(完整word)初三数学弧长和扇形面积公式整理版.doc
初中数学公式大全.word
初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
初三数学复习资料
初三数学复习资料初三数学复习资料11、弧长公式n°的圆心角所对的弧长l的计算公式为L=nπr/1802、扇形面积公式,其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长.S=﹙n/360﹚πR2=1/2×lR3、圆锥的侧面积,其中l是圆锥的母线长,r是圆锥的地面半径.S=1/2×l×2πr=πrl4、弦切角定理弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角.弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角.一、选择题1.(20__o珠海,第4题3分)已知圆柱体的底面半径为3cm,髙为4cm,则圆柱体的侧面积为()A.24πcm2B.36πcm2C.12cm2D.24cm2考点:圆柱的计算.分析:圆柱的侧面积=底面周长×高,把相应数值代入即可求解.解答:解:圆柱的侧面积=2π×3×4=24π.故选A.点评:本题考查了圆柱的计算,解题的关键是弄清圆柱的侧面积的计算方法.2.(20__o广西贺州,第11题3分)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是()A.B.C.D.考点:垂径定理;勾股定理;勾股定理的逆定理;弧长的计算.分析:连接OC,先根据勾股定理判断出△ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论.解答:解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sinA==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.故选B.初三数学复习资料2因式分解的方法1.十字相乘法(1)把二次项系数和常数项分别分解因数;(2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数;(3)确定合适的十字图并写出因式分解的结果;(4)检验。
弧长和扇形面积公式
弧长和扇形面积公式在几何学中,弧长和扇形面积是与圆形和圆的扇形相关的重要概念和计算方法。
这些公式可以用于解决许多几何问题,例如计算圆的周长、计算弧长和扇形的面积等。
本文将详细介绍关于弧长和扇形面积的公式及其推导过程。
首先,我们先来介绍一下什么是圆和圆的扇形。
圆是一个平面上所有点到一个固定点的距离都相等的图形。
而圆的扇形则是由半径为r的圆上的一段弧和两条半径所围成的图形。
1.弧长公式:弧长是圆上一段弧的长度,由于圆在数学上具有无限个点,所以我们可以定义一个角度来度量弧长。
我们知道圆的一周是360度,因此弧长的度量可以用度数或弧度来表示。
当我们用度数来度量弧长时,弧长和弧度的关系可以由以下公式得到:弧长=弧度×半径该公式是通过比较整个圆的周长与360度的比例得到的。
当我们用弧度来度量弧长时,弧度的定义是:圆的半径等于半径所对应的弧长的度数。
因此,当我们用弧度来度量弧长时,直接使用半径和弧度的乘积即可表示弧长。
2.扇形面积公式:扇形是由圆心、圆上一段弧和两条半径所围成的图形。
扇形的面积就是扇形所覆盖的圆的面积。
扇形面积可以由以下公式得到:扇形面积=(弧度÷2π)×πr²该公式是通过将圆的面积与圆的周长的比例乘以扇形所对应的弧长所得到的。
推导过程如下:假设圆的半径为r,圆心角为θ度,则该圆心角所对应的弧长为:弧长=(θ÷360)×2πr由于扇形是由半径为r的圆上一段弧和两条半径所围成的,所以扇形的面积可以表示为:扇形面积=(θ÷360)×πr²化简得到:扇形面积=(θ÷2π)×πr²将弧度用θ表示,得到最终的扇形面积公式:扇形面积=(弧度÷2π)×πr²需要注意的是,使用上述公式计算扇形面积时,角度必须使用弧度表示。
如果给出的是度数,则需将角度转换为弧度后再进行计算。
(word完整版)初中数学圆知识点总结,推荐文档
A图5圆的总结一 集合:圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合二 轨迹:1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;2、到线段两端点距离相等的点的轨迹是:线段的中垂线;3、到角两边距离相等的点的轨迹是:角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线三 位置关系:1点与圆的位置关系:点在圆内 d<r 点C 在圆内 点在圆上 d=r 点B 在圆上 点在此圆外 d>r 点A 在圆外2 直线与圆的位置关系:直线与圆相离 d>r 无交点 直线与圆相切 d=r 有一个交点 直线与圆相交 d<r 3 圆与圆的位置关系:外离(图1) 无交点外切(图2) 相交(图3) 内切(图4) 内含(图5) 无交点DBB ABA四 垂径定理:垂径定理:垂直于弦的直径平分弦且平分弦所对的弧 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB ⊥CD ③CE=DE ④⑤ 推论2:圆的两条平行弦所夹的弧相等。
即:在⊙O 中,∵AB ∥CD五 圆心角定理六 圆周角定理圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半即:∵∠AOB 和∠ACB 是 所对的圆心角和圆周角 ∴∠AOB=2∠ACB圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧即:在⊙O 中,∵∠C 、∠D 都是所对的圆周角∴∠C=∠D推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径即:在⊙O 中,∵AB 是直径 或∵∠C=90° ∴∠C=90° ∴AB 是直径推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形»»BC BD =»»AC AD =P即:在△ABC 中,∵OC=OA=OB∴△ABC 是直角三角形或∠C=90° 注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
弧长及扇形的面积 初中初三九年级数学教学课件PPT 人教版
再来练一练:
(2019·广东)在如图所示的网格中,每个小正方形的边 长为1,每个小正方形的顶点叫格点,△ABC的三个顶
点均在格点上,以点A为圆心的 EF与BC相切于点D,
分别交AB、AC于点E、F. (1)求△ABC三边的长; (2)求图中由线段EB、BC、CF
及 EF 所围成的阴影部分的面积.
弧:圆上两点之间的部分 扇形
弧长及扇形的面积
圆周长:C=2πR,圆面积S⊙O=πR2
弧长:2πR×
扇形的面积:
A
求弧长是多少?扇形面做积什我 么们 ?O 先要B
no的圆心角所对的弧长是
弧长公式
n 2R
360
nR
180
找到n和R
若⊙O的半径为R, no的圆心角所对的弧长l是
解:(1A) B 22 62 2 10,
AC 62 22 2 10, BC 42 82 4 5;
(2)由(1),得AB2+AC2=BC2,
∴∠BAC=90°,
连接AD,AD= 22 42 2 5 ,
∴S阴=S△ABC-S扇形AEF= 1 AB·AC-1 π·AD2
2
4
=20-5π.
弧长L nR
180
S扇形
nR2
360
1.已知扇形弧长为24πcm,半径为4cm,则面积为 ____。
2.一个扇形的圆心角为90o,半径为2,则弧长= ____, 扇形面积= _____.
3.一个扇形的弧长为20πcm,面积是240πc㎡,则该扇 形的圆心角为_____.
4.已知扇形的圆心角为120o,半径为6,则扇形的弧长 是( )
l n 2R nR
360 180
扇形面积公式
初三数学圆弧扇形公式最详细
初三数学圆及圆弧、扇形等知识点公式最详细圆1、(要求深刻理解、熟练运用)ABO9.相交弦定理及其推论:(1)圆内的两条相交弦,被交点分成的两条线段长的乘积相等; (2)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段长的比例中项.(1) (2)几何表达式举例: (1) ∵PA ·PB=PC ·PD∴……… (2) ∵AB 是直径∵PC ⊥AB ∴PC 2=PA ·PB11.关于两圆的性质定理:(1)相交两圆的连心线垂直平分两圆的公共弦; (2)如果两圆相切,那么切点一定在连心线上.(1) (2)几何表达式举例: (1) ∵O 1,O 2是圆心∴O 1O 2垂直平分AB (2) ∵⊙1 、⊙2相切∴O 1 、A 、O 2三点一线12.正多边形的有关计算: (1)中心角n,半径R N , 边心距r n ,边长a n ,内角n, 边数n ;(2)有关计算在Rt ΔAOC 中进行.公式举例:(1)n=n 360︒; (2) n1802n ︒=α1.不在一直线上的三个点确定一个圆.2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 3.正n 边形的半径和边心距把正n 边形分为2n 个全等的直角三角形. 三 公式: 1.有关的计算:(1)圆的周长C=2πR ;(2)弧长L=180R n π;(3)圆的面积S=πR 2. (4)扇形面积S 扇形 =LR 21360R n 2=π;(5)弓形面积S 弓形 =扇形面积S AOB ±ΔAOB 的面积.(如图) 2.圆柱与圆锥的侧面展开图:(1)圆柱的侧面积:S 圆柱侧 =2πrh ; (r:底面半径;h:圆柱高)(2)圆锥的侧面积:S 圆锥侧 =LR 21=πrR. (L=2πr ,R 是圆锥母线长;r 是底面半径)四 常识:1. 圆是轴对称和中心对称图形. 2. 圆心角的度数等于它所对弧的度数. 3. 三角形的外心 两边中垂线的交点三角形的外接圆的圆心;三角形的内心 两内角平分线的交点 三角形的内切圆的圆心.4. 直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径)AB O1O2AO1O2αnβnABCDEOa r n nnR ABCDPABCPO直线与圆相交 d<r ;直线与圆相切 d=r ;直线与圆相离 d>r.5.圆与圆的位置关系:(其中d表示圆心到圆心的距离,其中R、r表示两个圆的半径且R≥r)两圆外离 d>R+r;两圆外切 d=R+r;两圆相交 R-r<d<R+r;两圆内切 d=R-r;两圆内含 d<R-r.6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径”的方法加辅助线.(注:文档可能无法思考全面,请浏览后下载,供参考。
初中数学人教版九年级上册探究圆的弧长、扇形面积公式
2.探究并应用扇形面积公式
问题3
比较扇形面积公式 nR2 和弧长公式 nR ,你能用
ቤተ መጻሕፍቲ ባይዱ
360
180
弧长表示扇形面积吗?
归纳:
S扇形
nR2
360
1 2
nR
180
R
1 lR. 2
2.探究并应用扇形面积公式
例2
如图,水平放置的圆柱形排水管道的截面半径是
0.6 m,其中水面高 0.3 m,求截面上有水部分的面积
5.布置作业
教科书习题 24.4 第 4,6,8 题.
24.4 弧长和扇形面积(第1课时)
课件说明
• 弧长和扇形面积公式是与圆有关的计算中的两个常用 公式.应用弧长和扇形面积公式可以计算一些与圆有 关的图形的周长和面积,也可以解决一些简单的实际 问题.学习这两个公式也为圆锥侧面积公式的推导打 下了基础.
• 弧长公式是在圆周长公式的基础上,借助部分与整体 之间的联系推导出来的.运用相同的研究方法,可以 在圆面积公式的基础上推导出扇形面积公式,进而通 过弧长表示扇形面积.
(结果保留小数点后两位).
(1)你能否在图中标出截面
半径和水高?
(2)分析截面上有水部分图
形的形状,如何求它的面积?
O
D
A
B
C
3.练习、巩固弧长和扇形面积公式 教科书第 113 页 练习第 1,2,3 题.
4.课堂小结
(1)弧长和扇形面积公式是什么?你是如何得到 这两个公式的?如何运用?
(2)弧长与圆周长、扇形面积与圆面积之间有什 么联系?
例1 制造弯形管道时,经常要先按中心线计算“展直长 度”,再下料,试计算图中所示的管道的展直长度 L (结果取整数).
九年级上册数学弧长和扇形面积
九年级上册数学弧长和扇形面积一、弧长公式。
1. 公式推导。
- 在圆中,圆心角n^∘所对的弧长l与圆周长C = 2π r(r为圆的半径)存在比例关系。
- 因为整个圆的圆心角是360^∘,所以圆心角为n^∘所对的弧长l=(n)/(360)×2π r=(nπ r)/(180)。
2. 应用示例。
- 例:已知圆的半径r = 5cm,圆心角n = 60^∘,求弧长l。
- 解:根据弧长公式l=(nπ r)/(180),将r = 5cm,n = 60^∘代入公式,得到l=(60×π×5)/(180)=(5π)/(3)cm。
二、扇形面积公式。
1. 公式推导。
- 方法一:与弧长公式推导类似,因为扇形面积S与圆面积S=π r^2也存在比例关系,对于圆心角为n^∘的扇形,其面积S=(n)/(360)×π r^2。
- 方法二:由S=(1)/(2)lr(l为弧长,r为半径),把l = (nπ r)/(180)代入可得S=(1)/(2)×(nπ r)/(180)× r=frac{nπ r^2}{360}。
2. 应用示例。
- 例:已知扇形的半径r = 4cm,圆心角n = 90^∘,求扇形面积。
- 解:- 方法一:根据S=(n)/(360)×π r^2,将r = 4cm,n = 90^∘代入,得到S=(90)/(360)×π×4^2=4π cm^2。
- 方法二:先求弧长l=(nπ r)/(180)=(90×π×4)/(180)=2π cm,再根据S=(1)/(2)lr,l = 2π cm,r = 4cm,得到S=(1)/(2)×2π×4 = 4π cm^2。
三、弓形面积。
1. 弓形的定义。
- 弓形是由弦及其所对的弧组成的图形。
2. 弓形面积的计算。
- 当弓形所含的弧是劣弧时,弓形面积S_弓=S_扇-S_(S_扇为扇形面积,S_为三角形面积)。
人教版九年级上册数学 第24章《圆》讲义 第讲 正多边形和圆弧长和扇形面积(有答案)
第17讲 正多边形和圆、弧长和扇形面积 第一部分 知识梳理 知识点一:圆与内正多边形的计算1、正三角形 在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::1:3:2OD BD OB =;2、正四边形 同理,四边形的有关计算在Rt OAE ∆中进行,::1:1:2OE AE OA =3、正六边形 同理,六边形的有关计算在Rt OAB ∆中进行,::1:3:2AB OB OA = 知识点二、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:180n R l π=; (2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积2、圆柱侧面展开图:3、圆锥侧面展开图第二部分 考点精讲精练考点1、正多边形和圆的求解例1、六边形的边长为10cm ,那么它的边心距等于( )A .10cmB .5cmC .cm D .cm 例2、已知正多边形的边心距与边长的比为21,则此正多边形为( ) A .正三角形 B .正方形 C .正六边形 D .正十二边形例3、如图,在⊙O 内,AB 是内接正六边形的一边,AC 是内接正十边形的一边,BC 是内接正n 边形的一边,那么n= .例4、圆的内接正六边形边长为a,这个圆的周长为.例5、如图,已知边长为2cm的正六边形ABCDEF,点A1,B1,C1,D1,E1,F1分别为所在各边的中点,求图中阴影部分的总面积S.举一反三:1、下列命题中的真命题是()A.三角形的内切圆半径和外接圆半径之比为2:1B.正六边形的边长等于其外接圆的半径C.圆外切正方形的边长等于其边A心距的倍D.各边相等的圆外切多边形是正方形2、已知正方形的边长为a,其内切圆的半径为r,外接圆的半径为R,则r:R:a=()A.1:1:B.1::2 C.1::1 D.:2:43、某工人师傅需要把一个半径为6cm的圆形铁片加工截出边长最大的正六边形的铁片,则此正六边形的边长为 cm.4、如图,正六边形与正十二边形内接于同一圆⊙O中,已知外接圆的半径为2,则阴影部分面积为.5、如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB为平行四边形;(2)填空:①当t= s时,四边形PBQE为菱形;②当t= s时,四边形PBQE为矩形.考点2、弧长的计算例1、一条弧所对的圆心角是90°,半径是R,则这条弧长是()A.B.C.D.例2、一个滑轮起重装置如图所示,滑轮半径是10cm,当重物上升10cm时,滑轮的一条半径OA绕轴心O,绕逆时针方向旋转的角度约为(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°)()A.115°B.160°C.57°D.29°例3、已知:如图,四边形ABCD内接于⊙O,若∠BOD=120°,OB=1,则∠BAD= 度,∠BCD= 度,弧BCD的长= .例4、如图,在Rt△ABC中,∠C=90°,∠A=60°,AC=cm,将△ABC绕点B旋转至△A′BC′的位置,且使点A、B、C′三点在一条直线上,则点A经过的最短路线的长度是.例5、如图,菱形ABCD的边长为6,∠BAD=60°,AC为对角线.将△ACD绕点A逆时针旋转60°得到△AC′D′,连接DC′.(1)求证:△ADC≌△ADC′;(2)求在旋转过程中点C扫过路径的长.(结果保留π)举一反三:1、弧长为6π的弧所对的圆心角为60°,则弧所在的圆的半径为()A.6 B.6C.12D.182、如图,一块边长为10cm的正方形木板ABCD,在水平桌面上绕点D按顺时针方向旋转到A′B′C′D′的位置时,顶点B从开始到结束所经过的路径长为()A.20cm B.20cm C.10πcm D.5πcm3、一段铁路弯道成圆弧形,圆弧的半径是2km.一列火车以每小时28km的速度经过10秒通过弯道.那么弯道所对的圆心角的度数为度.(π取3.14,结果精确到0.1度).4、已知矩形ABCD的长AB=4,宽AD=3,按如图放置在直线AP上,然后不滑动地转动,当它转动一周时(A→A′),顶点A所经过的路线长等于.5、如图,在一个横截面为Rt△ABC的物体中,∠CAB=30°,BC=1米.工人师傅把此物体搬到墙边,先将AB边放在地面(直线l)上,再按顺时针方向绕点B翻转到△A1B1C1的位置(BC1在l上),最后沿BC1的方向平移到△A2B2C2的位置,其平移的距离为线段AC的长度(此时A2C2恰好靠在墙边).(1)请直接写出AB、AC的长;(2)画出在搬动此物的整个过程A点所经过的路径,并求出该路径的长度(精确到0.1米).考点3、扇形面积的计算例1、已知五个半径为1的圆的位置如图所示,各圆心的连线构成一个五边形,那么阴影部分的面积是()A.B.2π C.D.3π例2、一个商标图案如图中阴影部分,在长方形ABCD中,AB=8cm,BC=4cm,以点A 为圆心,AD为半径作圆与BA的延长线相交于点F,则商标图案的面积是()A.(4π+8)cm2 B.(4π+16)cm2C.(3π+8)cm2 D.(3π+16)cm2例3、如图,E是正方形ABCD内一点,连接EA、EB并将△BAE以B为中心顺时针旋转90°得到△BFC,若BA=4,BE=3,在△BAE旋转到△BCF的过程中AE扫过区域面积.例4、如图,有一直径为1米的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形,则剩下部分的(阴影部分)的面积是.例5、如图,已知P为正方形ABCD内一点,△ABP经过旋转后到达△CBQ的位置.(1)请说出旋转中心及旋转角度;(2)若连接PQ,试判断△PBQ的形状;(3)若∠BPA=135°,试说明点A,P,Q三点在同一直线上;(4)若∠BPA=135°,AP=3,PB=,求正方形的对角线长;(5)在(4)的条件下,求线段AP在旋转过程中所扫过的面积.举一反三:1、若一个扇形的面积是相应圆的41,则它的圆心角为( ) A .150° B .120° C .90° D .60°2、如图所示的4个的半径均为1,那么图中的阴影部分的面积为( )A .π+1B .2πC .4D .63、如图,O 为圆心,半径OA=OB=r ,∠AOB=90°,点M 在OB 上,OM=2MB ,用r 的式子表示阴影部分的面积是 .4、如图,直角△ABC 的直角顶点为C ,且AC=5,BC=12,AB=13,将此三角形绕点A 顺时针旋转90°到直角△AB′C′的位置,在旋转过程中,直角△ABC 扫过的面积是 .(结果中可保留π)5、如图,四边形ABCD 是长方形,AB=a ,BC=b (a >b ),以A 为圆心AD 长为半径的圆与CD 交于D ,与AB 交于E ,若∠CAB=30°,请你用a 、b 表示图中阴影部分的面积.考点4、圆锥侧面积计算例1、如果圆锥的高为3cm ,母线长为5cm ,则圆锥的侧面积是( )A .16πcm 2B .20πcm 2C .28πcm 2D .36πcm 2例2、新疆哈萨克族是一个游牧民族,喜爱居住毡房,毡房的顶部是圆锥形,如图所示,为防雨需要在毡房顶部铺上防雨布.已知圆锥的底面直径是5.7m ,母线长是3.2m ,铺满毡房顶部至少需要防雨布(精确到1m 2)( )A .58 m 2B .29 m 2C .26 m 2D .28 m 2例3、扇形的圆心角为150°,半径为4cm ,用它做一个圆锥,那么这个圆锥的表面积为 cm 2.例4、在十年文革期间的“高帽子”.这种“高帽子”是用如图①所示的扇形硬纸板,做成如图②所示的无底圆锥体.已知接缝的重叠部分的圆心角为30°.(1)求重叠部分的面积.(结果保留π)(2)计算这顶“高帽子”有多高?(结果保留根号)例5、已知:一个圆锥的侧面展开图是半径为20cm,圆心角为120°的扇形,求这圆锥的底面圆的半径和高.举一反三:1、若圆锥的侧面积为12πcm2,它的底面半径为3cm,则此圆锥的母线长为()A.4πcm B.4 cm C.2πcm D.2 cm2、圆锥的轴截面是一个等腰三角形,它的面积是10cm2,底边上的高线是5cm,则圆锥的侧面展开图的弧长等于()A.87πcm B.47πcm C.8 cm D.4 cm3、如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的高为。
《初中数学公式大全》(word版可编辑修改)
直棱柱侧 S=c*h
面积
斜棱柱侧面积 S=c’*h
正棱锥侧 S=1/2c*h'
面积
正棱台侧面积 S=1/2(c+c')h’
圆台侧面 S=1/2(c+c’)l=pi(R+r)l
积
球的表面积 S=4pi*r2
圆柱侧面 S=c*h=2pi*h
积
圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r (a 是圆心角的弧度数 r〉0) 扇形面积公式 s=1/2*l*r
(n+1)
(2n+1)/6
3
《初中数学公式大全》(word 版可编辑修改)
13+23+33+43+53+63+…n3=n2
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n
(n+1)2/4
(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R
注: 其中 R 表示三角形的外接圆半径
2cosAcosB=cos(A+B)—sin(A-B)—2sinAsinB=cos(A+B)—cos(A—B)
sinA+sinB=2sin((A+B)/2) 和差化积
cos((A—B)/2
cosA+cosB=2cos((A+B)/2)sin((A—B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
《初中数学公式大全》(word 版可编辑修改)
初三数学弧长和扇形面积公式整理版
1. 圆周少:r 2C π=之阳早格格创做
圆里积:2r S π=
2. 圆的里积C 取半径R 之间存留闭系R 2C π=,即360°的圆心角所对于的弧少,果此,1°的圆心角所对于的弧少便是360
R 2π. n°的圆心角所对于的弧少是180R n π180
R n π=∴l *那里的180、n 正在弧少估计公式中表示倍分闭系,不单位.
3. 由组成圆心角的二条半径战圆心角所对于的弧所围成的圆形喊干扇形. 创造:扇形里积取组成扇形的圆心角的大小有闭,圆心角越大,扇形里积也便越大.
4. 正在半径是R 的圆中,果为360°的圆心角所对于的扇形的里积便是圆里积2R S π=,所以圆心角为n°的扇形里积是:
R l R n S 213602==π扇形(n 也是1°的倍数,无单位)l 为弧的少
5. 圆锥的正里展启图取正里积估计
圆锥的正里展启图是一个扇形,那个扇形的半径是圆锥正里的母线、圆心是
圆锥的顶面、弧少是圆锥底里圆的周少.
圆锥正里积是扇形里积.
如果设扇形的半径为l ,弧少为c ,圆心角为n (如图),则它们之间犹如下闭系:
共时,如果设圆锥底里半径为r ,周少为c ,正里母线少为l ,那么它的正里积是:
圆锥的周到积为:2r r π+πl
圆柱正里积:rh 2π.。
(完整版)弧长的公式、扇形面积公式及其应用
弧长与扇形面积、圆锥侧面积【知识详解】知识点1、弧长公式因为360°的圆心角所对的弧长就是圆周长C=2R,所以1°的圆心角所对的弧长是,于是可得半径为R的圆中,n°的圆心角所对的弧长l的计算公式:,说明:(1)在弧长公式中,n表示1°的圆心角的倍数,n和180都不带单位“度”,例如,圆的半径R=10,计算20°的圆心角所对的弧长l时,不要错写成。
(2)在弧长公式中,已知l,n,R中的任意两个量,都可以求出第三个量。
知识点2、扇形的面积如图所示,阴影部分的面积就是半径为R,圆心角为n°的扇形面积,显然扇形的面积是它所在圆的面积的一部分,因为圆心角是360°的扇形面积等于圆面积,所以圆心角为1°的扇形面积是,由此得圆心角为n°的扇形面积的计算公式是。
又因为扇形的弧长,扇形面积,所以又得到扇形面积的另一个计算公式:。
知识点3、圆锥的侧面积圆锥的侧面展开图是一个扇形,如图所示,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2,圆锥的侧面积,圆锥的全面积说明:(1)圆锥的侧面积与底面积之和称为圆锥的全面积。
(2)研究有关圆锥的侧面积和全面积的计算问题,关键是理解圆锥的侧面积公式,并明确圆锥全面积与侧面积之间的关系。
知识点4、圆柱的侧面积圆柱的侧面积展开图是矩形,如图所示,其两邻边分别为圆柱的高和圆柱底面圆的周长,若圆柱的底面半径为r,高为h,则圆柱的侧面积,圆柱的全面积名称圆锥圆柱图形图形的形成过程由一个直角三角形旋转得到的,如Rt△SOA绕直线SO旋转一周。
由一个矩形旋转得到的,如矩形ABCD绕直线AB旋转一周。
图形的组成一个底面和一个侧面两个底面和一个侧面侧面展开图的特征扇形矩形面积计算方法补充:知识点5、弓形的面积(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。
九年级数学弧长及扇形的面积
在相同的半径下,弧 长越长,对应的扇形 面积越大。
弧长与扇形面积之间 存在一定的关联,可 以通过公式进行转换。
弧长与半径的关系
弧长与半径之间存在正比关系, 即当半径增加时,弧长也相应 增加。
弧长的计算公式为:弧长 = 圆 周率 * 半径 * 角度(以度为单 位)。
在相同的角度下,半径越大, 弧长越长。
在经济学中,弧长和扇形面积可以用于描述经济现象的分布情况,例如收入分布的 不平等程度。
THANKS FOR WATCHING
感谢您的观看
扇形面积的计算公式为:$A = frac{1}{2}r^2alpha$,其中$r$是 圆的半径,$alpha$是圆心角的弧 度数。
弧长及扇形面积在实际问题中的应用
在物理学中,弧长可以用于计算曲线运动的轨迹长度,例如行星绕太阳运动的轨道 长度。
在工程学中,扇形面积可以用于计算物体在旋转运动中的受力情况,例如旋转机械 的扭矩和功率。
$S = frac{1}{2} theta r^2$,其中 $S$是扇形面积,$theta$是圆心 角(以弧度为单位),$r$是半径。
扇形面积计算示例
示例1
一个扇形的圆心角为$frac{2}{3}$弧度, 半径为3,求扇形面积。
示例2
一个扇形的弧长为4,半径为2,求扇形 面积。
扇形面积在生活中的应用
九年级数学:弧长及扇形的面积
目 录
• 弧长公式及计算 • 扇形面积公式及计算 • 弧长与扇形面积的关系 • 弧长及扇形面积的拓展知识
01 弧长公式及计算
弧长公式
01
02
03
弧长公式
弧长 = (圆心角/360°) × 圆的周长
圆心角
弧所对的中心角,单位为 度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学弧长和扇形面积公式 (启航文化)
1. 圆周长: C 2 r
圆面积: S r 2
2. 圆的面积 C 与半径 R 之间存在关系 C
2 R ,即 360°的圆心角所对的弧长,因此, 1°的圆心角所对的弧长就 是2R 。
360
n °的圆心角所对的弧长是
n R n R 180 l 180
* 这里的 180、 n 在弧长计算公式中表示倍分关系,没有单位。
3. 由组成圆心角的两条半径和圆心角所对的弧所围成的圆形叫做扇形。
发现:扇形面积与组成扇形的圆心角的大小有关,圆心角越大,扇形面积也就越大。
4. 在半径是 R 的圆中,因为 360°的圆心角所对的扇形的面积就是圆面积S R 2 ,所以圆心角为 n °的扇形面积
是: S
扇形 n R 2 1 l R ( n 也是 1°的倍数,无单位) l 为弧的长 360 2
5. 圆锥的侧面展开图与侧面积计算
圆锥的侧面展开图是一个扇形, 这个扇形的半径是圆锥侧面的母线、 圆心是圆锥的顶点、 弧长是圆锥底面圆的周长。
圆锥侧面积是扇形面积。
如果设扇形的半径为 l ,弧长为 c ,圆心角为 n (如图),则它们之间有如下关系:
n l c
180
同时,如果设圆锥底面半径为 r ,周长为 c ,侧面母线长为 l ,那么它的侧面积是:
S 圆侧面
1 cl rl
2 圆锥的全面积为:
rl r 2
圆柱侧面积: 2 rh 。
启航教育。