同济大学高等数学课件310共21页

合集下载

同济高等数学课件(完整版)详细

同济高等数学课件(完整版)详细

T
M
x0
x
切线方程为 y y0 f ( x0 )( x x0 ).
法线方程为
y
y0
f
1 (x
( x0 )
x0 ).
例7 求等边双曲线 y 1 在点(1 ,2)处的切线的 x2
斜率,并写出在该点处的切线方程和法线方程.
解 由导数的几何意义, 得切线斜率为
k y x1 2
( 1 ) x
x1 2
y
y
y f (x)
o
x
y f (x)
o
x0
x
例8
讨论函数
f
(x)
x
sin
1 x
,
x 0,
0, x 0
在x 0处的连续性与可导性.
解 sin 1 是有界函数 , lim x sin 1 0
x
x0
x
f (0) lim f ( x) 0 f ( x)在x 0处连续.
x0
1
但在x 0处有 y (0 x)sin 0 x 0 sin 1
h0
h
三、证明:若 f ( x)为偶函数且 f (0) 存在,则 f (0) 0 .
四、
设函数
f
(x)
x k
sin
1 x
,
x
0问
k
满足什么条
0 , x 0
件, f ( x)在 x 0处 (1)连续; (2)可导;
(3)导数连续.
五、
设函数
f
(x)
x2
,
x
1
,为了使函数
ax b , x 1
f ( x)在 x 1处连续且可导,a , b应取什么值.

高等数学-同济大学第六版--高等数学课件第一章函数与极限

高等数学-同济大学第六版--高等数学课件第一章函数与极限

函数与极限
x
4
{x a x b} 称为半开区间, 记作 [a,b)
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
2024/7/17
函数与极限
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
2024/7/17
函数与极限
2
数集分类: N----自然数集 Z----整数集
2024/7/17
函数与极限
47
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
(通常说周期函数的周期是指其最小正周期).
3l
l
2
2
l 2
3l 2
2024/7/17
函数与极限
25
四、反函数
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)
o
P(a, b)
x
直接函数与反函数的图形关于直线 y x对称.
2024/7/17
函数与极限
26
五、小结
基本概念 集合, 区间, 邻域, 常量与变量, 绝对值. 函数的概念 函数的特性 有界性,单调性,奇偶性,周期性. 反函数

同济大学版本高数精品课件全册

同济大学版本高数精品课件全册
1+ x
理解为:
f
(

)
=
1− 1+
∆ ∆
(五)函数与图像
2、图像:平面点= 集 C {(x= , y) y f (x), x∈D}。
了解函数的直
例:画函数 y = x 的图像.
观手段!
y
一元函数的图像通常是二
维平面上的一条一维曲线.
注: 由曲线求取对应的函
数往往不易,由函数画图
o
x 像相对容易.
例如, 1 + 2 =3 1 − 2 =−1
负数的引入有实 际意义!如:记 帐有赢利亏欠, 温度有零上零 下…
2. Z(整数环)
对加法、减法都封闭; 对除法不能封闭。
例如, 1 ÷ 2 =0.5
3. Q(有理数域)
对加法、减法、乘法、除法都封闭;有理数域尽管稠密但不 连续,还有客观事物不能用有理数表示。
课后自测
1、 写出所有三角函数和反三角函数的定义域,并画出函数图像。
2、
已知函数
y
=
f
(x)
=
12+
x, x,
0≤ x ≤1 x >1

f
(
1 2
)

f
(
1 t
)
,
并写出定义域及值域 。
第十节 闭区间上连续函数的性质
一、有界性与最大值最小值定理 二、零点定理与介值定理
一、有界性与最大值最小值定理
二、预备知识
1、基本初等函数 (4) 三角函数
余弦函数 y = cos x 正切函数 y = tan x
余切函数 y = cot x
正割函数 y = sec x 余割函数 y = csc x

同济大学高等数学(第七版)上册第一章函数 PPT课件

同济大学高等数学(第七版)上册第一章函数 PPT课件

3
2
1 -4 -3 -2 -1 o -1 1 2 3 4 5 x
-2 -3 -4
阶梯曲线
(4) 狄利克雷函数
y

D( x)

1 0
当x是有理数时 当x是无理数时
y
1
• 无理数点
o
有理数点
x


D(
x)

1 0
xQ ,
xQ
求D( 7), D(1 2).并讨论D(D( x))的性质. 5
例如,
f
(
x)

2x

x
2

1, 1,
x0 x0
y x2 1
y 2x 1
(1) 绝对值函数
y
0
x
(2) 符号函数
1 当x 0
y

sgn
x


0
当x 0
1 当x 0
x sgn x x
y
1
o
x
-1
y
(3) 取整函数 y=[x]
4
[x]表示不超过 x 的最大整数
函数的值域可由其定义域和对应规则确定,即
R f ={ y y = f( x ),x D f }= f( D f ).
结论:函数的两个要素实际也给出了判别两函数是 否相同的方法,即若两函数的定义域相同,对应法 则也相同,这两函数就是相同的,否则就是不同的。
例如:y = f( x )= sin x,x R =( - ,+ );
反函数的定义域和值域恰为原函数的值域 和定义域
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)

《同济大学高等数学》PPT课件

《同济大学高等数学》PPT课件

p t q t dt
而在整个时间段 在整个时间段
内T1,,T销2售量为
T2 qt dt T1
T内1,,T销2 售收入为
T2 pt qt dt T1
则整个时间段
T内1,,T销2 售商品的平均价格为
T2 pt qt dt p T1 T2 qt dt
T1
将此平均价格称为价格函数 关于权p函t数 在时间
k1的, 加k2权,平均,值kn。
特别,当 ki 1 i 1时, 2,, 加权,平n均值即为
算术平均值。
如果用函数 p来反t映商品一个时间段
内的
销售价格的变化情况,函数 来反映q单t位时间内的
销售量,那么在小时间段
内t,,t销售d量t为
T1,T2
q t dt
在小时间段 t,t内,d销t售收入为
二、加权平均值
在许多实际问题中,我们所遇到的不是一个简单的算 术平均值,而是加权平均值.
下面的例子就说明了加权平均值的作用.
设某商店销售某种商品,以每单位商品售价 元,销
p1
售了 q个1单位商品,调整价格以后再以每单位商品售价 p2 元,销售了 个q单2位的商品,则在整个销售过程中,
所销售商品的平均价格为
则可以用
1
n
n i1
yi
1 n
n i1
f
xi
来近似表示函数 在f 区x间 上的算a术,平b均值.
自然地,称极限
y lim y0 y1
n
n
为函数 f 在x区间 上的a算,b术平均值.
yn1
若 f 在x 上a可,b积,则
y lim y0 y1 yn1
n
n
i t 周期性非恒定电流 的有效值是这样规定的: T i t R 如果在一个周期 内, 在负荷电阻 上消耗的平均

《高等数学》电子课件(同济第六版)01第一章第1节函数

《高等数学》电子课件(同济第六版)01第一章第1节函数
复合函数的实际应用
复合函数在数学、物理、工程等领域有广 泛的应用。
反函数
反函数的定义
反函数是原函数关于y=x对称的函数。
反函数的性质
反函数具有原函数的性质,如连续性、可导性等。
反函数的求导法则
反函数的求导法则与原函数有关,可以通过交换x和y的导数来实现。
反函数的应用
反函数在数学、物理、工程等领域有广泛的应用,如解方程、优化问题等。
函数单调性的定义
如果对于函数的定义域内的任意两个数$x_1$和$x_2$,当$x_1 < x_2$时,都 有$f(x_1) leq f(x_2)$(或$f(x_1) geq f(x_2)$),则称函数在该区间内单调递 增(或单调递减)。
单调性的判定方法
通过比较函数在不同区间内的增减性,可以判断函数的单调性。此外,导数也 是判断函数单调性的重要工具,如果函数在某区间内的导数大于0,则函数在该 区间内单调递增;如果导数小于0,则函数单调递减。
04
函数的图像与性质
函数的图像
函数图像的概念
函数图像是表示函数值的点在平面上 的集合。通过函数图像,我们可以直 观地了解函数的形态和变化趋势。
函数图像的绘制方法
绘制函数图像通常需要确定函数的定 义域和值域,然后根据函数的解析式 ,在坐标系上标出对应的点,最后用 光滑的曲线将它们连接起来。
函数的单调性
答案与解析
$|x|$ 是偶函数。
$x^3$ 是奇函数。
判断下列函数是否为奇函 数或偶函数
01
03 02
答案与解析
$frac{1}{x}$ 是奇函数。
解析:奇函数的定义是对于定义域内的任意 $x$,都有 $f(-x) = -f(x)$;偶函数的定义是对 于定义域内的任意 $x$,都有 $f(-x) = f(x)$。 根据这些定义,可以判断出 $x^3$、$|x|$ 和 $frac{1}{x}$ 的奇偶性。

《高等数学》电子课件(同济第六版)01第一章 第1节 函数

《高等数学》电子课件(同济第六版)01第一章 第1节 函数
第一节 映射与函数
一、集合
二、函数概念 三、映射 四、函数的特性 五、反函数
六、基本初等函数 七、复合函数 初等函数
1
第一节 映射与函数
一.集合:
1、集合
M {x x具有特定性质}
有限集 如 M {0,1,2, ,9}
无限集 如 M2 {( x, y) x2 y2 1}
2、集合间的关系:
(1) 子 集 ;(2) 集 合 相 等 ;(3) 空 集 ;
2
故定义域为
D
[
0
,
1 2
)
12
3、几个特殊的函数举例
(1) 符号函数
1 当x 0
y
sgn
x
0
当x 0
1 当x 0
定义域 D (, ), 值域 W {1,0,1}
图形:
y
1
o
x
-1
x sgn x x 13
(2) 取整函数: y=[x] [x]表示不超过 x 的最大整数
如 [3] 0, [ 3] 1, [8] 8, [3.8] 4.
x, x 1
f
(x)
min{ x , x2}
x
2
,
1 x 1
三、映射(自学)x, x 1
19
四、函数的特性
1.函数的有界性:
若X D,M 0,x X,有 f (x) M 成立,
则称函数f ( x)在X上有界.否则称无界.
如 y cos x 在( , )上有界, 2 x2
y
1 x2
作业
习题11 P21
4(1)(3)(5)(7)(9),5(2)(3),6,7(1),10,11, 12(1)(3)(5),14(1)(3)(5),16,17,18

《高等数学》第六版上册同济大学出版社课件PPT

《高等数学》第六版上册同济大学出版社课件PPT

1 x
0
1
1

1 t4

1 t2
d
t

t 2 0 1t4
d
t
ห้องสมุดไป่ตู้
0
1
d
x x4

1 2


0 1
d
x x4

x2
0 1 x4
d
x

1
2
1 01

x2 x4
d
x
17
目录 上页 下页 返回 结束
1
2
0
1 x2
1
1 x2
二无界函数的反常积分第四节常义积分积分限有限被积函数有界推广一无穷限的反常积分反常积分广义积分反常积分第五章1一无穷限的反常积分引例
第四节 反常积分
第五章
积分限有限 常义积分 被积函数有界
推广
反常积分 (广义积分)
一、无穷限的反常积分
二、无界函数的反常积分
1
目录 上页 下页 返回 结束
一、无穷限的反常积分

F (b)
F(c )
F(c ) F(a)
可相消吗?
12
目录 上页 下页 返回 结束
例4. 计算反常积分
解: 显然瑕点为 a , 所以
原式


arcsin x a

a 0

arcsin1
π 2
例5. 讨论反常积分
的收敛性 .
解所下:以述1反1解dx常x2法积是分0否1dx1x正x2 确11:0发1dxx散21.11x2 ,0∴1 积 分 1x收敛01

x2

高等数学(同济,永久免费下载,吐血推荐!) ppt课件-文档资料

高等数学(同济,永久免费下载,吐血推荐!) ppt课件-文档资料

(2) 初等函数 由常数及基本初等函数 经过有限次四则运算和复合步
骤所构成 , 并可用一个式子表示的函数 , 称为初等函数 .
否则称为非初等函数 .
例如 ,
y xx, ,
x0 x0
可表为 y
x2 , 故为初等函数.
又如 , 双曲函数与反双曲函数也是初等函数 .
( 自学, P17 – P20 )

目录 上页 下页 返回 结束
定义 3 . 给定两个集合 A, B, 定义下列运算:
并集 A B x 交集 A B x
或 且
A B
B A
差集 A \ B x
且 xB
A\B AB
余集 BAc A \ B (其中B A)
直积 A B (x, y) x A, y B
目录 上页 下页 返回 结束
(3) 奇偶性
x D, 且有 x D,

则称 f (x) 为偶函数;
y

则称 f (x) 为奇函数.
说明: 若 f (x) 在 x = 0 有定义 , 则当 x O x x
f (x) 为奇函数时, 必有 f (0) 0.
例如,
y f (x) ex ex 偶函数
例如 ,
O
x
指数函数 y ex , x (, )
对数函数
互为反函数 ,
它们都单调递增, 其图形关于直线
对称 .
目录 上页 下页 返回 结束
(2) 复合函数
设有函数链
y f (u), u Df

且 Rg D f


称为由①, ②确定的复合函数 , u 称为中间变量.

同济大学 高数PPT课件

同济大学  高数PPT课件

D
= 4∫∫ dxdy
D1
∫ ∫ = 4
π
6 dθ
a
2cos 2θ
rdr
0
a
= a2 ( 3 − π). 3
2010年5月21日11时28
二重积分的计算法(21)
15

二、小结
二重积分在极坐标下的计算公式
∫∫ f (r cosθ ,r sinθ )rdrdθ
∫ ∫ D
=
β

ϕ2(θ ) f (r cosθ ,r sinθ )rdr.
∫ ∫ 2、将积分
2
dx
3x f ( x2 + y2 )dy 化为极坐标形式的
0
x
二次积分为_________________________________.
二、试将对极坐标的二次积分
π
2a cos θ
∫ ∫ I =
4 −π

0
f (r cos θ, r sin θ)rdr
4
交换积分次序.
2010年5月21日11时28
R 2R
{ x ≥ 0, y ≥ 0} 显然有 D1 ⊂ S ⊂ D2
∵ e− x2 − y2 > 0,
∫∫ ∫∫ ∫∫ ∴ e−x2− y2dxdy < e− x2 − y2 dxdy < e− x2 − y2 dxdy.
D1
S
D2
2010年5月21日11时28
二重积分的计算法(21)
9

∫∫ 又∵ I = e−x2− y2 dxdy

二重积分的计算法(21)
7
∫∫ 例 2 计算 e−x2− y2dxdy,其中 D 是由中心在

大学高数同济大学版PPT

大学高数同济大学版PPT

( n 1, 0! 1)
( n) 设 y sin x , 求 y . 例5 解:y cos x sin( x ) 2 y cos( x ) sin( x ) sin( x 2 ) 2 2 2 2 y cos( x 2 ) sin( x 3 ) 2 2
u
( n)
v
( n)
(2) (Cu )
( n 1)
( n)
Cu
( n)
(3) (u v)
(n)
u v nu
(n)
n(n 1) ( n 2 ) v u v 2!
n(n 1) (n k 1) ( n k ) ( k ) (n) u v uv k!
x0
2.
x ( n) 设 y a ( a 0 , a 1 ), 求 y . 例2
解: y a ln a,
x
y a ln a,
x 2
y a ln a,
x 3

(a ) a ln a
x ( n) x n
特殊地: (e ) e
x ( n)
x
例3
设 y x ( R), 求y ( n) .
f ( x) f (0) f (0) lim x 0 x0 lim ( x 1)( x 2) ( x 99) 99!
x 0
方法2 利用求导公式.
f ( x) ( x)
x
f (0) 99!
x, 3.设 f ( x ) ln( 1 x ),
1 y d dx d dy dy dy
d2x 2 dy

高等数学第六版上下册(同济大学出版社)课件

高等数学第六版上下册(同济大学出版社)课件
具有重要的作用。
不定积分的几何意义
不定积分表示的是一种曲线族 ,每一条曲线都有一个与之对
应的方程。
积分的应用场景
01
物理应用
积分在物理中有广泛的应用,例 如计算物体的质量、重心、转动 惯量等。
工程应用
02
03
经济应用
积分在工程中有广泛的应用,例 如计算曲线的长度、面积、体积 等。
积分在经济中有广泛的应用,例 如计算总成本、总收益、总利润 等。
05
多重积分与向量分析
二重积分的概念与性质
二重积分的定义
二重积分是定积分在二维平面上的推广,表示一个二元函数在某个区域上的累积值。
二重积分的性质
二重积分具有可加性、可减性、可交换性等性质,这些性质使得二重积分在解决实际问题中具有广泛的应用。
三重积分的概念与性质
三重积分的定义
三重积分是定积分在三维空间上的推广 ,表示一个三元函数在某个区域上的累 积值。
03
导数与微分
导数的概念与性质
导数的定义
导数描述了函数在某一点附近的变化率,是函数局部 性质的一种体现。
导数的几何意义
导数在几何上表示函数图像在某一点的切线的斜率。
导数的性质
导数具有一些基本的性质,如线性性质、乘积法则、 商的导数法则等。
微分的概念与性质
微分的定义
01
微分是函数在某一点附近的小变化量,用于近似计算函数的值
求函数的最值
导数可以用于求函数在一定区间内的最大值和最小值,这在优化问题中具有广泛的应用。
04
积分
定积分的概念与性质
01
定积分的定义
定积分是积分的一种,是函数在区间上与区间的乘积在区间的两个端点

《同济版高数》课件

《同济版高数》课件

BIG DATA EMPOWERS TO CREATE A NEW
ERA
多元函数的极限与连续性
总结词
理解多元函数的极限与连续性的 概念和性质,掌握判断多元函数 极限与连续性的方法。
多元函数的极限
理解极限的定义,掌握计算多元 函数极限的方法,如分别求极限 、累次极限等。
多元函数的连续性
理解连续性的概念,掌握判断多 元函数在某点或某区域的连续性 的方法。
极限的概念与性质
总结词
极限是高数的核心概念,理解极限的概念和性质是学习高数的关键。
详细描述
极限是指当自变量趋近某一值时,因变量的变化趋势。极限的性质包括唯一性 、局部有界性、局部保序性等。这些性质在高数的各个章节中都有重要的应用 。
极限的运算规则
总结词
掌握极限的运算规则是解决极限问题的关键。
详细描述
一阶常微分方程的解法
总结词
掌握一阶常微分方程的解法是解决这类问题的关键。
详细描述
一阶常微分方程的一般形式是dy/dx = f(x, y),可以 通过分离变量法、积分因子法、公式法等求解。
高阶常微分方程的解法
总结词
理解高阶常微分方程的解法一般形式是y''(x) + p1(x)y'(x) + p2(x)y(x) = f(x),可以通过降 阶法、变量代换法、积分因式分解法等求解
则更加注重应用和与其他学科的交叉融合,不断涌现出新的分支和领域。
高数与其他学科的联系
要点一
总结词
高数与其他学科有着密切的联系,如物理、工程、计算机 科学等。这些学科在高数的理论和方法的基础上不断发展 。
要点二
详细描述
高数与物理学的联系尤为紧密,许多物理问题的解决需要 高数的理论和方法。例如,在力学、电磁学、光学等领域 中,高数的微积分和向量分析被广泛应用。在工程领域中 ,高数的理论和方法也是解决实际问题的关键工具。计算 机科学在高数的基础上发展出了算法设计和数据结构等重 要领域。此外,经济学、统计学等领域也与高数有着密切 的联系。

同济大学 高等数学 课件 .ppt

同济大学 高等数学 课件 .ppt

设数列
lim
n
xn 存在,则对于
xn
的任一子列(xnk )

lim
n
xn

lim
k
xn k
.
用此定理,即可说明数列 1n 的极限不存在。事
实上:
lim
n
x2n1

1,
lim
n
x2n
1,
所以,lim n
xn
不存在.
值得注意的是,对于函数,我们不能用此定理来证明
个不同的子列,使函数收敛到两个不同的值,则说明函
数在这一点无极限.
lim
n
f
(xn )
y

A
lim
xx0
f
(x).
f (x2 )
f (x4 )
A
f (xn )
f (x3 )
f (x1)
O x1 x3
xn x0
y f x
lim
n
xn

x0,
x4 x2
x
例 证明函数 f (x) sin 在x 0时极限不存在.
即: f x 在x0的某个空心邻域内有界.

局部有界的几何意义
从图中可以看出局部有界的含义:函数 f x 在 x0 处 o
的极限为 A,则存在点x0的一个空心邻域 U (x0, ), 当
点 x0 在该邻域中,对应
的函数图形在某一个带
y
A+1
y f x
形区域中,而该邻域外 A
的点所对应的函数图形, A-1
x
证令
1
1
xn 2n 1 , yn 2n ,
2

同济大学高等数学课件

同济大学高等数学课件
同济大学高等数学课件
目录
• 函数与极限 • 导数与微分 • 不定积分与定积分 • 多元函数微积分 • 常微分方程
01
函数与极限
函数的概念与性质
函数定义
01
函数是数学上的一个概念,它定义了一个输入值对应一个输出
值的规则。
函数的性质
02
函数的性质包括奇偶性、单调性、周期性等,这些性质对于理
解和应用函数都非常重要。
03
全微分的概念与计 算
理解全微分的概念,掌握全微分 的计算方法,理解全微分在近似 计算中的应用。
二重积分
1 2
总结词
理解二重积分的概念及性质,掌握计算二重积分 的方法。
二重积分的定义与性质
理解二重积分的定义,掌握二重积分的计算方法 ,理解二重积分在面积和体积计算中的应用。
3
二重积分的几何意义与物理应用
分部积分法
通过将两个函数的乘积进行积分,将问题转化为求两个函数的原函 数的问题。
04
多元函数微积分
多元函数的极限与连续性
总结词
理解多元函数的极限与连续性的 概念和性质,掌握判断多元函数 极限与连续性的方法。
多元函数的极限
理解极限的定义,掌握计算多元 函数极限的方法,包括累次极限 和同时极限的概念及计算方法。
导数的计算
基本初等函数的导数
对于一些常见的初等函数,如幂函数、指数函数、三角函数等, 可以直接查表得到它们的导数。
链式法则
如果一个复合函数由两个或多个函数组成,那么它的导数可以通 过链式法则进行计算。
参数式函数的导数
对于参数式函数,可以通过对参数求导来得到函数的导数。
微分的概念与性质
微分的定义
微分是函数在某一点的变化率的近似值,表示函数在 该点附近的小增量。

同济大学高数PPT课件

同济大学高数PPT课件

恩格斯
CHENLI
数学中的转折点是笛卡儿的变数. 有了变数 , 运动进入了数学, 有了变数,辩证法进入了数学 ,
有了变数 , 微分和积分也就立刻成 为必要的了,而它们也就立刻产生.
1
笛卡儿 目录 上页 下页 返回 结束
主要内容
1. 分析基础: 函数 , 极限, 连续 2. 微积分学: 一元微积分 (上册)
多元微积分 (下册) 3. 向量代数与空间解析几何 4. 无穷级数 5. 常微分方程
CHENLI
2
机动 目录 上页 下页 返回 结束
二、如何学习高等数学 ?
1. 认识高等数学的重要性, 培养浓厚的学习兴趣.
一门科学, 只有当它成功地运用数学时, 才能达到真正完善的地步 .
马克思
要辨证而又唯物地了解自然 ,
就必须熟悉数学.
恩格斯
2. 学数学最好的方式是做数学.
聪明在于学习 , 天才在于积累 .
学而优则用 , 学而优则创 .
华罗庚 CHENLI 由薄到厚 , 由厚到薄 .
3
第一节 目录 上页 下页 返回 结束
他在解析数论自守函数论高维数值积分等广泛的数学领域中都作出了卓几何学典型群他对青年学生的成长非常关心他提出治学之道是即基础要宽专业要专要使自己的专业知识漫到其它领域
引言
一、什么是高等数学 ?
初等数学 — 研究对象为常量, 以静止观点研究问题. 高等数学 — 研究对象为变量, 运动和辩证法进入了数学.

同济大学高等数学ppt第一章

同济大学高等数学ppt第一章
同济大学高等数 学ppt第一章
contents
目录
• 第一章绪论 • 第一章极限论 • 第一章连续论 • 第一章导数论 • 第一章微分论 • 第一章不定积分论
01
CATALOGUE
第一章绪论
高等数学的研究对象
变量与函数
级数与广义积分 空间解析几何与向量代数
极限理论 微积分学
高等数学的发展历程
线性性质
不定积分具有线性性质,即对于 任意常数C1,C2,有 (C1+C2)*f(x)=C1*f1(x)+C2*f2( x)。
积分常数
不定积分的结果是一个函数,其 常数项为0。
区间可加性
如果在区间(a,b)上有f(x)=f(x), 则在(a,b)上,f(x)的积分等于f(x) 在(a,b)上定积分的值。
不定积分的计算方法
直接积分法
利用不定积分的定义和性质,将 已知函数进行恒等变形,从而得 到其原函数。
换元积分法
通过引入新的变量,将已知函数 进行换元,从而将复杂函数分解 为简单函数的组合,以便于计算 。
分部积分法
通过将两个函数乘积的导数与其 中一个函数求导再与另一个函数 乘积进行交换,从而得到两个函 数的积的不定积分的一种方法。
利用微分的近似性,我们可以对一些复杂的 函数进行近似计算,从而简化计算过程。例 如,当我们需要计算一个复杂函数的值时, 我们可以先找到这个函数在某一点的微分, 然后用这个微分来近似计算函数的值。
微分在近似计算中的应用
在实际的科学研究和工程设计中,经常会遇 到一些复杂的数学问题,如求解方程、优化 问题等。在这些情况下,利用微分进行近似 计算可以提供一种有效的解决问题的方法。
02
微分的近似性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本节要点
本节以定积分为工具,建立起连续函数在一个区间上的 三中不同的平均值的概念. 一、函数的算术平均值 二、函数的加权平均值 三、函数的均方根平均值
一、函数的算术平均值
我们知道,n 个数 y1,y2,L,yn的算术平均值为
yy1y2Lyn
n
1n ni1yi.
在自然科学与科学技术中,有时还要考虑一个连续函数
y i fx ii 1 ,2 ,L ,n .
则可以用
1n n i1
yi
1 n n i1
f
xi
来近似表示函数 f x 在区间 a , b 上的算术平均值.
自然地,称极限
ylimy0y1Lyn1
n
n
为函数 f x 在区间 a , b 上的算术平均值.
若 f x 在 a , b 上可积,则
f x 在区间 a , b 上所取得的“一切值”的平均值. 今
讨论平均值的求法.
定义 f x 在区间 a , b 上定义,将区间 n 等分,
分点为
a x 0 x 1 x 2 L x n b ,
各小区间的长度为 xi b na,i1,2,L,n.
函数 f x 在各个端点处的取值记为
而在整个时间段 T1,T2 内,销售量为
T2 q t dt T1
在整个时间段 T1,T2 内,销售收入为
T2 ptqtdt T1
则整个时间段 T1,T2 内,销售商品的平均价格为
T2 p t q t dt p T1 T2 q t dt
T1
将此平均价格称为价格函数 p t 关于权函数q t 在时
特别,当 ki1i1 ,2,L,n时,加权平均值即为
算术平均值。
如果用函数 p t 来反映商品一个时间段 T1,T2 内的
销售价格的变化情况,函数q t 来反映单位时间内的
销售量,那么在小时间段t,t dt内,销售量为
q t dt
在小时间段 t,t dt内,销售收入为
ptqtdt
所销售商品的平均价格为
q1 p1 q2 p2(元). q1 q2
这是能够反映销售水平的平均价格,称为售价的加权平
均值,将q 1 , q 2 称为权数。
一般,设 y1,y2,L,yn为实数,k1,k2,L,kn0,称 k1y1k2y2 Lknyn k1k2 Lkn
为 y1,y2,L,yn关于权数 k1,k2,L ,kn 的加权平均值。
ylimy0y1Lyn1
n
n
limy0y1Lyn1ba
n
ba
n
所以,将
lim 1
n
f
nbai1
xi1 xi.
b
1 a
b
a
f
xdx.
y
1 bba af来自xdx.称为可积函数 f x 在区间 a , b 上 的算术平均值。
例 求函数 y sin x 在区间 0 , 上的平均值.
区间间 T1,T2 上的加权平均值。
一般情况下,将
f
b
a
f x w xdx
b
a
w
x
dx
称为函数 f x 关于权函数w x 在 a , b 上的加权平均值。
三、函数的均方根平均值
问题 非恒定电流(如正弦交流电)是随时间的变化 而变化的,但一般我们所使用的非恒定电流的电器上却 标明着确定的电流值。这个电流是一种特定的平均值, 习惯上称为有效值.
周期性非恒定电流 i t 的有效值是这样规定的: 如果在一个周期T 内,i t 在负荷电阻 R 上消耗的平均
功率等于取固定值 I 的恒定电流在 R 上消耗的功率时,
则称这个 I 值为 i t 的有效值.
今来计算 i t 的有效值.
固定值为 I 的电流在 R 上消耗的功率为 I 2 R ,
0 2 Im 2sin 2
td t 2
0 2 Im 2sin 2
tdt
Im 2
4
t
12sint02
Im . 2
即:正弦交流电的有效值为它的峰值的 1 . 2
若函数 fxCa,b,在数学上把
1 b f 2 tdt
ba a
称为函数 f x 在区间 a , b 上的均方根平均值。
(简称为均方根).
电流 i t 在 R 上消耗的功率为 utiti2tR,
它在 0 , T 上的平均值为
因此,
1 T i2 t Rdt.
T0
I2R1Ti2tR dtRTi2tdt,
T0
T0
从而
I2 1 Ti2tdt.
T0

I 1 T i2 tdt. T0
例如正弦波itImsint的有效值为
2
I 2
解 由公式,得
y1
sinxdx
2.
0
二、加权平均值
在许多实际问题中,我们所遇到的不是一个简单的算 术平均值,而是加权平均值.
下面的例子就说明了加权平均值的作用.
设某商店销售某种商品,以每单位商品售价p 1 元,销
售了 q 1 个单位商品,调整价格以后再以每单位商品售价
p 2 元,销售了q 2 个单位的商品,则在整个销售过程中,
谢谢!
相关文档
最新文档