⊥BE于H点,在四边形BHFC中,∠BHF=∠CBH=∠BCF=90°,所以四边形BHFC为矩形,∴CF=BH,∵BF=EF,FH⊥BE,∴H为BE中点,∴BE=2BH,∴BE=2CF;(2)四边形BFGN是菱形.证明:∵将线段EF绕点F顺时针旋转90°得FG,∴EF=GF,∠GFE=90°,∴∠EFH+∠BFH+∠GFB=90°∵BN∥FG,∴∠NBF+∠GFB=180°,∴∠NBA+∠ABC+∠CBF+∠GFB=180°,∵∠ABC=90°,∴∠NBA+∠CBF+∠GFB=180°−90°=90°,由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,∴∠EFH=90°−∠GFB−∠BFH=90°−∠GFB−∠CBF=∠NBA,由BHFC是矩形可得HF=BC,∵BC=AB,∴HF=AB,在△ABN和△HFE中,NAB EHF90AB HFNBA EFH∠∠︒⎧⎪⎨⎪∠∠⎩====,∴△ABN≌△HFE,∴NB=EF,∵EF=GF,∴NB=GF,又∵NB∥GF,∴NBFG是平行四边形,∵EF=BF,∴NB=BF,∴平行四边NBFG是菱形.点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN≌△HFE是解题的关键.21.(1)见解析;(1)见解析.【解析】【分析】(1)由全等三角形的判定定理AAS证得结论.(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,∠1=∠1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CE⊥DF.【详解】解:(1)证明:如图,∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF.∴∠1=∠1.∵点E是AB边的中点,∴AE=BE,∵在△ADE与△BFE中,12DEA FEBAE BE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如图,连接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.22.33+3.5【解析】【分析】延长ED交BC延长线于点F,则∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=23、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=43•tan37°可得答案.【详解】如图,延长ED交BC延长线于点F,则∠CFD=90°,∵tan∠1333,∴∠DCF=30°,∵CD=4,∴DF=12CD=2,CF=CDcos∠33∴333过点E作EG⊥AB于点G,则3,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠3,则AB=AG+BG=43•tan37°+3.5=33+3.5,故旗杆AB的高度为(33+3.5)米.考点:1、解直角三角形的应用﹣仰角俯角问题;2、解直角三角形的应用﹣坡度坡角问题23.(1)200;(2)答案见解析;(3)12.【解析】【分析】(1)由题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);(2)根据题意可求得B占的百分比为:1-20%-30%-15%=35%,C的人数为:200×30%=60(名);则可补全统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一人是喜欢跳绳、一人是喜欢足球的学生的情况,再利用概率公式即可求得答案.【详解】解:(1)根据题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);故答案为:200;(2)C组人数:200-40-70-30=60(名)B组百分比:70÷200×100%=35%如图(3)分别用A,B,C表示3名喜欢跳绳的学生,D表示1名喜欢足球的学生;画树状图得:∵共有12种等可能的结果,一人是喜欢跳绳、一人是喜欢足球的学生的有6种情况,∴一人是喜欢跳绳、一人是喜欢足球的学生的概率为:61122.【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.24.(1)结果见解析;(2)不公平,理由见解析.【解析】判断游戏是否公平,即是看双方取胜的概率是否相同,若相同,则公平,不相同则不公平.25.(1)见解析;(2)【解析】分析:(1)如下图,连接OD ,由OA=OD 可得∠DAO=∠ADO ,结合∠CAD=∠DAB ,可得∠CAD=∠ADO ,从而可得OD ∥AC ,由此可得∠C+∠CDO=180°,结合∠C=90°可得∠CDO=90°即可证得CD 是⊙O 的切线;(2)如下图,连接BD ,由AB 是⊙O 的直径可得∠ADB=90°=∠C ,结合∠CAD=∠DAB 可得△ACD ∽△ADB ,由此可得AD AB CD BD=,在Rt △ABD 中由AD=6,AB=9易得BD=,由此即可解得CD 的长了. 详解:(1)如下图,连接OD .∵OA=OD ,∴∠DAB=∠ODA ,∵∠CAD=∠DAB ,∴∠ODA=∠CAD∴AC ∥OD∴∠C+∠ODC=180°∵∠C=90°∴∠ODC=90°∴OD ⊥CD ,∴CD 是⊙O 的切线.(2)如下图,连接BD ,∵AB 是⊙O 的直径,∴∠ADB=90°,∵AB=9,AD=6,∴∵∠CAD=∠BAD ,∠C=∠ADB=90°,∴△ACD ∽△ADB ,∴AD ABCD BD=,∴6935 CD=,∴CD=185=259.点睛:这是一道考查“圆和直线的位置关系与相似三角形的判定和性质”的几何综合题,作出如图所示的辅助线,熟悉“圆的切线的判定方法”和“相似三角形的判定和性质”是正确解答本题的关键.26.(1) AB的解析式是y=-13x+1.点B(3,0).(2)32n-1;(3) (3,4)或(5,2)或(3,2).【解析】试题分析:(1)把A的坐标代入直线AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x 的值,即可求得B的坐标;(2)过点A作AM⊥PD,垂足为M,求得AM的长,即可求得△BPD和△PAB的面积,二者的和即可求得;(3)当S△ABP=2时,32n-1=2,解得n=2,则∠OBP=45°,然后分A、B、P分别是直角顶点求解.试题解析:(1)∵y=-13x+b经过A(0,1),∴b=1,∴直线AB的解析式是y=-13x+1.当y=0时,0=-13x+1,解得x=3,∴点B(3,0).(2)过点A作AM⊥PD,垂足为M,则有AM=1,∵x=1时,y=-13x+1=23,P在点D的上方,∴PD=n-23,S△APD=12PD•AM=12×1×(n-23)=12n-13由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,∴S△BPD=12PD×2=n-23,∴S△PAB=S△APD+S△BPD=12n-13+n-23=32n-1;(3)当S△ABP=2时,32n-1=2,解得n=2,∴点P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2种情况,如图2∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3种情况,如图3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB和△PEB中,{CP EBCPB EBPBP BP=∠=∠=∴△PCB≌△PEB(SAS),∴PC=CB=PE=EB=2,∴C(3,2).∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(3,4)或(5,2)或(3,2).考点:一次函数综合题.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为()米A.5B.3C.5+1 D.32.如图,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则△ACD的周长为()A.13 B.17 C.18 D.253.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵4.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A .(32,0)B .(2,0)C .(52,0)D .(3,0)5.如图,∠ACB=90°,D 为AB 的中点,连接DC 并延长到E ,使CE=13CD ,过点B 作BF ∥DE ,与AE 的延长线交于点F ,若AB=6,则BF 的长为( )A .6B .7C .8D .106.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( ) A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 7.抛物线223y x =(﹣)的顶点坐标是( )A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3)8.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min )成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y (℃)和时间x (min )的关系如图所示,水温从100℃降到35℃所用的时间是( )A .27分钟B .20分钟C .13分钟D .7分钟9.下列函数中,y随着x的增大而减小的是()A.y=3x B.y=﹣3x C.3yx=D.3yx=-10.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B..5 C.6 D.8二、填空题(本题包括8个小题)11.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.12.在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=__________°.13.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.14.某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为_____人.15.把多项式x3﹣25x分解因式的结果是_____16.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=_____.17.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为9m,那么这栋建筑物的高度为_____m.18.一元二次方程x2=3x的解是:________.三、解答题(本题包括8个小题)19.(6分)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,∠EAD=45°,将△ADC绕点A顺时针旋转90°,得到△AFB,连接EF.求证:EF=ED;若AB=22,CD=1,求FE的长.20.(6分)已知:二次函数C1:y1=ax2+2ax+a﹣1(a≠0)把二次函数C1的表达式化成y=a(x﹣h)2+b(a≠0)的形式,并写出顶点坐标;已知二次函数C1的图象经过点A(﹣3,1).①求a的值;②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,求k的取值范围.21.(6分)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GE•GD.求证:∠ACF=∠ABD;连接EF,求证:EF•CG=EG•CB.22.(8分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行60米到达C处,再测得山顶A的仰角为45°,求山高AD的长度.(测角仪高度忽略不计)23.(8分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?24.(10分)据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元.求该省第二、三季度投资额的平均增长率.25.(10分)计算532224mmm m-⎛⎫+-÷⎪--⎝⎭.26.(12分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】由题意可知,AC=1,AB=2,∠CAB=90°据勾股定理则2222125AC AB+=+=;∴AC+BC=(5m.答:树高为(5故选C.2.C【解析】在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF为线段AB的垂直平分线,在Rt△ABC中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=12AB,所以△ACD的周长为AC+CD+AD=AC+AB=5+13=18.故选C.3.D【解析】试题解析:A、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A正确;B、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B正确;C、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C正确;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植树量的平均数约是4.73棵,结论D不正确.故选D.考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.4.C【解析】【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【详解】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,OAC BCDAOC BDC AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),。
福建省宁德市2019-2020学年中考第四次质量检测数学试题含解析
福建省宁德市2019-2020学年中考第四次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若分式11x - 有意义,则x 的取值范围是 A .x >1 B .x <1 C .x≠1 D .x≠02.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米. 设A 港和B 港相距x 千米. 根据题意,可列出的方程是( ).A .32824x x =- B .32824x x =+ C .2232626x x +-=+ D .2232626x x +-=- 3.如图,点ABC 在⊙O 上,OA ∥BC ,∠OAC=19°,则∠AOB 的大小为( )A .19°B .29°C .38°D .52°4.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y (单位:元)与一次性购买该书的数量x (单位:本)之间的函数关系如图所示,则下列结论错误的是( )A .一次性购买数量不超过10本时,销售价格为20元/本B .a =520C .一次性购买10本以上时,超过10本的那部分书的价格打八折D .一次性购买20本比分两次购买且每次购买10本少花80元5.下列计算正确的是( )A .a 3•a 2=a 6B .(a 3)2=a 5C .(ab 2)3=ab 6D .a+2a =3a6.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是( )1 2 3 4 5 成绩(m ) 8.2 8.0 8.2 7.5 7.8A .8.2,8.2B .8.0,8.2C .8.2,7.8D .8.2,8.07.如果解关于x 的分式方程2122m x x x -=--时出现增根,那么m 的值为 A .-2 B .2 C .4 D .-48.方程x (x -2)+x -2=0的两个根为( )A .10x =,22x =B .10x =,22x =-C .11x =- ,22x =D .11x =-, 22x =-9.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是( )A .30,28B .26,26C .31,30D .26,2210.如图,将函数y =12(x ﹣2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A (1,m ),B (4,n )平移后的对应点分别为点A'、B'.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )A .y =12(x ﹣2)2-2 B .y =12(x ﹣2)2+7 C .y =12(x ﹣2)2-5 D .y =12(x ﹣2)2+4 11.如图,弹性小球从点P (0,1)出发,沿所示方向运动,每当小球碰到正方形OAB C 的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P 1(2,0),第2次碰到正方形的边时的点为P 2,…,第n 次碰到正方形的边时的点为P n ,则点P 2018的坐标是( )A.(1,4)B.(4,3)C.(2,4)D.(4,1)12.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B. C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.14.如图,在Y ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=42cm,则EF+CF的长为cm.15.已知关于x的方程x2﹣2x+n=1没有实数根,那么|2﹣n|﹣|1﹣n|的化简结果是_____.16.如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD面积为_____.17.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(32,0),B(0,2),则点B2018的坐标为_____.18.若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC中AB=AC,请你利用尺规在BC边上求一点P,使△ABC~△PAC不写画法,(保留作图痕迹).20.(6分)下面是“作三角形一边上的高”的尺规作图过程.已知:△ABC.求作:△ABC的边BC上的高AD.作法:如图2,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;(2)作直线AE交BC边于点D.所以线段AD就是所求作的高.请回答:该尺规作图的依据是______.21.(6分)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.(1)求证:AB与⊙O相切;(2)若等边三角形ABC的边长是4,求线段BF的长?22.(8分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C 点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.23.(8分)解不等式组:12231 xx x-⎧⎨+≥-⎩<.24.(10分)如图,已知∠AOB=45°,AB⊥OB,OB=1.(1)利用尺规作图:过点M作直线MN∥OB交AB于点N(不写作法,保留作图痕迹);(1)若M为AO的中点,求AM的长.25.(10分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD ,过点D 作BC 的平行线与AC 的延长线相交于点P .求证:PD 是⊙O 的切线;求证:△ABD ∽△DCP ;当AB=5cm ,AC=12cm 时,求线段PC 的长.26.(12分)黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?27.(12分)如图,一座钢结构桥梁的框架是△ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D 是BC 的中点,且AD ⊥BC .(1)求sinB 的值;(2)现需要加装支架DE 、EF ,其中点E 在AB 上,BE =2AE ,且EF ⊥BC ,垂足为点F ,求支架DE 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】【详解】分式分母不为0,所以10x -≠,解得1x ≠.故选:C.2.A【解析】【分析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时.根据“轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时”,得出等量关系,据此列出方程即可.【详解】解:设A 港和B 港相距x 千米,可得方程:32824x x =- 故选:A .【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度.3.C【解析】【分析】由AO ∥BC ,得到∠ACB=∠OAC=19°,根据圆周角定理得到∠AOB=2∠ACB=38°. 【详解】∵AO ∥BC ,∴∠ACB=∠OAC ,而∠OAC=19°,∴∠ACB=19°,∴∠AOB=2∠ACB=38°.故选:C .【点睛】本题考查了圆周角定理与平行线的性质.解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用是解此题的关键.4.D【解析】【分析】A 、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A 选项正确;C 、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C 正确;B 、根据总价=200+超过10本的那部分书的数量×16即可求出a 值,B 正确;D ,求出一次性购买20本书的总价,将其与400相减即可得出D 错误.此题得解.【详解】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.故选D.【点睛】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.5.D【解析】【分析】根据同底数幂的乘法、积的乘方与幂的乘方及合并同类项的运算法则进行计算即可得出正确答案.【详解】解:A.x4•x4=x4+4=x8≠x16,故该选项错误;B.(a3)2=a3×2=a6≠a5,故该选项错误;C.(ab2)3=a3b6≠ab6,故该选项错误;D.a+2a=(1+2)a=3a,故该选项正确;故选D.考点:1.同底数幂的乘法;2.积的乘方与幂的乘方;3.合并同类项.6.D【解析】【分析】【详解】解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1.其中8.1出现1次,出现次数最多,8.2排在第三,∴这组数据的众数与中位数分别是:8.1,8.2.故选D.【点睛】本题考查众数;中位数.7.D【解析】【详解】2122m x x x-=--,去分母,方程两边同时乘以(x ﹣1),得: m+1x=x ﹣1,由分母可知,分式方程的增根可能是1.当x=1时,m+4=1﹣1,m=﹣4,故选D .8.C【解析】【分析】根据因式分解法,可得答案.【详解】解:因式分解,得(x-2)(x+1)=0,于是,得x-2=0或x+1=0,解得x 1=-1,x 2=2,故选:C .【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解题关键.9.B .【解析】试题分析:由图可知,把7个数据从小到大排列为22,22,23,1,28,30,31,中位数是第4位数,第4位是1,所以中位数是1.平均数是(22×2+23+1+28+30+31)÷7=1,所以平均数是1.故选B . 考点:中位数;加权平均数.10.D【解析】【详解】 ∵函数()21212y x =-+的图象过点A (1,m ),B (4,n ), ∴m=()211212-+=32,n=()214212-+=3, ∴A (1,32),B (4,3), 过A 作AC ∥x 轴,交B′B 的延长线于点C ,则C (4,32), ∴AC=4﹣1=3,∵曲线段AB 扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数()21212y x =-+的图象沿y 轴向上平移3个单位长度得到一条新函数的图象, ∴新图象的函数表达式是()21242y x =-+. 故选D .11.D【解析】【分析】先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解.【详解】由分析可得p(0,1)、1(2,0)p 、)(24,1p 、)(30,3p 、()42,4p 、)(54,3p 、)(60,1p 等,故该坐标的循环周期为7则有则有2018128837+L =,故是第2018次碰到正方形的点的坐标为(4,1). 【点睛】本题主要考察规律的探索,注意观察规律是解题的关键.12.A【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看第一层是三个小正方形,第二层中间有一个小正方形,故选:A .【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解析】【分析】。
福建省宁德市2019-2020学年中考数学第三次调研试卷含解析
福建省宁德市2019-2020学年中考数学第三次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于点E ,则阴影部分面积为( )A .πB .32πC .6﹣πD .23﹣π 2.若关于x 的分式方程2122x a x -=-的解为非负数,则a 的取值范围是( ) A .a≥1 B .a >1 C .a≥1且a≠4 D .a >1且a≠43.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 2018的值为( )A .20151()2 B .20162() C .20152() D .20161()24.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是( )A .国B .厉C .害D .了5.如图,在网格中,小正方形的边长均为1,点A,B,C 都在格点上,则∠ABC 的正切值是( )A .12B .2C 5D 25 6.下列实数中,最小的数是( )A 3B .π-C .0D .2-180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A.1201806x x=+B.1201806x x=-C.1201806x x=+D.1201806x x=-8.如图,G,E分别是正方形ABCD的边AB,BC上的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正确的结论有()A.4 个B.3 个C.2 个D.1 个9.2016的相反数是()A.12016-B.12016C.2016-D.201610.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是()A.图2 B.图1与图2 C.图1与图3 D.图2与图311.已知反比例函数y=8kx-的图象位于第一、第三象限,则k的取值范围是()A.k>8 B.k≥8C.k≤8D.k<812.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AB=c,∠A=α,则CD长为()A.c•sin2αB.c•cos2αC.c•sinα•tanαD.c•sinα•cosα二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点A在双曲线kyx=上,AB⊥x轴于B,且△AOB的面积S△AOB=2,则k=______.14.Rt △ABC 的边AB=5,AC=4,BC=3,矩形DEFG 的四个顶点都在Rt △ABC 的边上,当矩形DEFG 的面积最大时,其对角线的长为_______.15.学校乒乓球社团有4名男队员和3名女队员,要从这7名队员中随机抽取一男一女组成一队混合双打组合,可组成不同的组合共有_____对.16.如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE=AP=1,PB=5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③EB ⊥ED ;④S △APD +S △APB =1+6;⑤S 正方形ABCD =4+6.其中正确结论的序号是 .17.计算:()235y y ÷=____________18.如图,点A 、B 、C 是⊙O 上的三点,且△AOB 是正三角形,则∠ACB 的度数是 。
2020年福建省九年级初中学业质量检查数学试卷
5、阅读使人充实,会谈使人敏捷,写作使人精确。
Tuesday, June 16, 2020June 20Tuesday, June 16,
花一样2020美6/16/2丽020 ,感谢你的阅读。
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。
10 时 17 分 10 时 17 分 16-Jun-206.16.2020
7、自知之明是最难得的知识。 20.6.1620.6.1620.6.16 。 2020 年 6 月 16 日星期二二〇二〇年六月十六日
8、勇气通往天堂,怯懦通往地狱。
22:1722:17:186.16.2020Tuesday, June 16, 2020
2020 的 相 反 数 为
()
1
B.
2020
C.
-2020
D.
± 2020
2、地球与月球平均距离约为 384000 千米,将数字 384000 用科学记数法表示为 ( )
A. 3.84 ×106
B. 3.84 ×105
C. 3.84 ×104
D. 3.84 ×105
3、下列运算正确的是 ( )
A. ??+ ??+ ??= ??3
C. 140 °
D. 150 °
10、已知点 A(a-m,y1)、B(a-n,y2)、C(a+b,y3)都在二次函数 ??= ??2 - 2???+? 1的图象上 ,若 0<m<b<n, 则 y1、 y2、y3 的大小关系是 ( )
A. y1<y2<y3
B. y1<y3<y2
二、填空题 (4 ×6=24)
最新
Word
亲爱的用户: 1、只要朝着一个方向奋斗,一切都会变得得心应手。
福建省宁德市2019-2020学年中考第二次质量检测数学试题含解析
福建省宁德市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图案中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .2.如图,在△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若∠A =24°,则∠BDC 的度数为( )A .42°B .66°C .69°D .77°3.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .14.如图,在平面直角坐标系中,直线y=k 1x+2(k 1≠0)与x 轴交于点A ,与y 轴交于点B ,与反比例函数y=2k x 在第二象限内的图象交于点C ,连接OC ,若S △OBC =1,tan ∠BOC=13,则k 2的值是( )A .3B .﹣12C .﹣3D .﹣65.如图,梯形ABCD 中,AD ∥BC ,AB=DC ,DE ∥AB ,下列各式正确的是( )A .AB DC =u u u r u u u r B .DE DC =u u u v u u u v C .AB ED =u u u v u u u v D .AD BE =u u u v u u u v6.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .7.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是8.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.O1B.O2C.O3D.O49.如图,AB为⊙O的直径,C为⊙O上的一动点(不与A、B重合),CD⊥AB于D,∠OCD的平分线交⊙O于P,则当C在⊙O上运动时,点P的位置()A.随点C的运动而变化B.不变C.在使PA=OA的劣弧上D.无法确定10.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为()A .1:2B .1:3C .1:4D .1:111.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .012.已知二次函数2()y x h =-- (h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为-1,则h 的值为( )A .3或6B .1或6C .1或3D .4或6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在矩形ABCD 中,E 是AD 边的中点,BE AC ⊥,垂足为点F ,连接DF ,分析下列四个结论:AEF V ①∽CAB V ;CF 2AF =②;DF DC =③;tan CAD 2.∠=④其中正确的结论有______.14.如图,直线y =kx 与双曲线y =2x(x >0)交于点A(1,a),则k =_____.15.在△ABC 中,AB=13cm ,AC=10cm ,BC 边上的高为11cm ,则△ABC 的面积为______cm 1. 16.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC =5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD 的周长是30,则这个风车的外围周长是_____.17.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是 .18.关于x 的一元二次方程2kx x+1=0-有两个不相等的实数根,则k 的取值范围是 ▲ .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在四边形ABCD 中,∠A =∠BCD =90°,210BC CD ==,CE ⊥AD 于点E .(1)求证:AE =CE ;(2)若tanD =3,求AB 的长.20.(6分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.1()求甲、乙两种商品的每件进价;2()该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?21.(6分)计算:(3﹣2)0+(13)﹣1+4cos30°﹣|4﹣12| 22.(8分) (y ﹣z)1+(x ﹣y)1+(z ﹣x)1=(y+z ﹣1x)1+(z+x ﹣1y)1+(x+y ﹣1z)1.求222(1)(1)(1)(1)(1)(1)yz zx xy x y z ++++++的值. 23.(8分)如图,四边形ABCD 中,∠C =90°,AD ⊥DB ,点E 为AB 的中点,DE ∥BC.(1)求证:BD 平分∠ABC ;(2)连接EC ,若∠A =30°,DC =3,求EC 的长.24.(10分)如图,在65⨯的矩形方格纸中,每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.在图中画出以线段AB 为底边的等腰CAB ∆,其面积为5,点C 在小正方形的顶点上;在图中面出以线段AB 为一边的ABDE W ,其面积为16,点D 和点E 均在小正方形的顶点上;连接CE,并直接写出线段CE的长.25.(10分)定义:如果把一条抛物线绕它的顶点旋转180°得到的抛物线我们称为原抛物线的“孪生抛物线”.(1)求抛物线y=x2﹣2x的“孪生抛物线”的表达式;(2)若抛物线y=x2﹣2x+c的顶点为D,与y轴交于点C,其“孪生抛物线”与y轴交于点C′,请判断△DCC’的形状,并说明理由:(3)已知抛物线y=x2﹣2x﹣3与y轴交于点C,与x轴正半轴的交点为A,那么是否在其“孪生抛物线”上存在点P,在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形?若存在,求出P点的坐标;若不存在,说明理由.∠的平分线与边AB相交于点E.26.(12分)如图,在平行四边形ABCD中,ADC+=;(1)求证BE BC CD(2)若点E与点B重合,请直接写出四边形ABCD是哪种特殊的平行四边形.27.(12分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据轴对称图形与中心对称图形的概念解答.【详解】A.不是轴对称图形,是中心对称图形;B.是轴对称图形,是中心对称图形;C.不是轴对称图形,也不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折叠的性质可得:∠BCD=12∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故选C.3.D【解析】【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n 的值,代入计算可得.【详解】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选D.【点睛】本题考查了关于y轴对称的点,熟练掌握关于y轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.4.C【解析】【分析】如图,作CH ⊥y 轴于H .通过解直角三角形求出点C 坐标即可解决问题.【详解】解:如图,作CH ⊥y 轴于H .由题意B (0,2), ∵112OB CH ⋅⋅=, ∴CH=1, ∵tan ∠BOC=1,3CH OH = ∴OH=3,∴C (﹣1,3),把点C (﹣1,3)代入2k y x =,得到k 2=﹣3, 故选C .【点睛】本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.5.D【解析】∵AD//BC ,DE//AB ,∴四边形ABED 是平行四边形,∴AB DE =u u u v u u u v ,AD BE =u u u v u u u v,∴选项A 、C 错误,选项D 正确,选项B 错误,故选D.6.C【解析】试题分析:根据主视图是从正面看得到的图形,可得答案.解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选C.考点:简单组合体的三视图.7.C【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数8.A【解析】试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B 来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.考点:平面直角坐标系.9.B【解析】【分析】因为CP是∠OCD的平分线,所以∠DCP=∠OCP,所以∠DCP=∠OPC,则CD∥OP,所以弧AP等于弧BP,所以PA=PB.从而可得出答案.【详解】解:连接OP,∵CP 是∠OCD 的平分线,∴∠DCP=∠OCP ,又∵OC=OP ,∴∠OCP=∠OPC ,∴∠DCP=∠OPC ,∴CD ∥OP ,又∵CD ⊥AB ,∴OP ⊥AB ,∴¼¼AP BP, ∴PA=PB .∴点P 是线段AB 垂直平分线和圆的交点,∴当C 在⊙O 上运动时,点P 不动.故选:B .【点睛】本题考查了圆心角、弦、弧之间的关系,以及平行线的判定和性质,在同圆或等圆中,等弧对等弦. 10.B【解析】【分析】根据中位线定理得到DE ∥BC ,DE=12BC ,从而判定△ADE ∽△ABC ,然后利用相似三角形的性质求解. 【详解】解:∵D 、E 分别为△ABC 的边AB 、AC 上的中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC , ∴△ADE 的面积:△ABC 的面积=21()2=1:4,∴△ADE 的面积:四边形BCED 的面积=1:3;故选B .【点睛】本题考查三角形中位线定理及相似三角形的判定与性质.11.C【解析】【分析】 根据已知和根与系数的关系12c x x a =得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =, ∴k 2=1,解得k=1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k=1时,34430∆=--+=-<,∴k=1不合题意,故舍去,当k=−1时,34450∆=-++=>,符合题意,∴k=−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键. 12.B【解析】分析:分h <2、2≤h≤5和h >5三种情况考虑:当h <2时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h >5时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论.综上即可得出结论.详解:如图,当h <2时,有-(2-h )2=-1,解得:h 1=1,h 2=3(舍去);当2≤h≤5时,y=-(x-h )2的最大值为0,不符合题意;当h >5时,有-(5-h )2=-1,解得:h 3=4(舍去),h 4=1.综上所述:h 的值为1或1.故选B .点睛:本题考查了二次函数的最值以及二次函数的性质,分h <2、2≤h≤5和h >5三种情况求出h 值是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.①②③【解析】【分析】①证明∠EAC=∠ACB ,∠ABC=∠AFE=90°即可;②由AD ∥BC ,推出△AEF ∽△CBF ,得到AE AF BC CF =,由AE=12AD=12BC ,得到12AF CF =,即CF=2AF ; ③作DM ∥EB 交BC 于M ,交AC 于N ,证明DM 垂直平分CF ,即可证明;④设AE=a ,AB=b ,则AD=2a ,根据△BAE ∽△ADC ,得到2b a a b =,即a ,可得tan ∠CAD=22b a =. 【详解】 如图,过D 作DM ∥BE 交AC 于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,AD=BC ,∵BE ⊥AC 于点F ,∴∠EAC=∠ACB ,∠ABC=∠AFE=90°,∴△AEF ∽△CAB ,故①正确;∵AD ∥BC ,∴△AEF ∽△CBF , ∴AE AF BC CF=, ∵AE=12AD=12BC , ∴12AF CF =,即CF=2AF , ∴CF=2AF ,故②正确;作DM ∥EB 交BC 于M ,交AC 于N ,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12 BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,∴2b aa b=,即2a,∴tan∠CAD=222ba=,故④错误;故答案为:①②③.【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.14.1【解析】解:∵直线y=kx与双曲线y=2x(x>0)交于点A(1,a),∴a=1,k=1.故答案为1.15.2或2.【解析】试题分析:分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD=16,CD=5,再由图形求出BC,在锐角三角形中,BC=BD+CD=2,在钝角三角形中,BC=CD-BD=2.故答案为2或2.考点:勾股定理16.71【解析】分析:由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.详解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,AC=y,则x2=4y2+52,∵△BCD的周长是30,∴x+2y+5=30则x=13,y=1.∴这个风车的外围周长是:4(x+y)=4×19=71.故答案是:71.点睛:本题考查了勾股定理在实际情况中的应用,注意隐含的已知条件来解答此类题.17.21【解析】试题分析:这四个数中,奇数为1和3,则P(抽出的数字是奇数)=2÷4=12.考点:概率的计算.18.k<14且k≠1.【解析】根据一元二次方程kx2-x+1=1有两个不相等的实数根,知△=b2-4ac>1,然后据此列出关于k的方程,解方程,结合一元二次方程的定义即可求解:∵2kx x+1=0有两个不相等的实数根,∴△=1-4k>1,且k≠1,解得,k<14且k≠1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)AB=4【解析】【分析】(1)过点B作BF⊥CE于F,根据同角的余角相等求出∠BCF=∠D,再利用“角角边”证明△BCF和△CDE 全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证;(2)由(1)可知:CF=DE,四边形AEFB是矩形,从而求得AB=EF,利用锐角三角函数的定义得出DE和CE的长,即可求得AB的长.【详解】(1)证明:过点B 作BH ⊥CE 于H ,如图1.∵CE ⊥AD ,∴∠BHC =∠CED =90°,∠1+∠D =90°.∵∠BCD =90°,∴∠1+∠2=90°,∴∠2=∠D .又BC =CD∴△BHC ≌△CED (AAS ).∴BH =CE .∵BH ⊥CE ,CE ⊥AD ,∠A =90°,∴四边形ABHE 是矩形,∴AE =BH .∴AE =CE .(2)∵四边形ABHE 是矩形,∴AB =HE .∵在Rt △CED 中,tan 3CE D DE ==, 设DE =x ,CE =3x ,∴10210CD x ==.∴x =2.∴DE =2,CE =3.∵CH =DE =2.∴AB =HE =3-2=4.【点睛】本题考查了全等三角形的判定与性质,矩形的判定与性质,锐角三角函数的定义,难度中等,作辅助线构造出全等三角形与矩形是解题的关键.20.()1 甲种商品的每件进价为40元,乙种商品的每件进价为48元;()2甲种商品按原销售单价至少销售20件.【解析】【分析】()1设甲种商品的每件进价为x 元,乙种商品的每件进价为(x+8))元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程进行求解即可;()2设甲种商品按原销售单价销售a 件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.【详解】()1设甲种商品的每件进价为x 元,则乙种商品的每件进价为()x 8+元, 根据题意得,20002400x x 8=+, 解得x 40=,经检验,x 40=是原方程的解,答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;()2甲乙两种商品的销售量为20005040=, 设甲种商品按原销售单价销售a 件,则()()()()6040a 600.74050a 8848502460-+⨯--+-⨯≥,解得a 20≥,答:甲种商品按原销售单价至少销售20件.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.21.4【解析】【分析】直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值、绝对值的性质分别化简进而得出答案.【详解】2)0+(13)﹣1+4cos30°﹣|4|4﹣【点睛】此题主要考查了实数运算,正确化简各数是解题关键.22.1【解析】【分析】通过已知等式化简得到未知量的关系,代入目标式子求值.【详解】∵(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.∴(y﹣z)1﹣(y+z﹣1x)1+(x﹣y)1﹣(x+y﹣1z)1+(z﹣x)1﹣(z+x﹣1y)1=2,∴(y﹣z+y+z﹣1x)(y﹣z﹣y﹣z+1x)+(x﹣y+x+y﹣1z)(x﹣y﹣x﹣y+1z)+(z﹣x+z+x﹣1y)(z﹣x﹣z ﹣x+1y)=2,∴1x1+1y1+1z1﹣1xy﹣1xz﹣1yz=2,∴(x﹣y)1+(x﹣z)1+(y﹣z)1=2.∵x,y,z均为实数,∴x=y=z.∴()() ()()() 2221)111.111yz zx xyx y z+++= +++(23.(1)见解析;(2)EC=【解析】【分析】(1)直接利用直角三角形的性质得出12DE BE AB==,再利用DE∥BC,得出∠2=∠3,进而得出答案;(2)利用已知得出在Rt△BCD中,∠3=60°,DC=DB的长,进而得出EC的长. 【详解】(1)证明:∵AD⊥DB,点E为AB的中点,∴12DE BE AB==.∴∠1=∠2.∵DE∥BC,∴∠2=∠3.∴∠1=∠3.∴BD平分∠ABC.(2)解:∵AD⊥DB,∠A=30°,∴∠1=60°.∴∠3=∠2=60°.∵∠BCD=90°,∴∠4=30°.∴∠CDE=∠2+∠4=90°.DC=,在Rt△BCD中,∠3=60°,3∴DB=2.∵DE=BE,∠1=60°,∴DE=DB=2.∴22437=+=+=.EC DE DC【点睛】此题主要考查了直角三角形斜边上的中线与斜边的关系,正确得出DB,DE的长是解题关键.CE=.24.(1)见解析;(2)见解析;(3)见解析,5【解析】【分析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.【详解】解:(1)如图所示;(2)如图所示;(3)如图所示;CE=5.【点睛】本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键. 25.(1)y=-(x-1)²=-x²+2x-2;(2)等腰Rt△,(3)P1(3,-8),P2(-3,-20).【解析】【分析】(1)当抛物线绕其顶点旋转180°后,抛物线的顶点坐标不变,只是开口方向相反,则可根据顶点式写出旋转后的抛物线解析式;(2)可分别求出原抛物线和其“孪生抛物线”与y轴的交点坐标C、C′,由点的坐标可知△DCC’是等腰直角三角形;(3)可求出A(3,0),C(0,-3),其“孪生抛物线”为y=-x2+2x-5,当AC为对角线时,由中点坐标可知点P不存在,当AC为边时,分两种情况可求得点P的坐标.【详解】(1)抛物线y=x2-2x化为顶点式为y=(x-1)2-1,顶点坐标为(1,-1),由于抛物线y=x2-2x绕其顶点旋转180°后抛物线的顶点坐标不变,只是开口方向相反,则所得抛物线解析式为y=-(x-1)2-1=-x2+2x-2;(2)△DCC'是等腰直角三角形,理由如下:∵抛物线y=x2-2x+c=(x-1)2+c-1,∴抛物线顶点为D的坐标为(1,c-1),与y轴的交点C的坐标为(0,c),∴其“孪生抛物线”的解析式为y=-(x-1)2+c-1,与y轴的交点C’的坐标为(0,c-2),∴CC'=c-(c-2)=2,∵点D的横坐标为1,∴∠CDC'=90°,由对称性质可知DC=DC’,∴△DCC'是等腰直角三角形;(3)∵抛物线y=x2-2x-3与y轴交于点C,与x轴正半轴的交点为A,令x=0,y=-3,令y=0时,y=x2-2x-3,解得x1=-1,x2=3,∴C(0,-3),A(3,0),∵y=x2-2x-3=(x-1)2-4,∴其“孪生抛物线”的解析式为y=-(x-1)2-4=-x2+2x-5,若A、C为平行四边形的对角线,∴其中点坐标为(32,−32),设P(a,-a2+2a-5),∵A、C、P、Q为顶点的四边形为平行四边形,∴Q(0,a-3),∴23252a a a--+-=−32,化简得,a2+3a+5=0,△<0,方程无实数解,∴此时满足条件的点P不存在,若AC为平行四边形的边,点P在y轴右侧,则AP∥CQ且AP=CQ,∵点C和点Q在y轴上,∴点P的横坐标为3,把x=3代入“孪生抛物线”的解析式y=-32+2×3-5=-9+6-5=-8,∴P1(3,-8),若AC为平行四边形的边,点P在y轴左侧,则AQ∥CP且AQ=CP,∴点P的横坐标为-3,把x=-3代入“孪生抛物线”的解析式y=-9-6-5=-20,∴P2(-3,-20)∴原抛物线的“孪生抛物线”上存在点P1(3,-8),P2(-3,-20),在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形.【点睛】本题是二次函数综合题型,主此题主要考查了根据二次函数的图象的变换求抛物线的解析式,解题的关键是求出旋转后抛物线的顶点坐标以及确定出点P的位置,注意分情况讨论.26.(1)见解析;(2)菱形.【解析】【分析】(1)根据角平分线的性质可得∠ADE=∠CDE,再由平行线的性质可得AB∥CD,易得AD=AE,从而可证得结论;(2)若点E与点B重合,可证得AD=AB,根据邻边相等的平行四边形是菱形即可作出判断.【详解】(1)∵DE平分∠ADC,∴∠ADE=∠CDE.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,AD=BC,AB=CD.∵∠AED=∠CDE.∴∠ADE=∠AED.∴AD=AE.∴BC=AE.∵AB=AE+EB.∴BE+BC=CD.(2)菱形,理由如下:由(1)可知,AD=AE,∵点E与B重合,∴AD=AB.∵四边形ABCD 是平行四边形∴平行四边形ABCD 为菱形.【点睛】本题考查了平行四边形的性质,平行线的性质,等腰三角形的性质,菱形的性质,熟练掌握各知识是解题的关键.27.2903cm 【解析】【分析】过点A 作AG CD ⊥,垂足为G ,利用三角函数求出CG ,从而求出GD ,继而求出CD .连接FD 并延长与BA 的延长线交于点H ,利用三角函数求出CH ,由图得出EH ,再利用三角函数值求出EF.【详解】过点A 作AG CD ⊥,垂足为G .则30CAG ∠=︒,在Rt ACG V 中,()1sin 3050252CG AC cm =︒=⨯=g , 由题意,得()GD 503020cm =-=,∴()252045CD CG GD cm =+=+=,连接FD 并延长与BA 的延长线交于点H . 由题意,得30H ∠=︒.在Rt CDH V 中,()290sin 30CD CH CD cm ===︒, ∴()300505090290EH EC CH AB BE AC CH cm =+=--+=--+=.在Rt EFH V 中,()32903tan 30290EF EH cm =︒=⨯=g . 答:支角钢CD 的长为45cm ,EF 的长为2903cm .考点:三角函数的应用。
福建省宁德市2020年(春秋版)数学中考模拟试卷(II)卷
福建省宁德市 2020 年(春秋版)数学中考模拟试卷(II)卷姓名:________班级:________成绩:________一、 单选题 (共 10 题;共 20 分)1. (2 分) (2016 七上·揭阳期末) -5 的倒数与它的相反数的和为( )A.—B.C.D.— 2. (2 分) (2019·北仑模拟) 继 2017 年北仓区经济总量迈上 1000 亿元的新台阶,2018 年再创新高,全年 生产总值约 1147 亿元,1147 亿用科学记数法表示为( ) A . 1.147×108 B . 1.147×109 C . 1.147×1010 D . 1.147×1011 3. (2 分) (2018·苏州模拟) 如左图是由 4 个大小相同的正方体组合而成的几何体,其主视图是( )A. B.C.D. 4. (2 分) (2019·大同模拟) 下列运算正确的是( ) A . ﹣(a3)2=a5 B . a2+a2=a4C.=4D . | ﹣2|= ﹣2第 1 页 共 16 页5. (2 分) (2019·朝阳) 若点,,在反比例函数的图象上,则y1 , y2 , y3 的大小关系是( )A.B.C.D.6. (2 分) (2017 八下·宁波月考) 一组数据:1,3,2,5,x 的平均数是 3,则这组数据的标准差为( )A.2B. 4C. D . -2 7. (2 分) 在半径为 2 的圆中,弦 AB 的长为 2,则的长等于( )A.B.C.D.8. (2 分) (2015 七下·茶陵期中) 下列运算正确的是( )A . 3a﹣4a=﹣1B . (a2)3=a5C . 3a2+2a3=5a5D . 2a2•3a3=6a59. (2 分) (2017 七下·丰台期中) 已知且A.B.C.D.,则 的值为( ).10. (2 分) (2016 高二下·河南期中) 在 Rt△ABC 中,若∠C=90°,cosA= , 则 sinA 的值为( )第 2 页 共 16 页A.B.C.D.二、 填空题 (共 6 题;共 6 分)11. (1 分) (2012·辽阳) 函数中,自变量 x 的取值范围是________.12. (1 分) 计算(3﹣1)(32+1)(34+1)(38+1)(316+1)=________ .13. (1 分) 若关于 x 的分式方程﹣1= 无解,则 m 的值________14. (1 分) (2017 八上·西华期中) 正八边形的一个内角是________度.15. (1 分) (2017 八上·台州期末) 如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若 EC=2,则 EF=________ .16. (1 分) (2017 九上·合肥开学考) 如图,在一张矩形纸片 ABCD 中,AB=4,BC=8,点 E,F 分别在 AD,BC 上,将纸片 ABCD 沿直线 EF 折叠,点 C 落在 AD 上的一点 H 处,点 D 落在点 G 处,有以下四个结论:①四边形 CFHE 是菱形; ②EC 平分∠DCH; ③线段 BF 的取值范围为 3≤BF≤4;④当点 H 与点 A 重合时,EF=2 . 以上结论中,你认为正确的有________.(填序号)三、 解答题 (共 9 题;共 90 分)17.(10分)算:(1) ( ) 2-|-6|+(-2)0;(2018·惠山模拟)计第 3 页 共 16 页(2) 化简:18. (5 分) (2018·莱芜) 先化简,再求值:,其中 a= +1.19. (5 分) (2020 七上·来宾期末) 某地的一种绿色蔬菜,在市场上若直接销售,每吨利润为 1000 元;经粗加工后销售,每吨利润 4000 元;经精加工后销售,每吨利润 7000 元.当地一家公司现有这种蔬菜 140 吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工 16 吨;如果对蔬菜进行精加工,每天可加工 6 吨;但每天两种方式不能同时进行.受季节等条件的限制,必须用 15 天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好 15 天完成.如果你是公司经理,你会选择哪一种方案,请说说理由.20. (10 分) (2017·景德镇模拟) 仅用无刻度的直尺,按要求画图(保留画图痕迹,不写作法)(1) 如图①,画出⊙O 的一个内接矩形;(2) 如图②,AB 是⊙O 的直径,CD 是弦,且 AB∥CD,画出⊙O 的内接正方形.21. (5 分) 如图,公园内有一棵景观树,AB 的影子请好落在地图 BC 和地图 CD 上,经测量 CD=4m,BC=10m, 已知该坡面 CD 与地面成 30°角,且此时测得 2m 的竹竿的影子是 1m,求这棵景观树的高度.22. (10 分) (2019 九上·萧山月考) 四张小卡片上分别写有数字-1,1,2,3,它们除数字外没有任何区别,现将它们放在盒子里搅匀.第 4 页 共 16 页(1) 随机地从盒子里抽取一张,求抽到数字 2 的概率; (2) 随机地从盒子里抽取一张,将数字记为 ,不放回再抽取第二张,将数字记为 ,请你用画树状图或列表的方法表示所有等可能的结果,并求出点在函数图象上的概率.23. (15 分) (2018 九上·汉阳期中) 在平面直角坐标系中,抛物线 y=ax2+bx+c 与 x 轴交于 A(1,0),B (3,0),与 y 轴交于 C(0,3),抛物线顶点为 D 点.(1) 求此抛物线解析式; (2) 如图 1,点 P 为抛物线上的一个动点,且在对称轴右侧,若△ADP 面积为 3,求点 P 的坐标; (3) 在(2)的条件下,PA 交对称轴于点 E,如图 2,过 E 点的任一条直线与抛物线交于 M,N 两点,直线 MD 交直线 y=﹣3 于点 F,连结 NF,求证:NF∥y 轴. 24. (15 分) (2017·江阴模拟) 如图(1) 如图①,AB 是⊙O 的弦,点 C 是⊙O 上的一点,在直线 AB 上方找一点 D,使得∠ADB=∠ACB,画出∠ADB, 并说明理由;(2) 如图②,AB 是⊙O 的弦,点 C 是⊙O 上的一点,在过点 C 的直线 l 上找一点 P,使得∠APB<∠ACB,画 出∠APB,并说明理由;问题解决: (3) 如图③,已知足球球门宽 AB 约为 5 米,一球员从距 B 点 5 米的 C 点(点 A、B、C 均在球场底 线上),沿与 AC 成 45°角的 CD 方向带球.试问,该球员能否在射线 CD 上找到一点 P,使得点 P 为最佳射门点(即 ∠APB 最大)?若能找到,求出这时点 P 与点 C 的距离;若找不到,请说明理由.第 5 页 共 16 页25. (15 分) 如图,在平面直角坐标系中,抛物线 y=ax2+bx+ 与 x 轴交于 A(﹣3,0),B(1,0)两点.与 y 轴交于点 C,点 D 与点 C 关于抛物线的对称轴对称.(1) 求抛物线的解析式,并直接写出点 D 的坐标; (2) 如图 1,点 P 从点 A 出发,以每秒 1 个单位长度的速度沿 A→B 匀速运动,到达点 B 时停止运动.以 AP 为边作 等边△APQ(点 Q 在 x 轴上方),设点 P 在运动过程中,△APQ 与四边形 AOCD 重叠部分的面积为 S,点 P 的运动时间 为 t 秒,求 S 与 t 之间的函数关系式; (3) 如图 2,连接 AC,在第二象限内存在点 M,使得以 M、O、A 为顶点的三角形与△AOC 相似.请直接写出所有符 合条件的点 M 坐标.第 6 页 共 16 页一、 单选题 (共 10 题;共 20 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、二、 填空题 (共 6 题;共 6 分)11-1、 12-1、 13-1、 14-1、 15-1、 16-1、三、 解答题 (共 9 题;共 90 分)17-1、参考答案17-2、第 7 页 共 16 页18-1、19-1、 20-1、 20-2、第 8 页 共 16 页21-1、 22-1、22-2、第 9 页 共 16 页23-1、23-2、第 10 页 共 16 页23-3、24-1、24-2、24-3、25-1、。
福建省宁德市2019-2020学年中考数学学业质量监测试题
三、解答题(本题包括8个小题)
19.(6分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.
7.B
【解析】
【分析】
根据图形给出的信息求出两车的出发时间,速度等即可解答.
【详解】
解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.
②慢车0时出发,快车2时出发,故正确.
③快车4个小时走了276km,可求出速度为69km/h,错误.
④慢车6个小时走了276km,可求出速度为46km/h,正确.
26.(12分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达 处时,测得小岛 位于它的北偏东 方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛 位于它的北偏东 方向.如果航母继续航行至小岛 的正南方向的 处,求还需航行的距离 的长.
该年级报名参加丙组的人数为;该年级报名参加本次活动的总人数,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?
25.(10分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.证明:DE为⊙O的切线;连接OE,若BC=4,求△OEC的面积.
【质检试卷】20年宁德市质检卷数学试题及答案
数学试题 第 1 页 共 15 页2020年宁德市初中毕业班质量检测数 学 试 题(满分150分 考试时间:120分钟) 班级___________ 姓名___________一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.2020的相反数为A .2020-B .2020C .20201-D .202012.某种球形病毒的直径为0.000 000 43米,将数据0.000 000 43用科学记数法表示为A .61034-.⨯B .610430.-⨯C .61043-⨯D .7103.4-⨯3.下列多项式能用完全平方公式进行因式分解的为A .21a -B .24a +C .221a a ++D .244a a --4.下列由4个大小相同的正方体搭成的几何体,左视图与其它几何体的左视图不同的为A .B .C .D .5.如图,有一斜坡AB 的长为10,坡角∠B =36°,则斜坡AB 的铅垂高度AC 为 A .︒⋅36tan 10 B .︒⋅36sin 10 C .︒36sin 10D .︒⋅36cos 106.《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同购买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设共同购买该物品的有x 人,该物品的价格是y 元,则根据题意,列出的方程组为 A .⎩⎨⎧=--=-4738y x y xB .⎩⎨⎧=-=-4738x y x yC .⎩⎨⎧-=--=-4738x y x yD .⎩⎨⎧-=-=-4738y x y x7.如图,在平行四边形ABCD 中,点E ,F 分别在AD 和BC 上,下列条件不能判定四边形AECF 是平行四边形的为 A .AF =CEB .DE =BFADCBF E第7题图第5题图ABC数学试题 第 2 页 共 15 页C .AF ∥CED .∠AFB =∠DEC8.已知一组数据的方差])7()7()7()711()78()73[(612222222-+-+-+-+-+-=c b a s ,则cb a ++的值为 A .22B .21C .20D .79.如图,数轴上有A ,B 两点,其中点A 表示的数为54,下列数中最接近点B 表示的数为 A .542⨯ B .642⨯C .74D .742⨯10.如图,在矩形ABCD 中,以点B 为圆心,AB 长为半径画弧,交BC 于点P ,以点D 为圆心,AD 长为半径画弧,交BC 于点Q ,若AB =15,AD =17,则PQ 的长为 A .2 B .6 C .8D .10 第 Ⅱ 卷注意事项:1.用0.5毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效. 2.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色签字笔描黑. 二、填空题:本题共6小题,每小题4分,共24分. 11.47°40′ 的余角为 .12.为打赢新冠疫情保卫战,福建省前后派出1381名医务人员驰援湖北,如图是福建省援鄂医务人员构成扇形统计图,其中医生有 _______名. 13.计算:421+-= .014.点A (-3,a )和点B (2,b )均在一次函数n x y +=5的图象上,则a b .(填“>”,“<”或“=”) 15.如图,点A 为⊙O 上一点,点P 为AO 延长线上一点,PB 切⊙O 于点B ,连接AB ,若∠APB =40°,则∠A 的度数为 .16.如图,点A ,B ,C 在反比例函数xy 4-=的图象上,且直线AB第9题图A 450 B第12题图第10题图ABCP D第15题BO 第16题图xyOCA D B数学试题 第 3 页 共 15 页经过原点,点C 在第二象限上,连接AC 并延长交x 轴于点D ,连接BD ,若△BOD 的面积为9,则CDAC= . 三、解答题:本题共9小题,共86分.17.(本题满分8分)解不等式组12313<,≤2x x ⎧-+⎪⎨⎪⎩,并把解集在数轴上表示出来.18.(本题满分8分)计算:aa a a a 3)393(2+÷-+-.19.(本题满分8分)如图,点E ,F 在线段AB 上,AD =BC ,∠A =∠B ,AE =BF .求证:DF =CE .20.(本题满分8分)如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,正方形DECF的三个顶点D ,E ,F 分别落在边AB ,AC ,BC 上.(1)用尺规作出正方形DECF ; (2)求正方形DECF 的边长.A BC DAEBC数学试题 第 4 页 共 15 页21.(本题满分8分)如图,Rt △ABC 中,∠BAC =90°,将△ABC 沿斜边BC 向右平移,得到△DEF (BE<BC ),AC 与DE 相交于点O ,连接AD ,AE ,DC ,得到四边形AECD . (1)当点E 为BC 中点时,求证:四边形AECD 是菱形;(2)在△ABC 平移过程中,判断四边形AECD 的面积是否发生变化,请说明理由.22.(本题满分10分)为了做好开学准备,某校共购买了20桶A 、B 两种桶装消毒液,进行校园消杀,以备开学.已知A 种消毒液300元/桶,每桶可供2 000米2的面积进行消杀,B 种消毒液200元/桶,每桶可供1 000米2的面积进行消杀.(1)设购买了A 种消毒液x 桶,购买消毒液的费用为y 元,写出y 与x 之间的关系式,并指出自变量x 的取值范围;(2)在现有资金不超过5 300元的情况下,求可消杀的最大面积.ACDE O数学试题23.(本题满分10分)小明参加一个知识竞赛,该竞赛试题由10道选择题构成,每小题有四个选项,且只有一个选项正确.其给分标准为:答对一题得2分,答错一题扣1分,不答得0分,若10道题全部答对则额外奖励5分.小明对其中的8道题有绝对把握答对,剩下2道题完全不知道该选哪个选项.(1)对于剩下的2道题,若小明都采用随机选择一个选项的做法,求两小题都答错的概率;(2)从预期得分的角度分析,采用哪种做法解答剩下2道题更合算?24.(本题满分12分)如图,已知⊙O是边长为6的等边△ABC的外接圆,点D,E分别是BC,AC上两点,且BD=CE,连接AD,BE相交于点P,延长线段BE交⊙O 于点F,连接CF.(1)求证:AD∥FC;(2)连接PC,当△PEC为直角三角形时,求tan∠ACF的值.数学试题 第 6 页 共 15 页25.(本题满分14分)在平面直角坐标系中,二次函数32++=bx ax y 的图像经过点M(m -1,n ),点N (am 3+,n ),交y 轴于点A . (1)求a ,b 满足的关系式;(2)若抛物线上始终存在不重合的P ,Q 两点(P 在Q 的左边)关于原点对称.①求a 的取值范围;②若点A ,P ,Q 三点到直线l :2349+-=x y 的距离相等,求线段PQ 长.数学试题 第 7 页 共 15 页2020年宁德市初中毕业班质量检测 数学试题参考答案及评分标准⑴本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分.⑵对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分.⑶解答右端所注分数表示考生正确作完该步应得的累加分数. ⑷评分只给整数分,选择题和填空题均不给中间分. 一、选择题:(本大题有10小题,每小题4分,满分40分)1.A 2.D 3.C 4.C 5.B 6.D 7.A 8.C 9.B 10.B 二、填空题:(本大题有6小题,每小题4分,满分24分)11. 42°40′ 12.361 13.2514.< 15.25° 16.25 三、解答题(本大题共9小题,共86分.请在答题卡...的相应位置作答) 17.(本题满分8分)解:解不等式①,得 1->x .第 8 页 共 15 页解不等式②,得 5≤x . ··················································· 4分 把不等式①②的解集在同一数轴上表示为··· 6分∴原不等式组的解集为51≤<-x . ······································ 8分18.(本题满分8分)解:原式=a a a a a 3)393(2+÷--- ··················· 2分 =aa a a 3392+÷-- =33)3()3(+⋅-+-a a a a a ····················· 6分 =a ········································· 8分19.(本题满分8分) 证明:∵AE =BF ,∴AE+EF =BF+EF即AF =BE . ································· 3分 ∵∠A =∠B ,AD =BC ,∴△ADF ≌△BCE . ······················ 6分 ∴DF =CE .·································· 8分20.(本题满分8分)(1)解:解法一:∴正方形DECF 就是所求的. ···················· 4分 解法二:D AE F BC3 2456 -2 -1 01数学试题 第 9 页 共 15 页解法三:先做∠C 的角平分线交AB 于点D ,再做线段CD 的垂直平分线交AC ,AB 于点E ,F .(2)设正方形的边长为x ,则AE =4-x ,在正方形DECF 中,DE ∥CF∴∠AED =∠ACB , ····································· 5分 ∵∠A =∠A∴△ABD ∽△BCE ······································· 6分 ∴BCDEAC AE =∴344xx =- ················································· 7分 ∴x=712∴正方形DECF 的边长为712 ·························· 8分 21.(本题满分8分)(1)证明:由平移的性质可知AD =BE ,AD ∥BE ··············· 1分∵∠BAC=90°,点E 为BC 中点 ∴AE =BE =CE ∴AD ∥CE∴四边形AECD 是平行四边形3分 ∴四边形AECD 是菱形. ······ 4分 (2)四边形AECD 的面积不变 ·· 5分∵在平移过程中DE ∥AB ,DE =AB ∵AB ⊥AC∴DE ⊥AC ······················· 6分 ∵ACDACE AECD S S S △△四边形+=OD AC OE AC ⋅+⋅=2121ABCDEFO数学试题 第 10 页 共 15 页)(21OD OE AC += ED AC ⋅=21AB AC ⋅=21∴四边形AECD 的面积不变. 8分22.(本题满分10分)解:(1))20(200300x x y -+= ······························· 2分=x x 2004000300-+=4000100+x(0<x <20,且x 为整数) ······················· 4分(备注:写出“0<x <20”得1分,没有写出“x 为整数”不扣分)(2)由题意可得53004000100≤+x ···················· 6分解得:13≤x ··········································· 7分 设消杀的面积为w 米2, 则)20(10002000x x w -+=x x 1000200002000-+=200001000+=x ···································· 9分 ∵01000>=k∴w 随x 的增大面增大.∴当x 取最大值13时,最大消杀面积为33 000米2. ………… 10分23.(本题满分10分)解:(1)因为每小题有四个选项,且只有一个选项就正确的,所以有三个选项是错误的,不妨用“对,错,错,错”来表示.因此可列表 由表格可知,共有16种等可能的结果,其中两题都答错的有9种结果,所以169)(=两小题都答错P ················· 4分 (2)小明有3种可能的解答方式,分别为①两题都不答;②一题不答,一题随机选择;③两数学试题 第 11 页 共 15 页题都采用随机选择.①当两题都不答时,预期得分为0+16=16分; ········ 5分 ②当一题不答,一题随机选择时,∵41=(对)P ,43=(错)P ∴预期得分为:43151********=++⨯-⨯分; ·············· 7分③当两题都采用随机选择时,有两题都对,一对一错,两题都错三种可能,所得的分数分别为9分,1分,-2分,相应的概率分别为:∴预期得分为:9+12+16=1516161616⨯⨯-⨯.∵161613154315<<,∴小明采用都不答的解答方式更有利. ··············· 10分24.(本题满分12分)解:(1)∵△ABC 是等边三角形,∴AB =BC =AC=2 , ∠ABC =∠ACB =∠BAC =60°, ∵BD =CE.∴△ABD ≌△BCE (SAS). ∴∠BAD =∠CBE. ··············· 3分 ∴∠BPD =∠BAD+∠ABP=∠CBE+∠ABP=60° ∵∠BAC =∠BFC=60°,····· 4分 ∴∠BPD =∠BFC.∴AD ∥FC. ······················· 5分(2) 当△PEC 为直角三角形时,可分为三种情况:∠PCE=90°或∠CEP=90°或∠CPE=90°. ①当∠PCE=90°时,数学试题 第 12 页 共 15 页∵∠PCE<∠ACB=60°,∴∠PCE=90°这种情况不存在. 6分 ②当∠CEP=90°时, ∵AB =BC=AC ,∴AE=EC ,∠ABE=∠CBE=30°.∴∠ACF=∠ABF=30°. ································ 8分 ∴tan ∠ACF=tan30°=33. ···························· 9分 ③当∠CPE=90°时,过点A 作AH ⊥BC 于点H , 设AE =x ,则CD =AE =x ,CE =6-x . ∵AB =AC ,AH ⊥BC ,∴BH =CH=3,∠HAC =∠HAB=30°. ∴HD=3-x .∵∠BFC=60°,∠CPE=90°, ∴∠PCF=∠HAC=30°. ∵AD ∥FC , ∴∠FCA=∠DAC .∴∠PCF -∠FCA=∠HAC -∠DAC . ∴∠HAD=∠PCE . ∵∠AHD=∠CPE=90° ∴△AHD ∽△CPE . ∴CEADPE HD =. ∴CE HD AD PE ⋅=⋅①.∵∠BPD=∠APE=∠ACB=60° ∠PAE=∴△PAE ∽△CAD .∴ADAE CD PE =. ∴CD AE ADPE ⋅=⋅②. 观察①式和②式 可得:CD AE CE HD ⋅=⋅. ∴2)6)(3(x x x =--. 解得:x=2.数学试题 第 13 页 共 15 页∴AE=2. ··················································· 11分 过点E 作EG ⊥AB 于点G ∴在Rt △AEG 中 ∠EAG=60°. ∴160cos =︒⋅=AE AG .360sin =︒⋅=AE EG .∴BG=AB -AG=5.在Rt △BGE 中,tan ∠ABE=53=BG EG . ∴tan ∠ACF=tan ∠ABE=53. 综上所述,当△PEC 为直角三角形时,tan ∠ACF=53或33. ·· 12分 25.(本题满分14分)解:(1)∵函数图像经过点M (m -1,n ),点N (am 3+,n ) 则该函数的对称轴为直线aa a m m x 23231+=++-= ·· 2分∴a a a b 232+=-∴3--=a b . ··············································· 4分(2)①解:设),11y x P 点的坐标为(,则),11y x Q --点的坐标为(,将P ,Q 两点代入表达式有:⎪⎩⎪⎨⎧-=+--=++②3)(①311211121y bx x a y bx ax ·········· 6分由①+②得:06221=+ax ③ ················ 7分 ∵始终存在,故方程③始终有解, 法一:0321≥-=ax可得:0<a ··································· 8分 法二:方程③始终有解,得:0480≥-=∆a 得:0≤a∴0<a②解:∵32++=bx ax y ,则A 点坐标为(0,3),9分数学试题 第 14 页 共 15 页∵设直线2349:+-=x y l 交y 轴于点B ,则B 点坐标为)23,0(∴B 为OA 中点. ········································· 10分分别作PD ⊥l 于D 点,QE ⊥l 于E 点.若P ,Q 位于直线l 异侧,如图1,连接PQ ,交直线l 于C 点. 由已知得PD =QE ,又∵∠PDC =∠QEC=90°,∠PCD =∠QCE , ∴△PDC ≌△QEC ∴CP =CQ∴C 为PQ 的中点,∵O 为PQ 中点,但直线l 并没有经过点O , ∴不存在这种情况. ····································· 11分 若P ,Q 位于直线l 同侧,由PD =QE又∵PQ 经过原点O , ∴直线PQ 的表达式为:x y 49-=.∴1121493)3(x x a ax -=++-.由①知道:,321-=ax则有:11493)3(3x x a -=++-- 解得:1149)3(x x a -=+-. ∵01≠x ∴493=+a . 解得:43-=a . ∴34321-=-x .∴(舍去)或2211=-=x x . ∴491-=y .∴)29,2(-P . ················································· 13分∴297)29()2(22=+-=OP . ∴97=PQ . ··············································· 14分数学试题第 15 页共 15 页。
2020学年福建省宁德市中考数学学业质量监测试题
解①得x<20
解②得x>3-2a,
∵不等式组只有5个整数解,
∴不等式组的解集为3-2a<x<20,
∴14≤3-2a<15,
故选:A
【点睛】
本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a<15是解此题的关键.
4.C
【解析】
所以积为正数的概率为 ,
故答案为 .
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
故选A.
【点睛】
本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k>0,b>0⇔y=kx+b的图象在一、二、三象限”是解题的关键.
7.D
【解析】
【分析】
配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.
【详解】
解:
故选D.
【点睛】
本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.
二、填空题(本题包括8个小题)
11.B
【解析】
正五边形的内角是∠ABC= =108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E= =120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故选B.
12.60°
【解析】
A.3a+2bB.3a+4bC.6a+2bD.6a+4b
9.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.
8x 7 x
y y
3 4
B.
8 y 7 y
x x
3 4
C.
8 y 7 y
x x
3 4
D.
8x 7 x
y y
3 4
7.如图,在平行四边形 ABCD 中,点 E,F 分别在 AD 和 BC 上,
。
ED
下列条件不能判定四边形 AECF 是平行四边形的为
A
A.AF=CE C.AF∥ CE
19.(本题满分 8 分)如图,点 E,F 在线段 AB 上,AD=BC,∠ A=∠ B,AE=BF.
求证:DF=CE.
D
C
A
E
F
…
B
20.(本题满分 8 分)如图,在 Rt△ ABC 中,∠ ACB=90°,AC=4,BC=3,正方形 DECF
的三个顶点 D,E,F 分别落题无效.
3.作图可先使用 2B 铅笔画出,确定后必须用毫米黑色签字笔描黑. 4.考试结束,考生必须将试题卷和答题卡一并上交.
第Ⅰ卷
一、选择题:本题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有 一项是符合题目要求的.
、
1.2020 的相反数为
A
(1)用尺规作出正方形 DECF;
(2)求正方形 DECF 的边长.
C
*
B
21.(本题满分 8 分)如图,Rt△ ABC 中,∠ BAC=90°,将△ ABC 沿斜边 BC 向右平移,得
到△ DEF(BE<BC),AC 与 DE 相交于点 O,连接 AD,AE,DC,得到四边形 AECD.
(1)当点 E 为 BC 中点时,求证:四边形 AECD 是菱形;
B.6
D.10
B
\
B 第 9 题图
D
…
第 10 题图
P
C
Q
第Ⅱ卷
注意事项: 1.用毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效. 2.作图可先使用 2B 铅笔画出,确定后必须用毫米黑色签字笔描黑.
二、填空题:本题共 6 小题,每小题 4 分,共 24 分.
11.47°40′ 的余角为
下列数中最接近点 B 表示的数为
A
A. 2 45
B. 2 46
0 45
C. 47
D. 2 47
10.如图,在矩形 ABCD 中,以点 B 为圆心,AB 长为半径画弧, A
交 BC 于点 P,以点 D 为圆心,AD 长为半径画弧,交 BC 于
点 Q,若 AB=15,AD=17,则 PQ 的长为
A.2 C.8
D.10 cos36 B
C 第 5 题图
6.《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八, 盈三;人出七,不足四,问人数,物价各几何译文为:现有一些人共同购买一个 物品,每人出 8 元,还盈余 3 元;每人出 7 元,则还差 4 元,问共有多少人这个 物品的价格是多少设共同购买该物品的有 x 人,该物品的价格是 y 元,则根据题 意,列出的方程组为
(2)在△ ABC 平移过程中,判断四边形 AECD 的面积是否发生变化,请说明理由.
A
D
O
B
E
C
F
22.(本题满分 10 分)为了做好开学准备,某校共购买了 20 桶 A、B 两种桶装消毒液, 进行校园消杀,以备开学.已知 A 种消毒液 300 元/桶,每桶可供 2 000 米 2 的面积进 行消杀,B 种消毒液 200 元/桶,每桶可供 1 000 米 2 的面积进行消杀. (1)设购买了 A 种消毒液 x 桶,购买消毒液的费用为 y 元,写出 y 与 x 之间的关系 式,并指出自变量 x 的取值范围; (2)在现有资金不超过 5 300 元的情况下,求可消杀的最大面积.
A. 2020
B.2020
C. 1 2020
D. 1 2020
2.某种球形病毒的直径为 000 43 米,将数据 000 43 用科学记数法表示为
A. 4.310-6
B. 0.4310-6
C. 4310-6
D. 4.310-7
3.下列多项式能用完全平方公式进行因式分解的为
A. a2 1
B. a2 4
C. a2 2a 1
D. a2 4a 4
4.下列由 4 个大小相同的正方体搭成的几何体,左视图与其它几何体的左视图不同的为
{
A.
B.
C.
D.
5.如图,有一斜坡 AB 的长为 10,坡角∠ B=36°,则斜坡 AB 的铅垂
A
高度 AC 为
A.10 tan36
B. 10 sin 36
C. 10 sin 36
y
^
A C
点 D,连接 BD,若△ BOD 的面积为 9,则 AC =
.
D
CD
三、解答题:本题共 9 小题,共 86 分.
O
x
B
第 16 题图
1 2x<3,
17.(本题满分
8
分)解不等式组
x
3
1≤2
,并把解集在数轴上表示出来.
.
18.(本题满分 8 分)计算: ( a2 9 ) a 3 . a3 3a a
B
15.如图,点 A 为⊙O 上一点,点 P 为 AO 延长线上一点,PB
A
O
P
切⊙O 于点 B,连接 AB,若∠ APB=40°,则∠ A 的度数
第 15 题图
为
.
16.如图,点 A,B,C 在反比例函数 y 4 的图象上,且直线 x
AB 经过原点,点 C 在第二象限上,连接 AC 并延长交 x 轴于
.
12.为打赢新冠疫情保卫战,福建省前后派出 1381 名医务
人员驰援湖北,如图是福建省援鄂医务人员构成扇形
第 12 题图
统计图,其中医生有
名.
13.计算: 21 4 =
.
014.点 A(-3,a)和点 B(2,b)均在一次函数 y 5x n 的图
·
象上,则 a
b.(填“>”,“<”或“=”)
;
B.DE=BF
D.∠ AFB=∠ DEC
B
F
C
第 7 题图
8.已知一组数据的方差 s2 1 [(3 7)2 (8 7)2 (11 7)2 (a 7)2 (b 7)2 (c 7)2 ] , 6
则 a b c 的值为
A.22
B.21
C.20
D.7
9.如图,数轴上有 A,B 两点,其中点 A 表示的数为 45 ,
2020 年宁德市初中毕业班质量检测
数学试题
注意事项:
(满分 150 分 考试时间:120 分钟)
1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考 生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是
否一致.
2.选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.如需 改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用毫米黑色签字笔在答题卡