四年级奥数算式谜一
四年级奥数题精选200题
四年级奥数题精选200题一、算式谜1.在下面的数中间填上“+”、“-”;使计算结果为100。
1 2 3 4 5 6 7 8 9=1002. ABCD+ACD+CD=1989;求A、B、C、D。
3. □4□□-3□89=3839。
4. 1ABCDE×3=ABCDE1;求A、B、C、D、E。
二、找规律5.找找规律填数76;2;75;3;74;4;( ); ( );2;3;4;5;8;7;( );( );2;1;4;1;8;1;( );( )。
6.在( )内填入适当的数1;1;2;3;5;8;( );( );1;1;1;3;5;9;( );( );0;1;2;3;6;11;( );( );7.找规律在( )内填上合适的数(1)0;1;3;8;21;55;( );(2)2;6;12;20;30;42;( );(3)1;2;4;7;11;16;( )。
(1)1;6;7;12;13;18;19;( );8.选择一个锐角三角形的一个内角是44度;其余两个角可能是()36度和100度90度和46度75度和61度18度和96度9.简便计算12×102-2469×56+32×56-5613×94+13×10-13×410.解决问题一个三角形的三个内角分别为∠1;∠2和∠3;∠2=2∠1;∠3=∠2;求∠1=?三、排列组合11.小华、小花、小马三个好朋友要在一起站成一排拍一张照片。
三个人争着要站在排头;无法拍照了。
后来照相师傅想了一个办法;说:"我给你们每人站在不同位置都拍一张;好不好?"这下大家同意了。
那么;照相师傅一共要给他们拍几张照片呢?12.二(1)班的小平、小宁、小刚、小超4人排了一个小块板;准备"六、一"演出。
在演出过程中;队形不断变化。
(都站成一排)算算看;他们在演出小快板过程中;一共有多少种队形变化形式?13."69"顺倒过来看还是"69";我们把这两个顺倒一样的数;称为一对数。
四年级奥数算式谜
算式谜(一)一、【检查作业与评讲】二、【课前热身】三、【内容讲解】知识点:算式谜“算式谜”一般是指那些含有未知数字或缺少运算符号的算式。
解答算式谜问题时,要先仔细审题,分析数据之间的关系,找到冲破口,慢慢实验,分析求解,通常要运用倒推法、凑整法、估值法等。
例1:在下面算式的括号里填上适合的数。
7 6 ()5+ () 4 7()2 1 ()分析:按照题目特点,先看个位:7+5=12,在和的个位()中填2,并向十位进一;再看十位,()+4+1的和个位是1,因此,第一个加数的()中只能填6,并向百位进1;最后来看百位、千位,6+()+1的和的个位是2,第二个加数的()中只能填5,并向千位进1;因此,和的千位()中应填8。
练习(1)在括号里填上适合的数。
(2)在方框里填上适合的数。
6 ()()□0 □□+ 2 ()1 5 -3 ()1 7()0 9 1 2 8 5 6(3)下面的竖式里,有4个数字被遮住了,求竖式中被盖住的4个数字的和。
□□+ □□1 6 9例2:下面各式中“巨”、“龙”、“腾”、“飞”别离代表不同的数字,相同的汉字代表相同的数字。
当它们各代表什么数字时,下列的算式成立。
腾飞龙腾飞+巨龙腾飞2 0 0 1分析:先看个位,3个“飞”相加的和的个位数字是1,可推知“飞”代表7;再看十位,3个“腾”相加,再加上个位进来的2,所得的和的个位是0,可推知“腾”代表6;再看百位,两个“龙”相加,加上十位进上来的2,所得和的个位是0,“龙”可能是4或9,考虑到千位上的“巨”不可能为0,所以“龙”只能代表4,“巨”只能代表1。
练习:(1) C D (2)式谜(3)澳门A C D 填式谜澳门归+A B C D +巧填式谜+庆澳门归1 9 8 9 1 9 9 5 1 9 9 9例3:下面各式中的“兵”、“炮”、“马”、“卒”各代表0—9这十个数字中的某一个,相同的汉字代表相同的数字。
这些汉字各代表哪些数字?兵炮马卒+ 兵炮车卒车卒马兵卒分析:这道题应以“卒”入手来分析。
四年级奥数周周练 第5周 算式谜(一) (学生版)
第5周算式谜(一)一、知识要点“算式谜”一般是指那些含有未知数字或缺少运算符号的算式。
解决这类问题,可以根据已学过的知识,运用正确的分析推理方法,确定算式中的未知数字和运用符号。
由于这类题目的解答过程类似全平时进行的猜谜语游戏,所以,我们把这类题目称为“算式谜题”。
解答算式谜问题时,要先仔细审题,分析数据之间的关系,找到突破口,逐步试验,分析求解,通常要运用倒推法、凑整法、估值法等。
二、精讲精练【例题1】在下面算式的括号里填上合适的数。
【思路导航】根据题目特点,先看个位:7+5=12,在和的个位()中填2,并向十位进一;再看十位,()+4+1的和个位是1,因此,第一个加数的()中只能填6,并向百位进1;最后来看百位、千位,6+()+1的和的个位是2,第二个加数的()中只能填5,并向千位进1;因此,和的千位()中应填8。
练习1:(1)在括号里填上合适的数。
(2)在方框里填上合适的数。
(3)下面的竖式里,有4个数字被遮住了,求竖式中被盖住的4个数字的和。
【例题2】下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字。
当它们各代表什么数字时,下列的算式成立。
【思路导航】先看个位,3个“飞”相加的和的个位数字是1,可推知“飞”代表7;再看十位,3个“腾”相加,再加上个位进来的2,所得的和的个位是0,可推知“腾”代表6;再看百位,两个“龙”相加,加上十位进上来的2,所得和的个位是0,“龙”可能是4或9,考虑到千位上的“巨”不可能为0,所以“龙”只能代表4,“巨”只能代表1。
练习2:【例题3】下面各式中的“兵”、“炮”、“马”、“卒”各代表0—9这十个数字中的某一个,相同的汉字代表相同的数字。
这些汉字各代表哪些数字?【思路导航】这道题应以“卒”入手来分析。
“卒”和“卒”相加和的个位数字仍然是“卒”,这个数字只能是0。
确定“卒”是0后,所有是“卒”的地方,都是0。
注意到百位上是“兵”+“兵”=“卒”,容易知道“兵”是5,“车”是1;再由十位上的情况可推知“马”是4,进而推得“炮”是2。
四年级奥数专题:算式谜
算式谜(一)一、知识要点“算式谜”一般是指那些含有未知数字或缺少运算符号的算式。
解决这类问题,可以根据已学过的知识,运用正确的分析推理方法,确定算式中的未知数字和运用符号。
由于这类题目的解答过程类似全平时进行的猜谜语游戏,所以,我们把这类题目称为“算式谜题”。
解答算式谜问题时,要先仔细审题,分析数据之间的关系,找到突破口,逐步试验,分析求解,通常要运用倒推法、凑整法、估值法等。
二、精讲精练【例题1】在下面算式的括号里填上合适的数。
【思路导航】根据题目特点,先看个位:7+5=12,在和的个位()中填2,并向十位进一;再看十位,()+4+1的和个位是1,因此,第一个加数的()中只能填6,并向百位进1;最后来看百位、千位,6+()+1的和的个位是2,第二个加数的()中只能填5,并向千位进1;因此,和的千位()中应填8。
练习1:(1)在括号里填上合适的数。
(2)在方框里填上合适的数。
(3)下面的竖式里,有4个数字被遮住了,求竖式中被盖住的4个数字的和。
【例题2】下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字。
当它们各代表什么数字时,下列的算式成立。
【思路导航】先看个位,3个“飞”相加的和的个位数字是1,可推知“飞”代表7;再看十位,3个“腾”相加,再加上个位进来的2,所得的和的个位是0,可推知“腾”代表6;再看百位,两个“龙”相加,加上十位进上来的2,所得和的个位是0,“龙”可能是4或9,考虑到千位上的“巨”不可能为0,所以“龙”只能代表4,“巨”只能代表1。
练习2:【例题3】下面各式中的“兵”、“炮”、“马”、“卒”各代表0—9这十个数字中的某一个,相同的汉字代表相同的数字。
这些汉字各代表哪些数字?【思路导航】这道题应以“卒”入手来分析。
“卒”和“卒”相加和的个位数字仍然是“卒”,这个数字只能是0。
确定“卒”是0后,所有是“卒”的地方,都是0。
注意到百位上是“兵”+“兵”=“卒”,容易知道“兵”是5,“车”是1;再由十位上的情况可推知“马”是4,进而推得“炮”是2。
四年级奥数知识算式谜题
四年级奥数知识算式谜题算式谜题(一)——横式算式谜题算式谜题是数学快乐游戏中的一道智慧大餐。
小朋友们在每年的元旦、“六一”儿童节的联欢会上,总会少不了做这样的趣题,它可以把你的聪明才智发挥出来,让其他的小朋友们对你刮目相看。
算式谜题的类型很多,有添加运算符号、填算式、填数字等,有横式型,也有竖式型的。
它的解题方法非常灵活,需要我们熟悉已经学过的四则运算规则,熟知“和、差、积、商”的位数特征。
解答算式谜题的时候,先要仔细审题,分析数据之间的关系,找到突破口,逐步试验,分析求解。
研究和解决算式谜题,有助于培养小朋友的观察、分析、归纳、推理等思维能力。
【例题精讲】例1 把+、-、×、÷分别填在适当的圆圈中(每个只允许用一次),并在正方形中填入适当的整数,可以使下面两个等式都成立。
此时,正方形中的数是多少?(奥数点拨P47 例1)① 9○13○7=124② 18○2○5=□【分析】这是两个联系十分密切的横式,它们分别使用四个运算符号+、-、×、÷(每个只允许用一次)。
仔细观察①式中的数字特点可以发现“×”号必须填在①式中,因为如果①式中的两个“○”内填“+”、“-”、“÷”号中的任何两个都不会等于124这么大的数。
通过试算9×13=117,117+7=124,所以第一个“○”内填“×”号,第二个“○”内填“+”号。
即:9×13+7=124显然“÷”、“-”号就只能填在②式中。
因为②式中右边□要填整数,通过试算,18÷2=9,9-5=4,所以,第一个“○”内填“÷”号,第二个“○”内填“-”号,正方形中的数是4。
即:18÷2-5=4 【解】① 9×13+7=124② 18÷2-5=4【同步精练】1、把+、-、×、÷分别填在适当的圆圈中(每个只允许用一次),并在正方形中填入适当的整数,可以使下面两个等式都成立。
四年级奥数举一反三第五周 算式谜(一)-最新精品
第五周算式谜(一)专题简析:“算式谜”一般是指那些含有未知数字或缺少运算符号的算式。
解决这类问题,可以根据已学过的知识,运用正确的分析推理方法,确定算式中的未知数字和运用符号。
由于这类题目的解答过程类似全平时进行的猜谜语游戏,所以,我们把这类题目称为“算式谜题”。
解答算式谜问题时,要先仔细审题,分析数据之间的关系,找到突破口,逐步试验,分析求解,通常要运用倒推法、凑整法、估值法等。
例1:在下面算式的括号里填上合适的数。
7 6 () 5+ () 4 7()2 1 ()分析:根据题目特点,先看个位:7+5=12,在和的个位()中填2,并向十位进一;再看十位,()+4+1的和个位是1,因此,第一个加数的()中只能填6,并向百位进1;最后来看百位、千位,6+()+1的和的个位是2,第二个加数的()中只能填5,并向千位进1;因此,和的千位()中应填8。
练习一(1)在括号里填上合适的数。
(2)在方框里填上合适的数。
6 ()()□ 0 □□+2() 1 5 -3()1 7()0 9 1 2 8 5 6(3)下面的竖式里,有4个数字被遮住了,求竖式中被盖住的4个数字的和。
□□+ □□1 6 9例2:下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字。
当它们各代表什么数字时,下列的算式成立。
腾飞龙腾飞+巨龙腾飞2 0 0 1分析:先看个位,3个“飞”相加的和的个位数字是1,可推知“飞”代表7;再看十位,3个“腾”相加,再加上个位进来的2,所得的和的个位是0,可推知“腾”代表6;再看百位,两个“龙”相加,加上十位进上来的2,所得和的个位是0,“龙”可能是4或9,考虑到千位上的“巨”不可能为0,所以“龙”只能代表4,“巨”只能代表1。
练习二(1) C D (2)式谜(3)澳门A C D 填式谜澳门归+A B C D +巧填式谜 +庆澳门归1 9 8 9 1 9 9 5 1 9 9 9例3:下面各式中的“兵”、“炮”、“马”、“卒”各代表0—9这十个数字中的某一个,相同的汉字代表相同的数字。
小学奥数 算式谜(一) 精选例题练习习题(含知识点拨)
5-1-1-1.算式谜(一)教学目标数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。
横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。
主要横式数字谜问题,因此,会需要利用数论的简单奇偶性等知识解决数字谜问题。
知识点拨一、基本概念填算符:指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。
算符:指+、-、×、÷、()、[]、{}。
二、解决巧填算符的基本方法(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。
(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。
三、奇数和偶数的简单性质(一)定义:整数可以分为奇数和偶数两类(1)我们把1,3,5,7,9和个位数字是1,3,5,7,9的数叫奇数.(2)把0,2,4,6,8和个位数是0,2,4,6,8的数叫偶数.(二)性质:①奇数≠偶数.②整数的加法有以下性质:奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数.③整数的减法有以下性质:奇数-奇数=偶数;奇数-偶数=奇数;偶数-奇数=奇数;偶数-偶数=偶数.④整数的乘法有以下性质:奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数.例题精讲模块一、巧填算符(一)巧填加减运算符号【例1】在下面算式适当的地方添上加号,使算式成立。
88888888=1000【例2】在等号左边9个数字之间填写6个加号或减号组成等式:1 2 3 4 5 6 7 8 9=101 【例3】在下面的□中填入“+”、“一”,使算式成立:1110987654210□□□□□□□□3□□=【巩固】在下面的□中填入“+”、“一”,使算式成立:11109876321=□□□□□□5□4□□【例4】在下面算式中合适的地方,只添两个加号和两个减号使等式成立。
(完整)5.20四年级奥数算式谜(一)(加减法)
算式谜(一)“算式谜”一般是指那些含有未知数字或缺少运算符号的算式。
解答算式谜问题时,要先仔细审题,分析数据之间的关系,找到突破口,逐步试验,分析求解,通常要运用倒推法、凑整法、估值法等。
例1:在下面算式的括号里填上合适的数。
7 6 () 5+ () 4 7() 2 1 ()分析:根据题目特点,先看个位:7+5=12,在和的个位()中填2,并向十位进一;再看十位,()+4+1的和个位是1,因此,第一个加数的()中只能填6,并向百位进1;最后来看百位、千位,6+()+1的和的个位是2,第二个加数的()中只能填5,并向千位进1;因此,和的千位()中应填8。
练习(1)在括号里填上合适的数。
(2)在方框里填上合适的数。
6 ()()□ 0 □□+ 2 () 1 5 -3 () 1 7() 0 9 1 2 8 5 6(3)下面的竖式里,有4个数字被遮住了,求竖式中被盖住的4个数字的和。
□□+ □□1 6 9例2:下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字。
当它们各代表什么数字时,下列的算式成立。
腾飞龙腾飞+巨龙腾飞2 0 0 1分析:先看个位,3个“飞”相加的和的个位数字是1,可推知“飞”代表7;再看十位,3个“腾”相加,再加上个位进来的2,所得的和的个位是0,可推知“腾”代表6;再看百位,两个“龙”相加,加上十位进上来的2,所得和的个位是0,“龙”可能是4或9,考虑到千位上的“巨”不可能为练习:(1) C D (2)式谜(3)澳门A C D 填式谜澳门归+A B C D +巧填式谜 +庆澳门归1 9 8 9 1 9 9 5 1 9 9 9例3:下面各式中的“兵”、“炮”、“马”、“卒”各代表0—9这十个数字中的某一个,相同的汉字代表相同的数字。
这些汉字各代表哪些数字?兵炮马卒+ 兵炮车卒车卒马兵卒分析:这道题应以“卒”入手来分析。
“卒”和“卒”相加和的个位数字仍然是“卒”,这个数字只能是0。
四年级奥数算式谜(一)
算式谜(一)一、知识要点“算式谜”一般是指那些含有未知数字或缺少运算符号的算式。
解决这类问题,可以根据已学过的知识,运用正确的分析推理方法,确定算式中的未知数字和运用符号。
由于这类题目的解答过程类似全平时进行的猜谜语游戏,所以,我们把这类题目称为“算式谜题”。
解答算式谜问题时,要先仔细审题,分析数据之间的关系,找到突破口,逐步试验,分析求解,通常要运用倒推法、凑整法、估值法等。
二、精讲精练【例题1】在下面算式的括号里填上合适的数。
【思路导航】根据题目特点,先看个位:7+5=12,在和的个位()中填2,并向十位进一;再看十位,()+4+1的和个位是1,因此,第一个加数的()中只能填6,并向百位进1;最后来看百位、千位,6+()+1的和的个位是2,第二个加数的()中只能填5,并向千位进1;因此,和的千位()中应填8。
练习1:(1)在括号里填上合适的数。
(2)在方框里填上合适的数。
(3)下面的竖式里,有4个数字被遮住了,求竖式中被盖住的4个数字的和。
【例题2】下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字。
当它们各代表什么数字时,下列的算式成立。
【思路导航】先看个位,3个“飞”相加的和的个位数字是1,可推知“飞”代表7;再看十位,3个“腾”相加,再加上个位进来的2,所得的和的个位是0,可推知“腾”代表6;再看百位,两个“龙”相加,加上十位进上来的2,所得和的个位是0,“龙”可能是4或9,考虑到千位上的“巨”不可能为0,所以“龙”只能代表4,“巨”只能代表1。
练习2:【例题3】下面各式中的“兵”、“炮”、“马”、“卒”各代表0—9这十个数字中的某一个,相同的汉字代表相同的数字。
这些汉字各代表哪些数字?【思路导航】这道题应以“卒”入手来分析。
“卒”和“卒”相加和的个位数字仍然是“卒”,这个数字只能是0。
确定“卒”是0后,所有是“卒”的地方,都是0。
注意到百位上是“兵”+“兵”=“卒”,容易知道“兵”是5,“车”是1;再由十位上的情况可推知“马”是4,进而推得“炮”是2。
四年级算式谜
四年级算式谜在四年级的学习中,我们遇到了很多有趣的算式谜题,这些谜题让我们不仅学习了数学知识,还锻炼了我们的思维能力和解决问题的能力。
其中,最简单的一种算式谜题是“×”和“÷”的问题。
这类问题通常会给出一些数字和运算符,让我们通过运算得到答案。
比如,有一个问题问我们:10÷5=?这个问题很简单,只要把10分成两半,就得到了答案2。
除了“×”和“÷”的问题,还有一种常见的算式谜题是“+”和“-”的问题。
这类问题通常会让我们通过加法和减法来得到答案。
比如,有一个问题问我们:10+5-3=?这个问题需要我们先计算10+5=15,然后再从15中减去3,就得到了答案12。
除了这些基本的算式谜题,还有一些更复杂的问题。
比如,有一个问题问我们:有一个数列,第一项是1,第二项是2,第三项是3,以此类推,第n项是多少?这个问题需要我们找到数列的规律,然后计算出第n项的值。
通过这个问题,我们不仅学习了数列的概念,还了解了数列的规律和计算方法。
四年级的算式谜题是我们学习数学的重要内容之一。
通过这些谜题,我们不仅学习了数学知识,还锻炼了我们的思维能力和解决问题的能力。
在未来的学习中,我们还会遇到更多有趣的谜题,让我们不断探索和学习。
一年级的图文算式,是孩子们学习数学的基础。
它通过直观的图形和数字,帮助孩子们理解加减乘除等基本运算。
图文算式的形式使得孩子们更容易理解数学概念。
对于刚刚接触数学的一年级学生来说,纯数字的运算可能会让他们感到困惑。
而图文算式则通过具体的图形和数字,帮助他们更好地理解问题。
例如,在计算“8+5=?”时,老师可以在黑板上画出8个苹果,然后再画5个苹果,让学生数出总共有多少个苹果。
这样,孩子们就可以通过具体的图形来理解加法的概念。
图文算式还能够帮助孩子们提高解决问题的能力。
在解决实际问题时,孩子们需要将数学概念与实际问题起来。
而图文算式则可以帮助他们更好地理解问题的背景和条件,从而更好地解决问题。
四年级奥数竖式数字谜40题
四年级奥数竖式数字谜40题一、不带解析的竖式数字谜题目(20题)1. 在下面的竖式中,每个汉字代表一个数字,不同的汉字代表不同的数字,求“我爱数学”代表的四位数是多少?我爱数学。
× 9.——————学数爱我。
2. 下面的竖式中,A、B、C、D各代表什么数字?A B C D.× 9.——————D C B A.3. 在竖式中,□里填合适的数字,使竖式成立。
□ 2 □.×□ 7.——————□□ 0 6.□□ 4.——————1 □□□ 2.4. 填出下面竖式中的数字。
□ 8 □.×□ 5.——————4 □ 0 □.3 □□.——————3 □ 9 □ 0.5. 在下面的竖式中,相同的字母表示相同的数字,不同的字母表示不同的数字,求A、B、C的值。
A B C.× C.——————C B A.6. 竖式中的字母各代表什么数字?A B.× B A.——————1 1 4.3 0 4.——————4 1 8.7. 求下面竖式中□里的数字。
□□ 5.× 2 □.——————1 □□ 0.□ 1 □.——————1 □ 9 5 0.8. 在竖式中,使下面的乘法竖式成立。
1 □.×□ 3.——————□□ 3.1 □.——————1 □ 9.9. 填出下面竖式中的数字。
3 □.× 4 □.——————□□ 2.1 2 □.——————1 5 □ 2.10. 下面竖式中,不同的汉字代表不同的数字,“奥林匹克”代表的四位数是多少?奥林匹克。
× 4.——————克匹林奥。
11. 在竖式中,求□里的数字。
2 □.×□ 6.——————1 □ 2.□□.——————□ 9 6.12. 下面竖式中的字母各代表什么数字?A B C.× D E.——————1 □□.2 □□.——————3 □□ 2.13. 求下面竖式中数字。
算式谜四年级奥数题
算式谜四年级奥数题算式谜是一种让人在解题中体会到乐趣的数学游戏。
四年级的奥数题则是需要学生们有一定数学基础和思维能力的挑战。
在本文中,我们将结合这两个主题,探讨一下四年级的奥数题中的算式谜。
首先,我们来看一道典型的四年级奥数题:小明有一些糖果,他把这些糖果平分给他的三个朋友,每个朋友得到5颗糖果,还剩下4颗糖果。
如果他再多买10颗糖果,那么他就可以平分给4个朋友。
请问小明原来有多少颗糖果?这道题需要学生们运用到一些基本的数学概念和计算方法,如除法、乘法、加法和减法等。
但是,如果我们把这个问题变成一个算式谜,会不会更加有趣呢?我们可以这样设计一个算式谜:有一个三位数,它除以3余1,再加上10可以被4整除。
请问这个数是多少?这个算式谜与原来的题目是等价的,但是通过这种方式,我们可以让学生们在解题中更加享受到数学的乐趣。
他们需要运用到除法、加法和取模等知识,同时也需要有一定的逻辑思维能力。
除了这个例子,还有许多其他的算式谜可以用来挑战四年级学生的数学能力。
例如:1. 有一个两位数,它的十位数和个位数的和是9,它的十位数比个位数多2,这个数是多少?2. 有一个三位数,它的百位数是4,个位数是2,如果把它的百位数和个位数交换,得到一个比原来的数小66,这个数是多少?3. 小明有一些钱,他花掉了三分之一,还剩下20元。
请问他原来有多少钱?这些算式谜都需要学生们有一定的数学基础和思维能力,但是它们也能带来一定的乐趣和挑战。
通过这种方式,我们可以让学生们更加积极地学习数学,培养他们的逻辑思维和解决问题的能力。
总之,算式谜是一种非常有趣的数学游戏,可以让学生们在解题中享受到数学的乐趣。
四年级的奥数题则需要学生们有一定的数学基础和思维能力,通过将这两个主题相结合,我们可以让学生们更加积极地学习数学,培养他们的逻辑思维和解决问题的能力。
四年级奥数第3讲算式谜
第5讲算式谜(一)算式谜是一种有趣的数学问题,它的特点是在算术运算的式子中,使一些数字或运算符号“残缺”,要我们根据运算法则,进行判断推理,从而把“残缺”的算式补充完整。
研究和解决算式谜问题,有利于培养我们观察、分析、归纳、推理等思维能力。
从这个意义上讲,算式谜问题是一种很好的锻炼思维的“体操”。
例1.在下面算式的括号里填上合适的数。
(1)()6()()(2)()0()()+ 2()1 5 - 3() 1 68 0 9 1 4 8 5 7例2.A、B、C、D分别代表4个不同的数字,相同的字母代表相同的数字,求使得下面算式成立A、B、C、D各自代表的数字。
A B C DA C D+ C D1 9 8 9例3.A、B、C、D分别代表不同的数字,它们各是什么数字时同上面的算式成立?A B C D- C D CA B C例4.下面的算式中的“数”、“学”、“俱”、“乐”、“部”这五个汉字各应代表什么数字?1 数学俱乐部× 3数学俱乐部 1例5.下面算式中不同的字母所找表的数字均不同,当这些字母代表什么数时,算式成立?A B C× D CB E AF AG HF IG A A例6.在括号里填数,使下面的竖式成立。
1()()())1()21()7 ()()()例7.下面的算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,求这个算式。
新新×春春=新年年新练习与思考1.在□里填上适当的数,使等式成立。
(1)□ 6 4 (2)□ □ 37 □ 3 - □ □+ 4 8 □ 8□ 0 4 22.下面算式中不同的图形代表不同的数,不同的字母代表不同的数,请将算式中的图形或字母还原成数字。
(1) 1 ○ 2 □ (2) A B C D- □ 1 △ + A B E D3 ○ ○ E D C A D3.在( )里填上适当的数,使算式成立。
4.下面算式中汉字或字母分别代表不同的数字,请将汉字或字母还原成数字。
四年级奥数:数字谜
四年级奥数:数字谜(一)我们在三年级已经学习过一些简单的数字谜问题.这两讲除了复习巩固学过的知识外,还要学习一些新的内容.例1 在下面算式等号左边合适的地方添上括号,使等式成立:5+7×8+12÷4-2=20.分析:等式右边是20,而等式左边算式中的7×8所得的积比20大得多.因此必须设法使这个积缩小一定的倍数,化大为小.从整个算式来看,7×8是4的倍数,12也是4的倍数,5不能被4整除,因此可在7×8+12前后添上小括号,再除以4得17,5+17-2=20.解:5+(7×8+12)÷4-2=20.例2把1~9这九个数字填到下面的九个□里,组成三个等式(每个数字只能填一次):分析与解:如果从加法与减法两个算式入手,那么会出现许多种情形.如果从乘法算式入手,那么只有下面两种可能:2×3=6或2×4=8,所以应当从乘法算式入手.因为在加法算式□+□=□中,等号两边的数相等,所以加法算式中的三个□内的三个数的和是偶数;而减法算式□-□=可以变形为加法算式□=□+□,所以减法算式中的三个□内的三个数的和也是偶数.于是可知,原题加减法算式中的六个数的和应该是偶数.若乘法算式是2×4=8,则剩下的六个数1,3,5,6,7,9的和是奇数,不合题意;若乘法算式是2×3=6,则剩下的六个数1,4,5,7,8,9可分为两组:4+5=9,8-7=1(或8-1=7);1+7=8,9-5=4(或9-4=5).所以答案为与例3下面的算式是由1~9九个数字组成的,其中“7”已填好,请将其余各数填入□,使得等式成立:□□□÷□□=□-□=□-7.分析与解:因为左端除法式子的商必大于等于2,所以右端被减数只能填9,由此知左端被除数的百位数只能填1,故中间减式有8-6,6-4,5-3和4-2四种可能.经逐一验证,8-6,6-4和4-2均无解,只有当中间减式为5-3时有如下两组解:128÷64=5-3=9-7,或164÷82=5-3=9-7.例4 将1~9九个数字分别填入下面四个算式的九个□中,使得四个等式都成立:□+□=6,□×□=8,□-□=6,□□÷□=8.分析与解:因为每个□中要填不同的数字,对于加式只有两种填法:1+5或2+4;对于乘式也只有两种填法:1×8或2×4.加式与乘式的数字不能相同,搭配后只有两种可能:(1)加式为1+5,乘式为2×4;(2)加式为2+4,乘式为1×8.对于(1),还剩3,6,7,8,9五个数字未填,减式只能是9-3,此时除式无法满足;对于(2),还剩3,5,6,7,9五个数字未填,减式只能是9-3,此时除式可填56÷7.答案如下:2+4=6,1×8=8,9-3=6,56÷7=8.例2~例4都是对题目经过初步分析后,将满足题目条件的所有可能情况全部列举出来,再逐一试算,决定取舍.这种方法叫做枚举法,也叫穷举法或列举法,它适用于只有几种可能情况的题目,如果可能的情况很多,那么就不宜用枚举法.例5 从1~9这九个自然数中选出八个填入下式的八个○内,使得算式的结果尽可能大:[○÷○×(○+○)]-[○×○+○-○].分析与解:为使算式的结果尽可能大,应当使前一个中括号内的结果尽量大,后一个中括号内的结果尽量小.为叙述方便,将原式改写为:[A÷B×(C+D)]-[E×F+G-H].通过分析,A,C,D,H应尽可能大,且A应最大,C,D次之,H再次之;B,E,F,G应尽可能小,且B应最小,E,F次之,G再次之.于是得到A=9,C=8,D=7,H=6,B=1,E=2,F=3,G=4,其中C与D,E与F的值可互换.将它们代入算式,得到[9÷1×(8+7)]-[2×3+4-6]=131.练习91.在下面的算式里填上括号,使等式成立:(1)4×6+24÷6-5=15;(2)4×6+24÷6-5=35;(3)4×6+24÷6-5=48;(4)4×6+24÷6-5=0.2.加上适当的运算符号和括号,使下式成立:1 2 3 4 5 =100.3.把0~9这十个数字填到下面的□里,组成三个等式(每个数字只能填一次):□+□=□,□-□=□,□×□=□□.4.在下面的□里填上+,-,×,÷,()等符号,使各个等式成立:4□4□4□4=1,4□4□4□4=3,4□4□4□4=5,4□4□4□4=9.5.将2~7这六个数字分别填入下式的□中,使得等式成立:□+□-□=□×□÷□.6.将1~9分别填入下式的九个□内,使算式取得最大值:□□□×□□□×□□□.7.将1~8分别填入下式的八个□内,使算式取得最小值:□□×□□×□□×□□.第10讲数字谜(二)例1 把下面算式中缺少的数字补上:分析与解:一个四位数减去一个三位数,差是一个两位数,也就是说被减数与减数相差不到100.四位数与三位数相差不到100,三位数必然大于900,四位数必然小于1100.由此我们找出解决本题的突破口在百位数上.(1)填百位与千位.由于被减数是四位数,减数是三位数,差是两位数,所以减数的百位应填9,被减数的千位应填1,百位应填0,且十位相减时必须向百位借1.(2)填个位.由于被减数个位数字是0,差的个位数字是1,所以减数的个位数字是9.(3)填十位.由于个位向十位借1,十位又向百位借1,所以被减数十位上的实际数值是18,18分解成两个一位数的和,只能是9与9,因此,减数与差的十位数字都是9.所求算式如右式.由例1看出,考虑减法算式时,借位是一个重要条件.例 2 在下列各加法算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,求出这两个算式:分析与解:(1)这是一道四个数连加的算式,其特点是相同数位上的数字相同,且个位与百位上的数字相同,即都是汉字“学”.从个位相同数相加的情况来看,和的个位数字是8,有两种可能情况:2+2+2+2=8与7+7+7+7=28,即“学”=2或7.如果“学”=2,那么要使三个“数”所代表的数字相加的和的个位数字为8,“数”只能代表数字6.此时,百位上的和为“学”+“学”+1=2+2+1=5≠4.因此“学”≠2.如果“学”=7,那么要使三个“数”所代表的数字相加再加上个位进位的2,和的个位数字为8,“数”只能代表数字2.百位上两个7相加要向千位进位1,由此可得“我”代表数字3.满足条件的解如右式.(2)由千位看出,“努”=4.由千、百、十、个位上都有“努”,5432-4444=988,可将竖式简化为左下式.同理,由左下式看出,“力”=8,988-888=100,可将左下式简化为下中式,从而求出“学”=9,“习”=1.满足条件的算式如右下式.例2中的两题形式类似,但题目特点并不相同,解法也不同,请同学们注意比较.例 3 下面竖式中每个汉字代表一个数字,不同的汉字代表不同的数字,求被乘数.分析与解:由于个位上的“赛”ד赛”所得的积不再是“赛”,而是另一个数,所以“赛”的取值只能是2,3,4,7,8,9.下面采用逐一试验的方法求解.(1)若“赛”=2,则“数”=4,积=444444.被乘数为444444÷2=222222,而被乘数各个数位上的数字各不相同,所以“赛”≠2.(2)若“赛”=3,则“数”=9,仿(1)讨论,也不行.(3)若“赛”=4,则“数”=6,积=666666.666666÷4得不到整数商,不合题意.(4)若“赛”=7,则“数”=9,积=999999.被乘数为999999÷7=142857,符合题意.(5)若“赛”=8或9,仿上讨论可知,不合题意.所以,被乘数是142857.例4 在□内填入适当的数字,使左下式的乘法竖式成立.分析与解:为清楚起见,我们用A,B,C,D,…表示□内应填入的数字(见右上式).由被乘数大于500知,E=1.由于乘数的百位数与被乘数的乘积的末位数是5,故B,C中必有一个是5.若C=5,则有6□□×5=(600+□□)×5=3000+□□×5,不可能等于□5□5,与题意不符,所以B=5.再由B=5推知G=0或5.若G=5,则F=A=9,此时被乘数为695,无论C为何值,它与695的积不可能等于□5□5,与题意不符,所以G=0,F=A=4.此时已求出被乘数是645,经试验只有645×7满足□5□5,所以C=7;最后由B=5,G=0知D为偶数,经试验知D=2.右式为所求竖式.此类乘法竖式题应根据已给出的数字、乘法及加法的进位情况,先填比较容易的未知数,再依次填其余未知数.有时某未知数有几种可能取值,需逐一试验决定取舍.例5 在□内填入适当数字,使左下方的除法竖式成立.分析与解:把左上式改写成右上式.根据除法竖式的特点知,B=0,D=G=1,E=F=H=9,因此除数应是99的两位数的约数,可能取值有11,33和99,再由商的个位数是5以及5与除数的积是两位数得到除数是11,进而知A=C-9.至此,除数与商都已求出,其余未知数都可填出(见右式).此类除法竖式应根据除法竖式的特点,如商的空位补0、余数必须小于除数,以及空格间的相互关系等求解,只要求出除数和商,问题就迎刃而解了.例 6 把左下方除法算式中的*号换成数字,使之成为一个完整的式子(各*所表示的数字不一定相同).分析与解:由上面的除法算式容易看出,商的十位数字“*”是0,即商为.因为除数与8的积是两位数,除数与商的千位数字的积是三位数,知商的千位数是9,即商为9807.因为“除数×9”是三位数,所以除数≥12;又因为“除数×8”是两位数,所以除数≤12.推知除数只能是12.被除数为9807×12=117684.除法算式如上页右式.练习101.在下面各竖式的□内填入合适的数字,使竖式成立:2.右面的加法算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.问:“小”代表什么数字?3.在下列各算式中,不同的汉字代表不同的数字相同的汉字代表相同的数字.求出下列各式:4.在下列各算式中,相同的字母代表相同的数字,不同的字母代表不同的数字.这些算式中各字母分别代表什么数字?答案练习91.(1)4×(6+24)÷6-5=15;(2)4×(6+24÷6)-5=35;(3)4×6+24÷(6-5)=48;(4)4×[(6+24)÷6-5]=0.2.(1×2+3)×4×5=100.3.3+6=9,8-7=1,4×5=20.(填法不唯一)4.(4+4)÷(4+4)=1,(4+4+4)÷4=3,(4×4+4)÷4=5,4+4+4÷4=9.5.6+7-3=5×4÷2.6.941×852×763=611721516.提示:按下面两个原则填数:①将较大的数填在高数位上;②各乘数之间的差尽量小.7.15×26×37×48=692640.练习102.9.提示:“生”=“学”+1.提示:(1)由千位知A=B+1,再由个位知C=9.十位减法需向百位借1,由百位知A=8,从而B=7.(2)由除式特点知D=0,A=9,C=1,依次推出G=2,F=5.。
算式谜四年级奥数题
算式谜四年级奥数题数学是一门非常神奇的学科。
在数学的世界里,有各种各样的数学题,而奥数题更是其中的佼佼者。
奥数题不仅能够锻炼我们的逻辑思维能力,还能够让我们更好地理解数学的本质。
今天,我们来看一道四年级奥数题——算式谜。
算式谜的题目如下:用1、2、3、4、5、6六个数字,组成两个三位数,相乘得到一个四位数,这个四位数的千位数是1,十位数是3,个位数是5。
这道题看似简单,实际上却需要我们运用许多数学知识和技巧才能够得出正确答案。
首先,我们需要明确题目的要求,即用1、2、3、4、5、6六个数字组成两个三位数,相乘得到一个四位数,且这个四位数的千位数是1,十位数是3,个位数是5。
那么,我们该如何开始呢?首先,我们要确定四位数的百位数是多少。
由于这个四位数的千位数是1,十位数是3,个位数是5,因此,我们可以列出如下的式子:1 _ 3 5其中,下划线处表示这个四位数的百位数。
我们可以通过这个式子,来确定这个四位数的百位数。
由于两个三位数相乘得到的结果最多只有五位数,因此,这个四位数的百位数只能是2或者3。
如果这个四位数的百位数是2,那么我们可以列出如下的式子:1 2 3 5 × _ _ _ = _ _ 1 3 5其中,下划线处表示这个四位数的百位数。
我们可以通过这个式子,来确定这个四位数的百位数。
由于这个四位数的千位数是1,十位数是3,个位数是5,因此,这个四位数的百位数只能是4或者5。
如果这个四位数的百位数是4,那么我们可以列出如下的式子:1 2 3 5 × _ _ _ = _ 4 1 3 5由于这个四位数的千位数是1,十位数是3,个位数是5,因此,这个四位数的百位数只能是5。
但是,由于1、2、3、4、5、6这六个数字中只有一个5,因此,我们无法将5放到百位上,因此,这种情况是不合法的。
因此,我们可以确定这个四位数的百位数只能是3。
那么,我们可以列出如下的式子:1 2 3 5 × _ _ _ = 3 1 3 5由于这个四位数的千位数是1,十位数是3,个位数是5,因此,这个四位数的百位数只能是4。