截断法测光纤损耗

合集下载

光纤损耗测量OTDR介绍

光纤损耗测量OTDR介绍

如果P1和P2之间的距离为L,可用下式计算出每单位距离的损耗,即衰 减系数()。
() 10 lg P1 (dB/ km) 10 lg P1 (dB/ km)
Z1 Z2 P2
L P2
光纤损耗基础知识回顾
光纤的损耗是与波长密切相关的,图8.1.1是一个典型的光纤 损耗谱图,从图中我们可以看出,一般光纤具有三个低损耗 窗口,分别为0.85um、1.31um和1.55um处。这三个窗 口也是光纤通信和光纤传感的常用工作波长区。
光纤测量 ——光时域反射仪(OTDR)
目录
一、概 述 二、剪断法 三、插入法 四、背向散射法
一、概 述
ITU-T光纤损耗测量标准 光纤损耗测量技术研究热点 未来发展趋势 光纤损耗基础知识回顾
ITU-T光纤损耗测量标准
项目
测量方法
基准法(RTM )
替代法(ATM)
应用范围
衰减(损耗)
光源
光轴
o
e

光纤
在晶体胶合面,对于o光入射角大于临界角,因此o光发生全反射,而 e光则透过树胶层注入被测光纤。
因为普通光纤不具有保偏特性,经光纤传输出来的背向散射光变成部 分偏振光。背向散射光(虚线)进入棱镜,同样分为o光和e光,e光透 过棱镜,o光被全反射而成为检测器接收。至于前端菲涅耳反射光,因 为是线偏振光e光入射到端面,端面反射的仍然是e光,因此沿原路透
重要的特性。
激光器
接头 熔接点 弯曲 机械接头 裂痕 尾端
耦合器

相 对
检测器


(dB)
8.1.6
脉冲 分析电路 + 显示
距离(Km)
四、背向散射法----2、基本原理

实验二、光纤损耗及断点的检测

实验二、光纤损耗及断点的检测

实验二光纤损耗及断点的检测一、实验目的:了解光纤损耗的检测手段,认识光时域反射计,熟悉使用方法,利用光时域反射计检测光纤的损耗和断点。

二、实验仪器:1.光时域反射计OTDR 一台2.1550 nm波长的单模光纤若干3.打印机Epson5700 一台4.跳线两根5.法兰盘两个三、实验原理:检测光纤损耗的基准方法是剪断法,剪断法的精度较高,但是这种方法属于破坏性测量,不适合现场使用,为了克服这一弱点,提出了两种替代方法插入法、背向散射法,其中背向散射法只需要光纤的一端测试,方法十分简单,很适合现场测量,特别是可用来测光纤的长度及确定故障点位置,所以这种方法应用广泛。

用这种方法测量光纤损耗的仪器称为光时域反射计(Optical time domain reflectometer),本实验即介绍利用OTDR对光纤损耗及断点的检测。

光时域反射计利用反射测量技术测量光波导(如光纤)特性的一种仪器,光纤中反射光造成光反射的原因有光缆的端部、光纤的断裂处、接头、连接器界面、裂纹、碎裂,或传输媒质的其它各向异性特点和不连续性。

从理论上分析主要是瑞利散射和菲涅尔反射。

1.瑞利散射在光纤中存瑞利散射,瑞利散射是由于光纤自身的缺陷和掺杂成分的不均匀性所产生的。

瑞利散射光的特点是散射光波长与入射光波长相同,散射光功率与该点入射光功率成正比。

散射光沿各方向皆有,但只有小部分在光纤数值孔径内的光会沿光纤轴向传播。

如在光纤输入端注入大功率窄脉冲光信号,在光脉冲沿着光纤传播时,各点的散射光部分将被返回到光纤的输入端。

离光纤输入端近的地方散射回来的光较强,而离输入端远的地方散射回来的光较弱。

离光纤输入端近的地方散射回来的光先返回至光脉冲输入端。

2.菲涅耳反射光在传输过程中通过折射率不同的介质的界面产生的反射称为菲涅耳反射。

根据菲涅耳定理,功率为in P 的光垂直入射时,反射功率T P 与in P 有如下关系:)(1212n n n n P P in T +-=其中21n n 、分别为不连续处两侧折射率。

剪断法测光纤损耗

剪断法测光纤损耗
两次测量结果的比值,给出剩余长光纤的损 耗
实验步骤
• 打开专用电源使其趋与稳定,将光纤两端
穿过裸纤适配器 • 将待测光纤绕在扰模器上,是裸纤适配器 分别接光源与光功率计接口 • 石英光纤衰减测试
计算光纤损耗大小的公式:
L=
使用方法:先用刀片去除光纤涂覆层,用酒 精清洗,然后左手按住裸纤适配器表面圆形 按钮,右手执光纤从裸纤适配器尾部圆形小 孔伸入,直至从陶瓷芯端面穿出,直到熟练; 注意事项:在穿光纤中如果右手感觉有阻 力,不要使蛮力,后退再穿,一定不要让裸 纤断在陶瓷芯里面;
剪断法测光纤损耗:
在整根光纤的输出端测出输出功率Pout。 • 通常只做两次测量 • 在靠近输入端剪掉一小截光纤,测量这一 小截光纤的输出(Pin)。
技术; • 了解光纤稳态功率分布概念及其对光纤损 耗的影响际意义。
实验原理与方法
• 光纤是一种利用全反射原理,使光纤能通
过沿着弯曲路径从一端传到另一端的光学 元件。
n
θ₀ Ф₀
n₁
n₂
θ
这时,射入的光线在界面上产生全反射,并在光纤内部以同 样的角度(与圆柱轴线的夹角)反复逐次反射,向前传播到 援助的另一端,以等于入射角的角度射出。
两次测量结果的比值给出剩余长光纤的损77实验步骤实验步骤打开专用电源使其趋与稳定将光纤两端穿过裸纤适配器将待测光纤绕在扰模器上是裸纤适配器分别接光源与光功率计接口石英光纤衰减测试88
剪断法测光纤损耗
实验成员:陈俊 指导老师:张森 2010年5月25号
实验目的
• 掌握“剪断法(差值法)”光纤损耗测试
从长面的分析来看,似乎只要满足一定的入射角的要求,保 证全反射条件,光束就可以在光纤中一直传播下去,但实际 上由于一些原因,使得光通过光纤之后,会产生一定的能量 损失。

光纤衰减测量

光纤衰减测量
光纤衰减测量是评估光纤传输特性的重要环节,直接影响光纤的传输效率。在测量过程中,首先需要理解光在光纤中的损耗原理,通过光激励和稳态模式分布的获取来准确评估光纤的损耗情况。为了实现稳态模式分布,可以采用特定的光学系统、稳态模式模拟器或辅助光纤。同时,使用扰模器、滤模器和包层模剥除器等部件也是关键步骤,它们能有效控制和调整光在光纤中的传输模式。在测量方法上,剪断法和插入损耗法是两种常用的技术。剪断法通过测量光纤的输入和输出光功率来计算衰减,而插入损耗法则更适用于现场测量已铺设的光纤。这两种方法各有特点,剪断法精度较高但具有破坏性,插入损们能够提供准确的测试参考和结果。

光纤损耗的测量方法

光纤损耗的测量方法

光纤损耗的测量方法
光纤损耗可是个重要的家伙呀!它就像是通信道路上的小怪兽,会让信号变弱呢!那怎么测量这个小怪兽呢?嘿,咱有办法!
可以用剪断法呀!就像医生给病人做手术一样,把光纤剪断,分别测量两端的光功率,通过计算差值就能知道损耗啦!这多直接呀,就像直接找到小怪兽然后给它量量体重。

还有插入损耗法呢!把一个已知特性的器件插入光纤链路中,前后光功率的变化不就反映出损耗了嘛,这就好比在道路中间放个路牌,看看对通行有多大影响。

光时域反射仪法也很棒呀!它就像一个超级侦探,能沿着光纤一路探测,找到损耗的位置和大小,多厉害呀!这简直就是在黑暗中找到那一丝丝的异常。

回波损耗法也不能落下!它能检测反射光的情况,从而了解光纤的连接质量,就像通过镜子看自己脸上有没有脏东西一样。

这些方法各有各的妙处呀!它们都是我们攻克光纤损耗这个小怪兽的利器呢!难道不是吗?通过它们,我们能准确地了解光纤的状况,让通信更加顺畅,就像给道路铺上了平坦的柏油。

所以呀,我们要好好利用这些方法,和光纤损耗这个小怪兽斗智斗勇,让光信号欢快地在光纤里奔跑,为我们的生活带来便利和精彩!这就是光纤损耗测量方法的神奇之处呀!。

光纤衰减系数的测量、LED的P-I特性测量

光纤衰减系数的测量、LED的P-I特性测量
垂直张开度 水平张开度
实验内容与步骤
一、码型变换
(一)实验内容
1、了解光纤通信采用的线路码型及CMI码的特点。
2、了解CMI码的编解码实现方法。
3、分析CMI编解码器电路的各个测量点的波形。
4、比较CLK时钟、NRZ码及CMI码的异同。
(二)实验步骤
1、接好电源,打开交流电源,按下直流电源开关K1、K2,发光二极管D5—D14循环点亮,电路即正常工作。按下“复缆中传输的线路码通常为三电平的“三阶高密度双极性码,即HDB3码”,它是一种传号以正负极性交替发送的码型。在数字光纤通信中由于光源不可能发射负的光脉冲,因而不能采用HDB3码,只能采用“0”“1”二电平。
2、CMI码的编码规则是怎样的,CMI编解码器输入信码与输出信码的码型、码速各是怎样的?
2、按下“CMI”键后再按下“确认”键,向系统下达进行CMI编解码器实验的命令,并将K702跳线置于CMI处。用CLK时钟送入NRZ码到CMI编码,用示波器测出编码电路测量点TP110和TP114的波形。测量各点波形时示波器应接地,示波器探头的接地线要与GND接地点保持接触良好。
3、用示波器测出解码电路各测试点TP504和TP507的波形。
80
90
100
P
1.797μW
2.141μW
2.568μW
2.951μW
3.492μW
分析:实验数据值与标定值相近,但是有一定的误差,可能原因是仪器的老化。
思考题解答
1.讨论截断损耗测试法的误差有哪些?
答:(1)测量长度时可能测量不精确;
(2)光功率计、扰模器等仪器存在一定的噪声和干扰。
2.分析平均光发送功率的测试误差来源。
编码器输入32Kb/s的单极性的信码,输出64Kb/s的CMI码。

实训2--剪断法

实训2--剪断法

实训二 剪断法测量光纤损耗一 、实验目的1、掌握“剪断法(差值法) ”光纤损耗测试技术;2、了解光纤稳态功率分布概念及其对光纤损耗的影响;3、了解光纤损耗与波长之间的关系和光纤通信“窗口”的实际意义。

二、实验原理与装置实验装置包括:单色仪、显微物镜、光纤微调架、扰模器、短光纤(长约 2m)与长光纤(为1km);长波长与短波长光探测器及功率计。

实验系统如图2-1 所示:功率计电 源 微调架 短光纤 扰模器 Pin 待测光纤 Pout图 2­1 光纤损耗测试系统原理与方法:光纤是一种利用全反射原理, 使光纤能过沿着弯曲路径从一端传到另一端的 光学元件。

如图4-2所示,为一条笔直的圆柱形涂层纤维。

两端面均为平面。

当 光线射入的一段面并与圆柱的轴线成θ角时,折射角为θ0.然后再以Φ0 角入射 至芯线折射率为n0 的侧壁。

这时 0 0 2 q p f -= 。

设涂层的折射率为 n 1,而Φ0 大 于芯线与涂层界面的全反射角Φc,即)( sin 2 1 1 0 n n c - = ³f f (2-1) 这时,射入的光线在界面上产生全反射,并在光纤内部以同样的角度(与圆柱轴 线的夹角) 反复逐次反射, 向前传播到圆柱的另一端, 以等于入射角的角度射出。

图2-2中的虚线部分表示光的入射角过大, 不能满足Φ0≥Φc的要求, 这时, 光将穿透圆柱的侧壁而逸出。

即使有少量的光反射回光纤内部, 但经多次反射后, 能量接近于零, 因此只能在一定角度范围内的入射光才能从光纤的一端传入另一 端,用数值孔径表征这个范围。

根据折射定律,可得出常用光纤的数值孔径 NA 的表达式为:= ´ = q sin n NA 2 1 2 1 2 0 ) ( n n - (2-2)光纤一般很细,质地柔软。

由大量的光纤组成的光纤束称为光缆,它具有弯曲传 nn 1n 2q 0 q 0 j 图 2­2 光线在光纤内部的传输送过程光能损失小、使用方便等特点,广泛应用于通信、医疗器械、科学实验等 方面。

光纤传输损耗测试-实验报告

光纤传输损耗测试-实验报告

光纤传输损耗测试-实验报告华侨大学工学院 实验报告学 院: _____________ 工学院专业班级: __________ 13光电姓 名: ______________ 林洋 _____学 号: 1395121026 课程名称:实验项目名称: 光通信技术实验 实验1光纤传输损耗测试指导教师:__________ 王达成____2016年05月日预习报告一、实验目的1)了解光纤损耗的定义2)了解截断法、插入法测量光纤的传输损耗二、实验仪器20MHz双踪示波器万用表光功率计电话机光纤跳线一组光无源器件一套(连接器,光耦合器, 光隔离器,波分复用器,光衰减器)三、实验原理光纤在波长处的衰减系数为(),其含义为单位长度光纤引起的光功率衰减,单位是dB/km 。

当长度为L 时,ITU-T G.650、G.651规定截断法为基准测量方法,背向散射法(OTDR 法)和插入法为替代测量方法。

本实验采用插入法测量光纤的 损耗。

(1)截断法:(破坏性测量方法)截断法是一个直接利用衰减系数定义的测量方法。

在不改变注入条件下,分别测出长光纤的输出功率 P 2()和剪断后约2m 长度短光纤的输出图1.1截断法定波长衰减测试系统装置(2)插入法插入法原理上类似于截断法,只不过用带活接头的连接软线代替短 纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参 考条件)由于插入被测光纤引起的功率损耗。

显然,功率 P 、P 2的测量没有截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断 法差一些。

所以该方法不适用于光纤光缆制造长度衰减的测量。

但由于 它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪 表,非常适用于中继段长总衰减的测量。

图1.2示出了两种参考条件下的 测试原理框图。

10.T lg 器(dB/km) (公式1.1)功率R (),按定义计算出()。

该方法测试精度最高。

参考条件(a)(b)图1.2典型的插入损耗法测试装置图1.2 (a)情况下,首先将注入系统的光纤与接收系统的光纤相连,测出功率R然后将待测光纤连到注入系统和接收系统之间,测出功率P2,则被测光纤段的总衰减A可由下式给出A 10lg[R()/F2()] C r C i C2(dB)(公式1.2)式中C r、C i、C2分别是在参考条件、实验条件下光纤输入端、输出端连接器的标称平均损耗值(dB )。

关于光纤损耗测试及断点检测方法的分析

关于光纤损耗测试及断点检测方法的分析

图 3 光时域 反射 仪的定义式 ( ) 2 按 1 和( ) 就 可计算出被测光纤的衰减和衰减 系数。 如果 要 测量 衰减 谱 , 只要 改 变输 入 光波 长 , 连续 测量 不 同波 长 的 P, , ( ) 然后保 持注 入 条件 不 变 , 离注 入 端约 2 处切 断 光纤 , 在 m 再连 续测量 同样 的 不同波 长 的 P ( , 算 ) 计 各 个波 长 下 的衰减 , 可得 到衰 减 谱 曲线 。 就
1 2光缆 间增加 注入 系统 为 了 测 量得 到精 确 的结 果 ,必 须 保证 功 率 分 配 是 稳 态 模 ,因此 在 光 源 与 被 测 光 缆 间 增加 注 入 系 统 。注 入 系统 由扰 模 器 、 滤 模 器 和 包 层模 剥 除 器 组 成 的一 种 模拟 装 置 ; 多模光 纤可以 用 l 对 km 以上 , 以一定 曲 率半径 圈绕的光纤。 1 3三种 测试方 法比较 CCI TT 推荐 了 3种 测试方 法 。即剪断 法 、插 入 法和 背 向散 射 法 。剪 断 法 精度 高 但 有 破坏性 ; 插入 损耗 法是 非破 坏性 , 精度 不 如 剪断 法 ; 而后 向散 射法 , 即用光 时域 反 射 仪( OTDR) 量 , 能全 、精 度高和 无破 测 功 坏 性 ,测量 数据 可直 接 打 印 出来 。 切 断 法 :这 是 直 接 严 格 按 照 定 义 建 立 起 来 的 测 试 方 法 。在 稳 态 注 入 条 件 下 ,首 先测 量整根 光纤 的输 出光 功率 P ( ; 后 , ) 然 保持 注 人条件 不 变 , 在离 注入端 约 2 处切 m 断光纤 , 测量此短 光纤输 出的光功 率 P ( ) ,A , 因其 衰 减可忽 略 , P, 可认 为是 被测 光 故 ( )

光纤测量技术OTDR

光纤测量技术OTDR

光纤测量技术OTDR光纤通信技术是近20年来迅猛发展的新技术,由于光纤通信传输信息量大、速率快,而且信息数字化,传送的是数字信号,因而使宽频带图象信号、微机联网等信息传输成为可能。

对光纤损耗的测量是非常重要的,它直接关系到光纤通讯的质量,并能及时发现可能的故障点。

光纤损耗的测量主要有截断法、插入法和后向反射法。

在光纤施工和维护当中经常使用的是后向反射法,它具有非破坏性和可单端测量的特点。

它的测量原理是,如果在光纤的输入端射入一个强的光窄脉冲,这个光窄脉冲在光纤内传输时,由于光纤内部的不均匀性将产生瑞利散射(遇到光纤的接头、断点也要产生散射)。

这种散射光有一部分沿光纤返回,向输入端传输,这种连续不断向输入端传输的散射光称为后向反射光。

靠近输入端的光波传输损耗小,散射回来的信号就强,离输入端远的地方光波的传输损耗大,散射回来的信号就弱。

只要能够测出两点散射光返回的光功率以及两点间的距离,就可算出平均衰减系数。

通常依据这种原理进行的损耗测量是由光时域反射计来完成的。

光时域反射计(OTDR)原理是,由主时钟产生标准时钟信号,脉冲发生器根据这个时钟产生符合要求的窄脉冲,并用它来调制光源。

光方向耦合器将光源发出的光耦合到被测光纤,同时将散射和反射信号耦合进光电检测器,在经放大信号处理后送入示波器显示输出波形及在数据输出系统输出有关数据。

由于后向反射光非常微弱,淹没在一片噪声中,因此,要用取样积分器,在一定时间间隔内对微弱的散射光波取样并求和。

在这个过程中,由于噪声是随机的,在求和时被抵消掉了,从而将散射信号取出。

1 对仪器进行正确的参数设置平均次数:OTDR测试曲线是将每次输出脉冲后的反射信号采样,并把多次采样做平均处理以消除一些随机事件,平均化时间越长,噪声电平越接近最小值,动态范围就越大。

平均化时间越长,测试精度越高,但达到一定程度时精度不再提高。

为了提高测试速度,在一些不需要精确数据的定性测量中,可以适当减少平均次数,缩短整体测试时间。

光纤衰减测量

光纤衰减测量

• 包层模剥除器是一种使包层模转换成辐射模 的部件,它可以将包层模从光纤中除掉。 • 由于光具有向高折射率介质折射的性质,将 滤模器中那一段光纤的涂敷层去掉,并浸在 折射率等于或稍大于包层折射率的匹配液中。 • 匹配液可以采用丙三醇(甘油)、四氯化碳和 液态石腊等。
包层模剥除器:一种使包层模转换成辐射模的部件。它可将 包层模从光纤中除掉。 如何实现包层模剥除? 利用光束具有向高折射率介质方向偏折的性质。
3.3 剪断法
• 光纤损耗测量有两种基本方法: • 一种是测量通过光纤的传输光功率,称剪断法 和插入法; • 另一种是测量光纤的后向散射光功率,称后向 散射法。
1. 剪断法原理
剪断法是一种按衰减定义进行测量的方法,要求稳态注入条件。 A.测量整根光纤的输出功率p2()。 B.保持注入条件不变,离注入端约2m处剪断光纤,测量该处光纤的输出光功 率p 1 ( ) 。 在稳态条件下,约2m光纤的衰减可忽略不计。故p1()可看作被测光纤 的始端的注入功率。
测量衰减谱,光源的选择很重要 为了测量衰减谱,测量装置的光源应选用宽谱灯(卤灯),使用滤光片轮 选择波长。 单一波长的衰减测量使用窄谱的激光器光源。
光探测器要求:
(1)应能截取出射光锥的全部光,
采用大面积的探测器。 (2)它的光谱响应与光源特性一致。
多模光纤和单模光纤测量装 置的区别
测量装置基本相同。 不同之处: (1)注入条件;
纤输出端和输入端远场辐射角以及近场光斑尺寸均相一
致(匹配),衰减符合长度相加性。
只有在稳态模式分布的条件下,才能得到惟一代表光纤本 征特性的α值。
获得稳态模式分布有三种方法:
(1) 建立NAb≈NAf 的光学系统; (2) 建立稳态模功率分布模拟器,一般包括扰模器、滤模器 和包层模消除器; (3) 用一根性能和被测光纤相同或相似的辅助光纤,代替光 纤耦合长度的作用,这种方法在现场应用得非常方便。 稳态模功率分布装置是根据耦合的机理,通过强烈的几 何扰动促使光纤中模式耦合尽快达到稳态分布的方法构成。

测光纤损耗实验报告

测光纤损耗实验报告

一、实验目的1. 理解光纤损耗的定义及其影响因素。

2. 掌握光纤损耗的测量方法。

3. 通过实验验证光纤损耗的理论知识。

二、实验原理光纤损耗是指光信号在光纤中传输过程中由于散射、吸收、辐射等原因而造成的能量损失。

光纤损耗的主要影响因素包括材料、结构、长度、波长等。

光纤损耗的测量方法有插入法、截断法、背向散射法等。

本实验采用插入法测量光纤损耗。

插入法是将光功率计、光纤跳线和光无源器件连接起来,通过测量不同位置的光功率,计算出光纤损耗。

三、实验仪器1. 光功率计2. 万用表3. 双踪示波器4. 光纤跳线一组5. 光无源器件一套(连接器、光耦合器、光隔离器、波分复用器、光衰减器)四、实验步骤1. 将光功率计、光纤跳线和光无源器件连接起来,组成测试系统。

2. 将光功率计设置在测量光功率的频率上。

3. 在测试系统中,将光功率计置于光纤的起始端,记录光功率值P1。

4. 将光功率计置于光纤的末端,记录光功率值P2。

5. 根据公式P2/P1 = 10lg(损耗)计算光纤损耗。

五、实验数据及结果1. 光纤长度:2km2. 光功率计测量频率:1550nm3. 测试系统光功率值:- 起始端:P1 = -10dBm- 末端:P2 = -30dBm根据公式计算光纤损耗:P2/P1 = 10lg(损耗)(-30dBm)/(-10dBm) = 10lg(损耗)3 = 10lg(损耗)lg(损耗) = 0.3损耗= 10^0.3 ≈ 2.00dB六、实验结果分析通过实验测量,得到光纤损耗约为2.00dB。

与理论计算值基本一致,说明本实验结果可靠。

七、实验结论1. 本实验成功验证了光纤损耗的定义及其影响因素。

2. 插入法是一种简单、有效的光纤损耗测量方法。

3. 实验结果与理论计算值基本一致,说明实验方法可靠。

八、实验注意事项1. 在连接光纤跳线和光无源器件时,注意清洁光纤端面,避免灰尘和污垢对实验结果的影响。

2. 在测量光功率时,确保光功率计设置在正确的频率上。

光纤衰减测量方法

光纤衰减测量方法

光纤衰减测量方法嘿,朋友们!今天咱们来聊聊光纤衰减测量这事儿,就像探索一个神秘的魔法世界一样有趣呢。

你可以把光纤想象成一条超级高速公路,只不过在这条路上跑的不是汽车,而是光精灵。

而光纤衰减呢,就像是光精灵在这条路上跑着跑着累了,或者是路上有些小怪兽(杂质之类的东西)把它们的能量给吸走了一部分。

那我们怎么知道光精灵到底损失了多少能量呢?这就需要测量啦。

有一种方法叫剪断法,这名字听起来是不是有点粗暴?就好像是抓住光纤这个小蛇,然后“咔嚓”一下剪断它的尾巴,看看光精灵在尾巴这截儿到底少了多少。

这就好比是你在一个装满水的水管中间剪断,看看流出来的水少了多少流量一样,只不过咱们这儿是光的流量。

还有插入损耗法呢。

这个方法就像是给光精灵设置了一个小关卡,让它们穿过一个特殊的装置。

这个装置可能就像一个贪吃的小怪物,光精灵穿过它的时候,它就会偷偷吃掉一点光精灵的能量。

我们通过观察光精灵进去之前和出来之后的变化,就能算出光纤的衰减啦。

然后是背向散射法,这个可就更神奇啦。

就像是在光精灵奔跑的路上放了一个小镜子,光精灵跑着跑着撞到镜子上,一部分就会反射回来。

我们就像超级侦探一样,根据反射回来的光精灵的情况,判断出在整个光纤旅程中,光精灵到底遭遇了多少“不测”,也就是光纤的衰减程度。

在测量的时候啊,那些仪器就像是魔法棒一样。

操作人员就像魔法师,拿着魔法棒在光纤这个神秘的魔法世界里施展魔法,探寻光精灵的秘密。

有时候,测量就像在黑暗中找一颗小小的钻石。

光纤很细很细,光精灵的变化又很微妙,就像那钻石的光芒很微弱一样,需要我们非常细心地去捕捉。

而且,测量过程中的误差就像调皮的小捣蛋鬼,总是时不时地冒出来捣乱。

可能是环境这个大怪兽在搞鬼,温度啊、湿度啊,就像大怪兽呼出的气息,影响着光精灵的旅程。

不过呢,只要我们像超级英雄一样,掌握好各种测量方法,就能准确地测量出光纤衰减,让光精灵在光纤高速公路上跑得更顺畅,就像给光精灵们开辟了一条最完美的跑道,让它们带着信息以最快的速度抵达目的地,就像超级快递员一样迅速又准确呢。

光纤传输损耗的测量实验

光纤传输损耗的测量实验

光纤传输损耗的测量一.实验目的和内容1.了解光纤传输损耗的特性及其测量方法。

2. 掌握用切断法测量光纤传输损耗的方法和技巧.二.实验基本原理在光纤传输过程中,光信号能量损失的原因有本征的和非本征的,在实用中最关心的是它的传输总损耗。

已经提出的测定光纤总损耗的方法有3种:切断法、插入损耗法和背向散射法。

波长为λ的光沿光纤传输距离L 的衰减且)(λA (以dB 为单位)定义为)(λA =10⎪⎪⎭⎫ ⎝⎛21lg P P (1)式中1p ,2P 分别是注入端和输出端的光功率。

对于一根均匀的光纤,可定义单位长度(通常是lkm)的衰减系数()λα(以dB /km 为单位),()λα=L A )(λ=L P P )/lg(1021 (2)光纤的衰减系数是一个与长度无关但与波长有关的参数。

衰减测量注入条件为获得精确、可重复的测量结果,由定义式(1)可见,测量时应保证光纤中功率分布是稳定的,即满足稳态功率分布的条件。

实际的光纤由于存在各种不均匀性等因素,将引起 模耦合,而不同的模的衰减和群速度都不同。

因此在多模传输的情况下,精确测量的主要问 题是测量结果与注入条件、环境条件(应力、弯曲、微弯)有关。

实验表明:注入光通过光纤 一定长度(耦合长度)后,可达“稳态”或“稳态模功率分布”,这时模式功率分布就不再随 注入条件和光纤长度而变,但在一般情况下对于质量较好且处于平直状态的光纤,其耦合长 度也需要几公里。

因此在实际测量中,对于短光纤一般用稳态模功率分布装置,或适当的光 学系统,或有足够长的注入光纤,以获得稳态功率分布条件。

单模光纤因为只传导一个模, 没有稳态模功率分布问题,所以衰减测量不需要扰模。

切断法这是直接严格按照定义建立起来的测试方法。

在稳态注入条件下,首先测量整根光纤的输出光功率()λ2P ;然后,保持注入条件不变,在离注入端约2m 处切断光纤,测量此短光纤输出的光功率()λ1P ,因其衰减可忽略,故()λ1P 可认为是被测光纤的注入光功率。

2-8光纤特性参数的测量

2-8光纤特性参数的测量

便。
OTDR不仅可以测量光纤损耗系数和光纤长度,还可以测 量连接器和接头的损耗,观察光纤沿线的均匀性和确定故障 点的位置,是光纤通信系统工程现场测量不可缺少的工具。
2.8 光纤特性参数的测量
(a) 输入端反射区; (b) 恒定斜率区,用以确定损耗系数; (c) 连接器、接头或局部缺陷引起的损耗; (d) 介质缺陷(例如气泡)引起的反射; (e) 输出端反射区,用以确定光纤长度。
2.8 光纤特性参数的测量
只要测量长度为L2的长光纤输出光功率Pout,保持注入 条件不变,在注入装置附近剪断光纤,保留长度为L1(一般 为2—3m)的短光纤,测量其输出光功率Pi(即长度为L= L2L1这段光纤的输入光功率),根据光纤损耗系数公式计算α
值。
L1= 2~3m L2 -L1
Pout
频率f / MHz 0 f 6d B
电平显示 / dB
H1 ( f )
-6
H( f ) H2( f )
2.8 光纤特性参数的测量
扫频法光纤带宽测量系统框图
2.8 光纤特性参数的测量
2.8.3
单模光纤色散测量
基准方法:相移法
测量依据:用角频率为ω的正弦信号调制的光波,经长度 为L的单模光纤传输后,其时间延迟τ取决于光波长λ,不同时 间延迟产生不同的相位φ。 用波长为λ1和λ2的受调制光波,分别通过被测光纤,由
2.8 光纤特性参数的测量
2. 后向散射法(OTDR法)
利用与传输光相反方向的瑞利散射光功率来确定光纤损耗
系数的方法,称为后向散射法。 设在光纤中正向传输光功率为P,经过L1 和L2 点(L1<L2)时 分别为P1 和P2(P1>P2),从这两点返回输入端(L=0)。光检测器 的后向散射光功率分别为Pd(L1)和Pd(L2),经分析推导得到, 正向和反向平均损耗系数:

光纤传输损耗的测量

光纤传输损耗的测量

光纤传输损耗的测量实验人:林晔顺023012037 合作人:林宗祥 组号:A8【实验目的】1、 了解光纤传输损耗的特性及其测量方法。

2、 掌握用实验手段测量光纤传输损耗的方法和技巧。

【实验仪器】卤钨灯,透镜,单色仪,塑料光纤,光功率计【实验原理】衰减是光纤传输特性的重要参量,它的测量是光纤传输特性测量的重要内容之一,衰减直接影响光纤的传输效率。

波长为λ的光沿光纤传输一定距离的衰减()A λ为()()10lg()()in out P A P λλλ= (1)其中()in P λ为输入光功率,()out P λ为输出光功率。

衰减以dB 为单位。

对于均匀的光纤,单位长度的衰减可以定义为衰减系数()αλ()10lg()()()()in out P P A LLλλλαλ== (2)其中L 为光纤长度,光纤的衰减与波长和长度有关,而衰减系数仅由波长和光纤本身性质决定。

大多数传输线的光功率与其传输距离z 之间的关系是()()(0)zP z P eβλ-= (3)其中β是功率衰减系数,它是对自然对数定义的,所以与衰减系数()αλ相差一个常数lge (约为4.34)。

进行衰减测量,要获得精确、可重复的测量结果,测量时要保证光纤中功率分布是稳定的,既满足稳态功率分布的条件。

但实际的光纤由于各种不均匀性等原因,引起模耦合,而不同的模的衰减和群速度都不同。

因此在多模传输的情况下,精确测量的主要问题是测量结果与注入条件、环境条件(应力、弯曲、微弯)有关。

实验表明:主要让光通过光纤一定长度(耦合长度)后,可以达到“稳态”或者“稳态模功率分布”,这时模式功率分布就再不随注入条件和光纤长度而变化了。

但是在一般情况下对于质量较好且处于平直状态的光纤,起耦合长度也需要几公里。

所以在实际测量中,对于短光纤一般用稳态模功率分布装置,或适当的光学系统,或有足够长的注入光纤,以获得稳态功率分布条件。

测定光纤总损耗的方法有三种:切断法、插入损耗法和背向散射法。

截断法测光纤损耗

截断法测光纤损耗

七、截断法测光纤损耗
1.工作原理
光耦合进多模光纤时会激励起很多模式,各个模式所携带的光能量不同,传输时的损耗也不同,模式之间还有能量转换,只有经过一个相当长的时间以后才能达到一种相对稳定的状态,此时称为稳态模式。

对于多模光纤的测试,只有达到稳态模式分布以后才有意义。

要达到稳态分布,可以借助扰模器:采用强烈的几何振动,使多模光纤不需要很长的距离就能迅速达到稳态分布。

2.测试框图
3.计算公式
a=10/L× lg 输出功率/输入功率 (dB/KM)
a:损耗系数
测试结果
当光纤被长绕即测得衰减值为:—2.84DBM ,输出功率:0.630MW
当光纤直测得衰减值:-9.19DB ,输出功率:0.103MW
计算结果:a=10/L*lg0.630/0.130=3.254db/km 光源扰模器光功率计近端远端L 待测光纤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七、截断法测光纤损耗
1.工作原理
光耦合进多模光纤时会激励起很多模式,各个模式所携带的光能量不同,传输时的损耗也不同,模式之间还有能量转换,只有经过一个相当长的时间以后才能达到一种相对稳定的状态,此时称为稳态模式。

对于多模光纤的测试,只有达到稳态模式分布以后才有意义。

要达到稳态分布,可以借助扰模器:采用强烈的几何振动,使多模光纤不需要很长的距离就能迅速达到稳态分布。

2.测试框图
3.计算公式
a=10/L× lg 输出功率/输入功率 (dB/KM)
a:损耗系数
测试结果
当光纤被长绕即测得衰减值为:—2.84DBM ,输出功率:0.630MW
当光纤直测得衰减值:-9.19DB ,输出功率:0.103MW
计算结果:a=10/L*lg0.630/0.130=3.254db/km 光源扰模器光功率计近端远端L 待测光纤。

相关文档
最新文档