反馈环路补偿设计-简述实例(TL431+PC817)

合集下载

反馈环路补偿设计-简述实例(TL431+PC817)

反馈环路补偿设计-简述实例(TL431+PC817)
反馈环路电路补偿设计
简述控制环路的作用 设计要点 重要概念 步骤(实例说明)
适用个人使用
简述控制环路的作用
提供电路稳定工作,使输出电压波动小; 避免闭环系统自激振荡; 以动态补偿方式,调整输出稳定状态
设计要点一
系统的反馈类型有电流型和电压型,应依照 相对应的工作模式确定传导函数。这里就已 电流反馈形式的PWM芯片为例介绍
重要概念
(略)
举例说明:
已知要求:
VCC
Lp=2.7mH,Cout= 220+470uF,ESR=55mΩ,
R6
C?
B
Np:Ns=140:23, 90-265Vac,CCM模式,
Fs=50kHz,Rs=1.5 Ω, D=0.48,pwm电流型控制ic。 Vo=12V,Io=1A,Io(min)=0.3A(ccm)
GDC


20lg1500 24.7 5.77
23.6dB
GXO
AXO 10 20 15.1
参数设计步骤(5)
5、确定EA补偿网络的零点和极点位置。 Fez=1/3Fc=500Hz Fep>3Fc=4.5kHz 取5k
6、计算反馈环路参数。 设R2=Vref/250uA=10K,则R1=R2*Vo/Vref=47k
Fc=1.5KHz。
参数设计步骤(3)
3. 确定输出滤波器的极点
FCP

1
2RLCO

2
1 *12 / 0.3*690 10 6
5.77 Hz
参数设计步骤(4)
4、确定Fc处,使power stage提升到0dB所需增 加的增益量。
Gxo
20lg

TL431和PC817在开关电源反馈电路的设计及应用

TL431和PC817在开关电源反馈电路的设计及应用

TL431和PC817在开关电源反馈电路的设计及应用TL431和PC817在开关电源反馈电路的设计及应用有关精密并联稳压器TL431及通用光电耦合器PC871请参考本站相关介绍开关电源的稳压反馈通常都使用TL431 和PC817,如输出电压要求不高,也可以使用稳压二极管和PC817,下面我来通过以下典型应用电路来说明TL431,PC817 的配合问题。

电路图如下:R13 的取值R13 的值不是任意取的,要考虑两个因素:1)TL431 参考输入端的电流,一般此电流为2uA 左右,为了避免此端电流影响分压比和避免噪音的影响,一般取流过电阻R13 的电流为参考段电流的100 倍以上,所以此电阻要小于2.5V/200uA=12.5K.2)待机功耗的要求,如有此要求,在满足《12.5K的情况下尽量取大值。

TL431 的死区电流为1mA,也就是R6 的电流接近于零时,也要保证431 有1mA,所以R3<=1.2V/1mA=1.2K 即可。

除此以外也是功耗方面的考虑,R17 是为了保证死区电流的大小,R17可要也可不要,当输出电压小于7.5v 时应该考虑必须使用,原因是这里的R17 既然是提供TL431死区电流的,那么在发光二极管导通电压不足时才有用,如果发光二极管能够导通,就可以提供TL431 足够的死区电流,如果Vo 很低的时候,计算方法就改为R17=(Vo-Vk)/1mA(这里Vk=Vr-0.7=1.8v);当Vo=3.3V 时R17 从死区电流的角度看临界最大值R17=(3.3-1.8)/1mA=1.5k,从TL431 限流保护的角度看临界最小值为R17=(3.3-1.8)/100mA=15Ω。

当Vo 较高的时候,也就是Vo 大于Vk+Vd 的时候,也就是差不多7.5v 以上时,TL431 所需的死区电流可以通过发光二极管的导通提供,所以这是可以不用R17。

R6 的取值要保证高压控制端取得所需要的电流,假设用PC817(U1-B),其CTR=0.8-1.6,取低限0.8,要求流过光二极管的最大电流=6/0.8=7.5mA,所以R6 的值<=(15-2.5-1.2)/7.5=1.5K,光二极管能承受的最大电流在50mA 左右,TL431 为100mA,所以我们取流过R6 的最大电流为50mA,R6>(15-2.5-1.3)/50=226 欧姆。

tl431在开关电源中稳压反馈电路的应用电路设计

tl431在开关电源中稳压反馈电路的应用电路设计

tl431在开关电源中稳压反馈电路的应用电路设计
TL431是一种常用的精密可调节稳压器件,通常用于开关电源中的稳压反馈电路。

它可以作为一个误差放大器,用于控制开关电源的输出电压。

以下是一个简单的TL431稳压反馈电路的应用电路设计示例:
在这个电路中,TL431被用作误差放大器,它通过比较参考电压和反馈电压来控制输出电压。

具体的设计步骤如下:
设置参考电压:TL431的参考电压通过外部电阻网络进行调节,根据需要选择合适的参考电压值。

连接反馈回路:将TL431的输出与开关电源的反馈回路相连,通过比较输出电压和参考电压,控制开关电源的输出电压稳定在设定值。

选择外部元件:根据具体的需求,选择合适的外部电阻、电容等元件,以确保稳压反馈电路的性能和稳定性。

稳压调节:通过调节外部电阻来调节输出电压的设定值,使得开关电源的输出电压符合要求。

需要注意的是,具体的电路设计需要考虑到开关电源的整体设计和控制要求,以及TL431的工作特性和参数。

此外,为了确保电路的性能和稳定性,建议在设计过程中进行仿真和实际测试验证。

(完整版)TL431及PC817在开关电源中的应用

(完整版)TL431及PC817在开关电源中的应用

TL431及PC817在开关电源中的应用TL431功能简介本设计的基准电压和反馈电路采用常用的三端稳压器TL431来完成,在反馈电路的应用中运用采样电压通过TL431限压,再通过光电耦合器PC817把电压反馈到SG3525的COMP端。

由于TL431具有体积小、基准电压精密可调,输出电流大等优点,所以用TL431可以制作多种稳压器。

其性能是输出电压连续可调达36V,工作电流范围宽达0.1~100mA,动态电阻典型值为0.22欧,输出杂波低。

其最大输入电压为37V,最大工作电流为150mA,内基准电压为2.5V,输出电压范围为2.5~30V。

TL431是由美国德州仪器(TI)和摩托罗拉公司生产的2.5~36V可调式精密并联稳压器。

其性能优良,价格低廉,可广泛用于单片精密开关电源或精密线性稳压电源中。

此外,TL431还能构成电压比较器、电源电压监视器、延时电路、精密恒流源等。

TL431大多采用DIP-8或TO-92封装形式,引脚排列分别如图4.26所示。

图中,A为阳极,使用时需接地;K为阴极,需经限流电阻接正电源;UREF是输出电压UO的设定端,外接电阻分压器;NC为空脚。

TL431的等效电路如图所示,主要包括①误差放大器A,其同相输入端接从电阻分压器上得到的取样电压,反相端则接内部2.5V基准电压Uref,并且设计的UREF=Uref,UREF通常状态下为2.5V,因此也称为基准端;②内部2.5CV基准电压源Uref ;③NPN型晶体管VT,它在电路中起到调节负载电流的作用;④保护二极管VD,可防止因K-A间电源极性接反而损坏芯片。

TL431的电路图形符号和基本接线如图4.27所示。

它相当于一只可调式齐纳稳压管,输出电压由外部精密分压电阻来设定,其公式为 (4-16) :R3是IKA的限流电阻。

其稳压原理为:当UO上升时,取样电压UREF也随之升高,使UREF>Uref,比较器输出高电平,使VT导通,UO开始下降。

基于PC817与TL431配合电流型反激开关电源环路补偿设计_陶坤元

基于PC817与TL431配合电流型反激开关电源环路补偿设计_陶坤元

0 引言电流型反激式开关电源通过负反馈环路来保证输出的稳定,而反馈环路补偿参数的确定如果由多次试验和测量取得,往往工作量大且缺乏效率,通用性不高,无法运用到其他要求的开关电源设计中。

本文以三肯6251芯片为例,基于PC817和TL431配合的环路设计,运用开关电源小信号传递函数,对环路进行定性分析和计算,设计合适的补偿环路来满足开关电源的稳定性并实验验证该方法的可行性和通用性。

1 反馈环路设计反激式开关电源的工作模式有两种:电压型和电流型。

电压行控制方式只有一路电压环,通过反馈电压和内部三角波比较产生占空比可变的驱动信号调节输出电压;电流型控制方式有电压和电流两个闭环控制,能够响应更快。

图1使用的是PC817和TL431组合精准反馈次级+15V 电压,TL431,C1,R2组成环路补偿电路。

2 回路稳定性准则第一准则:系统的总增益在穿越频率处的斜率应为-20dB/dec ;第二准则:截止频率的相位裕量大于45°;根据以上两条原则进行环路设计,可基于PC817与TL431配合电流型反激开关电源环路补偿设计陶坤元 珠海格力电器股份有限公司 广东珠海 519070以实现输入电压突变或输出负载变化时都能满足输出电压的稳定性。

3 环路常用补偿回路环路设计的步骤:(1)根据截止频率补偿前的增益选定误差放大器在截止频率处的增益,使系统总增益在截止频率处为0dB,为了保证系统稳定,穿越频率选为开关频率的1/5~1/4,一般穿越频率必须远远小于开关频率,不然会出现很大的开关纹波;(2)选择合适的补偿电路,使得总增益曲线在穿越频率附近斜率为-20dB/dec。

(3)调整误差放大器的增益以获得总增益大于45°的所需相位裕度。

4 设计举例基本参数:见图1输入电压交流85V ~265V,整流后直流电压为120V ~375V,输出为15V/1A,储能电容C2为470uF,初级匝数为128匝,初级绕组电感2.71mH.开关电源最大频率为50KHZ,取样电阻Rsense 为0.11Ω,使用的开关电源芯片是三肯公司的6251。

TL431和PC817配合做的

TL431和PC817配合做的

TL431和PC817配合做的开关电源Traceback:/s/blog_5fee70710100db57.html2009年07月07日星期二 14:00可调式精密并联稳压器TL431TL431是由美国德州仪器(TI)和摩托罗拉公司生产的2.5~36V可调式精密并联稳压器。

其性能优良,价格低廉,该器件的典型动态阻抗为0.2Ω,可广泛用于单片精密开关电源或精密线性稳压电源中,在很多应用中可以用它代替齐纳二极管。

此外,TL431还能构成电压比较器、电源电压监视器、延时电路、精密恒流源等。

TL431大多采用DIP-8或TO-92封装形式,引脚排列分别如图1所示。

3 个引脚分别为:阴极(CATHODE)、阳极(ANODE)和参考端(REF)。

图中,A为阳极,使用时需接地;K为阴极,需经限流电阻接正电源;UREF是输出电压UO的设定端,外接电阻分压器;NC为空脚。

由TL431的等效电路图可以看到,Uref是一个内部的2.5V 基准源,接在运放的反相输入端。

由运放的特性可知,只有当REF 端(同相端)的电压非常接近Uref(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF 端电压的微小变化,通过三极管VT的电流将从1 到100mA 变化。

当然,该图绝不是TL431 的实际内部结构,所以不能简单地用这种组合来代替它。

但如果在设计、分析应用TL431 的电路时,这个模块图对开启思路,理解电路都是很有帮助的。

前面提到TL431 的内部含有一个2.5V 的基准电压,所以当在REF 端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。

如图2 所示的电路,当R1 和R2 的阻值确定时,两者对Vo 的分压引入反馈,若Vo 增大,反馈量增大,TL431 的分流也就增加,从而又导致Vo 下降。

显见,这个深度的负反馈电路必然在Uref等于基准电压处稳定,此时Vo=(1+R1/R2)Vref。

反馈环路补偿设计-简述实例(TL431 PC817)

反馈环路补偿设计-简述实例(TL431 PC817)

设计要点二



相位余量:在闭环系统增益中的穿越频率Gs=0dB 时对应的相位值与360度的差值。通常取 jm 45° 增益余量:相位在360度的增益低于单位增益的量。 通常取<-12dB。 单位系统带宽Fc,通常取开关频率的1/5~1/10。 右半平面极点:增益衰减,会引起-90度移相。 左半平面极点:不稳定,导致系统震荡。 右半平面零点:增益增大,引起90度移相。 左半平面零点:增益增大,引起-90度移相。
VC C +1 2
R R3
R1
A PC8 1 7
R4 C2 C1 R5 TL4 3 1 R2
参数设计步骤(1)
1.
确定输入到输出的DC增益 140 12V (1 0.48) N(1 D) R O 1A A DC 23 (1 D) R S (1 0.48) 1.5
反馈环路电路补偿设计
简述控制环路的作用 设计要点 重要概念 步骤(实例说明)
适用个人使用
简述控制环路的作用

提供电路稳定工作,使输出电压波动小; 避免闭环系统自激振荡; 以动态补偿方式,调整输出稳定状态
设计要点一



系统的反馈类型有电流型和电压型,应依照 相对应的工作模式确定传导函数。这里就已 电流反馈形式的PWM芯片为例介绍 在FALYBACK中又有CCM、DCM、RCM三 种电路工作模式。对于哪种模式的电路都不 重要,因为它取决于芯片自身。 在设计完成变压器、EMI滤波、安规元件、芯 片周围电路、输出电路后才能进行设计反馈 反馈电路结构中通常采用放大器+光耦形式
参数设计步骤(6)
7、计算R5,C1,C2. R5=Axo*R1=15.1*51=770K 取680k C1=1/Fez*2*3.14*680k=468.3nF 取470nF C2=C1/2*3.14*680k*Fep=0.234nF 取270pF

PC817+TL431的组合设计

PC817+TL431的组合设计
表1 PC817x对应的Ctr
PC817的特性:
• PC817A的Ctr曲线:
图2 数据手册对比Ctr拟合曲线
TL431的特性:
二、TL431正常工作时要满足两个条件:
• 1、TL431集电极电压要大于2.5V • 2、TL431集电极电流要大于0.6mA
这两个条件间接的影响了PC817的参数设计。
图3-1 电阻RL计算方法
TL431的特性:
反过来如果先给定最小电阻RL再求最大电流If也是可行的,这里电阻RL的 选取参考功耗和环路速度这两方面,RL取值越大则电路功耗越低但环路响 应也越慢,因为光耦引入了一个极点见下图:
如图3-2电阻RL越小极点 频率越高,如果取RL=1kΩ 则对10kHz以内的影响几 乎可以忽略。
图4-1 电阻Rf计算方法
TL431的特性:
某些情况下电阻Rf可以省掉进一步降低功耗,举个例子假设控制IC的FB范 围为0~3V,重新计算的结为:
图4-2假设的例子中发光二极 管最小工作电流Ifmin=1.9mA 大于TL431的最小工作电流 Ikamin=1mA,所以这里就不 再需要电阻Rf了。
TL431的特性:
跟三极管类似,PC817的参数设计就是对静态工作点的设置,其周边共有三个电 阻所以参数设计也分为三步。
• 第一步,电阻RL的参数设计
参考图1,PC817输出电压FB满足公式:
FB=Vcc-IL*RL
式(1)
TL431的特性:
首先根据电源控制IC给定的FB脚电压范围设定FBmax和FBmin其次设置一个 最大Ifmax利用公式可以求出最小RL值,见下图。
图6 电压验证
图6中注入电压信号最低 值2.5V、最高值8.97V, 输出FB端电压最低0.2V、 最高4.8V跟设定值一致。

PC817光电耦合器与TL431配合设计计算

PC817光电耦合器与TL431配合设计计算
PC817光电耦合器与TL431配合设计计算
时间:2009-05-17 11:35:53来源:资料室作者:编号:1358更新日期20110302 073234
电源反馈隔离电路由光电耦合器PC817以及并联稳压器TL431所组成,如h83838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号
式4h83838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号
h83838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号
式为:IC=η. IF式2h8383参数-电子元器件符号
此时反馈电压信号为:Vf =Ic .R1式3h83838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号
输出电压Vo,则由TL431内部2.5V之参考电压求得:h83838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号
式1h83838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号
其中VF为二极管的正向压降,IF为二极管的电流。h83838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号
若PC817之耦合效率为η,则所产生的集极电流IC会与IF之间关系h83838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号
图1所示,其中R2为光耦的限流电阻,R3及R4为TL431的分压h83838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号

TL431的反馈回路设计

TL431的反馈回路设计

TL431内部有较好的参考电压和运放,成为工业界减少控制回路成本的好方法.本文是有关TL431的反馈回路设计.1.通常放大器反馈如图1,由运放和参考构成的电路(在非隔离电路通常由脉宽控制器提供)2型补偿网络.适用于被多数工程师采用的电流模控制. 低频增益由R1 C1提供.数倍低于带宽的频率有一个零点,中频带增益由R2比R1决定.根据功率部分特性确定的高频段,电路又是积分形式,增益由R1C2决定.波特图如下:用TL431实现分立器件的功能没什么不同.如图2.区别是1. R5上拉电阻(提供足够电流).2. 431电路驱动能力不强,但输出接高阻抗,工作很好. 也是一个2型补偿网络.******图太多,不贴了,详细的见pdf file.*******************2. TL431 隔离应用图3是隔离的应用.与图2最大区别是输出不是电压Ve,而是光耦电流.电流由:TL431电压增益;R5; Vo 决定.(图2传函与R5,Vo无关).C3代表光耦输出电容和频响rolloff.图3也是一个2型补偿网络.A. 低频段:TL431放大器由C1R1构成的积分器的增益高,是补偿网络的主导.图4a给出低频等值电路B. 中频段:TL431积分器达到单位增益,超过这点,积分器输出减弱.然而总有Vo通过R5流过光耦提供增益(它是中频段的主导).图5给出中频等值电路.交越频率在中频段,设计R5达到想要的交越频率.C. 高频段:高频段遇到光耦自身的极点(由图6a中C3代表).图6b显示光耦增益的折点.好的光耦能到10k.然而折点是偏值电流的函数.大电流对应高带宽.在额定电流下取小R5.(有些R5被集成在控制器中不易改变).D. 合成:将低中高频合成,还是一个2型补偿网络.见到许多电路用TL431作为稳压管,没有在低频得到好处(R1C1). 由于理解不好和没有测量验证,导致坏的瞬态响应和负载调整率.3. TL431 回路测量测量闭环频响特性电路如图8,也可以在C点测量.4.二级滤波在要求低噪声的应用中用二级滤波,如图9.R5在滤波电感前,另一路通过积分器,在滤波电感后.如果二级滤波谐振是衰减的并且谐振频率超过补偿网络的第一个零点(TL431的单位增益频率),则电路稳定.这是一个非常有用有趣的电路.二级滤波额外的相位延迟和极点通过积分器直接在回路中显示出来,但当TL431增益的小于单位增益时(超过全部补偿的零点时)这不改变回路的响应.在R6的反馈支路,有一个扰动,这个扰动依赖于二级滤波谐振的衰减,但相位和没有二级滤波一样.二级滤波回路的测试是一个问题,在C点测量是一个选择,但由于原边的高电压和测试困难(这不是主要的,主要的是C点的阻抗高),可以把电感短路(但要保证谐振频率超过补偿网络的第一个零点),在输出端如图8测量.5.总结如果输出电压足够高TL431是一个好的选择.如果光耦隔离,按本文的建议就可以得到大致好的设计.(如果是正规的设计公司和要成为高手,一定要有测量仪器,手段.)。

TL431_跟PC817_的配合应用

TL431_跟PC817_的配合应用

TL431_与PC817_的配合应用TL431 与PC817 的配合应用可调式精密并联稳压器TL431TL431是由美国德州仪器(TI)和摩托罗拉公司生产的2.5,36V可调式精密并联稳压器。

其性能优良,价格低廉,该器件的典型动态阻抗为0.2Ω,可广泛用于单片精密开关电源或精密线性稳压电源中,在很多应用中可以用它代替齐纳二极管。

此外,TL431还能构成电压比较器、电源电压监视器、延时电路、精密恒流源等。

TL431大多采用DIP-8或TO-92封装形式,引脚排列分别如图1所示。

3 个引脚分别为:阴极(CATHODE)、阳极(ANODE)和参考端(REF)。

图中,A为阳极,使用时需接地;K为阴极,需经限流电阻接正电源;UREF是输出电压UO的设定端,外接电阻分压器;NC为空脚。

由TL431的等效电路图可以看到,Uref是一个内部的2.5V 基准源,接在运放的反相输入端。

由运放的特性可知,只有当REF 端(同相端)的电压非常接近Uref(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF 端电压的微小变化,通过三极管VT的电流将从1 到100mA 变化。

当然,该图绝不是TL431 的实际内部结构,所以不能简单地用这种组合来代替它。

但如果在设计、分析应用TL431 的电路时,这个模块图对开启思路,理解电路都是很有帮助的。

前面提到TL431 的内部含有一个2.5V 的基准电压,所以当在REF 端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。

如图2 所示的电路,当R1 和R2 的阻值确定时,两者对Vo 的分压引入反馈,若Vo 增大,反馈量增大,TL431 的分流也就增加,从而又导致Vo 下降。

显见,这个深度的负反馈电路必然在Uref等于基准电压处稳定,此时 Vo=(1+R1/R2)Vref。

选择不同的R1 和R2 的值可以得到从2.5V 到36V 范围内的任意电压输出,特别地,当R1=R2 时,Vo=5V。

基于PC817和TL431的多路输出单端反激式开关电源原理及设计

基于PC817和TL431的多路输出单端反激式开关电源原理及设计

本文设计的开关电源将作为智能仪表的电源,最大功率为10 W。

为了减少PCB的数量和智能仪表的体积,要求电源尺寸尽量小并能将电源部分与仪表主控部分做在同一个PCB上。

考虑10W的功率以及小体积的因素,电路选用单端反激电路。

单端反激电路的特点是:电路简单、体积小巧且成本低。

单端反激电路由输入滤波电路、脉宽调制电路、功率传递电路(由开关管和变压器组成)、输出整流滤波电路、误差检测电路(由芯片TL431及周围元件组成)及信号传递电路(由隔离光耦及电阻组成)等组成。

本电源设计成表面贴装的模块电源,其具体参数要求如下:输出最大功率:10W输入交流电压:85~265V输出直流电压/电流:+5V,500mA;+12V,150mA;+24V,100mA纹波电压:≤120mV单端反激式开关电源的控制原理所谓单端是指TOPSwitch-II系列器件只有一个脉冲调制信号功率输出端一漏极D。

反激式则指当功率MOSFET导通时,就将电能储存在高频变压器的初级绕组上,仅当MOSFET关断时,才向次级输送电能,由于开关频率高达100kHz,使得高频变压器能够快速存储、释放能量,经高频整流滤波后即可获得直流连续输出。

这也是反激式电路的基本工作原理。

而反馈回路通过控制TOPSwitch器件控制端的电流来调节占空比,以达到稳压的目的。

TOPSwitch-Ⅱ系列芯片选型及介绍TOPSwitch-Ⅱ系列芯片的漏极(D)与内部功率开关器件MOSFET相连,外部通过负载电感与主电源相连,在启动状态下通过内部开关式高压电源提供内部偏置电流,并设有电流检测。

控制极(C)用于占空比控制的误差放大器和反馈电流的输入引脚,与内部并联稳压器连接,提供正常工作时的内部偏置电流,同时也是提供旁路、自动重起和补偿功能的电容连接点。

源极(S)与高压功率回路的MOSFET的源极相连,兼做初级电路的公共点与参考点。

内部输出极MOSFET的占空比随控制引脚电流的增加而线性下降,控制电压的典型值为5.7 V,极限电压为9 V,控制端最大允许电流为100 mA。

电流模式反激电源的环路补偿设计

电流模式反激电源的环路补偿设计

【 关键词 】 补偿网络;T L 4 3 1 ;反激式电源;相位裕量
G v c ( s ) 后 的控 制系 统 原理 图 。采 用 电流 型控 制 模 式 , 由文 献 其传
引 言
递 函 数为 式 ( 1 ) 。其 中n 为 反 激变 换 器 一次 侧 与二 次 侧 匝 比 ,L 为一 次侧 电感量 ,R o 为输 出 电阻 ,C 为 输 出滤波 电容 ,R c 为 输 出滤 波 电
点 。R u p 与C 2 形成 一 个极 点 ,将该 极 点频 率设 置 高于 穿越 频 率来 抑 制 高频 信 号 ,提 高 幅值裕 度 。
1 . 2 系统 网络 开 关 电源 的控 制 模 式可 分 为 电压 型和 电流 型两 种 l 。控 制 方式
的不 同会 导致 系 统 的传 递 函数会 有 很大 的不 同 。本 文采 用 电流 型控 制方 式 。采 用 电流模 式 控制 相 当于在 电压环 路 内 引入超 前补 偿 ,其
合 光 耦 器件 构 成 。本 文 以O B 2 2 6 3 为P W M控制 芯 片 ,用 T L 4 3 1 结 合



+ 啪 雾 1
㈩ …
( L 2) Z
光 耦 组成 反馈 补偿 网络 ,既 能调 节 电源 的动态 响应 ,也 能实现 隔 离 的作 用 。P WM 芯 片通 过 检 测反 馈 信 号来 调 节 占空 比从 而使 输 出稳 定 。补偿 网络 可 以提 高低 频增 益 ,设 置合 理 的开环 穿越频 率来 调 节
・12 6 ・ 屯子 世 界
图3 P C8 1 7 与T L 4 3 1 补 偿 网络
E L E C T R ONI C S W 0R L D・ 技 术 交 流

最详细的开关电源反馈回路设计

最详细的开关电源反馈回路设计

开关电源反馈回路设计开关电源反馈回路主要由光耦如PC817、电压精密可调并联稳压器如TL431等器件组成;要研究如何设计反馈回路,首先先要了解这两个最主要元器件的基本参数;1、光耦PC817的基本参数如下表:2、可调并联稳压器由TL431的等效电路图可以看到,Uref是一个内部的2.5V基准源,接在运放的反相输入端;由运放的特性可知,只有当REF端同相端的电压非常接近Uref2.5V时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF端电压的微小变化,通过三极管VT的电流将从1到100mA变化;当然,该图绝不是TL431的实际内部结构,所以不能简单地用这种组合来代替它;但如果在设计、分析应用TL431的电路时,这个模块图对开启思路,理解电路都是很有帮助的;前面提到TL431的内部含有一个2.5V的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压;如图2所示的电路,当R1和R2的阻值确定时,两者对Vo的分压引入反馈,若Vo增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降;显见,这个深度的负反馈电路必然在Uref 等于基准电压处稳定,此时Vo=1+R1/R2Vref;图2选择不同的R1和R2的值可以得到从2.5V到36V范围内的任意电压输出,特别地,当R1=R2时,Vo=5V;需要注意的是,在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1mA;了解了TL431和PC817的基本参数后,来看实际电路:图3反馈回路主要关注R6、R8、R13、R14、C8这几个器件的取值;首先来看R13;R13、R14是TL431的分压电阻,首先应先确定R13的值,再根据Vo=1+R14/R13Vref公式来计算R14的值;1.确定R13.、R14取值确定R13的值考虑以下两个条件:1、TL431参考输入端的电流,一般此电流为2uA左右,为了避免此端电流影响分压比和避免噪音的影响,一般取流过电阻R13的电流为参考段电流的100倍以上,所以此电阻要小于2.5V/200uA=12.5K;2、考虑到待机功耗及瞬态响应,若取值太小,则通过的电流大,根据P=I2R公式,待机功耗大;若取值太大,则通过的电流小,反馈回路瞬态响应将受到影响;故,R13在满足条件1的情况下尽量取中间值或大于中间值;本设计为5V/1.5A适配器设计,R13取5.6K,理论上要得到5V输出,R13与R14值相等即可,但考虑适配器实际应用存在线损,故选R14值略大于R13,取6.2K;计算得:Vo=1+6.2/5.62.5=5.26V,结合使用的输出线规格及线损,在输出满载情况下,线末端能够得到5V电压;2.确定R6、R8取值由输出为5V知a点电压略高于5V,取5.3V图4为TL431内部电路图,由图中可知,K端与R端相差一个PN节即三极管工作在饱和状态时,K端将比R端电压高0.7V硅管,当开关电源工作时,下图中的Q1将工作在放大模式,根据三极管的放大特性,K端电压将比R端电压至少大0.7V,根据经验,K端电压比R端电压高1.5V~1.7V,即图3中的c点电压比d点电压高1.5V~1.7V,d点电压为TL431基准电压,为2.5V,则c点电压为4V~4.2V;图4由光耦参数表可知,发光二极管正向压降为0.8~1.4V取1V,IF为3~5mA时,这样可得b点电压为5V~5.2V由上述条件,我们已经计算出图2中a点电压为5.3V;b点电压为5~5.2V取5.1V;c点电压为4~4.2V取4.1V;d点电压为2.5V;由发光二极管参数知,IF<50mA,根据经验,IF一般取3mA;R8电阻是为TL431提供死区电流而设计的,查阅TL431参数知,要保证工作正常,TL431的Ika需大于1mA,小于100mA,一般取3~5mA;计算得R6=5.3V-5.1V/3~5mA=40Ω~67Ω;本设计取56R;R8<1.2V/1mA=1.2K,根据经验,一般取1K或470Ω3.确定C8取值有的电路设计中为提升低频增益,用一个电阻和一个电容串接于TL431控制端和输出端,来压制低频100Hz纹波和提高输出调整率,即静态误差,目的就是提升相位,要放在带宽频率的前面来增加相位裕度,具体位置要看其余功率部分在设计带宽处的相位是多少,电阻和电容的频率越低,其提升的相位越高,当然最大只有90度,但其频率很低时低频增益也会减低,一般放在带宽的1/5初,约提升相位78度;根据计算,一般选用104电容或104电容与1K电阻串联;具体计算比较复杂以上数据仅为理论计算,具体应根据实际测试情况进行微调处理;。

AZ431与PC817的应用

AZ431与PC817的应用

TL431与PC817应用开关电源的稳压反馈通常都使用TL431和PC817,如输出电压要求不高,也可以使用稳压二极管和PC817,德州仪器公司(TI)生产的TL431一是一个有良好的热稳定性能的三端可调分流基准源。

它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值(如图2)。

该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。

上图是该器件的符号。

3个引脚分别为:阴极(CATHODE)、阳极(ANODE)和参考端(REF)。

TL431的具体功能可以用如下图的功能模块示意。

由图可以看到,VI是一个内部的2.5V基准源,接在运放的反相输入端。

由运放的特性可知,只有当REF端(同相端)的电压非常接近VI(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF端电压的微小变化,通过三极管 图1 的电流将从1到100mA变化。

当然,该图绝不是TL431的实际内部结构,所以不能简单地用这种组合来代替它。

但如果在设计、分析应用TL431的电路时,这个模块图对开启思路,理解电路都是很有帮助的,前面提到TL431的内部含有一个2.5V的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。

如图2所示的电路,当R1和R2的阻值确定时,两者对Vo的分压引入反馈,若V o增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降。

显见,这个深度的负反馈电路必然在VI等于基准电压处稳定,此时Vo=(1+R1/R2)Vref。

选择不同的R1和R2的值可以得到从2.5V到36V范围内的任意电压输出,特别地,当R1=R2时,Vo=5V。

需要注意的是,在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1 mA 。

右,为了避免此端电流影响分压比和避免噪音的影响,一般取流过电阻R13的电流为参考段电流的100倍以上,所以此电阻要小于2.5V/200uA=12.5K. 2)待机功耗的要求,如有此要求,在满足《12.5K 的情况下尽量取大值。

反激开关电源中基于PC817A与TL431配合的环路动态补偿设计

反激开关电源中基于PC817A与TL431配合的环路动态补偿设计
根据式4可得到相位裕量180115655结束语本文把控制论与开关电源反馈环路的设计结合起阐述了单端反激开关电源中基于pc817atl431配合环路的动态补偿设计通过设计合适的相位裕量来保证开关电源的稳定性其过程经实验证明具有较好的通用性在实际应用中取得了很好的效果
第 31卷第 11期 2005年 11月
的相角 φ为 :
∑ ∑ φ = a rc tan f - a rc tan f =
fzi
fp i
a rc tan 8 - a rc tan 8 ≈ - 22° ( 4)
1. 225
0. 033
另外 ,可以看到在 8 kHz处增益曲线为水平 ,所
以可以直接用单极点补偿 ,这样可满足 - 20 dB / dec
图 2 ( b)为极零点补偿 ,其极点相当于主极点补偿 中的极点 ,而零点则把补偿前的第 1个极点抵消 ,这时 的带宽最大 ,可以达到补偿前第 2个极点的带宽 ,这样 既达到了主极点补偿的效果 ,又增加了带宽 。
图 2 ( c)为双极点单零点补偿 (传递函数已经进行 了适当的工程近似和简化 ) ,适用于功率部分只有 1 个极点的补偿 ,例如所有电流型控制和非连续方式电 压型控制 。
本文以 单 端 反 激 开 关 电 源 设 计 为 例 , 在 基 于 PC817A 和 TL431配合的环路设计中 ,将控制论运用 于开关电源动态补偿设计中 ,利用开关电源的小信号 传递函数 ,对此环路的动态补偿设计进行了定性分析 和定量计算 ,通过设计合适的相位裕量来保证开关电 源的稳定性 。其过程经实验证明具有较好的通用性 , 在实际运用中取得了很好的效果 。
1 + sCRo 1 +D
(1) 式中 : D 为占空比 , D = NVo /V in +NVo ; Ro 为输出负载 电阻 ; Rc 为滤波电容的 ESR。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fc=1.5KHz。
参数设计步骤(3)
3. 确定输出滤波器的极点
FCP
?
1
2?RLCO
?
2?
1 *12 / 0.3* 690 ? 10?6
?
5.77 Hz
参数设计步骤(4)
4、确定Fc处,使power stage提升到0dB所需增 加的增益量。
Gxo
?
20 lg????
fxo fcp
???? ?
2. 确定系统增益带宽
因DCM下无右半平面零点,而在最低输入电压和轻载 下的CCM中:
参数设计步骤(2)
f RHPZ
?
N 2 ? Ro ? (1 ? D )2
2?LP D
?
(140 )2 ? 12 * 0.52 2 23 0.3
2? * 2.7 ? 10 ?3 * 0.48
? 14.77 K
又因,Fs=50kHz,然而此系统工作在CCM模式下,应将Fc 远离Frhpz.这里我们设定Fc=1/10* Frhpz处,取
补充说明
? 电路中的光耦传输比取 100%。 ? 调整动态补偿网络参数,一般是应用实验的方
法。这里是简单说了计算过程。
反馈环路电路补偿设计
?简述控制环路的作用 ?设计要点 ?重要概念 ?步骤(实例说明)
适用个人使用
简述控制环路的作用
? 提供电路稳定工作,使输出电压波动小; ? 避免闭环系统自激振荡; ? 以动态补偿方式,调整输出稳定状态
设计要点一
? 系统的反馈类型有电流型和电压型,应依照 相对应的工作模式确定传导函数。这里就已 电流反馈形式的 PWM芯片为例介绍
? 在FALYBACK中又有CCM、DCM、RCM三种 电路工作模式。对于哪种模式的电路都不重 要,因为它取决于芯片自身。
? 在设计完成变压器、 EMI滤波、安规元件、芯 片周围电路、输出电路后才能进行设计反馈
? 反馈电路结构中通常采用放大器 +光耦形式
设计要点二
? 相位余量:在闭环系统增益中的穿越频率Gs=0dB 时对应的相位值与360度的差值。通常取 j m ? 45°
重要概念
(略)
举例说明:
已知要求:
VCC
Lp=2.7mH,Cout= 220+470uF,ESR=55m Ω,
R6
C?
B
Np:Ns=140:23,
90-265Vac,CCM 模式,
Fs=50kHz,Rs=1.5 Ω,
D=0.48,pwm 电流型控制 ic。
Vo=12V,Io=1A,Io ( Nhomakorabeain)=0.3A(ccm)
? 增益余量:相位在360度的增益低于单位增益的量。 通常取<-12dB。
? 单位系统带宽Fc,通常取开关频率的1/5~1/10。 ? 右半平面极点:增益衰减,会引起-90度移相。 ? 左半平面极点:不稳定,导致系统震荡。 ? 右半平面零点:增益增大,引起90度移相。 ? 左半平面零点:增益增大,引起-90度移相。
取51k。 R4=Vf/1mA=1.2/1=1.2K. 取1k。 R3≥(V0-Vf-Vref)/10=830. 取 1k
参数设计步骤(6)
7、计算 R5,C1,C2. R5=Axo*R1=15.1*51=770K 取680k C1=1/Fez*2*3.14*680k=468.3nF 取470nF C2=C1/2*3.14*680k*Fep=0.234nF 取270pF
GDC
?
20lg??1500 ??? ? 5.77 ?
24.7
?
23.6dB
G XO
AXO ? 10 20 ? 15.1
参数设计步骤(5)
5、确定 EA补偿网络的零点和极点位置。 Fez=1/3Fc=500Hz Fep>3Fc=4.5kHz 取5k
6、计算反馈环路参数。 设R2=Vref/250uA=10K, 则R1=R2*Vo/Vref=47k
+12
R3 R1
A R4 C2 PC81 7 C1
R5 TL43 1
R2
参数设计步骤(1)
1. 确定输入到输出的DC增益
A DC
?
N(1 ? D) ? R O (1? D) ? RS
?
140 ? (1? 0.48) ? 12V
23
1A
(1? 0.48) ? 1.5
? 17.1
G DC ? 20log1017.1 ? 24.7dB
相关文档
最新文档