第12章 轴对称综合复习测试题(二)及答案
第12章 轴对称单元综合测评(含答案)
第12章轴对称单元综合测评一、选择题(每小题3分,共30分)题号一1 二2 三3 四4 五5 六6 七7 八8 得分度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
1.下列图形中一定是轴对称图形的是()A.梯形B.直角三角形C.等腰三角形D.平行四边形2.已知△ABC在直角坐标系中的位置如图所示,如果△A'B'C'与△ABC关于y轴对称,那么点A的对应点A'的坐标为()A.(-4,2)B.(-4,-2)C.(4,-2)D.(4,2)(第2题)(第3题)(第4题)3.如图,如果直线m是多边形ABCDE的对称轴,其中∠A=130°,∠B=110°.那么∠BCD 的度数等于()A.40°B.50°C.60°D.70°4.如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB 边上的C′处,并且C′D//BC,则C′D的长是()A.409B.509C.154D.2545.在平面直角坐标系中,已知A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()A.2个B.3个C.4个D.5个6.下列图形中对称轴条数最多的是()A.正方形B.长方形C.等腰三角形D.等边三角形7.下列图案中,是轴对称的是()A.(1)(2)B.(1)(3)(4) C.(1)(4)D.(2)(3)8.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则△CEF的面积为()A.4 B.5 C.8 D.109.如图,在△ABC中,AB=AC,D为AC边上一点,且BD=BC=AD.•则∠A等于()A.30°B.36°C.45°D.72°10.如图,在等腰三角形ABC中,AB=AC,∠A=44°,CD⊥AB于D,则∠DCB等于()A.44°B.68°C.46°D.22°二、填空题(每小题3分,共30分)11.正六边形的对称轴有_____________条.12.在△ABC中,AB =AC,AB的中垂线与AC所在直线相交所得的锐角是50°,则∠B 的度数为_____________.13.若等腰三角形的两边长分别为6和8,则该等腰三角形的周长为_____________.14.一条船5点从灯塔C南偏东42°的A处出发,以16海里/时的速度向正北航行,8点到达B处,此时灯塔C在船的北偏西84°方向,则船距离灯塔C_____________海里.(第14题)(第15题)15.如图,D、E为AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=500,则∠BDF=_____________.16.如图,在△ABC中,AB=AC,∠A=50︒,BD为∠ABC的平分线,则∠BDC的度数为_____________.17.如图,由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是a,则六边形的周长是_____________.18.一个顶角为40︒的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=_____________度.19.如图,在△ABC中,AB=AC,∠BAD=20°,且AE=•AD,则∠CDE=_____________.20.如图,沿大正三角形的对称轴对折,则互相重合的两个小三角形内的单项式的乘积为_____________.三、解答题(每小题8分,共40分)21.图中的大正三角形是由9个相同的小正三角形拼成的,将其部分涂黑,如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下性质:①都是轴对称图形,②涂黑部分都是三个小正三角形.请你在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.22.如图,已知等腰三角形一腰上的中线把三角形周长分为12cm和15cm两部分,求它的底边长.23.如图,△ABC是等边三角形,BD是AC边上的高,延长BC到E使CE=CD.试判断DB与DE之间的大小关系,并说明理由.24.如图,△ABC中, D、E分别是AC、AB上的点, BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.(1)上述三个条件中,哪两个..条件..可判定△ABC是等腰三角形(用序号写出所有情形);(2)选择第(1)小题中的一种情形, 证明△ABC是等腰三角形.25.如图,有一块三角形田地,AB =AC =10m ,作AB 的垂直平分线ED 交AC 于D ,交AB 于E ,量得△BDC 的周长为17m ,请你替测量人员计算BC 的长.参考答案一、1.C 2.D 3.C 4.A 5.C 6.A 7.B 8.C 9.B 10.D二、11.6 12.40︒或20︒ 13.20或22 14.48 15.80︒ 16.825 17.30a 18.220 19.10︒ 20.a ,22a b ,32a b 三、21.图略. 22.7cm 或11cm .23.关系:DE =DB .∵CD =CE ,∴∠E =∠EDC ,又∵∠ACB =60°,∴∠E =30°, 又∵∠DBC =30°,∴∠E =∠DBC ,•∴DB =DE . 24.(1)情形一:①和③;情形二:②和③.(2)选择情形一.证明:∵∠EOB =∠COD ,∠EBO =∠DCO ,BE =CD .∴△BEO ≌△CDO .∴BO =CO .∴∠OBC =∠OCB . ∴∠EBO +∠OBC =∠DCO +∠OCB ,即∠ABC =∠ACB . ∴AB =AC .∴△ABC 是等腰三角形.25.∵ED 是AB 的垂直平分线,∴DA =DB.又∵△BDC 的周长为17m ,AB =AC =10m ,∴BD+DC+BC =17,∴DA+DC+BC =17,即AC+BC =17. ∴10+BC =17,∴BC =7m .可以编辑的试卷(可以删除)。
八年级数学第十二章轴对称整章水平测试(含答案)
八年级数学24分)
1、下列说法正确的是()
A轴对称涉及两个图形,轴对称图形涉及一个图形
B如果两条线段互相垂直平分,那幺这两条线段互为对称轴
C所有直角三角形都不是轴对称图形
D有两个内角相等的三角形不是轴对称图形
2、若等腰三角形的一边长为10,另一边长为7,则它的周长为
()
A17B24C27D24或27
3、若一个三角形的三个外角的度数之比为5∶4∶5,则这个三角形
是()
A等腰三角形,但不是等边三角形,也不是等腰直角三角形
B直角三角形,但不是等腰三角形
C等腰直角三角形
D等边三角形
4、等腰三角形底边长为5cm,一腰上的中线分其周长的两部分的差为
3cm,则腰长为()
A2cmB8cmC2cm或8cmD以上答案都不对
5、下列说法正确的个数有()
⑴等边三角形有三条对称轴⑵四边形有四条对称轴⑶等腰三角形的
一边长为4,另一边长为9,则它的周长为17或22⑷一个三角形中至少有
两个锐角
A1个B2个C3个D4个
请下载附件:
《八年级数学第十二章轴对称整章水平测试》
(本地下载)
点击下一页查看试题答案
人教版八年级上册第12章轴对称复习测试及答案4份WORD
图130,请你求出其余两角30和120”;王华同学说:75和75”.还有一些同学也提出了不同的看法.)假如你也在课堂中,你的意见如何?为什么?75和75或30和120.30+α+α=180,75.75和75.++β=,3030180120.30和120.“分类讨论”,“考虑问题要全面”等能体现分类讨论思想的给.为顶点将平角五等份,并沿五等份的折线折叠,再等于().如图,一平面镜与水平面成45°角固定在水平桌面上,一小球以桌面向平面镜匀速滚去,则小球在平面镜里所成的像(的速度,做竖直向上运动 B. 以1m/s的速度,做竖直向下运动的速度,做竖直向上运动 D. 以2m/s的速度,做竖直向下运动如图,在Rt△ABC中,∠C=90°,直线BD交AC于上;然后再沿虚线上的半圆,再展开,则展开后二、填空题(每小题3分,共24分)1.已知△ABC是轴对称图形,且三条高的交点恰好是C点,则△的形状是___________.2. 如图6,DE是AB的垂直平分线,D是垂足,DE交BC于AC=18cm,则△AEC的周长为_______cm.3. 已知点A,B,C,D的坐标分别为A(-2,1),B(1,2),C(-2,-1),D(1,-2),则线段AB与CD关于______.4.在如图7的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠的顶点A,B,C,D按顺时针方向排列,若在平面直角坐标系内,、D两点对应的坐标,0),且A、C两点关于x中,∠B=∠C,FD⊥BC,________.__________.成轴对称且也以格点为顶点的三角A AB CC.3 D.4 6,则此等腰三角形的周长为()=90°,AB的垂直平分线交.的对称轴,如果AD∥BC(用直尺、圆规作图,保留作图痕迹,不写作法,不要求证明)2008年北京2004年雅典1988年汉城1980年莫斯科ABCD.如图1,在平面直角坐标系中,下列各中是点E关于x轴的对称点的是(加拿大澳大利亚瑞士乌拉圭A.加拿大、乌拉圭B.加拿大、瑞士、澳大利亚,请你找出格纸中所有与。
新人教版八年级数学上册第十二章轴对称测试题及答案ABC卷
课标人教版八年级(上)数学检测试卷轴对称 A 卷(考试时间为60分钟,满分100分)姓名:______________一、填空题(每小题3分,共30分) 1.长方形的对称轴有___________条. 2.等腰直角三角形的底角为_____________.3.等边三角形的边长为a ,则它的周长为_____________. 4.(-2,1)点关于x 轴对称的点坐标为__________.5.如图,∠A =36°,∠DBC =36°,∠C =72°,则图中等腰三角形有_______个. 6.如图,△ABC 中,DE 是AC 的垂直平分线,AE =3cm ,△ABD 的周长为13cm ,则△ABC 的周长为____________.7.△ABC 中,AB 边上的中线CD 将△ABC 分成两个等腰三角形,则∠ACB =_______度. 8.等腰三角形的顶角为x 度,则一腰上的高线与底边的夹角是___________度.9.在“线段,角,半圆,长方形,梯形,三角形,等边三角形”这七个图形中,是轴对称的图形有_______个.10.如图,四边形ABCD 沿直线l 对折后互相重合,如果AD ∥BC ,有下列结论:①AB ∥CD ;②AB =CD ;③AB ⊥BC ;④AO =OC 其中正确的结论是_______________. (把你认为正确的结论的序号都填上)二、选择题(每小题3分,共30分)11.下列平面图形中,不是轴对称图形的是( )12.下列英文字母属于轴对称图形的是( )(A )(B )(C )(D )ABC D第5题第6题ABDCE第10题ABCDl O(A ) N (B ) S (C ) H (D ) K13.下列图形中对称轴最多的是( )(A )圆 (B )正方形 (C )等腰三角形 (D )线段14.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )(A )∠B =∠C (B )AD ⊥BC (C )AD 平分∠BAC (D )AB =2BD15.△ABC 中,AB =AC .外角∠CAD =100°,则∠B 的度数( )(A )80° (B )50° (C )40° (D )30°16.等腰三角形的一个角是80°,则它的底角是( )(A )50° (B ) 80° (C ) 50°或80° (D ) 20°或80°17.如果一个三角形两边的垂直平分线的交点在第三边上,那么这个三角形是( )(A )锐角三角形. (B )直角三角形. (C )钝角三角形. (D )不能确定.18.如图,是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC ,AB =8m ,∠A =30°,则DE 等于( )(A )1m (B ) 2m (C )3m (D ) 4m19.以下叙述中不正确的是( )A 、等边三角形的每条高线都是角平分线和中线B 、有一内角为 60的等腰三角形是等边三角形C 、等腰三角形一定是锐角三角形D 、在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等。
第12章 轴对称综合测试卷(含答案)
第12章轴对称综合测试卷一、选择题(本大题共8小题,每小题3分,共24分)1.下列图形中,不是轴对称图形的是()A、B、C、D、2、下列各数中,成轴对称图形的有()A、B、C、D、3、和点P(-3,2)关于y轴对称的点是()A、(3,2)B、(-3,2)C、(3,-2)D、(-3,-2)4、如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A、30°B、50°C、90°D、100°5、等腰三角形的一个内角是50°,则另外两个角的度数分别是()A、65°,65°B、50°,80°C、65°,65°或50°,80°D、50°,50°6、如图,将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去小扇形,把纸片展开,得到的图形是()A、B、C、D、7、如图,把等腰直角△ABC沿BD折叠,使点A落在边BC上的点E处.下面结论错误的是()A、AB=BEB、AD=DCC、AD=DED、AD=EC8、如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连结OC、FG,则下列结论:①AE=BD ②AG=BF ③FG∥BE ④∠BOE=120°,其中正确结论的个数()A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题3分,共24分)10、如果A(a-1,3),A′(4,b-2)关于x轴对称,则a=,b=11、如图,在△ABC中AB=AC,∠A=36°,BD平分∠ABC,则∠1= 度,图中有个等腰三角形.12、如图,△ABC中,DE是AC的垂直平分线,AE=6cm,△ABD的周长为26cm,则△ABC的周长为cm.13、如图,等腰三角形ABC的顶角为120°,腰长为10,则底边上的高AD=.14、如图,已知∠A=15°,AB=BC=CD=DE=EF,则∠FEN的度数为度.15、如图,△ABC中,∠B=∠C,FD⊥BC于D,DE⊥AB于E,∠AFD=158°,则∠EDF等于度.16、如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为.三、(本大题共3小题,第17 题6分,第18、19题均为7 分,共20 分)17、已知点M(3a-b,5),N(9,2a+3b)关于x轴对称,求b a的值.18、如图,已知:△ABC中,BC<AC,AB边上的垂直平分线DE交AB于D,交AC于E,AC=9 cm,△BCE的周长为15 cm,求BC的长.19、如图:①写出A、B、C三点的坐标.②若△ABC各顶点的横坐标不变,纵坐标都乘以-1,请你在同一坐标系中描出对应的点A′ 、B′ 、C′,并依次连接这三个点,所得的△A′B′C′与原△ABC有怎样的位置关系.20、根据下图解答下列各题.(1)在△ABC中,AB=AC,∠BAC=100°,ME和NF分别垂直平分AB和AC,求∠MAN 的度数;(2)在(1)中,若无AB=AC的条件,你还能求出∠MAN的度数吗?若能,请求出;若不能,请说明理由;(3)在(2)的情况下,若BC=10cm,试求出△AMN的周长.21、如图,已知AB=AC,D是AB上一点,DE⊥BC于E,ED的延长线交CA的延长线于F,试说明△ADF是等腰三角形的理由.22、如图所示,在△ABC 中,∠BAC=90°,AD ⊥BC 于D ,∠ACB 的平分线交AD 于E ,交AB 于F ,FG ⊥BC 于G ,请猜测AE 与FG 之间有怎样的数量关系,并说明理由.23.如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD△与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.下列图形中,不是轴对称图形的是(C)A、B、C、D、2、下列各数中,成轴对称图形的有(B)A、B、C、D、3、和点P(-3,2)关于y轴对称的点是(A)A、(3,2)B、(-3,2)C、(3,-2)D、(-3,-2)4、如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为(D)A、30°B、50°C、90°D、100°5、等腰三角形的一个内角是50°,则另外两个角的度数分别是(C)A、65°,65°B、50°,80°C、65°,65°或50°,80°D、50°,50°6、如图,将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去小扇形,把纸片展开,得到的图形是(A)A、B、C、D、7、如图,把等腰直角△ABC沿BD折叠,使点A落在边BC上的点E处.下面结论错误的是(B)A、AB=BEB、AD=DCC、AD=DED、AD=EC8、如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE 与BD交于点O,AE与CD交于点G,AC与BD交于点F,连结OC、FG,则下列结论:①AE=BD ②AG=BF ③FG∥BE ④∠BOE=120°,其中正确结论的个数( D )A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题3分,共24分)10、如果A(a-1,3),A′(4,b-2)关于x轴对称,则a=5,b=-111、如图,在△ABC中AB=AC,∠A=36°,BD平分∠ABC,则∠1= 72度,图中有3个等腰三角形.12、如图,△ABC中,DE是AC的垂直平分线,AE=6cm,△ABD的周长为26cm,则△ABC的周长为38cm.13、如图,等腰三角形ABC的顶角为120°,腰长为10,则底边上的高AD= 5.14、如图,已知∠A=15°,AB=BC=CD=DE=EF,则∠FEN的度数为75度.15、如图,△ABC中,∠B=∠C,FD⊥BC于D,DE⊥AB于E,∠AFD=158°,则∠EDF等于68度.16、如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为32.三、(本大题共3小题,第17 题6分,第18、19题均为7 分,共20 分)17、已知点M(3a-b,5),N(9,2a+3b)关于x轴对称,求b a的值解:∵3a-b=9,2a+3b=-5,∴a=2,b=-3,∴b a=(-3)2=9.18、如图,已知:△ABC中,BC<AC,AB边上的垂直平分线DE交AB于D,交AC于E,AC=9 cm,△BCE的周长为15 cm,求BC的长.解:∵E垂直平分AB ∴EA=EB∵△BCE的周长为15cm∴BC+EC+EB=15∵AC=EC+EB=9∴BC=15-9=6.∴BC=6cm.19、如图:①写出A、B、C三点的坐标.②若△ABC各顶点的横坐标不变,纵坐标都乘以-1,请你在同一坐标系中描出对应的点A′ 、B′ 、C′,并依次连接这三个点,所得的△A′B′C′与原△ABC有怎样的位置关系.解:①A、B、C三点的坐标分别是(3,4),(1,2),(5,1);②正确作出△A′B′C′,△A′B′C′与原△ABC的位置关系是关于y轴对称.四、(本大题共2小题,每小题8 分,共16 分)20、根据下图解答下列各题.(1)在△ABC中,AB=AC,∠BAC=100°,ME和NF分别垂直平分AB和AC,求∠MAN 的度数;(2)在(1)中,若无AB=AC的条件,你还能求出∠MAN的度数吗?若能,请求出;若不能,请说明理由;(3)在(2)的情况下,若BC=10cm,试求出△AMN的周长.解:(1)∴ME垂直平分AB∴MA=MB∴∠B=∠BAM同理:NA=NC,∠C=∠NAC∵∠B+∠C+∠BAC=180°,∠BAC=100°∴∠B+∠C=80°∴∠BAM+∠NAC=80°∴∠MAN=∠BAC-(∠BAM+∠NAC)=100°-80°=20°;(2)能,∠MAN=20°;[理由同(1)](3)由(2)知MA=MB,NA=NC.∴AM+AN+MN=BM+NC+MN=BC=10cm21、如图,已知AB=AC,D是AB上一点,DE⊥BC于E,ED的延长线交CA的延长线于F,试说明△ADF是等腰三角形的理由.解:∵AB=AC,∴∠B=∠C(等边对等角).∵DE⊥BC于E,∴∠FEB=∠FEC.∴∠B+∠EFB=∠C+∠EDC=90°.∴∠EFB=∠EDC(等角的余角相等).∵∠EDC=∠ADF,∴∠EFB=∠ADF.∴△ADF是等腰三角形.五、(本大题共2小题,每小题8分,共16 分)22、如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,∠ACB的平分线交AD于E,交AB于F,FG⊥BC于G,请猜测AE与FG之间有怎样的数量关系,并说明理由.证明:AE与FG之间的数量关系是相等.理由:∵CF平分∠ACB,FA⊥AC,FG⊥BC∴FG=FA∵∠AFC+∠ACF=90°,∠DEC+∠ECD=90°,且∠ACF=∠ECD∴∠AFC=∠DEC∵∠AEF=∠DEC∴∠AFC=∠AEF∴AE=FA∴AE=FG.23.如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?解:(1)①∵1t =秒,∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点,∴5BD =厘米.又∵8PC BC BP BC =-=,厘米,∴835PC =-=厘米,∴PC BD =.又∵AB AC =,∴B C ∠=∠,∴BPD CQP △≌△.②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒. (2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得153210 4x x=+⨯,解得803x=秒.∴点P共运动了803803⨯=厘米.∵8022824=⨯+,∴点P、点Q在AB边上相遇,∴经过803秒点P与点Q第一次在边AB上相遇.。
轴对称测试题及答案初二
轴对称测试题及答案初二一、选择题1. 下列图形中,不是轴对称图形的是:A. 等边三角形B. 正方形C. 圆D. 五边形2. 如果一个图形关于某条直线对称,那么这条直线被称为:A. 对称轴B. 对称线C. 中心线D. 平行线3. 对于轴对称图形,下列说法正确的是:A. 只有一个对称轴B. 可以有多个对称轴C. 没有对称轴D. 以上都不对二、填空题1. 轴对称图形的对称轴是图形上所有点到对称中心的_________。
2. 如果一个图形沿着对称轴对折,两侧的图形完全重合,那么这个图形是_________图形。
三、判断题1. 所有的等腰三角形都是轴对称图形。
()2. 轴对称图形的对称轴可以是曲线。
()四、简答题1. 请简述什么是轴对称图形,并给出一个生活中的例子。
2. 轴对称图形有哪些性质?五、解答题1. 如图所示,△ABC是轴对称图形,对称轴为直线l,求证:AB=AC。
答案:一、选择题1. D2. B3. B二、填空题1. 垂直平分线2. 轴对称三、判断题1. 正确2. 错误四、简答题1. 轴对称图形是指一个图形关于某条直线对称,这条直线被称为对称轴。
例如,蝴蝶的翅膀就是轴对称图形。
2. 轴对称图形的性质包括:对称轴两侧的图形完全重合,对称轴是图形上所有点到对称中心的垂直平分线。
五、解答题1. 证明:由于△ABC是轴对称图形,对称轴为直线l,根据轴对称图形的性质,我们知道对称轴l是线段AB和AC的垂直平分线。
因此,AB和AC到对称轴l的距离相等,即AB=AC。
结束语:通过本测试题的练习,希望同学们能够更好地理解轴对称图形的概念和性质,提高解题能力。
轴对称是几何学中的一个重要概念,它不仅在数学中有广泛的应用,也在自然界和艺术设计中随处可见。
希望大家能够在生活中发现更多的轴对称之美。
八年级数学上册第十二章轴对称测试题
数学:第12章轴对称测试题(人教新课标八年级上)一、选择题1.(2008年•南宁市)下列图案中是轴对称图形的有:(A )1个 (B )2个 (C )3个 (D )4个2.在下列说法中;正确的是( )A .如果两个三角形全等;则它们必是关于直线成轴对称的图形;B .如果两个三角形关于某直线成轴对称;那么它们是全等三角形;C .等腰三角形是关于底边中线成轴对称的图形;D .一条线段是关于经过该线段中点的直线成轴对称的图形3.如图2;把一个正方形对折两次后沿虚线剪下;展开后所得的图形是上折 右折 沿虚线剪开 展开 图 24.点M )3,5(-关于x 轴的对称点的坐标是( )A . )3,5(--B .)3,5(-C .)3,5(D .)3,5(-5.已知:如图3;ABC △的顶点坐标分别为(43)A --,;(03)B -,;(21)C -,;如将B 点向右平移2个单位后再向上平移4个单位到达1B 点;若设ABC △的面积为1S ;1AB C △的面积为2S ;则12S S ,的大小关系为( )A .12S S >B .12S S =C .12S S <D .不能确定6.已知M (a ;3)和N (4;b )关于y 轴对称;则2008)(b a +的值为( )B 、-1 C.20077 D.20077- 7.已知两条互不平行的线段AB 和A ′B ′关于直线1对称;AB 和A ′B ′所在的直线交于点P ;下面四个结论:①AB=A ′B ′;②点P 在直线1上;③若A 、A ′是对应点;•则直线1垂直平分线段AA ′;④若B 、B ′是对应点;则PB=PB ′;其中正确的是( )A .①③④B .③④C .①②D .①②③④8.已知A 、B 两点的坐标分别是(-2;3)和(2;3);则下面四个结论:①A 、B 关于x 轴对称;②A 、B 关于y 轴对称;③A 、B 关于原点对称;④若A 、B 之间的距离为4;其中正确的有( )A .1个B .2个C .3个D .4个9.将两块全等的直角三角形(有一锐角为30︒)拼成一个四边形;其中轴对称图形的四边形有多少个( )A 、1B 、2C 、3D 、410.如图所示;有A 、B 、C 三个居民小区的位置成三角形;现决定在三个小区之间修建一个购物超;使超市到三个小区的距离相等;则超市应建在( )A.在AC 、BC 两边高线的交点处B.在AC 、BC 两边中线的交点处C.在AC 、BC 两边垂直平分线的交点处D.在A 、B 两内角平分线的交点处二、填空题11.轴对称是指____个图形的位置关系;轴对称图形是指____个具有特殊形状的图形.12.如图所示;镜子里号码如图;则实际纸上的号码是____.13.下列10个汉字:林 上 下 目 王 田 天 王 显 吕;其中不是轴对称图形的是_______;有一条对称轴的是________;有两条对称轴的是_______;有四条对称轴的是________.14.一个汽车车牌在水中的倒影为 ;则该车的牌照号码是______.15.数的运算中会有一些有趣的对称形式;仿照等式①的形式填空;并检验等式是否成立.①12×231=132×21;②12×462=___________;③18×891=__________;④24×231=___________.16.如图7;点P 在∠AOB 的内部;点M 、N 分别是点P 关于直线OA 、OB•的对称点;线段CB A801MN交OA、OB于点E、F;若△PEF的周长是20cm;则线段MN的长是___________.17.已知A(-1;-2)和B(1;3);将点A向______平移________个单位长度后得到的点与点B关于y轴对称.18.点M(-2;1)关于x轴对称的点N的坐标是________;直线MN与x•轴的位置关系是___________.三、解答题19.如图是未完成的上海大众汽车汽车标志图案;该图案是以直线l为对称轴的轴对称图形;现已完成对称轴的左边的部分;请你补全标志图案;画出对称轴右边的部分.20.如图4;四边形EFGH 是一个矩形的球桌面;有黑白两球分别位于A、D两点;试说明怎样撞击D;才使白球先撞击台球边EF;反弹后又能击中黑球A?21.用棋子摆成如图5的“T”字图案.(1)摆成第一个“T”字需要___________个棋子;第二个图案需______________个棋子;(2)按这样的规律摆下去;摆成第10个“T”字需要_____个棋子;第n个需_____个棋子.22.如图6为了美化环境;在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:⑴分割后的整个图形必须是轴对称图形;⑵四块图形形状相同;⑶四块图形面积相等.现已有两种不同的分法:⑴分别作两条对角线(如图7-16中的图1);⑵过一条边的四等分点作这边的垂线段(图2)(图2中两个图形的分割看作同一方法).请你按照上述三个要求;分别在下面两个正方形中给出另外两种不同的分割方法.............(正确画图;不写画法)图(1)图(2)图 6 图(3)图(4)图 5 (3)(1) (2)23.认真观察图8的4个图中阴影部分构成的图案;回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1:_________________________________________________;特征2:_________________________________________________.(2)请在图9中设计出你心中最美丽的图案;使它也具备你所写出的上述特征24.已知A (2m +n ;2)、B (1;n -m );当m ;n 分别为何值时(1)A 、B 关于x 轴对称;(2)A 、B 关于y 轴对称;25.平面直角坐标系中;△ABC 的三个顶点坐标分别为A (0;4);B (2;4);C (3;-1).(1)试在平面直角坐标系中;标出A 、B 、C 三点;(2)求△ABC 的面积.(3)若111C B A 与△ABC 关于x 轴对称;写出1A 、1B 、1C 的坐标.参考答案:一、选择题1.C .2.B 点拨:全等的三角形不一定是成轴对称;而成轴对称的两个三角形一定是全等的.3.B 4.C 5.B(提示:关于y 轴对称点的坐标;横坐标不变;纵坐标互为相反数得;a =-4;b =3)7.D 8.A 9.B 10. C二、填空题11.两 一13.提示:林 上 下 不是轴对称图形 ; 天 王 显 吕 这四个字都有1条对称轴; 目 王 有2条对称轴; 田 有4条对称轴.14.W 5236499 提示:只需将倒影沿垂直旋转180°即可;因此该车的牌照号码为:W 5236499.15.264×21;198×81;132×42 16.20cm 17.上;5 18.(-2;-1);互相垂直三、解答题19.如图所示图 8 图920.先作出点A 关于台球边EF 的对称点A 1;连结BA 1交EF 于点O .将球杆沿BOA 1的方向撞击B 球;可使白球先撞击台球边EF ;然后反弹后又能击中黑球A .21.(1)5; 8; (2)32; 3n+2.22.如图中(1)、(2)符合题意;图(3)的四部分面积相等但形状大小不同.23.解:(1)特征1:都是轴对称图形;特征2:这些图形的面积都等于4个单位面积;等(2)满足条件的图形有很多;只要画正确一个;都可以得满分.24.解:(1)由题意得;⎩⎨⎧=-+=+0212m n n m ;解得⎩⎨⎧-==11n m ;所以当m=1;n=-1时;点A 、B 关于x 轴对称.(2)由题意得;⎩⎨⎧=--=+212m n n m ;解得⎩⎨⎧=-=11n m ;所以当m=-1;n=1时;点A 、B 关于y 轴对称.25.解:(1)略(2)由A (0;4);B (2;4)可知;AB ⊥x 轴;AB =2;过C 作CD ⊥AB 垂足为D ;则CD =1+4=5;∴5522121=⨯⨯=⋅=∆CD AB S ABC . (3)∵111C B A ∆与△ABC 关于x 轴对称∴1A (0;-4);1B (2;-4);1C (3;1).图(1) 图(2) 图(3)。
轴对称总复习练习题答案
轴对称总复习练习题答案一、选择题1. 下列图形中,哪一个是轴对称图形?A. 三角形B. 正方形C. 圆形D. 五边形答案:C2. 如果一个图形关于某条直线对称,那么这条直线被称为该图形的什么?A. 对称轴B. 对称线C. 反射线D. 镜像线答案:A3. 一个轴对称图形的对称轴有几条?A. 0条B. 1条C. 2条D. 无数条答案:D二、填空题4. 轴对称图形的特点是图形的任意一点与它的对称点关于对称轴________。
答案:成直线5. 在平面直角坐标系中,如果一个图形关于y轴对称,那么它的对称点的坐标变化规律是________。
答案:横坐标互为相反数,纵坐标相同三、判断题6. 所有矩形都是轴对称图形。
()答案:错误7. 所有抛物线都是轴对称图形。
()答案:正确四、简答题8. 解释什么是轴对称图形,并给出一个生活中的例子。
答案:轴对称图形是指一个图形关于某条直线(称为对称轴)对称,如果将图形沿着这条直线折叠,两侧的形状能够完全重合。
生活中的例子包括蝴蝶的翅膀,它们是关于蝴蝶身体的中轴线对称的。
五、计算题9. 已知点A(-3, 2),求点A关于x轴的对称点B的坐标。
答案:点B的坐标为(-3, -2)10. 若一个图形关于直线x=1对称,求点(4, 3)关于这条直线的对称点的坐标。
答案:对称点的坐标为(-2, 3)六、论述题11. 论述轴对称图形在艺术设计中的应用,并给出一个具体的例子。
答案:轴对称图形在艺术设计中应用广泛,因为它能够创造出平衡和谐的视觉效果。
例如,传统的中国剪纸艺术就大量使用轴对称图形,通过对称的图案设计,使得作品呈现出一种对称美。
在设计中,一个简单的蝴蝶图案,通过轴对称的设计,可以形成一种对称且富有节奏感的视觉效果。
七、综合题12. 给定一个由点(1, 1), (2, 4), (5, 3), (3, 2)组成的四边形,判断这个四边形是否为轴对称图形,并说明理由。
答案:这个四边形不是轴对称图形。
第12章 轴对称期末复习卷(含答案)
第2题 第4题 第5题 第9题 第十二章 轴对称期末复习卷班级 姓名 座号 成绩题号 一1 二2 三3 四4 五5 六6 七7 八8 得分的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
一、选择题(每题5分,共25分)1.如图是用纸折叠成的图案,其中是轴对称图形的有( )2.如图是一个风筝的图案,它是轴对称图形,量得30B ∠=,则E ∠的大小为( )3.等腰三角形中的一个角等于100,则另两个内角的度数分别为( )4.如图所示,15A ∠=,AB BC CD DE EF ====,则DEF ∠等于( )5.如图,l 是四边形ABCD 的对称轴,如果AD BC ∥,则有以下结论:①AB CD ∥,②AB BC =,③AB BC ⊥,④AO CO =.那么其中正确的结论序号是( )二、填空题(每题5分,共25分)6.已知直角三角形中30角所对的直角边为2cm ,则斜边的长为 .7.已知点(,2)A a -和(3,)B b ,若A 和点B 关于y 轴对称,则ab = .8.等边ABC ∆的两条角平分线BD 和CE 交于点I ,则BIC ∠等于 .A.1个B.2个C.3个D.4个A.30B.35C.40D.45 A.40,40 B.50,50 C.100,20 D.40,40或100,20A.90B.75C.70D.60A.①③④B.①②④C.②③④D.①②③9.如图所示,有一块三角形田地10==,作AB的垂直平分线ED交AC于D,交AB于AB AC m∆的周长为17m,则BC的长为 .E,量得BDC10.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线).继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,如果对折n次,可以得到条折痕.第一次对折第二次对折第三次对折三、解答题(共50分)11.(10分)如图,EFGH 为矩形台球桌面,现有一白球A 和一彩球B .应怎样击打白球A ,才能使白球A 碰撞台边EF ,反弹后能击中彩球B ?12.(12分)已知:如图AD AB =,ADC ABC ∠=∠,求证:12∠=∠.13.(12分)在ABC ∆中,90C ∠=,DE 垂直平分斜边AB ,分别交AB 、BC 于D 、E ,若30CAE B ∠=∠+,求AEB ∠.14.(16分)如图,ABC ∆是等边三角形,B ∠、C ∠的平分线相交于点O ,OM ∥AC ,ON ∥AB ,分别交BC 于点M 、N ,求证:BN MN MC ==.第2题第4题第5题第9题参考答案一、选择题(每题5分,共25分)1.如图是用纸折叠成的图案,其中是轴对称图形的有( C )2.(07武汉)如图是一个风筝的图案,它是轴对称图形,量得30B∠=,则E∠的大小为( A )3.等腰三角形中的一个角等于100,则另两个内角的度数分别为( A )4.如图所示,15A∠=,AB BC CD DE EF====,则DEF∠等于( D )5.如图,l是四边形ABCD的对称轴,如果AD BC∥,则有以下结论:①AB CD∥,②AB BC=,③AB BC⊥,④AO CO=.那么其中正确的结论序号是( B )二、填空题(每题5分,共25分)6.已知直角三角形中30角所对的直角边为2cm,则斜边的长为4cm.7.已知点(,2)A a-和(3,)B b,若A和点B关于y轴对称,则ab=6.8.等边ABC∆的两条角平分线BD和CE交于点I,则BIC∠等于120.9.如图所示,有一块三角形田地10AB AC m==,作AB的垂直平分线ED交AC于D,交AB于E,量得BDC∆的周长为17m,则BC的长为7m.10.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线).继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,如果对折n次,可以得到21n-条折痕.A.1个B.2个C.3个D.4个A.30B.35C.40D.45A.40,40B.50,50C.100,20D.40,40或100,20A.90B.75C.70D.60A.①③④B.①②④C.②③④D.①②③第一次对折第二次对折第三次对折三、解答题(共50分)11.(10分)如图,EFGH 为矩形台球桌面,现有一白球A 和一彩球B .应怎样击打白球A ,才能使白球A 碰撞台边EF ,反弹后能击中彩球B ?解:如图,作点A 关于EF 的对称点A ',连接AB ', 交EF 于点C ,将白球A 打到台边EF 的点C 处,反弹后能击中彩球B .12.(12分)已知:如图AD AB =,ADC ABC ∠=∠,求证:12∠=∠. 证明:连接BD∵AD AB =∴ABD ADB ∠=∠ 又∵ADC ABC ∠=∠ ∴BDC DBC ∠=∠ ∴DC BC =∴在ACD ∆与ACB ∆中 AD ABDC BC AC AC=⎧⎪=⎨=⎪⎩ ∴ACD ∆≌ACB ∆ ∴12∠=∠ 13.(12分)在ABC ∆中,90C ∠=,DE 垂直平分斜边AB ,分别交AB 、BC 于D 、E ,若30CAE B ∠=∠+,求AEB ∠. 解:∵DE 垂直平分AB ∴EA EB = ∴EAB B ∠=∠ ∵90C ∠=∴90CAE EAB B ∠+∠+∠= ∴3090B B B ∠++∠+∠= ∴20B ∠=∴1802140AEB B ∠=-∠=14.(16分)如图,ABC ∆是等边三角形,B ∠、C ∠的平分线相交于点O ,OM ∥AC ,ON ∥AB ,分别交BC 于点M 、N ,求证:BN MN MC ==. 证明:∵ABC ∆是等边三角形 ∴60ABC ACB ∠=∠=∵OM ∥AC ,ON ∥AB∴60ONM ABC ∠=∠=60OMN ACB ∠=∠=∴60MON ∠=∴OMN ∆是等边三角形∴ON OM MN ==又∵ON ∥ABBO 平分ABC ∠ ∴23∠=∠,13∠=∠ ∴12∠=∠ ∴=ON BN 同理OM MC =∴BN MN MC ==可以编辑的试卷(可以删除)。
轴对称单元测试题(含答案--高质量)
1第十二章 轴对称提升训练一、选择题(每小题3%,共30分)1.下面四组图形中,右边与左边成轴对称的是( )A.B. C. D.2.下列图形中一定有4条对称轴的是( )A.长方形B.正方形C.等边三角形D.等腰直角三角形3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有( )A.5个B.3个C.4个D.6个 4.如图1:射线BA,CA 相交于点A,连接BC,已知AB=AC,∠B=400, 则∠CAE 的度数为( )A.400B.600C.800D.10005.等腰三角形是轴对称图形,它的对称轴有( )A.1条B.2条C.3条D.1条或3条 图1 6.如图2:在△ABC 中,DE 垂直平分AB,AE 平分∠BAC,若∠C=900,则∠B 的度数为( )A.30B.200C.400D.250图27.底和腰不等的等腰三角形中,它的角平分线、中线、高共有线段( ) A.9条 B.6条 C.7条 D.3条8.如图3:在△ABC 中,AB=AC,∠A=36,BD,CE 分别平分∠ABC 和∠ACB,相交于点F,则图中等腰三角形共有()A.7个B.8个C.6个D.9个图3 9.如图4:如果直线m 是多边形ABCDE 的对称轴,其中∠A=1300, ∠B=1000,则∠BCD 的度数为( ) A.700B.800C.600D.90010.等腰三角形一腰上的高与另一腰的夹角为300,则顶角的度数为( ) 图4 A.600B.1200C.600或1500D.600或1200二、填空题(每小题3%,共15%)11.从镜子中看到背后墙上电子钟的示意数为 ,这时的实际时间为______. 12.在△ABC 中,AB=AC,AD ⊥BC 于D,由以上两个条件 可得_________________.(写出一个结论即可)13.如图5:在△ABC 中, ∠A=900,BD 平分∠ABC,交AC于点D,已知AD=4.3㎝,则D 到BC 边的距离为__________. 图5 14.如果等腰三角形的三边长均为整数且周长为10,则它的三边长分别为______________.15.如图:有一张长方形纸片ABCD,AB=3,AD=1.8,将纸片折叠,使AD 边落在AB 边上,折痕为AE,再将△AED 以DE 为折痕向右折叠,AE 与BC 相交于点F,则CF 的长为__________.三、解答题(每小题5%,共30分)16.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.17.如图: △ABC 中,∠C=900.(1)请你以AC 所在的直线为对称轴,作出△ABC 的轴对称图形;(2)作出后所得的三角形与△ABC 是否组成一个等腰三角形?为什么?18.等腰△ABC 的腰AB=10㎝,AB 的垂直平分线交另一腰AC 于点D , △BCD 的周长为18㎝,求底边BC 的长.BCAE BC A ED ABCD E F A BCDEm ABCD A B CDA B C A D B C A D B C E AC F ED B219.如图:已知在△ABC 中,AB=AC,AE ∥BC,试说明AE 平分∠DAC.20.如图:一艘轮船在上午8时从A 处出发,以20海里/时的速度由南向北航行,在A 处测得小岛P 在北偏西24度,9点45分到达B 处,这时测得小岛P 在北偏西48度,求B 处到小岛P 的距离.21.如图:在△ABC 中,AB=AC,BF=DF,DC=DE,∠A=300,求∠EDF 的度数.四、解答题(22,23,24小题每小题6%,25题7%,共25%)22.如图:在△ABC 中,AB=AC,D 为BC 中点,DE ⊥AB 于E,DF ⊥AC 于F,则有DE=DF,你能说说其中的道理吗?23.如图: △ABC 中,若AD 平分∠BAC,CE ∥AD,CE 交BA 的延长线于E,问△ACE 是什么三角形?为什么?24.如图:在等边△ABC 中,BD 平分∠ABC,延长BC 到F,使CD=CF,连结DF. (1) 小刚说:BD=DF,他说得对吗?为什么?(2)小红说:把“BD 平分∠ABC”的条件改一改,也能得到同样的结论,你认为可以如何改呢?请说明你的理由.25.如图:在△ABC 中,AB=AC,P 为BC 边上任意一点,PF ⊥AB 于F,PE ⊥AC 于E,若AC 边上的高BD=a.(1)试说明PE +PF=a;(2)若点P 在BC 的延长线上,其它条件不变,上述结论还成立吗?如果成立请说明理由;如果不成立,请重新给出一个关于PE,PF,a 的关系式,不需要说明理由.A B CDE AB P A B CD E FA BD CE AB C D FA B C D F E A BCPFED。
《轴对称》测试题包含答案
《轴对称》测试题包含答案轴对称是指一个物体或图形相对于某个中心轴线对称。
在数学中,轴对称也被称为镜像对称。
轴对称在几何学、物理学和艺术中都有广泛的应用。
下面是一些轴对称的测试题及其答案,帮助你更好地理解和掌握轴对称的概念。
1.画出以下几何图形的轴对称轴线: a) 正方形 b) 长方形 c) 圆形 d) 三角形答案: a) 从正方形的中心点连接任意相对的两个顶点,得到的线段就是正方形的轴对称轴线。
b) 从长方形的中心点连接任意相对的两个顶点,得到的线段就是长方形的轴对称轴线。
c) 圆形的轴对称轴线可以是任意一条穿过圆心的直径线。
d) 三角形的轴对称轴线是连接每个顶点与对边中点的线段。
2.判断以下物体是否具有轴对称: a) 人体 b) 椅子 c) 钻石 d) 马答案:a) 人体不具有轴对称,因为我们的身体左右两侧并不完全对称。
b) 椅子具有轴对称,因为椅子的左右两侧是镜像对称的。
c) 钻石具有轴对称,因为它的左右两侧是完全对称的。
d) 马不具有轴对称,因为马的左右两侧并不完全对称。
3.在平面直角坐标系中,点A(2, 3)关于y轴的轴对称点是什么?答案:点A关于y轴的轴对称点是(-2, 3)。
4.在平面直角坐标系中,抛物线y = x^2的图像关于x轴和y轴的轴对称图形分别是什么?答案:抛物线y = x^2关于x轴的轴对称图形是y = -x^2,关于y轴的轴对称图形是y = x^2。
5.用轴对称的方法,画出一个完整的五角星。
答案:首先,画一个正五边形,然后将正五边形的中心点与每个顶点连接,得到五个三角形。
接下来,将每个三角形沿着与顶点相对的边的中点进行翻转,得到五角星的完整图形。
这些测试题希望能够帮助你理解和掌握轴对称的概念。
通过练习和实践,你可以更好地应用轴对称的知识,并在几何学、物理学和艺术中发挥出色。
记得多多练习,加深对轴对称的理解和应用。
生活中的轴对称试题总集含答案
第十二章 轴对称 全章测试一、选择题(每小题2分,共20分) 1、下列说法正确的是( ).A .轴对称涉及两个图形,轴对称图形涉及一个图形B .如果两条线段互相垂直平分,那么这两条线段互为对称轴C .所有直角三角形都不是轴对称图形D .有两个内角相等的三角形不是轴对称图形2、点M (1,2)关于x 轴对称的点的坐标为( ).A .(-1,-2)B .(-1,2)C .(1,-2)D .(2,-1) 3、下列图形中对称轴最多的是( ) .A .等腰三角形B .正方形C .圆D .线段4、已知直角三角形中30°角所对的直角边为2cm ,则斜边的长为( ). A .2cm B .4cm C .6cm D .8cm5、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ).A .11cmB .7.5cmC .11cm 或7.5cmD .以上都不对 6、如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC 的周长为( )厘米.A .16B .18C .26D .28 7、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ).A .1个B .2个C .3个D .4个8、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ). A .75°或15° B .75° C .15° D .75°和30° 9、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,AlODCBA我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是().A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行10、等腰三角形ABC在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标,能确定的是 ( ) .A.横坐标 B.纵坐标 C.横坐标及纵坐标 D.横坐标或纵坐标二、填空题(每小题2分,共20分)11、设A、B两点关于直线MN对称,则______垂直平分________.12、已知点P在线段AB的垂直平分线上,PA=6,则PB= .13、等腰三角形一个底角是30°,则它的顶角是__________度.14、等腰三角形的两边的边长分别为20cm和9cm,则第三边的长是__________cm.15、等腰三角形的一内角等于50°,则其它两个内角各为.16、如图:点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P 1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为.17、如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为122cm,则图中阴影部分的面积为2cm.18、如图所示,两个三角形关于某条直线对称,则 = .19.已知A(-1,-2)和B(1,3),将点A向______平移________ 个单位长度后得到的点与点B关于y轴对称.20.坐标平面内,点A和B关于x轴对称,若点A到x轴的距离是3cm,则点B到x•ADEF BC BCAD ECBA OA B CDE轴的距离是_________cm . 三、解答题(每小题6分,共60分) 21、已知:如图,已知△ABC ,的图形(1)分别画出与△ABC 关于x 轴、y 轴对称△A 1B 1C 1 和△A 2B 2C 2 ;(2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标; (3)求△ABC 的面积.22、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.23、如图:在△ABC 中,∠B=90°,AB=BD ,AD=CD ,求∠CAD 的度数.24、已知:E 是∠AOB的平分线上一点,EC⊥OA ,ED⊥OB ,垂足分别为C 、D .求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.25、已知:如图△ABC 中,AB=AC ,∠C=30°,AB⊥AD,AD=4cm ,求BC 的长. 26、如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求证:BF=2CF .27、已知:△ABC 中,∠B、∠C 的角平分线相交于点D ,过D作EF//BC 交AB 于点E ,交AC 于点F .求证:BE+CF=EF .28、如图,△ABD、△AEC都是等边三角形,求证:BE=DC .29、如图所示,在等边三角形ABC中,∠B、∠C的平分线交于点O,OB和OC的垂直平分线交BC于E、F,试用你所学的知识说明BE=EF=FC的道理.30.已知:如图△ABC中,AB=AC,AD和BE是高,它们交于点H,且AE=BE,求证:AH=2BD.答案:一、选择题:1 2 3 4 5 6 7 8 9 10A C CBC B C A B A二、填空题:11.MN,AB 12.6 13.120 14.20 15.065,06580,050或0 16.15 17.6 18.030 19.上,5 20.3三、解答题略第七章:生活中的轴对称一、中考要求:1.在丰富的现实情境中,经历观察、折叠、剪纸,图形欣赏与设计等数学活动过程,进一步发展空间观念.2.通过丰富的生活实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质.3.探索并了解基本图形(线段、角、等腰三角形)的轴对称性及其相关性质.4.能够按要求作出简单平面图形经过轴对称后的图形,探索简单图形之间的轴对称关系,并能指出对称轴.5.欣赏现实中的轴对称图形,能利用轴对称进行一些图案设计,体验轴对称在现实生活中的广泛应用和丰富的文化价值.6.结合现实生活中的典型实例了解并欣赏物体的镜面对称.二、中考卷研究(一)中考对知识点的考查:2004、2005年部分省市课标中考涉及的知识点如下表:序号所考知识点比率1 轴对称图形2~6%2 轴对称的应用2~5%(二)中考热点:将图形的折叠问题,照镜问题转化为轴对称图形问题及将轴对称问题运用于综合题中是2006年的热点题型之一。
八年级数学上册 第12章《轴对称》同步学习检测(12.1-12.2)(后附完整答案)
新人教八年级(上)第12章《轴对称》同步学习检测(§12.1~12.2)(时间45分钟 满分100分)班级 学号 姓名 得分一、填空题(每题3分,共30分)1.如图所示的图形是___图形,其对称轴共有___条.2.简体汉字中“田、日、中”,都具有对称美的特点,请你再写出具有这们特征的三个汉字为_____.3.正方形是轴对称图形,它的对称轴有_______条.4.如果一个图形沿一条直线折叠,直线两旁的部分能够________,这个图形就叫做______________,这条直线就是它的________,这时,我们也说这个图形关于这条直线 对称.5.小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是 .6.点A (-2,1)关于y 轴的对称点的坐标是____,点x 的对称点的坐标是____.7.如图,△COB 与△AOB 关于x 轴对称,点A 的坐标为(则点C 的坐标为____.8.如图所示,写出长方形ABCD 三个顶点的坐标:A B :___,C:____.9.如图,P 是正△ABC 内的一点,若将△P AB 绕点A 到△P ′AC ,则∠P AP ′的度数为________.10.如图,阴影部分组成的图案既是关于x 轴成轴对称的图形又是关于坐标原点O 成中心对称的图形.若点A 的坐标是(1,3),则点M 和点N 的坐标分别是________.二、选择题(每题3分,共24分)11.下列图形:①线段;②角;③平行四边形;④三角形;⑤圆,其中一定是轴对称图形的共有( )A .2个B .3个C .4个D .5个(第5题)(第1题)12.下列图形中轴对称图形有()A.4个B.3个C.2个D.1个13.如图所示,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超,使超市到三个小区的距离相等,则超市应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在AC、BC两边垂直平分线的交点处D.在A、B两内角平分线的交点处14.在刚刚买来的一件衣服上,有一个标签,上面有如下几个图形,如图所示分别表示这件衣服可干洗,不可漂白,应低温熨烫或悬挂凉干,它们其中是轴对称图形的是()15.如图,在四个图形中,对称轴条数最多的一个图形是()A.B.C.D.16.在直角坐标系中,点P(2,1)关于x轴对称点的坐标是()A.(2,1)B.(-2,1)C.(2,-1)D(-2,-1)17.将一圆形纸片对折后再对折,得到如图所示的图形,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()18.王明是班上公认的“小马虎”在做作业时,将点A的纵横坐标次序颠倒,写成A(a,b),小华也不细心,将点B的坐标写成关于y轴的对称点的坐标,写成B(-b,-a),则A、B两点原来的位置关系是()A.关于y轴对称B.关于x轴对称C.A和B重合D.以上都不对三、解答题(共46分)19.(7分)如图所示,下面两个图形关于某条直线对称,画出其对称轴,求出zyx,,的值.20.(7分)如图是由两个等边三角形组成的图形,它是轴对称图形吗?如果不是,请移动其中的一个三角形,使它与另一个三角形一起组成轴对称图形,有几种移法?(至少画四种,相同类型的算一种).21.(8分)你能将方格中的图案做如下变换吗?相信你一定能行的!(1)关于x轴对称;(2)关于y轴对称22.(8分)AC、AB是两条笔直的交叉公路,M、N是两个实习点的同学参加劳动,现欲建一个茶水供应中,使得此茶水供应站到公路两边的距离相等,且离M、N两个实习点的距离也相等,试问:此茶水供应站应建在何处?23.(8分)已知A(2m+n,2)、B(1,n-m),当m,n分别为何值时(1)A、B关于x轴对称;(2)A、B关于y轴对称.24.(8分)开放与探究(1)观察图中①-④中阴影部分所构成的图案,请写出这四个图案都具有的两个特征;(2)借助图中⑤的网格,请你设计一个新图案,使该图案同时具有你解答(1)中所写的两个共同的特征.参考答案CBA(第13题)(第17题)(§11.1~11.2)一、填空题1.80,13 2.是 不是 3.全等三角形,≌ 4.AC =BD ,AB =BA ,∠C =∠D ,∠CAB =∠DBA ,∠ABC =∠BAD 5.60度 6.90 7.ADF BCE △≌△,得F E ∠=∠. 8.∠AOC =∠BOD ,OC =OD ,△BOD 9.1,有两边及其夹角对应相等的两个三角形全等10.此工具是根据三角形全等制作而成的.由O 是AA ',BB '的中点,可得AO A O '=,BO B O '=,又由于AOB ∠与A OB ''∠是对顶角,可知AOB A OB ''∠=∠,于是根据“SAS ”有AOB A OB ''△≌△,从而A B AB ''=,只要量出A B ''的长度,就可以知道工作的内径AB 是否符合标准 二、选择题11.A 12.D 13.C 14.A 15.B 16.D 17.A 18.C 三、解答题19.(1)和(10),(2)和(12),(4)和(8),(5)和(9)是全等图形 20.略 21.略 22.由△ABF ≌△,DCE 可得到BAF CDE AFB DEC ABF DCE AB DC BF CE AF DE ∠=∠∠=∠∠=∠===,,,,,;A F E D A CB D B FC =∥,,∥,△AEC ≌△DFB 等 23.略 24.(1)证明Rt △CDE ≌Rt △AFB ;(2)DF ∥BE 且DF=BE(§11.3)一、填空题1.这个角的平分线上 2.1.5cm 3.30° 4.8 5.MN ⊥PQ 6.三条角平分线 7.6cm 8.到角的两边的距离相等 9.(1)=(2)= 10.135 二、选择题11. D 12. B 13.D 14.D 15.B 16.C 17.D 18.A 三、解答题19.50° 20.画两个角的角平分线的交点P 21.略 22.提示:过点D 做DM ⊥BC 23.①略;②锐角三角形 24.提示:过P 作三边AB 、AC 、BC 的垂线段PD 、PE 、PF(§12.1~12.2)一、填空题1.轴对称图形,5 2.答案不唯一如:“美、善、口、工、士”等 3.4 4.互相重合,轴对称图形,对称轴,成轴 5.1021∶ 6.(2,1),(-2,-1) 7.(2,-3) 8.(-2,1.5)、(-2,-1.5)、(2,-1.5) 9.60° 10.)(),,(3-1.3-1-N M二、选择题11.B12.B13.C14.B15.B16.C17.C 18.B 三、解答题19.对称轴为MN,2,6,70==︒=zyx20.不是,答案不唯一21.略22.图略,画法:(1)画出∠CAB的角平分线AE;(2)连结MN,作MN的垂直平分线与AE交于P;(3)由点P即为所求23.(1)m=1,n=-1,点A、B关于x轴对称;(2)m=-1,n=1,点A、B关于y轴对称.24.答案不唯一:如(1)都是轴对称图形;阴影部分面积等于4个小正方形面积之和;(2)答案不唯一.(§12.3)一、填空题1.35 2.15 3.80°4.36°5.②6.7或11 7.36 8.线段中垂线9.)0,41(,5 10.5或4二、选择题11.B 12.D 13.D 14.D 15.B 16.D 17.D 18.C三、解答题19.⊿ABC,⊿ADB,⊿ADC ,∠B=36°20.EF=8㎝21.(1)利用角平分线性质得PC=PD,所以∠PCD=∠PDC (2)成立22.略23.略24.15°(§13.1~13.2)一、填空题1.14.14 0.1414 2.< 3.4 4.-3,13,3 5.±5 6.-1.5 7.3m8.-6,-0.008 9.4 10.2,3或-3二、选择题11.C 12.D 13.B 14.A 15.D 16.C 17.C 18.C 三、解答题19.⑴15 ⑵-0.02 ⑶72±⑷-0.1 ⑸0.7 ⑹9 20.⑴0.01 0.1 1 10 100;⑵被开方数小数点向左(或右)移动三位,它的立方根的小数点向左(或右)移动一位;⑶①14.42 0.144221.⑴-2 ⑵0.4 ⑶25-⑷9 22.(1)x=-3;(2)x=1 2324.±10(§13.3)一、填空题1.5,54 3.34或344.22-+5.一一对应6.0 、1、-17.<8.9.3+310.6二、选择题11.C 12.D 13.A 14.B 15.C 16.D 17.C 18.B 三、解答题19.整数{30-;分数:220.3 1.7327⎧⎫-⎨⎬⎩⎭,,;正分22300100017⎫⎬⎭,,20.C,(D21.(1)-(2)122.(1)65x=±;(2)0x= 23.325-24.2期中复习一、填空题1.23±,0.6 2.0和1,1±和0 3.2 4.30度5.12x6.Z 7.3 8.1.4π-9.1 10.(2,0)二、选择题11.A 12.D 13.D 14.B 15.B 16.B 三、解答题17.略18.(1(2)5219.(1)2;(2)2-20.1.58 21.450米22.36度,72度,72度23.略24.略25.略26.略27.28.(1)可行;(2)可行;(3)构造三角形全等,可以.期中测试一、填空题1.千分位2.0或6-3.3 415.42,3±-6.15 7.90度8.AB、BC 9.B E∠=∠(答案不唯一)10.65二、选择题11.D 12.D 13.D 14.B 15.C 16.B 三、解答题17.(1)1-(2118.略19.能20.(1)略;(2)DE=DC 21.0.8cm 22.略23.32cm24.略25.(1)111n n-+;(2)①20072008,②1nn+;(3)1003401626.略27.(1)211n+=+;(2)10OA =;(3)554 28.(1)45度;(2)会;(3)2BAC DAE ∠=∠.(§14.1~14.2)一、填空题1.3y x =- 2.25x ≥3.2 4.1,2- 5.(3,0)(0,1) 6.y=30x ,30;x 、y 7.y=1.8x-6 8.2x ≥9.S=3n -3 10.图象法;二、选择题11.C 12.C 13.D 14.C 15.C 16.D 17.C 18.C 三、解答题19.y= —2x+35(0<x <9.5) 20.C 4H 10 m=2n+2 21.(1)距离;时间,900m (2)20分,45分;(3)在商场;(4)45米/分,60米/分 22.(1)①0.2②0.1t-0.1;(2)图象略;(3)当0<t<3时,y=0.2,当4<t ≤5时,y=0.4(§14.3)一、填空题1.4x =- 2.22y x =-+,1<,1> 3.24y x =-+,243y x =- 4.(20),,(04), 5.(13)--,,1-,3-,221x y x y -=⎧⎨-=⎩,6.6 7.1x =-,1x <- 8.3- 9.平行,没有,无解10.103m <≤二、选择题11.C 12.A 13.D 14.A 15.A 16.A 17.B 18.C 三、解答题19.(1)当173x =时,0y =;(2)当5x =时,2y =-;(3)当7x =时,4y =20.(1)当95x =时,0y =;(2)当95x <时,0y <;(3)略 21.图略,解为523.2x y ⎧=⎪⎪⎨⎪=⎪⎩, 22.142.a b =⎧⎨=⎩,23.(1)每月行驶路程小于1500千米,租国营公司的车合算;(2)每月行驶路程等于1500千米,租两家车的费用相同;(3)由图象可知租个体车主的车合算 24.(1)41k -<<;(2)直线26x y -=与y 轴的交点为(03)-,,直线31x y +=与y 轴的交点为103⎛⎫ ⎪⎝⎭,,它们的交点为(41)-,,112043233S ⎛⎫=⨯⨯+=⎪⎝⎭△ (§15.1~15.2)一、填空题1.2009 2.2242a b ab -+、12a - 3.18 4.214a - 5.16610⨯ 6.()ab a b a a 2222+=+ 7.1 8.32231638a b a b -- 9.2、3、1 10.6 二、选择题11.D 12.A 13.B 14.C 15.B 16.C 17.D 18.D 三、解答题19.(1)9a 2—b 2;(2)1002001 20.10x 21.22427a b +,19 22.x =3 23.2ab ac bc c --+24.能,35551113243=;4441114256=;3331115125=.因为256243>>,所以111111256243125>>.所以444555333435>>.(§15.3)一、填空题1.67)(,m a a - 2.36n ,41052⨯ 3.xy x y 44323-+- 4.323b a 5.21n n +6.20085,a x 7.m =-3 8.1 9.92 10.1cm二、选择题11.C 12.A 13.C 14.D 15.C 16.A 17.C 18.D 三、解答题19.(1)24a b ;(2)22473ab b a a +- 20.x y -,1.5 21.(1)yx -221;(2)小亮不能报出一个整式 22.3222x x x ++ 23.±2x 2y 24.(1)9610,10;(2)181210,10;(3)不相等期末复习一、填空题1.2,2±- 2.(2,1) 3.2 4.对称5.无数,直径所在的直线 6.y=-3x7.±2 8.x >-2 9.60 10.4或-203 二、选择题11.D 12.C 13.D 14.B 15.B 16.A 三、解答题17.1 18.- 19.29 20.72-21.(1)2(4)(4)m m m +-;(2)()()()x y a b a b -+- 22.(1)52-;(2)-5 23.略 24.(1)3y x =-+;(2)6 25.(1) 1.832y x =+26.略 27.(1(21 28.略期末测试一、填空题1.(1,2) 2.3326,61x y x x -+- 3.23(2)x x y - 4.6- 5.12± 6.三 7.68.111n n n n n n ++=++ 9.1 10.11n x +-二、选择题11.D 12.C 13.D 14.D 15.A 16.C 三、解答题17.(1)3523-+a a (2)xy 20- (3)ab 18.(1))2(222b ab a a +-;(2)))()((22y x y x y x -++;(3)2)32(y x + 19.73-20.①23;②21 21.略 22.ab π 23.78 24.(1) 1.5 4.5y x =+;(2)21cm 25.略 26.略 27.(1)34k =;(2)9184s x =+(-8<x <0);(3)P (139,28-) 28.(1)l 1;(2)B 的速度快;(3)15分钟不能追上A ;(4)B 一定能追上A ;(5)B 能在A 逃入公海前追上。
八年级数学上册第12章轴对称单元综合测试题试题
第12章?轴对称?单元测试题一、选择题1. 等腰三角形的两条边长分别为2和5,那么它的周长为〔 〕A . 9B . 12C . 9或者12D . 52. 以下判断中错误的选项是......〔 〕 A .有两角和一边对应相等的两个三角形全等 B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等3. Rt 90ABC C BAC ∠∠在△中,=,的角平分线AD 交BC 于点D ,2CD =,那么点D 到AB 的间隔 是〔 〕A .1B .2C .3D .44.如图,在等边ABC △中,9AC =,点O 在AC 上,且3AO =,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60得到线段OD .要使点D 恰好落在BC 上,那么AP 的长是〔 〕A .4B .5C .6D .85. 如图,ABC △是等腰直角三角形,90ACB ∠=,AC BC =,假设CD AB ⊥,DE BC ⊥垂足分别是D E ,.那么图中全等的三角形一共有〔 〕A .2对B .3对C .4对D .5对6. 如图,12=∠∠,AC AD =,增加以下条件:①AB AE =;②BC ED =;③C D =∠∠;④B E =∠∠.其中能使ABC AED △≌△的条件有〔 〕A.4个 B.3个 C.2个 D.1个7. 小明将两个全等且有一个角为60的直角三角形拼成如下图的图形,其中两条较长直角边在同一直线上,那么图中等腰三角形的个数是〔 〕A.4 B.3 C.2 D.18. 如图,在△ABC 中,∠ACB=100°,AC=AE ,BC=BD ,那么∠DCE 的度数为〔 〕A .20°B .25°C .30°D .40°9. 如图,ABC △中,AB AC =,30A ∠=,DE 垂直平分AC ,那么BCD ∠的度数为〔 〕A.80B.75 C.65 D.45二、填空题10. 如图,ABE △和ACD △是ABC △分别沿着AB AC ,边翻折180形成的,假设150BAC ∠=,那么θ∠的度数是 .11. 如图,在等边ABC △中,D E ,分别是AB AC ,上的点,且AD CE =,那么BCD CBE ∠+∠= 度.12. 如图,在ABC △中,点D 是BC 上一点,80BAD ∠=°,AB AD DC ==,那么C ∠= 度.13. 等腰三角形的一个底角为030,那么顶角的度数是14. 在ABC △和111A B C △中,11AB A B =,1A A =∠∠,要使111ABC A B C △≌△,还需添加一个条件,这个条件可以是__________.15. 如图,在ABC △中,90C ∠=,AD 平分CAB ∠,8cm 5cm BC BD ==,,那么D 点到直线AB 的间隔 是 cm .16. 如图,在ABC △中,AB AC =,M ,N 分别是AB ,AC 的中点,D ,E 为BC 上的点,连结DN ,EM .假设13cm AB =,10cm BC =,5cm DE =,那么图中阴影局部的面积为 2cm .三、计算题17. 如图,在ABC △,AB AC =,50B ∠=.求A ∠的度数.四、证明题18. :如图,OP 是AOC ∠和BOD ∠的平分线,OA OC OB OD ==,.求证:AB CD =.19. 如图,在等腰三角形ABC 中,AB AC =,AD 是BC 边上的中线,ABC ∠的平分线BG ,交AD 于点E ,EF AB ⊥,垂足为F .求证:EF ED =.20. 如下图,在ABC △中,D E ,分别是AC 和AB 上的一点,BD 与CE 交于点O ,给出以下四个条件:①EBO DCO ∠=∠;②BEO CDO ∠=∠;③BE CD =;④OB OC =. 〔1〕上述四个条件中,哪两个条件可以断定ABC △是等腰三角形〔用序号写出所有的情形〕;〔2〕选择〔1〕小题中的一种情形,证明ABC △是等腰三角形.21. :如图,OA 平分BAC ∠,12 ∠∠.求证:ABC △是等腰三角形.五、开放题22. 〔8分〕如图,在△ABC 中,AB =AC ,D 是BC 边上的一点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,添加一个条件,使DE = DF , 并说明理由.解: 需添加条件是 .理由是:六、猜测、探究题23. 如图1,ABC △中,1AB BC ==,90ABC =∠,把一块含30角的直角三角板DEF的直角顶点D 放在AC 的中点上〔直角三角板的短直角边为DE ,长直角边为DF 〕,将直角三角板DEF 绕D 点按逆时针方向旋转.〔1〕在图1中,DE 交AB 于M ,DF 交BC 于N .①证明DM DN =;②在这一旋转过程中,直角三角板DEF 与ABC △的重叠局部为四边形DMBN ,请说明四边形DMBN 的面积是否发生变化?假设发生变化,请说明是如何变化的?假设不发生变化,求出其面积;〔2〕继续旋转至如图2的位置,延长AB 交DE 于M ,延长BC 交DF 于N ,DM DN =是否仍然成立?假设成立,请给出证明;假设不成立,请说明理由;〔3〕继续旋转至如图3的位置,延长FD 交BC 于N ,延长ED 交AB 于M ,DM DN =是否仍然成立?请写出结论,不用证明.24. 〔1〕ABC △中,90A ∠=,67.5B ∠=,请画一条直线,把这个三角形分割成两个等腰三角形.〔请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数〕〔2〕ABC △中,C ∠是其最小的内角,过顶点B 的一条直线把这个三角形分割成了两个等腰三角形,请探求ABC ∠与C ∠之间的关系.一、选择题19. 证明:AB AC =∵,AD 是BC 边上的中线,AD BC ∴⊥.BG ∵平分ABC ∠,EF AB ⊥,EF ED =∴.20. 〔1〕①③,①④,②③,②④〔2〕证明:略21. 证明:作OE AB ⊥于E ,OF AC ⊥于F又34=∠∠,〔注:与OA 平分BAC ∠等同,直用〕 OE OF ∴=.12=∠∠, OB OC ∴=. A C 1 2 O E F 5 6 3 4Rt Rt ()OBE OCF HL ∴△≌△.56∴=∠∠. 1526∴+=+∠∠∠∠,即ABC ACB =∠∠.AB AC ∴=.〔注:此步可不写.〕ABC ∴△是等腰三角形.五、开放题23. 〔1〕①证明:连结DB .在Rt ABC △中,AB BC =,AD DC =.DB DC AD ∴==,90BDC =∠.〔1分〕 方法一:45ABD C ∴==∠∠.90MDB BDN CDN BDN +=+=∠∠∠∠,MDB NDC ∴=∠∠.BMD CND ∴△≌△. DM DN ∴=.〔3分〕方法二:45A DBN ∴==∠∠.90ADM MDB BDN MDB +=+=∠∠∠∠. ADM BDN ∴=∠∠. ADM BDN ∴△≌△.DM DN ∴=.〔3分〕 ②四边形DMBN 的面积不发生变化; 〔4分〕由①知:BMD CND △≌△,BMD CND S S ∴=△△.1124DBN DMB DBN DNC DBC ABC DMBN S S S S S S S ∴=+=+===△△△△△△四边形.〔6分〕24. 解:〔1〕如图〔一共有2种不同的分割法,每种1分,一共2分〕第二种情况,如图3,当BD BC =时,BDC x ∠=,18090ADB x ∠=->,此时只能有AD BD =,从而12A ABD C C∠=∠=∠<∠,这与题设C ∠是最小角矛盾. ∴当C ∠是底角时,BD BC =不成立.9分励志赠言经典语录精选句;挥动**,放飞梦想。
八年级(初二)上册数学第十二章轴对称测试题(附答案)
第十二章 轴对称一、填空题(每小题2分,共20分)1、 等腰三角形是 对称图形,它至少有 条对称轴.2、等腰三角形的顶角与底角的度数之比为4:1,则它的各内角度数为 _______________ .3、已知△ABC 是轴对称图形.且三条高的交点恰好是C 点,则△ABC 的形状是 ___________.4、直线y=kx+4与坐标轴围成的三角形是等腰三角形,则k=5、已知点P(一3,2),点P 关于X 轴的对称点坐标为 ____6、Rt △ABC 中,∠ACB=90°,CD 是高,∠A=30°,BD=5cm ,则AB=7、观察上图中的图片,请说出图中小亮衣服上的数字是:8、如果等腰三角形一腰上的高与腰的夹角为30°,则该三角形的顶角的度数为 9、已知点A(一2,4),B(2,4),C(1,2),D(-1,2),E(一3,1),F(3,1)是平面坐标系内的6个点,选择其中三个点连成一个三角形,剩下三个点连成另一个三角形,若这两个三角形关于y 轴对称,就称为一组对称三角形,那么,坐标系中可找出 ____________组对称三角形.10、小强拿了一张正方形的纸如图(1),沿虚线对折一次得图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是 二、选择题(每小题3分,共18分)第6B ADC12、下列命题中,不正确的是( )(A)关于直线对称的两个三角形一定全等.(B)两个大小一样的圆形纸片随意平放在水平桌面上构成轴对称图形. (C)若两图形关于直线对称,则对称轴是对应点所连线段的垂直平分线. (D)等腰三角形一边上的高、中线及这边对角平分线重台.13、将长方形ABCD 沿折痕EF 折叠,使CD 落在GH 的位置,若∠BGH=55°,则∠HEF=( ) (A)55° (B) 65°(C)72.5 (D)75° 12、等腰三角形的一个内角是50。
第12章 轴对称单元水平测试题(含答案).doc
第12章轴对称单元水平测试题一.选择题(每小题3分,共30分)1.下列说法中,正确的是()A、有一边相等的两个等腰三角形全等B、有一边相等的两个等腰直角三角形全等C、有一边相等的两个直角三角形全等D、有一边相等的两个等边三角形全等2、如果一个等腰三角形的周长为15cm,一边长为3cm,那么腰长为()A、3cmB、6cmC、5cmD、3cm或6cm3、若三角形中最大内角是60°,则这个三角形是()A、不等边三角形B、等腰三角形C、等边三角形D、不能确定4、如果三角形中两条边的垂直平分线的交点在第三条边上,那么这个三角形是()A、锐角三角形B、钝角三角形C、直角三角形D、等边三角形5、下列说法中,正确的是()A、两个关于某直线对称的图形是全等图形B、两个图形全等,它们一定关于某直线对称C、两个全等三角形对应点连线的垂直平分线就是它们的对称轴D、两个三角形关于某直线对称,对称点一定在直线两旁6、若△ABC的三边满足a2+b2+c2=ab+bc+ca,则△ABC的形状是()A、直角三角形B、等腰直角三角形C、锐角三角形D、等边三角形7、如图,AB=AC,D为BC中点,图中全等三角形()A.1对B.2对C.3对D.4对8、已知△ABC中,∠A=∠B= 3∠C,则∠C的大小为()9、若a、b、c为三角形的三条边长,则-(a+b+c)+|a-b-c|-|b-c-a|+|c-b-a|= ()(A)2(a-b-c) (B)2(b-a-c)(C)2(c-a-b) (D)2(a+b+c)10、ABCD的边长AB=5cm,那么它的两条对角线AC、BD的长可能是()A.4cm和6cm B.3cm和7cmC.4cm和8cm D.2cm和12cm二.填空题(每小题3分,共30分)11、△ABC的一边为5.另外两边的长是方程2x2-12x+m=0的两根,那么,m的取值范围是______.12、一个三角形的周长为偶数,其中两条边的长分别是4和1997,则满足条件的三角形的个数是_______.13、等腰三角形底边长为7cm,它的周长不大于25cm,则它的腰长x的取值范围是______.14、如果三角形三个外角度数的比为3∶4∶5,那么三个内角的度数为______。
八年级数学上册第12章《轴对称图形》单元综合检测试题(含解析)(新版)新人教版
第12章《轴对称图形》一、选择题1.下列标志中,可以看作是轴对称图形的是( )2.正方形对称轴的条数是( )A.1B.1C.1D.13.点P (2,-5)关于x 轴对称的点的坐标为A.(-2, 5)B.(2,5)C.(-2,-5)D.(2,-5)4.如图,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段PA =5,则线段PB 的长度为( ) A.6 B.5 C.4 D.35.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是( )6.如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,∠B =50°,∠A =26°,将△ABC 沿DE 折叠,点A 的对应点是点A ′,则∠AEA ′的度数是( ) A.145° B.152°C.158°D.160°7.在等腰△ABC 中,AB =AC ,其周长为20cm ,则AB 边的取值范围是( )A.1cm <AB <4cmB.5cm <AB <10cmC.4cm <AB <8cmD.4cm <AB <10cm8.从一个等腰三角形纸片的底角顶点出发,能将其剪成两个等腰三角形纸片,则原等腰三角形纸片的底角等于( )DC B APD CBA ABCDA.72°B.5407⎛⎫ ⎪⎝⎭C.144°D.72°,或5407⎛⎫ ⎪⎝⎭9.如图,点P 是∠AOB 外的一点,点M ,N 分别是∠AOB 两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上.若PM =2.5cm ,PN=3cm ,MN =4cm ,则线段QR 的长为( )cm A.4.5 B.5.5 C.6.5 D.710.如图所示,已知△ABC 和△ADE 均是等边三角形,点B 、C 、E 在同一条直线上,AE 与BD 交于点O ,AE 与CD 交于点G ,AG 与BD 交于点F ,连结OC 、FG ,则下列结论:①AE =BD ;②AG =BF ;③FG ∥BE ;④∠BOC =∠EOC ,其中正确的结论个数( )A.1个B.2个C.3个D.4个二、填空题11.如图,在Rt △ABC 中,∠ABC =90°,AC =10cm ,点D 为AC 的中点,则BD =___cm.12.如图,∠A =30°,∠C ′=60°,△ABC 与△A ′B ′C ′关于直线l 对称,则∠B =___.13.已知OC 是∠AOB 的平分线,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为点D 、E ,PD =10,则PE 的长度为___.14.如图,在Rt △ABC 中,∠C =90°,D 为AB 的中点,DE ⊥AC 于点E ,∠A =30°,AB =8,则DE 的长度是___. B ′A ′B C A C ′ l C B AD MR PO B A NQG FO D C B A E D C BA E15.如图,在等腰三角形纸片ABC 中,AB =AC ,∠A =50°,折叠该纸片,使点A 落在点B 处,折痕为DE ,则∠CBE =___.16.如图,在△ABC 中,按以下步骤作图:①分别以点B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于M 、N 两点;②作直线MN 交AB 于点D ,连接CD .若CD =AC ,∠B =25°,则∠ACB 的度数为___.17.在一次夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了200m 到达B 地,再沿北偏东30°方向走,恰能到达目的地C (如图),那么,由此可知,B 、C 两地相距___m.18.如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是___.三、解答题 19.在平面直角坐标系中,已知点A (-3,1),B (-1,0),C (-2,-1),请在图中画出△ABC ,并画出与△ABC 关于y 轴对称的图形.20.如图,△ABC 与△DEF 关于直线l 对称,请用无刻度的直尺,在下面两个图中分别作出直线l .21.如图,在等边△ABC 中,AB =2,点P 是AB 边上任意一点(点P 可以与点A 重合),过点P 作PE ⊥BC ,垂足为E ,过点E 作EF ⊥AC ,垂足为F ,过点F 作FQ ⊥AB ,垂足为Q ,求当BP 的长等于多少时,点P 与点Q 重合?F C E B D A F C E B A (D ) D CB AE C A A AA CB D E F …22.如图,在△ABC 中,点D 在AB 上,且CD =CB ,点E 为BD 的中点,点F 为AC 的中点,连结EF 交CD 于点M ,连接AM .(1)求证:EF =12AC . (2)若∠BAC =45°,求线段AM 、DM 、BC 之间的数量关系.23.如图,O 为△ABC 内部一点,OB =312,P 、R 为O 分别以直线AB 、直线BC 为对称轴的对称点.(1)请指出当∠ABC 在什么角度时,会使得PR 的长度等于7?并完整说明PR 的长度为何在此时会等于7的理由.(2)承(1)小题,请判断当∠ABC 不是你指出的角度时,PR 的长度是小于7还是会大于7?并完整说明你判断的理由.24.如图,在△ABC 中,点D ,E 分别在边AC ,AB 上,BD 与CE 交于点O ,给出下列三个条件:①∠EBO =∠DCO ;②BE =CD ;③OB =OC .(1)上述三个条件中,由哪两个条件可以判定△ABC 是等腰三角形?(用序号写出所有成立的情形) (2)请选择(1)中的一种情形,写出证明过程.25.如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,且DE ∥AB ,过点E 作EF⊥DE ,交BC 的延长线于点F .(1)求∠F 的度数.(2)若CD =2,求DF 的长.26.如图,已知△BAD 和△BCE 均为等腰直角三角形,∠BAD =∠BCE =90°,点M 为DE 的中点.过点E 与AD 平行的直线交射线AM 于点N .(1)当A ,B ,C 三点在同一直线上时(如图1),求证:M 为AN 的中点.AB CD E O E D C B A F P C B AE F Q P R B D CB A E F M(2)将如图1中△BCE 绕点B 旋转,当A ,B ,E 三点在同一直线上时(如图2),求证:△CAN 为等腰直角三角形.(3)将如图1中△BCE 绕点旋转到图3的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.27.如图,△ABC 中,AB =AC ,∠A =36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC )(1)在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是___度和___度.(2)在图2中画2条线段,使图中有4个等腰三角形.(3)继续按以上操作发现:在△ABC 中画n 条线段,则图中有___个等腰三角形,其中有___个黄金等腰三角形.28.(1)操作发现:如图①,D 是等边△ABC 边BA 上一动点(点D 与点B 不重合),连结DC ,以DC 为边在BC 上方作等边△DCF ,连结AF .你能发现线段AF 与BD 之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D 运动至等边△ABC 边BA 的延长线上时,其它作法与(1)相同.猜想AF 与BD 在(1)中的结论是否仍然成立?(3)深入探究:Ⅰ.如图③,当动点D 在等边△ABC 边BA 上运动时(点D 与点B 不重合),连接DC ,以DC 为边在其上方、下方分别作等边△DCF 和等边△DCF ′,连接AF 、BF ′,探究AF 、BF ′与AB 有何等量关系?并证明你探究的结论.Ⅱ.如图④,当动点D 运动至等边△ABC 边BA 的延长线上运动时,其它作法与图③相同.Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.F DC B A 图① FD C B A 图② F D C B A 图③ F ′ F AC F ′D 图④B DC B A E M N图1 D C B A E M N 图2 DC B A E M N 图3 图1 C B A E F 图2 C B A E 图3C B A参考答案:一、1.D.点拨:A 、不是轴对称图形,不符合题意;B 、不是轴对称图形,不符合题意;C 、不是轴对称图形,不符合题意;D 、是轴对称图形,符合题意.故应选D .2.D.3.B.点拨:把点P (2,-5)的纵坐标-5改成它的相反数5,即可得到点P 关于x 轴对称点的坐标.4.B.点拨:由根据线段垂直平分线性质可以直接判断线段PA 与线段PB 的长度相等.5.B.点拨:按照图中的顺序向右上翻折,向左上角翻折,剪去左上角,展开得到图形B .故应选B .6.B.点拨:∵D 、E 分别是边AB 、AC 的中点,∴DE ∥BC ,∴∠ADE =∠B =50°,∵∠A =26°,∴∠ADE =180°-50°-26°=104°;再由折叠可知:∠AED =∠A ′ED =104°,∴∠AEA ′=360°-104°-104°=152°.7.B.点拨:∵在等腰△ABC 中,AB =AC ,其周长为20cm ,∴设AB =AC =x ,则BC =20-2x cm ,∴2x >20-2x ,且20-2x >0,解得5cm <x <10cm.故应选B .8.D.点拨:如图,等腰三角形ABC 中,因为AB =AC ,所以∠ABC =∠C ,设顶角为α、底角为β,则根据三角形三内角和为180°,得α+2β=180.此时,由于过B 点画直线交AC 于D ,则△ADB 与△BDC 都是等腰三角形,若AD =DB =BC ,则β=2α,α+2β=180°,解得α=36°,β=72°;若AD =DB ,BC =DC ,则β=3α,α+2β=180°,解得α=7180,β=7540 .所以原等腰三角形纸片的底角等于72°,或5407⎛⎫ ⎪⎝⎭.故应选D .9.A.点拨:∵点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上,∴PM =MQ ,PN =NR .∵PM =2.5cm ,PN =3cm ,MN =4cm ,∴RN =3cm ,MQ =2.5cm ,NQ =MN -MQ =4-2.5=1.5(cm ),则线段QR 的长为:RN +NQ =3+1.5=4.5(cm ).故应选A .10.D.点拨:因为BC =AC ,∠BCD =∠ACE =120°,CD =CE ,所以△BCD ≌△ACE ,从而得①AE =BD 是正确的;又因为△BCD ≌△ACE ,所以∠FBC =∠GAC ,根据BC =AC ,∠BCF =∠ACG =60°,得△BCF ≌△ACG ,所以②AG =BF 是正确的;由△BCF ≌△ACG ,得CF =CG ,而∠FCG =60°,所以∠CGF =∠CFG =∠FCG =60°,所以③FG ∥BE 是正确的;如图,过C 作CM ⊥BD 于M ,CN ⊥AE 于N ,易得△BCM ≌△CAN ,所以CM =CN ,所以④∠BOC =∠EOC 是正确的.故应选D .二、11.5. 12.90°.点拨:因为△ABC 与△A ′B ′C ′关于直线l 对称,∠C ′=60°,所以∠C ′=∠C =60°,在△ABC 中,因为∠A =30°,所以∠B =180°-30°-60°=90°. G F O D C B AE M N D C B A13.10.点拨:由角平分线的性质及题中已知条件可得PD =PE ,又因为PD =10,所以PE =10.14.2.点拨:∵D 为AB 的中点,AB =8,∴AD =4,∵ DE ⊥AC 于点E ,∴∠DEA =90°,∵∠A =30°,∴DE =12AD =2; 15.15°.点拨:∵折叠该纸片,使点A 落在点B 处,折痕为DE ,∴EA =EB ,∴∠EBA =∠A .又∵AB =AC ,∠A =50°,∴∠B =65°,∠EBA =50°,∴∠CBE =15°.16.105°.点拨:由①的作图可知CD =BD ,∴∠DCB =∠B =25°,∴∠ADC =50°.又∵CD =AC ,∴∠A =∠ADC =50°,∴∠ACD =80°,∴∠ACB =80°+25°=105°.17.200.点拨:由条件,得∠ABC =90°+30°=120°,∠BAC =90°-60°=30°,所以∠ACB =180°-∠ABC -∠BAC =180°-120°-30°=30°,所以∠ACB =∠BAC ,所以BC =AB =200,即B 、C 两地相距200m. 18.(12)n -1·75°.点拨:∵A 1B =CB ,∠B =30°,∴∠C =∠BA 1C =12(180°-∠B )=75°,又∵A 1A 2=A 1D ,∴∠A 1A 2D =∠A 1DA 2=12∠DA 1C =12×75°(三角形外角等于不相邻两内角之和)=2112-×75°=2112-⎛⎫ ⎪⎝⎭×75°;同样,∵A 2A 3=A 2E ,∴∠A 2A 3E =∠A 2EA 3=12∠DA 2A 1=12×12×75°=14×75°=3112-×75°=3112-⎛⎫ ⎪⎝⎭×75°;同理,∠A 3A 4F =∠A 3FA 4=12∠EA 3A 2=4112-⎛⎫ ⎪⎝⎭×75°;…第n 个三角形中以A n 为顶点的内角度数是112n -⎛⎫ ⎪⎝⎭×75°. 三、19.如图,△ABC 就是所求的三角形,A ,B ,C 三点关于y 轴的对称点分别为A ′(3,1),B ′(1,0),C ′(2,-1),△A ′B ′C ′就是△ABC 关于y 轴对称的图形.20.如图1和2所示中的直线l 就是分别所求作的对称轴.21.设BP =x ,在Rt △PBE 中,∠BPE =30°,所以BE =12x ,则EC =2-12x ,在Rt △EFC 中,∠FEC =30°,所以FC =12EC =1-14x ,所以AF =2-FC =2-(1-14x )=1+14x ,同理,AQ =12AF =12+18x ,当点P 与点Q 重合时,有BP +AQ =2,即x +(12+18x )=2,解得图2 F C E B D A l 图1 F C E B A (D ) lx=43,故当BP=43时,点P与点Q重合.22.(1)证明:∵CD=CB,E为BD的中点,∴CE⊥BD,∴∠AEC=90°.又∵F为AC的中点,∴EF=12AC.(2)∵∠BAC=45°,∠AEC=90°,∴∠ACE=∠BAC=45°,∴AE=CE.又∵F为AC的中点,∴EF⊥AC,∴EF为AC的垂直平分线,∴AM=CM,∴AM+DM=CM+DM =CD.又∵CD=CB,∴AM+DM=BC.23.(1)∠ABC=90°时,PR=7.证明:连接PB、RB,∵P、R为O分别以直线AB、直线BC为对称轴的对称点,∴PB=OB=312,RB=OB=312,∵∠ABC=90°,∴∠ABP+∠CBR=∠ABO+∠CBO=∠ABC=90°,∴点P、B、R三点共线,∴PR=2×312=7.(2)PR的长度是小于7.理由:∠ABC≠90°,则点P、B、R三点不在同一直线上,∴PB+BR>PR,∵PB+BR=2OB=2×312=7,∴PR<7.24.(1)①②、①③.(2)选①②证明如下:在△BOE和△COD中,∵∠EBO=∠DCO,∠EOB=∠DOC,BE=CD,∴△BOE≌△COD(AAS),∴BO=CO,∠OBC=∠OCB,∴∠EOB+∠OBC =∠DOC+∠OCB,即∠ABC=∠ACB,∴AB=AC,即△ABC是等腰三角形.25.(1)∵三角形ABC为等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°-∠EDC=30°.(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形,∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.26.(1)∵点M为DE的中点,∴DM=ME.∵AD∥EN,∴∠ADM=∠NEM,又∵∠DMA=∠EMN,∴△DMA≌△EMN,∴AM=MN,即M为AN的中点.(2)由(1)中△DMA≌△EMN可知DA=EN,又∵DA=AB,∴AB=NE,∵∠ABC=∠NEC=135°,BC=CE,∴△ABC≌△NEC,∴AC=CN,∠ACB=∠NCE,∵∠BCE=∠BCN+∠NCE=90°,∴∠BCN+∠ACB=90°,∴∠CAN=90°,∴△CAN为等腰直角三角形.(3)由(2)可知AB=NE,BC=CE.又∵∠ABC=360°-45°-45°-∠DBE=270°-∠DBE=270°-(180°-∠BDE-∠BED)=90°+∠BDE+∠BED=90°+∠ADM-45°+∠BED=45+∠MEN+∠BED=∠CEN,∴△ABC≌△NEC,再同(2)可证△CAN 为等腰直角三角形,∴(2)中的结论是否仍然成立.27.(1)如图1所示.∵AB=AC,∠A=36°,∴当AE=BE,则∠A=∠ABE=36°,则∠AEB=108°,则∠EBC=36°,∴这2个等腰三角形的顶角度数分别是108度和36度.(2)画法不惟一.如,如图2所示.四个等腰三角形分别是:△ABE,△BCE,△BEF,△CEF.(3)如图3所示.当1条直线可得到2个等腰三角形;当2条直线可得到4个等腰三角形;当3条直线可得到6个等腰三角形;…∴在△ABC中画n条线段,则图中有2n个等腰三角形,其中有n个黄金等腰三角形.28.(1)AF=BD.证明:因为△ABC和△DCF均是等边三角形,所以∠ACB=∠DCF,所以∠ACB-∠ACD=∠DCF-∠ACD,即∠BCD=∠ACF.在△BDC和△AFC中,BC=AC,∠BCD=∠ACF,DC=FC,所以△BDC≌△AFC,所以AF=BD.(2)仍然成立.证法同(1).(3)Ⅰ:AF+BF′=AB.证明:由(1)可证AF=BD,同理可证△ADC≌△BF′C,所以BF′=AD,所以AF+BF′=AB.Ⅱ.在Ⅰ中的结论不成立,新结论是:AF-BF′=AB.证明:同(1)可证△BDC≌△AFC,所以AF=BD,同理可证△ADC≌△BF′C,所以BF′=AD,因为BD-AD=AB,所以AF-BF′=AB.。
江苏省八年级数学上册 第12讲 轴对称课后练习 苏科版
第12讲轴对称题一:下列图形是轴对称图形的有个.题二:下列几何图形中,一定是轴对称图形的有个.题三:下列图形中,不是轴对称图形的是( )A.角B.等边三角形C.线段D.不等边三角形题四:正五角星的对称轴的条数是( )A.1条B.2条C.5条D.10条题五:如图,在3×3的正方形网格中,已有两个小正方形被涂绿.再将图中其余小正方形任意涂绿一个,使整个图案构成一个轴对称图形的方法有种.题六:如图,ΔABC和ΔA’B’C’关于直线l对称,下列结论中:①ΔABC≌ΔA’B’C’;②∠BAC’=∠B’AC;③l垂直平分CC’;④直线BC和B’C’的交点不一定在l上,正确的有( )A.4个B.3个C.2个D.1个题七:如图,在△ABC中, C=90 ,点D在AC上,将△BCD沿着直线BD翻折,使点C落在斜边AB上的点E处,DC=5cm,则点D到斜边AB的距离是cm.题八:如图,∠AOB内一点P,P1、P2分别是P关于OA、OB的对称点,P1P2交OA于M,交OB于N,若P1P2 = 5cm,则ΔPMN的周长是( )A.3cm B.4cm C.5cm D.6cm题九:如图1,将某四边形纸片ABCD的AB向BC方向折过去(其中AB<BC),使得A点落在BC上,展开后出现折线BD,如图2.将B点折向D,使得B、D两点重叠,如图3,展开后出现折线CE,如图4.根据图4,判断下列关系何者正确?()A、AD∥BCB、AB∥CDC、∠ADB=∠BDCD、∠ADB>∠BDC题十:一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那么下列图案中不符合要求的是()A.B.C.D.第12讲轴对称题一: 4.详解:第一个图有1条对称轴,是轴对称图形,符合题意;第二个图不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意;第三个图有2条对称轴,是轴对称图形,符合题意;第四个图有5条对称轴,是轴对称图形,符合题意;第五个图有1条对称轴,是轴对称图形,符合题意;第六个图不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意.故轴对称图形有4个.题二: 5.详解:题面中的五个图形都是轴对称图形.题三: D.详解:角是轴对称图形,它的角平分线所在直线就是它的对称轴;等边三角形是轴对称图形,每条边上的垂直平分线都是它的对称轴;线段是轴对称图形,线段的垂直平分线是它的对称轴;不等边三角形只有是等腰三角形时才是轴对称图形,否则就不是;所以答案为D.题四: C.详解:正五角星每个锐角的角平分线所在直线是它的对称轴,正五角星有五个锐角,所以它有5条对称轴,答案为C.题五: 5.详解:选择一个正方形涂绿,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,3处,7处,6处,5处,选择的位置共有5处.题六: B.详解:∵ΔABC与ΔA’B’C’关于直线l对称,∴ΔABC≌ΔA’B’C’,l垂直平分CC’,这两个结论显然成立;而由ΔABC与ΔA’B’C’关于直线l对称可知∠BAC=∠B’AC’,∴∠BAC’=∠BAC+∠CAC’=∠B’AC’+∠CAC’=∠B’AC;延长BC和B’C’,设直线BC与l的交点为D,直线B’C’与l的交点为D’,则由ΔABC与ΔA’B’C’关于直线l对称,可知∠CAD=∠C’AD’,∠BCA=∠B’C’A,AC =AC’,∴∠ACD= 180º−∠BCA= 180º−∠B’C’A=∠AC’D’,∴ΔACD≌ΔAC’D’,∴AD = AD’,D点与D’点重合,该点就是BC与B’C’的交点,即直线BC和B’C’的交点一定在l上,④错误;所以正确的结论有三个,答案为B.题七: 5.详解:∵△BDE是△BDC翻折而成的,∠C=90°,∴△BDE≌△BDC,∴DE⊥AB,DE=CD,∵DC=5cm,∴DE=5cm.题八: C.详解:∵点P1是点P关于OA的对称点,∴OA垂直平分PP1,则P1M = PM,同样道理P2N = PN,这样ΔPMN的周长PM+MN+NP = P1M+MN+NP2 = P1P2 = 5cm,答案为C.题九: B.详解:∵A点落在BC上,折线为BD,∴∠ABD=∠CBD,又∵B点折向D,使得B、D两点重叠,折线为CE,∴CD=CB,∴∠CBD=∠CDB,∴∠ABD=∠CDB,∴AB∥CD,即选项B正确.故选B.题十: D.详解:A、图象关于对角线所在的直线对称,两条对角线都是其对称轴;故不符合题意;B、图象关于对角线所在的直线对称,两条对角线都是其对称轴;故不符合题意;C、图象关于对角线所在的直线对称,有一条对称轴;故不符合题意;D、图象关于对角线所在的直线不对称;故符合题意;故选D.如有侵权请联系告知删除,感谢你们的配合!如有侵权请联系告知删除,感谢你们的配合!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章《轴对称》综合复习测试题
题号一1 二2 三3
四
4 五
5 六
6 七
7 八8
得分
任何学习不可可能重复一次就可以掌握,必须经过多次重复、多方面、多个角度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
一、精心选一选(每题3分,共30分)
1.下列由数字组成的图形中,是轴对称图形的是()。
2.下列图案中,不是轴对称图形的是()
A B C D
3.在下面四个图案中,如果不考虑图中的文字和字母,那么不是轴对称图形的是()
4.若等腰三角形底角为72°,则顶角为()
A.108° B.72° C.54° D.36°
5.将一张菱形纸片,按下图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()
6.如图,在△ABC中,AB=AC,D为AC边上一点,且BD=BC=AD,则∠A等于()
A B C D
①②③④
A.B.C.D.
第1题图
第2题图
第3题图
第5题图
(A )30o (B )36o (C )45o (D )72o 7.如图是一辆汽车车牌在水中的倒影,则该车的牌照号码是( ) A .W17639 B .W17936 C .M17639 D .M17936 8.下图形是轴对称图形的是( )
(A ) (B ) (C ) (D ) 9.下列四个图形中,哪个不是轴对称图形( )
(A )有两个内角相等的三角形 (B )线段 (C )有一个内角是300,一个内角是1200的三角形(D )有一个内角是600的直角三角形. 10.把26个英文字母按规律分成5组,现在还有5个字母D 、M 、Q 、X 、Z ,请你按原规律补上,其顺序依次为( ) ① F ,R ,P ,J ,L ,G , ② H ,I ,O , ③ N ,S ,
④ B ,C ,K ,E ,
⑤ V ,A ,T ,Y ,W ,U ,
(A )Q ,X ,Z ,M ,D (B )D ,M ,Q ,Z ,X (C )Z ,X ,M ,D ,Q (D )Q ,X ,Z ,D ,M .
二、细心填一填(每题3分,共30分)
11.如图,这是小亮制作的风筝,为了平衡做成轴对称图形,已知OC 是对称轴,∠A=35°,∠ACO=30°,那么∠BOC= °.
12.将一张纸片沿任何一方翻折,得到折痕AB(如图1);再翻折一次, 得到折痕OC (如图2); 翻折使OA 与OC 重合, 得到折痕OD(如图3);最后翻折使OB 与OC 重合, 得到折痕OE(如图4);再恢复到图1形状,则∠DOE 的大小是 度
第7题图 第6题图
第8题图
第11题图
第12题图
13.已知等腰三角形的一边等于3,一边等于6,则它的周长等于
14.已知△ABC 中,∠ACB=900,∠A 的平分线AD 分BC 为3cm 和5cm ,则D 到AB 的
距离是
15.设线段AB 的垂直平分线MN 交AB 于点C ,P 是MN 上不同于点C 的点,那么△PAB
是 三角形,PC 是这个三角形的 、 和
16.如图,AB=AC ,∠A=400,AB 的垂直平分线MN 交AC 于点D ,则∠DBC= 17.等腰三角形两内角的和是1000,则它的顶角是
18.在ABC 中,边AC 、BC 的垂直平分线相交于点P ,则PA ,PB ,PC 的大小
关系是
19.如图,把一张长方形纸片对折,MN 是折痕,并且沿着图中的AE 剪这个图形 (1)如果∠NAE=700,则∠AEM= ,∠EMN= ,
∠MNA=
(2)如果AN=5,ME=3,MN=8,在纸片被剪成的几部分中,
四边形MEAN 的面积的2倍是
20.等腰三角形两边长为5cm 和10cm ,则它的周长为 .
三、耐心解一解(共60分) 21
.(本题10
22
.(本题10分)如图,表示把长方形纸片ABCD 沿对角线BD 进行折叠后的情况,图中
有没有轴对称图形?有没有关于某条直线成轴对称的图形.
23.(本题10分)如图,在游艺室的水平地面上,沿着地面的AB 边放一行球,参赛者从起
点C 起步,跑向边AB 任取一球,再折向D 点跑去,将球放入D 点的纸箱内便完成任务,完成任务的时间最短者获得胜利,如果邀请你参加,你将跑去选取什么位置上的球?
第19题图 第16题图 (2) (3) (1) (4)
(5)
B
A
C
D E 第22题图 第21题图
为什么?
24.已知:线段m、n
(1)用尺规作出一个等腰三角形,使它的底等于m,腰等于n(保留作图痕迹,不写作法、不证明);
(2)用至少4块所作三角形,拼成一个轴对称多边形(画出示意图即可).
四、拓广探索
25.如图, △ABC中, D、E分别是AC、AB上的点, BD与CE交于点O. 给出下列三个条件:
①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.
⑴上述三个条件中, 哪两个条件
....可判定△ABC是等腰三角形
(用序号写出所有情形);
⑵选择第⑴小题中的一种情形, 证明△ABC是等腰三角形.
26.(1)如图,在△ABC中,AB=AC,∠B与∠C的角平分线交于点O,过点O作MN∥BC,分别交AB,AC于M,N,问M与N两点是什么关系?连结AO得到的是什么线?
图中有几个等腰三角形?
(2)在△ABC中,AB=AC,M,N是对应点,O为MN的中点,则BO,CO分别是∠B 与∠C的角平分线,这个结论对吗?为什么?
第25题图
·D
C·
第23题图
B
A
B
A
C
M N
O
第26题图
第24题图
参考答案
一、ACBDA DDDDD
二、11.1150;12.90;
13.15;14.3cm或5cm;15.等腰,顶角的平分线,底边的中线,底边的高16.300;17.800,200;18.相等;19.1100、900、900,64;
20.周长为25cm.
三、
21.(3)比较独特,它有无数条对称轴,其他图形都只有两条对称轴.
22.五边形ABCDE是轴对称图形,
△ABE与△CDE,△ABD与△CDB成轴对称.
23.如图,参赛者应向E点跑,因为AB所在直线是DD'的垂直平分线,所以ED=E D',C,D'两点之间CE+E D'是最短的(两点之间线段最短),所以CE+ED是最短的.
24.如图:
四、25.答案不唯一(略)
26.(1)M与N是对应点,AO所在的直线是等腰三角形的对称轴,5个
(2)结论不正确,角平分线与对应点连线的交点不一定在中点.
E
·D
C·
D'
A B
可以编辑的试卷(可以删除)。