玻璃窑炉马蹄焰池窑简介

合集下载

88m2燃发生炉煤气马蹄焰中碱玻纤池窑设计与运行简介

88m2燃发生炉煤气马蹄焰中碱玻纤池窑设计与运行简介
中图分 类号 :Q1 1 6 3 1 T 7 . 2 . 文献标 识 码 : B 文章编 号 :0 0— 8 1 2 1 ) 4— 0 2—0 10 2 7 ( 0 1 0 0 2 3
I t o uc i n fDe i n a e a i n a u 8 m 2 n r d to o sg nd Op r to bo t8
Pr d c r Ga r d End Po tM e i m . Al l o u e s Fi e r du . ka i .
Fi e a s M etng Fur c b r Gl s li na e
L e - u C IF n ,A u IW i jn,A e g T NG Y
1 1 大碹 材 质 问题 .
玻 璃 与搪 瓷
・ 3・ 2
熔窑大碹是决定熔窑寿命及玻璃液质量 的主要因素之一。传统的中碱 马蹄焰熔窑大碹多采用优质硅 砖, 但对于拉丝池窑大碹使用硅砖有两个不利因素: 一是硅砖侵蚀较快 , 尤其在熔窑运行中后期 , 碹滴会大量
进入 玻璃 液 , 形成 富硅 质条 纹 , 影响玻 璃 液 的均匀 性 , 而 降低拉 丝 成 品率 ; 是熔 窑运 行后期 大 碹保 温层 基 从 二 本被 拆 除 ( 护大 碹 ) 加剧熔 窑 的 能源 消耗 。 保 , 考虑 以上两个 因素 , 们采 用再 烧结 电熔 莫来 石砖 , 种 砖在 整 个 窑期 内基 本没 有 侵蚀 , 我 这 虽然 价 格 要 比
热式马蹄焰熔窑 、 鼓泡加窑坎技术 、 深澄清部 、 上倾斜式流液洞 、 窑体加强保温 、 池底电助熔等技术集成 , 优化 结 构设 计 。下 面主 要介 绍熔 窑在 设计 、 产及 运行 中遇 到 的一些 主 要 问题 。 投

玻璃马蹄焰窑炉介绍

玻璃马蹄焰窑炉介绍

玻璃窑炉马蹄焰池窑简介1.熔化池结构窑炉的熔化率主要取决于熔化温度,因为中碱和无碱玻璃球窑的熔制温度比较高,如果进一步提高熔化温度来提高熔化率,会加速对耐火材料的侵蚀,降低球质和影响炉龄。

而采取鼓泡和电助熔技术可以相应提高中下层玻璃温度,促进玻璃的均化,并且提高熔化率。

玻璃原料从熔化到澄清的行程也大,这有利于玻璃质量的控制和提高,而长宽比又受到小炉结构设计、火焰长度及拐弯要求的限制。

池深不仅影响到玻璃液流和池底温度,而且影响玻璃液的物理化学均匀性以及窑炉的熔化率。

一般池底温度在1200—1360℃之间较为合适。

池底温度的提高可使熔化率提高。

但池底温度高于1380℃时,需要提高池底耐火材料的质量及品种,否则会加速池底的侵蚀并降低炉龄,且会增加玻璃球的结石含量,这对后道拉丝生产是不利的,影响池底温度的决定性因素是玻璃的铁含量和玻璃气氛。

当Fe2O3含量在0.25—0.3%范围内时,池深800—1200mm的玻璃球窑,其垂直温降约为15—30℃/100mm。

2.工作池选择半圆形工作池时,其半径R决定于制球机台数与布置方式。

一般工作池半径小于等于熔化池池宽,工作池深度浅于熔化池池深300—400mm。

3.投料池为了获得稳定的玻璃质量,一般在池壁两侧设置一对投料池,随换火操作交替由火根投料。

投料池中心线与窑炉池壁的距离主要决定于小炉喷火口的温度,温度越高距离可缩小。

一般其距离可定在0.8—1.0m。

4.流液洞流液洞的功能是降温和均化。

采用沉式流液洞比采用直通式流液洞温降大。

而均化效果受液洞高度影响较大。

如高度越小则均化效果越好。

所以设计流液洞宽度一般应大于其高度。

在不考虑玻璃回流的情况下,玻璃流经流液洞的平均速度可取5—20m/h。

5.胸墙高度胸墙高度应根据窑炉容积发热强度来确定,目前容积发热强度设计值一般取60—200KW/m3(相当于50—180*103kcal/N.m3),比早期的数据已有明显下降,这说明提高了胸墙高度,而且采用质量改善的耐火材料和较好的保温效果,使窑炉热损失减少,大容积空间更有利于燃料的完全燃烧和增强其容积辐射强度,有利于提高熔制质量和降低能耗。

马蹄焰池窑设计

马蹄焰池窑设计

马蹄焰池窑设计窑炉及设计(玻璃)课程设计说明书题目:年产1.2万吨玻璃酒瓶燃油马蹄焰池窑的设计学生姓名:学号:院(系):材料科学与工程学院专业:无机非金属材料工程指导教师:2012 年 6 月 17 日陕西科技大学窑炉及设计(玻璃)课程设计任务书材料科学与工程学院无机非金属材料工程专业班级学生:题目:年产1.2万吨玻璃酒瓶燃油马蹄焰池窑的设计课程设计从2012 年6 月4 日起到2012 年6 月17 日1、课程设计的内容和要求(包括原始数据、技术要求、工作要求等):(1) 原始数据:a.产品规格:青白酒瓶容量500mL, 重量400g/只b.行列机年工作时间及机时利用率:313 天,95%c.机速:QD6行列机青白酒瓶38只/分钟d.产品合格率:90%e.玻璃熔化温度1430℃f.玻璃形成过程耗热量q玻=2350kJ/kg玻璃液g.重油组成(质量分数%),见表1。

表1 重油组成(2) 设计计算说明书组成(电子纸质版)参考目录如下1.绪论1.1设计依据1.2简述玻璃窑炉的发展历史及今后的发展动向1.3对所选窑炉类型的论证1.4有关工艺问题的论证2.设计计算内容2.1日出料量的计算2.2熔化率的选取2.3熔窑基本结构尺寸的确定2.4燃料燃烧计算2.5燃料消耗量的计算2.6小炉结构的确定与计算2.7蓄热室的设计2.8窑体主要部位所用材料的选择和厚度的确定3.主要技术经济指标4.对本人设计的评述参考文献设计说明书格式见《陕西科技大学课程设计说明书撰写格式暂行规范》。

(3)图纸要求采用绘图纸铅笔绘制,图纸断面见参考图。

图幅大小见表3。

各断端面绘图比例必须一致。

表3 图纸要求2、对课程设计成果的要求〔包括图表、实物等硬件要求〕:1、绪论课程设计是培养学生运用《玻璃窑炉及设计》课程的理论和专业知识,解决实际问题,进一步提高设计、运算、使用专业资料等能力的重要教学环节。

目的是使学生受到设计方法的初步训练,逐步树立正确的设计观点,增强设计能力、创新能力和综合能力,初步掌握窑炉及其它热工设备设计的基本知识和技能,并对所学窑炉热工理论知识进行验证和深化,为将来从事生产、设计、研究及教学等方面工作打下良好的基础。

马蹄焰窑炉设计说明书

马蹄焰窑炉设计说明书

课程设计任务书学生姓名: 专业班级:指导教师:工作单位:题目: 33 t/d蓄热式马蹄焰池窑的设计初始条件:1、产品的品种:陶瓷熔块2、产量: 33 吨/天3、玻璃的成分陶瓷熔块成分(wt/%)表14、原料所用原料及基本要求表26、纯配合料熔化,不外加碎玻璃。

7、玻璃的熔化温度:1509 ℃;熔化部火焰空间温度: 1559 ℃。

8、助燃空气预热温度:1198 ℃。

9、燃料:重油重油的元素组成表310、重油雾化介质:压缩空气,温度80℃,用量0.5Bm/kg油11、空气过剩系数:α取1.112、窑型:蓄热式马蹄焰流液洞池窑要求完成的主要任务:一、撰写设计说明书,主要内容包括:1、设计依据及相关政策、法律、法规及设计规范2、物料平衡计算(列出计算过程)2.1配料计算2.2去气产物及组成计算3、热平衡计算(列出计算过程)3.1燃料燃烧计算3.2玻璃形成过程所消耗的热量计算3.3燃料消耗量近似计算4、窑炉的结构设计详细说明各部位的作用,各主要参数选择依据,并进行方案对比。

4.1熔化部设计包括熔化部的面积、长、宽、深度、火焰空间及投料口的尺寸。

4.2工作部的设计包括工作部的面积、长、宽、深度及火焰空间的尺寸。

4.3玻璃液的分隔设备的设计4.4出料口的设计4.5小炉口的计算与设计4.6蓄热室的计算与设计4.7烟道与烟囱尺寸的确定5、窑炉耐火材料的设计与选择包括池壁、池底、胸墙、大碹、蓄热室的耐火材料及保温材料的设计与选择。

要求作方案对比,阐述选择依据。

6、窑炉主要技术经济指标①熔化量:②熔化率:③熔化部面积:④冷却部面积:⑤一侧蓄热室格子砖的受热面积:⑥单位熔化部面积所占格子砖受热面积:⑦每公斤玻璃液所消耗的热量:⑧燃料消耗量:⑨玻璃熔成率。

二、用CAD绘制一张窑炉总图(3#图打印)时间安排:18周讲课、查阅资料、设计计算、绘制草图;19周 CAD制图;20周撰写设计说明书、答辩。

指导教师签名:年月日系主任(或责任教师)签名:年月日目录1.设计依据及相关的法律法规 (1)1.1设计的依据:课程设计任务书 (1)1.2国家相关法律、法规及设计规范 (1)1.3马蹄焰窑炉的特点 (2)2.物料平衡计算 (2)2.1配料计算 (2)2.2去气产物及组成计算 (4)3.热平衡计算 (5)3.1燃料燃烧计算 (5)3.2玻璃形成过程中所消耗的热量 (6)3.3燃料消耗量近似计算 (7)4.窑炉的结构设计 (8)4.1熔化部的设计 (8)4.2工作部的设计 (11)4.3玻璃液的分隔设备(流液洞)的设计 (11)4.4出料口的设计 (12)4.5 小炉口的计算与设计 (12)4.6蓄热室的计算与设计 (13)4.7烟道与烟囱尺寸的确定 (15)5. 主要技术经济指标 (16)6. 参考文献 (16)7. 总结 (16)设计题目:33 t/d蓄热式马蹄焰池窑的设计1 设计依据及相关的法律法规设计依据及其基本原则:随着工业生产现代化水平的日益提高,能源供应日趋紧张,在本设计中,为了节约能源、降低成本,采用有效的保温措施。

玻璃工业窑炉 第二章马蹄焰窑 第二节冷却部设计

玻璃工业窑炉 第二章马蹄焰窑 第二节冷却部设计
蓄热式马蹄 焰玻璃池窑 模型图
2.2 冷却部设计 2.2.1作用:对玻璃液冷却、均化和分配。 A、冷却玻璃液;与流液洞起一半降温作用 B、稳定玻璃液温度和成分; C、玻璃液继续澄清和均化; D、可吸收一部分再生气泡; E、改善熔化池的循环对流; F、稳定玻璃液面,并均匀分配给供料道。
2.2.2结构参数确定 池深:逐步变浅,提高垂直方向温度均匀性
和减少回流。比熔化池浅300mm。颜色玻 璃可浅0.4~0.6m。 面积:取决于窑炉的温度制度和出料量。 1)温度制度:冷却程度大,则面积大。 2)出料量:出料大,冷却程度大,面积大。
3)参数: a、F冷/F熔。 (15~25)%。分配料道(10~20)%。 b、正常流动负荷/冷却部面积。(t/d·m2) 冷却率。3~13范围。 c、冷却部容积/正常流动负荷(m3/d) 玻璃液停留时间。愈长愈稳定,但需更多空
间,回流多。最小存3小时玻璃流量。
2.2.3冷却部形状 取决于成型方式,成型机的数量及工艺布置,
玻璃液应均匀分配,减少死角。 A、人工成型: 操作空间,换坩埚、热修方便。两甏口中心
距>1.4m,边甏到墙角>400mm。 B、机械成型。 长方形、半圆型、多边型等。
2.2.4 分配料道
火焰空间分隔,不 受熔化部火焰的干 扰,空间再用隔墙 分隔,分区各自温 度调节。
2 马蹄焰池窑
设计步骤:先确定池窑各部位的形式、尺 寸和材料。绘出草图。热工理论计算,砖 结构排列与计算、钢结构布置与计算。
设计原则:技术先进,施工可能,操作方 便,经济合蓄热式马蹄焰池窑纵立剖面A-A
横立剖面B-B、C-C
蓄热式马蹄 焰玻璃池窑 侧视图
适合于瓶罐玻璃的 生产,也可用于器 皿玻璃、安瓿玻璃 等生产。

马蹄焰窑发展历史

马蹄焰窑发展历史

马蹄焰窑是一种古代中国的陶瓷烧制窑炉,以下是其发展历史的简要概述:
起源:马蹄焰窑起源于中国的北方地区,最早出现在公元7世纪唐朝晚期。

它的名称来自于其窑炉顶部烟囱的形状,呈马蹄状。

唐代:唐代是马蹄焰窑的发展阶段。

在唐朝时期,马蹄焰窑已经成为中国陶瓷生产的主要窑炉之一。

这种窑炉采用了间隙式烧制技术,通过控制氧气的进入和排出,实现了温度的控制和瓷器的烧制。

宋代:宋代是马蹄焰窑的繁荣时期。

在北宋时期,马蹄焰窑得到了进一步的改进和发展。

窑炉结构更加完善,烧制技术更加精湛,瓷器的品质得到了大幅提升。

马蹄焰窑成为宋代北方窑炉的代表之一。

元代:元代是马蹄焰窑的衰落时期。

元代的政治动荡和社会变革对陶瓷产业造成了不利影响,马蹄焰窑逐渐失去了繁荣。

在元代后期,马蹄焰窑逐渐退出历史舞台,被其他窑炉所取代。

马蹄焰窑在中国古代陶瓷产业的发展中起到了重要的作用。

它代表了一种特定的窑炉结构和烧制技术,为瓷器的制作提供了有效的工具和方法。

尽管马蹄焰窑在元代后期逐渐式微,但其对中国陶瓷发展的贡献仍然不可忽视。

马蹄焰玻璃窑炉设计技术培训 ppt课件

马蹄焰玻璃窑炉设计技术培训 ppt课件

一、玻璃窑炉马蹄焰池窑简介
1.熔化池结构: 窑炉的熔化率主要取决于熔化温度,因为中碱和无碱玻璃球窑 的熔制温度比较高,如果进一步提高熔化温度来提高熔化率,会加 速对耐火材料的侵蚀,降低球质和影响炉龄。而采取鼓泡和电助熔 技术可以相应提高中下层玻璃温度,促进玻璃的均化,并且提高熔 化率。玻璃原料从熔化到澄清的行程也大,这有利于玻璃质量的控 制和提高,而长宽比又受到小炉结构设计、火焰长度及拐弯要求的 限制。池深不仅影响到玻璃液流和池底温度,而且影响玻璃液的物 理化学均匀性以及窑炉的熔化率。一般池底温度在1200—1360℃之 间较为合适。池底温度的提高可使熔化率提高。但池底温度高于 1380℃时,需要提高池底耐火材料的质量及品种,否则会加速池底 的侵蚀并降低炉龄,且会增加玻璃球的结石含量,这对后道拉丝生 产是不利的,影响池底温度的决定性因素是玻璃的铁含量和玻璃气 氛。当Fe2O3含量在0.25—0.3%范围内时,池深800—1200mm的玻 璃球窑,其垂直温降约为15—30℃/100mm。
一、玻璃窑炉马蹄焰池窑简介
6. 小炉: 目前小炉设计仍以实践经验为主,一个成功的设计者 应能用燃烧理论、火焰传热理论去分析、应用和总结实践经验。
(1) 小炉下倾角一般在18—35°范围内选用,燃油小炉一般 选用22—25°,燃烧天然气和干气的小炉下倾角可以大些。在实际 生产行中油枪有5°左右的上仰角,在采用天然气和干气时的仰角 还要更大些,其目的是让火焰与玻璃液面平行。
(2) 小炉喷出口速度(或小炉出口面积),由于燃油雾化后 喷入窑炉空间的燃烧过程中伴随着油雾的气化过程,因此燃料混合 物喷出的速度大,气化膨胀的阻力也大,油类燃料在窑内的停留时 间一般比天然气燃料的时间长,因此燃油小炉喷出的速度可以稍低。 当改用天然气时,如果喷出速度太低,会造成燃烧不完全。小炉喷 出口速度一般参照小炉喷出口处相应温度的空气速度来进行计算比 较合适。小炉喷出的助燃空气要有一定的容积厚度,取其宽高比为 2—3.5。 为了使火焰不直接冲刷胸墙,两座小炉内侧间距应不小于 0.6,小炉外侧与胸墙间距不小于0.3。

玻璃工业窑炉 第二章马蹄焰窑 第一节熔化部设计

玻璃工业窑炉 第二章马蹄焰窑 第一节熔化部设计
保温池窑以整块砖排列。 池壁高度 即为池深,一般取1.2~1.5m。
熔化池基础、主次梁
主梁
次梁
基础柱
熔化池池底 池底大砖 池底保温层
熔化部、冷却部池壁预排
投料口
熔化池
冷却池
池底“漂砖”的原因
配合料中碎玻璃带入的金属和玻璃还原的熔融金 属杂质沉在池底形成球状熔体,对池底砖产生向 下钻孔侵蚀。同时玻璃液和金属液在渗入到铺面 砖下垫层时产生向上钻蚀。
缝,2~3mm,R为半径,δ为碹厚。 砌拱时,插入的直型砖不要太多,否则易塌拱。 拱脚要加固紧,拱脚松动也会造成塌拱。 横推力F为
F KG ctg
22
式中,K为温度修正系数
F大小影响因素 G的大小
θ的大小 平拱θ=0,F→∞ θ=180,F=0
温度tw1≥tw2,产生附加载荷 T↑,K↑
品种料别
F熔<20 m2
燃料1
燃料2
F熔21~39 m2
燃料1
燃料2
F熔>40 m2 燃料1 燃料2
保温瓶 仪器普白料
0.6~0.9 0.8~0.95 0.7~1.0 0.4~0.5 0.65~0.8
1.1~1.35 1.7~1.9 (60m2)
仪器灯工硬 料
仪器烧器硬 料
中碱球
~0.35 0.15~0.2
0.5
吹制泡壳 0.5~0.65 0.8~1.0 0.6~0.75 0.8~1.1
1.0
1.2
压制管壳
0.6~0.7
0.6~0.7
安瓶管
0.4~0.6
~ 0.8
0.8~1.0
灯管芯柱 0.25~0.3 0.35~0.4 0.3~0.5 0.4~0.6
0.7~0.8

玻璃行业的三大窑炉

玻璃行业的三大窑炉

窑炉及设计(玻璃)
电熔玻璃池窑
窑炉及设计(玻璃)
1925年瑞典曾试用纯铁作电极熔制琥珀色和 绿色瓶罐玻璃。
1932年费格森试制水冷钼电极。
1942年康宁公司开始推广钼电极。最大全电 熔玻璃日产240吨,采用自动仪表,微机控 制和工业电视。
基础材料和器件工业.如电熔锆刚玉砖和钼 电极已达较高水平。
窑炉及设计(玻璃)
(2)适合熔制高质量玻璃:火焰池窑须 具备稳定高温和改善均化对流。在电熔 窑中靠窑结构、电极位置,调节电流, 就易取得。熔制玻璃有很高的均一性。 即使配料称量发生大误差,仍可继续作 业。熔制钠钙玻璃可提高合格率(2-4)%, 结石可降至0.3%。熔制乳白硼硅玻璃和 铅玻璃可提高合格率约20%。
浙江省椒江市 3吨电熔炉
1986年投产
窑炉及设计(玻璃)
3.2 电熔窑的优点
(1)热效率高:电熔窑电能在玻璃液内 部变成热能,且玻璃液被配合料覆盖, 周围散热可降到最低限度,且没有废气 热损失。故热效率高,大型电熔窑(7580)%,小型达60%。(火焰池窑效率为 (25-30)%,小型窑10%。)
钠钙玻璃除离子数量外,离子强度和半径 也影响导电性。与Na+相比,K+结合虽弱, 但K+半径较大,迁移阻力大。Li+半径比 Na+小,但Li电性。混合碱玻璃导 电性最差。
窑炉及设计(玻璃)
导电性难易以电阻率ρ(Ω•cm)或电导率σ (1/Ω•cm)来表示。 玻璃室温为电绝缘体σ=10-13~10-15/Ω•cm。 T↑ ρ ↓σ ↑↑ 熔融态σ= 0.1~1/Ω•cm 含其它改良剂离子时,降低离子迁移和ρ 如Ca2+、Ba2+、Pb2+↑玻璃ρ ↑↑。

燃煤气马蹄焰玻璃窑炉小炉和喷火口的设计及工艺操作控制

燃煤气马蹄焰玻璃窑炉小炉和喷火口的设计及工艺操作控制

燃煤气马蹄焰玻璃窑炉小炉和喷火口的设计及工艺操作控制朱柏杨马蹄焰玻璃窑炉的小炉是窑炉的关键部位,它承担组织燃料产生火焰的任务,是窑炉火焰的初始燃烧部位;它还是连接熔化池和回收高温废气热回收的通道。

小炉和喷火口的设计尺寸大小、角度和火焰喷出的速度对燃料燃烧和火焰形状有重要的影响,小炉、喷火口的不合理设计会使燃料燃烧不合理,会使火焰冲击胸墙和大碹,并造成燃料不完全燃烧和废气中氮氧化合物升高,对玻璃窑炉的节能环保运行不利。

因此,如何设计好小炉和喷火口,或者对已经定型运行的马蹄焰窑炉如何合理组织小炉火焰的燃烧工艺,下面作如下几个方面的分析和探讨:一、马蹄焰玻璃窑炉小炉和喷火口的设计:燃料在玻璃窑炉大璇内的燃烧属于扩散式燃烧,助燃空气从舌拱上部和燃气在舌拱下部喷入小炉的速度、厚度及与喷出的交角、燃气与空气的温度、燃气与空气在小炉的合理配比程度等等;首先取决于小炉和喷火口的原始工艺计算和设计布置,而后续的工艺操作控制管理水平决定了出小炉和喷火口火焰形状、燃料在大璇内的燃烧状况,进而影响到火焰对玻璃熔池的热辐射和玻璃配合料的熔制。

目前小炉和喷火口的设计仍以实践经验设计为主,设计和使用管理人员应能用燃烧理论、火焰传热理论去分析、应用和总结实践经验,下面是一些经验设计数据:1、燃煤气小炉下倾角一般在18°—25°范围内选用,燃油小炉一般选用22°—25°,燃烧焦炉煤气、碳氢化合物含量较高的混合煤气和天然气的小炉下倾角可以大些。

在实际生产行中使用重油和石油焦粉的喷火口处的烧嘴砖喷火口枪有5°左右的上仰角,在采用天然气和焦炉煤气时的仰角还要更大些,其目的是让火焰与玻璃液面平行,烧嘴砖一般安装在距喷火口砖0~600mm的位置。

2、小炉喷火焰出口速度(或喷火口面积),小炉喷出口速度一般参照小炉喷出口处相应温度的空气速度来进行计算比较合适。

同时,小炉内煤气火焰的初期着火燃烧点应控制在小炉长度的1/2~2/3,火焰在喷火口的速度控制在8~10m/s之间,对于碳氢化合物含量较高的混合煤气,小炉的设计宽度以取较大值为好。

马蹄焰

马蹄焰

马蹄焰窑的工作原理或生产过程是什么,在蓄热室设计时,是让烟气直接通过蓄热室进入烟道,而蓄热室是一个用耐火材料砌成的空心格子的加热室。

发生炉煤气池窑的蓄热室同时预热空气和煤气,并在小炉内相互混合和预燃。

因此,冷空气和发生炉煤气进入蓄热室后经反复上升与下沉,将格子砖上的热量充分吸收并充分预热,使燃料释放出更多的热量。

烟气在反复上升与下沉的过程中,热量被格子砖充分吸收并蓄积,只有少量热量被废气所带走,绝大部分热量被充分利用到工作中去。

针对浮法玻璃熔窑在超期运行过程中出现的一系列烧损现象,采用多种措施对窑炉进行热修,使窑龄延长一年多。

介绍了在各部位进行热修的具体实施方法。

窑炉的正确使用以及关键部位的维护、保养是延长窑炉使用寿命、延长全线设备使用周期、提高经济效益的根本。

在窑炉后期,热修和维护的工作量会更大,如果维护和保养不及时,方法不创新,达到设计窑龄尚且是难事,更谈不上延长窑炉寿命。

国内某浮法厂在窑炉后期,通过大胆创新的热修、热补以及工艺改进措施,使窑炉使用寿命延长了一年多,为其他浮法玻璃企业在延长窑炉使用寿命方面提供了宝贵经验。

该浮法玻璃熔窑原设计窑龄为3年,至1999年初,已安全运行了3年2个月,超过了设计窑龄。

运行期间,该熔窑先后经历过5次改色,其烧损状况及设备老化状况已严重危及到生产的安全与稳定,按常规计划必须进行冷修。

为减少投资,降低生产成本,决定将该浮法线本届窑龄延长1~1.5年。

熔窑经过三年多的运行,池底、池壁及胸墙、大碹、格子体、小炉碹顶、蓄热室前墙、小熔化部顶碹等部位严重烧损,针对不同部位,采取不同措施,使该处的状况得以缓解。

2 技术措施2.1 加固角铁解决池底砖缝变大的问题上届冷修时,为节约成本,熔窑池底砖没有更换,当时,3#小炉之前的池底砖缝已大于20mm。

在冷修期间专家对该情况作出鉴定:该浮法线以生产着色玻璃为主,本届窑期不能生产粘度较小的透明玻璃,以尽量减小玻璃液的流速,缓解对池底砖的冲刷。

马蹄焰池窑设计范文

马蹄焰池窑设计范文

马蹄焰池窑设计范文引言:一、马蹄焰池窑的设计原理二、马蹄焰池窑的结构设计1.燃烧室:燃烧室一般呈圆形或半圆形,其设计要考虑到燃料的燃烧效率和热能的传输效果。

燃烧室通常由耐高温材料制成,如耐火砖等。

燃烧室的顶部设有燃料进料口,以供燃料的添加。

燃料进料口应设计合理,以保证燃料的均匀燃烧。

2.通风管道:通风管道主要起到热能传输的作用。

燃烧室中的燃料燃烧后产生的热气通过通风管道传输到窑腔中,使陶瓷得以加热和烧制。

通风管道通常由金属材料制成,以保证热气的顺利传输。

通风管道的设计要考虑到热能的损失和烟尘的排放问题。

3.窑腔:窑腔是陶瓷材料的烧制空间,其形状和尺寸可根据具体需求进行设计。

一般来说,窑腔的底部设有燃烧室和通风管道的连接口,以便热气的引入。

窑腔的内部应平整且无尖角,以避免陶瓷材料的破损。

窑腔的门口应设有可开合的门,以便陶瓷的取出和放入。

三、马蹄焰池窑的工作过程1.燃料的添加:在燃烧室的顶部设有燃料进料口,燃料可以是木柴、煤炭或天然气等。

燃料的添加要均匀,以保证燃烧的稳定性和效率。

2.燃烧过程:燃料在燃烧室中燃烧,产生大量的热气和火焰。

热气通过通风管道传输到窑腔中,使陶瓷材料得以加热和烧制。

燃烧过程需要进行控制,以保证燃烧的稳定性和有效性。

3.陶瓷的烧制:热气通过窑腔中的陶瓷材料,使其逐渐加热并烧结。

烧制过程中需要控制热气的温度和流动速度,以保证陶瓷的质量。

烧制时间的长短和烧制温度的高低可以根据具体需求进行调整。

四、马蹄焰池窑的优缺点1.热能利用效率高:燃烧室与窑腔分离,热气通过通风管道传输,使热能得到充分利用。

2.烧制效果好:热气的温度和流动速度可以进行调控,使陶瓷的烧制效果更佳。

3.结构简单:马蹄焰池窑的结构相对简单,制造成本较低。

然而,马蹄焰池窑也存在一些缺点:1.空间利用率低:马蹄焰池窑的结构占用空间较大,不适合场地狭小的地方。

2.烟尘排放问题:燃料的燃烧会产生大量的烟尘,对环境造成污染。

总结:马蹄焰池窑是一种传统的窑炉形式,以其特殊的结构和独特的燃烧方式在陶艺界得到广泛应用。

玻璃工业窑炉2马蹄焰窑B

玻璃工业窑炉2马蹄焰窑B

熔化部
液面面
5
10
积(m2)
W值 (W/ m2 105000 熔化部)
93000
20
75600
30
67500
50
55800
60
52300
80以 上
46500
向周围空间的散热量与熔化部液面面积的关系
Q=Q1+Q2+Q3=Pq玻+K1Q+W Q=( Pq玻+W)/(1-K1) 火焰空间砌体温度不是1400℃时需修正。 经平衡式计算可得V煤和B油。
A=F蓄/F熔 当玻璃t熔上升或预热t空、t煤上升时,A 增
加;
充分利用烟气时, A增加; 低热值燃料 A增加; 格子砖受热性能好,A增加。
A 值确定后,求出F 蓄。 燃油熔窑,即为F 空。 烧煤气发生炉熔窑,为F 空 + F 煤。 k= F 空/F 煤=1.5~2.0(max2.5)
2
2
4)两砖厚砌体
n
4
2(a 1 x)(b x)(c x) 2(a x)(b 1 x)(c x) (a x)(b x)(c x)
2
2
5)堆状砌体(如多层窑底)
n
1
(a x)(b x)(c x)
(2)弓形碹计算
楔型砖
锁砖
拱角砖
fδ R
α B
跨度 B
升高 f 厚度 δ
θ
中心角 θ
热负荷值——每小时每m2熔化面积上消 耗热量,W/ m2;
单位耗热量——熔化每千克玻璃液所耗 总热量,kJ/kg玻璃;
耗煤量或耗油量——熔化每千克玻璃液 耗用的标准煤量或油量,kg煤/kg玻璃 或kg油/kg玻璃。
玻璃池窑先进燃耗指标表

第二章玻璃马蹄焰窑炉结构设计

第二章玻璃马蹄焰窑炉结构设计

第二章玻璃马蹄焰窑炉结构设计
玻璃马蹄焰窑炉是一种用于玻璃加工的特殊类型玻璃熔融装置,具有
高温、高效、节能等优点。

它的结构设计对于降低能耗、提高产能和改善
产品质量具有重要意义。

本文将从炉体结构、炉墙结构和燃烧系统三个方
面讨论玻璃马蹄焰窑炉的结构设计。

首先,炉体结构是玻璃马蹄焰窑炉的基础部分,它直接关系到炉膛的
稳定性和工作效果。

炉体结构应该采用耐火材料,以抵御高温和化学侵蚀。

常用的耐火材料有高铝砖、硅酸盐砖等。

此外,炉体结构还应具备一定的
隔热性能,以减少散热损失。

为了提高炉膛的稳定性,可以在炉体内部设
置加强筋或钢结构支撑,增加整体的承载能力。

其次,炉墙结构对于炉膛的保温和传热有着重要的影响。

炉墙结构通
常由内壁、外壁和隔热层组成。

内壁常用耐火砖,用于抵御玻璃的高温冲
击和化学侵蚀。

外壁通常采用碳钢材料,并带有冷却装置,用于冷却炉壁
和减少外界对炉体的热辐射。

隔热层通常由耐火纤维或耐火浇注料构成,
其作用是减少炉体的热传导和散热损失,提高炉膛的热效率。

综上所述,玻璃马蹄焰窑炉的结构设计对于提高生产效率、降低能耗
和改善产品质量具有重要意义。

炉体结构、炉墙结构和燃烧系统是重要的
设计要素,需要考虑耐火性能、隔热性能、稳定性和高效率等因素。

在设
计过程中,还需要根据具体的生产要求和工艺流程进行优化和调整,以实
现最佳的设计效果。

马蹄焰池窑

马蹄焰池窑
Chap3 马蹄焰池窑
3.1 结构设计 3.2 各部位保温 3.3 能耗计算 3.4 强化池窑作业装置 3.5 砖结构计算 3.6 钢结构计算
1
3.1 结构设计
3.1.1 概述: 先确定池窑各部位的形式、尺寸和材料。绘
出草图。 热工理论计算,砖结构排列与计算、钢结构
布置与计算 原则:技术先进,施工可能,操作方便,经
立柱
tW2
a
α
b
tW1
G
θ
fδ R
F G/2
碹名
半圆碹 标准碹 倾斜碹
悬拱 平拱
碹类型结构
f/B
1/2 1/3~1/7 1/8~1/10
1/12 0
横推力 F 无 小 大
用途
烟道、燃烧室 蓄热室、炉条碹
熔化池大碹
大型窑
由相似三角形,楔型砖基本设计公式为
(a+c)/(b+c)=(R+δ)/R
其中:c为砖缝,2~3mm。
以弓形碹火焰分布均匀,砌筑简单。
R R
弓 形拱 B
箭 头拱 B
r O O'
1 /2 0 ~ 1 / 4 0 B
馒头 拱 B
楔型砖
锁砖
拱角砖
fδ R
α B
跨度 B
升高 f 厚度 δ
θ
中心角 θ
半径 R
碹角 α
tg(
)
2
f
B2 4 f 2 R
sin B
2B
8f
2 2R
拱碹钢结构受力示意图
拉条
预熔池结构有利于提高熔化率,克服跑料现 象,减少飞料及格子体堵塞,延长加料口 寿命。
(4)熔化部面积理论计算: 理论计算前,用经验计算初步确定窑的主要

40平方米马蹄焰玻璃窑炉的冷修

40平方米马蹄焰玻璃窑炉的冷修
危险。
的面积 或 增 加 蓄热 室 的 总体 高度 。这 样 会 导致 工 程 的 工作 量 大 大增 加 , 而且 冷 修 的 费用 会增 加 很
2 、上 部 结构 损坏 ,漏 火 严 重 , 不 能 正 常 熔 化玻 璃 。 3 、蓄 热 室 堵 塞严 重 , 能耗 增 大 ,熔 化 能 力 降低 ,成本 显 著增 加 。
很 大 的 安全 风 险 。在 此 情 况 公司 决 定 放 料冷 F,
修 。冷 修就 是 将 窑 炉温 度 降 到 常温 状 态 下 ,将 窑 炉 损坏 的部 位 拆 除并 重 新 砌筑 。原 因 通 常有 以下 几方面 :
3 0
光 电技 术
第5卷 第4 1 期
l 、与 玻璃 液 接 触 部位 损 坏 严 重 ,有 漏 料 的
2 0 年 。由北京欧亚窑炉公司设计 ,最初是按照 00 用液化石油气作为燃料 的。后来 由于液化石油气 大幅涨价,而重油价格相对低廉 。于20 年左右 02
增 加 了一 套 重 油 燃 烧 系 统 。 既 可 以用 重 油 作 燃
料 ,又可以用液化石油气作燃料 。从增加 了重油 燃烧系统后 ,一直以重油为燃料 。其结构示意图
如下:
图1 我公 司4 平方 米马蹄焰 玻璃窑炉 结构 图 0
此窑炉使用至2 0年底 ,由于流液洞发生挤 05 料 ,加上蓄热室 中换热器损坏严重 。燃料消耗量 大 幅 增 加 ,玻 璃 熔 制 质 量 差 。 产 量 只 有 正 常 的
3 %左 右 。继 续 坚 持 生 产 已毫无 意义 。而 且 要 冒 0
做 的部 分 改进 及 改 进后 的 节 能效 果 。
关键 词 玻璃 熔 制 窑炉 冷 修
1 概 述

第4章 马蹄焰池窑

第4章 马蹄焰池窑

第4章马蹄焰池窑 窑内火焰呈马蹄形流动(在窑内呈U形),仅在熔化部的前端设置一对小炉的玻璃池窑称为马蹄焰池窑(有时亦称U形池窑)。

其示意图如图4—1所示。

马蹄焰池窑的优点是:ⅰ.热利用率高。

马蹄形火焰在窑内呈“U”形,长度可达熔化池长度的1.3~1.5倍,行程较长,因而燃料燃烧充分,同时窑体表面积小,热散失量较少,可提高热利用率,降低燃料消耗。

目前先进的大型马蹄焰池窑比相同熔化面积的横焰池窑热耗量低15~20%。

ⅱ.结构简单,造价低,只有一对小炉布置在熔化池端墙上,而横焰池窑一般有3对以上的小炉,且布置在熔化池两侧,这将使横馅池窑结构复杂,砌筑困难,同时横焰池窑占地面积大,建窑和建厂房的费用都比马蹄焰池窑高,建一座马蹄焰池窑的费用比建同等规模的横焰池窑低25%~30% 马蹄焰池窑的缺点是: ⅰ.沿窑长方向难以建立必要的热工制度,火焰覆盖面积小,在炉宽度上的温度分布不均匀,尤其是火焰换向带来了周期性的温度波动和热点(即玻璃液最高沮度的位置)的移动, ⅱ.一对小炉限制了炉宽,也就限制了炉的规模; ⅲ.燃料燃烧喷出的火焰有时对配合料料堆有推料作用,不利于配合料的熔化澄清,并对花格墙、流液洞盖板和冷却部空间砌体有烧损作用。

马蹄焰池窑与横焰池窑的比较见表4—1。

由于以上特点,马蹄焰池窑已被广泛用于制造对玻璃质量无特别要求的各种空心制品(如瓶罐、器皿、化学仪器、泡壳、玻璃管)、压制品和玻璃球等,其最大熔化面积可达90m2。

4.1 马蹄焰池窑的结构4.1.1 窑池 马蹄焰池窑结构设计的内容是根据生产规模的大小来因地制宜地确定窑池各部位的形第89页式、尺寸和材料。

设计要依据窑炉热工理论、池窑工作原理和生产实践经验,还要进行必要的经验计算。

(1)窑池尺寸 窑池是玻璃熔窑的主要部分。

它的熔化面积、长宽比和池深等几何尺寸必须符合工艺与结构的要求。

①熔化面积熔化部窑池面积按已定的熔窑规模(日产量)和熔化率(常用K表示)估算。

玻璃马蹄焰窑炉介绍

玻璃马蹄焰窑炉介绍

玻璃马蹄焰窑炉介绍一、结构介绍玻璃马蹄焰窑炉由炉体、燃烧器、炉墙、炉托、冷却系统和控制系统等组成。

炉体通常由耐火材料制成,能够承受高温和化学腐蚀。

燃烧器位于炉体底部,用于提供高温燃烧产生的火焰。

炉墙通过隔离空气,保持炉体内外温度的稳定。

炉托用于支撑炉体,使其保持水平和稳定。

冷却系统用于控制炉体内的温度,防止过热和损坏。

控制系统用于监测和调节炉体的温度、压力和其他参数,确保生产过程的稳定和安全。

二、工作原理1.燃烧过程:燃烧器将燃料和空气混合后点火燃烧,产生高温火焰。

火焰经过炉墙进入炉内,使得炉体内的温度升高。

2.玻璃熔融:原料中的玻璃在高温下熔化,形成熔状玻璃。

炉体内的高温环境导致玻璃变得流动,以便进行下一步的成型和加工。

3.循环燃烧:炉体内的燃烧产生的废气经过特殊的循环路径,被引导回到燃烧器重新燃烧。

这种循环燃烧可以提高能量利用率,降低能源消耗。

4.冷却过程:通过冷却系统对炉体进行控制,使得玻璃逐渐冷却并固化。

冷却过程需要严格控制温度,以保证玻璃成型的质量和效率。

三、应用领域1.高效生产:玻璃马蹄焰窑炉具有高温高效的特点,能够在较短的时间内完成玻璃的熔融和成型,提高生产效率。

2.质量控制:炉体内的温度和气氛控制可以实现对玻璃成品质量的控制,确保产品具有一致的性能和外观。

3.节能环保:循环燃烧系统可以有效提高能源利用率,降低能源消耗。

同时,炉体的冷却系统可以减少能源浪费,保护环境。

4.灵活适应性:玻璃马蹄焰窑炉可以根据不同的生产需求进行调整和优化,以适应不同类型和规格的玻璃生产。

综上所述,玻璃马蹄焰窑炉是一种高效、质量可控、节能环保的玻璃熔融和成型设备。

其独特的结构和工作原理使得它在玻璃行业的应用范围广泛,并在生产效率和质量上具有竞争优势。

马蹄焰池窑设计

马蹄焰池窑设计

马蹄焰池窑设计窑炉及设计(玻璃)课程设计说明书题目:年产1.2万吨玻璃酒瓶燃油马蹄焰池窑的设计学生姓名:学号:院(系):材料科学与工程学院专业:无机非金属材料工程指导教师:2012 年 6 月 17 日陕西科技大学窑炉及设计(玻璃)课程设计任务书材料科学与工程学院无机非金属材料工程专业班级学生:题目:年产1.2万吨玻璃酒瓶燃油马蹄焰池窑的设计课程设计从2012 年6 月4 日起到2012 年6 月17 日1、课程设计的内容和要求(包括原始数据、技术要求、工作要求等):(1) 原始数据:a.产品规格:青白酒瓶容量500mL, 重量400g/只b.行列机年工作时间及机时利用率:313 天,95%c.机速:QD6行列机青白酒瓶38只/分钟d.产品合格率:90%e.玻璃熔化温度1430℃f.玻璃形成过程耗热量q玻=2350kJ/kg玻璃液g.重油组成(质量分数%),见表1。

表1 重油组成(2) 设计计算说明书组成(电子纸质版)参考目录如下1.绪论1.1设计依据1.2简述玻璃窑炉的发展历史及今后的发展动向1.3对所选窑炉类型的论证1.4有关工艺问题的论证2.设计计算内容2.1日出料量的计算2.2熔化率的选取2.3熔窑基本结构尺寸的确定2.4燃料燃烧计算2.5燃料消耗量的计算2.6小炉结构的确定与计算2.7蓄热室的设计2.8窑体主要部位所用材料的选择和厚度的确定3.主要技术经济指标4.对本人设计的评述参考文献设计说明书格式见《陕西科技大学课程设计说明书撰写格式暂行规范》。

(3)图纸要求采用绘图纸铅笔绘制,图纸断面见参考图。

图幅大小见表3。

各断端面绘图比例必须一致。

表3 图纸要求2、对课程设计成果的要求〔包括图表、实物等硬件要求〕:1、绪论课程设计是培养学生运用《玻璃窑炉及设计》课程的理论和专业知识,解决实际问题,进一步提高设计、运算、使用专业资料等能力的重要教学环节。

目的是使学生受到设计方法的初步训练,逐步树立正确的设计观点,增强设计能力、创新能力和综合能力,初步掌握窑炉及其它热工设备设计的基本知识和技能,并对所学窑炉热工理论知识进行验证和深化,为将来从事生产、设计、研究及教学等方面工作打下良好的基础。

玻璃马蹄焰窑炉结构设计

玻璃马蹄焰窑炉结构设计

玻璃马蹄焰窑炉结构设计首先,玻璃马蹄焰窑炉的基本结构包括窑体、燃烧室、燃烧系统、温度控制系统和排放系统。

窑体是玻璃熔化的主要区域,需要具备一定的承重能力和耐高温的特性。

一般情况下,窑体会采用耐火材料进行修建,例如高铝砖、耐火石棉板等。

此外,窑体还应具备良好的隔热性能,以减少能源的浪费。

燃烧室是窑体内部的燃烧区域,通常位于窑体的一侧或底部。

其主要作用是燃烧燃料产生高温火焰,以供给窑体进行玻璃熔化。

燃烧室的结构设计应考虑到燃料的种类和供氧情况,确保燃烧效果良好且稳定。

同时,为了方便清理和维护,燃烧室通常还会设计有可拆卸的燃烧室内壁。

燃烧系统是玻璃马蹄焰窑炉的关键部分,包括燃料供应、燃烧风机、点火装置等。

燃料供应系统一般选择液体燃料或气体燃料,如天然气、液化石油气等。

燃烧风机用于提供燃烧室所需的氧气,保证燃烧过程中火焰的正常运行。

点火装置则用于点燃燃料并维持火焰的稳定运行。

温度控制系统是玻璃马蹄焰窑炉的重要组成部分,其主要功能是控制窑体内的温度,确保玻璃熔化过程的稳定性。

温度控制系统一般由温度传感器、控制器和执行机构组成。

温度传感器位于窑体内部,用于实时监测温度变化。

控制器接收传感器的信号,并通过执行机构控制燃料供应量、燃烧风速等,以实现对温度的自动控制。

排放系统主要用于处理产生的废气和废渣。

废气一般经过过滤和净化设备进行处理,以减少对环境的污染。

废渣则通过排渣装置进行收集和清理,以便后续处理或回收利用。

综上所述,玻璃马蹄焰窑炉的结构设计应考虑到窑体的强度和隔热性能,燃烧室的燃烧效果和可维护性,燃烧系统的燃料供应和稳定性,温度控制系统的温度监测和控制精度,以及排放系统的废气和废渣处理。

只有在这些方面的综合考虑下,才能设计出高效节能且安全可靠的玻璃马蹄焰窑炉。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

玻璃窑炉马蹄焰池窑简介
1.结构尺寸
(1)熔化面积。

窑炉的熔化率主要取决于熔化温度,因为中碱和无碱玻璃球窑的熔制温度比较高,如果进一步提高熔化温度来提高熔化率,会加速对耐火材料的侵蚀,降低球质和影响炉龄。

而采取鼓泡和电助熔技术可以相应提高中下层玻璃温度,促进玻璃的均化,并且提高熔化率。

(2)熔池长宽比。

长宽比越大,玻璃原料从熔化到澄清的行程也大,这有利于玻璃质量的控制和提高,而长宽比又受到小炉结构设计、火焰长度及拐弯要求的限制。

采用高热值燃料的球窑池长可达到10mm,所以可选择较大的长宽比。

而采用低热值燃料的球窑应选择较小的长宽比。

一般长宽比选用范围为1.4—2.0。

(3)池深。

池深不仅影响到玻璃液流和池底温度,而且影响玻璃液的物理化学均匀性以及窑炉的熔化率。

一般池底温度在1200—1360℃之间较为合适。

池底温度的提高可使熔化率提高。

但池底温度高于1380℃时,需要提高池底耐火材料的质量及品种,否则则会加速池底的侵蚀并降低炉龄,且会增加玻璃球的结石含量,这对后道拉丝生产是不利的,影响池底温度的决定性因素是玻璃的铁含量和玻璃气氛。

当Fe2O3含量在0.25—0.3%范围内时,池深800—1200mm的玻璃球窑,其垂直温降约为15—30℃/100mm。

(3)工作池。

选择半圆形工作池时,其半径R决定于制球机台数与布置方式。

一般工作池半径小于等于熔化池池宽,工作池深度浅于熔化池池深300—400mm。

(4)投料池。

为了获得稳定的玻璃质量,一般在池壁两侧设置一
对投料池,随换火操作交替由火根投料。

投料池中心线与窑炉池壁的距离主要决定于小炉喷火口的温度,温度越高距离可缩小。

一般其距离可定在0.8—1.0m。

(5)流液洞。

流液洞的功能是降温和均化。

采用沉式流液洞比采用直通式流液洞温降大。

而均化效果受液洞高度影响较大。

如高度越小则均化效果越好。

所以设计流液洞宽度一般应大于其高度。

在不考虑玻璃回流的情况下,玻璃流经流液洞的平均速度可取5—20m/h。

(6)胸墙高度。

胸墙高度应根据窑炉容积发热强度来确定,目前容积发热强度设计值一般取60—200KW/m3(相当于50—180*103kcal/N.m3),比早期的数据已有明显下降,这说明提高了胸墙高度,而且采用质量改善的耐火材料和较好的保温效果,使窑炉热损失减少,大容积空间更有利于燃料的完全燃烧和增强其容积辐射强度,有利于提高熔制质量和降低能耗。

2.小炉设计
小炉是球窑的关键部位,小炉喷出口角度和喷出的速度对燃料燃烧和火焰形状有重要的影响。

不合理的设计会使火焰冲击胸墙和大碹,并造成不完全燃烧。

燃料在球窑内的燃烧属于扩散式燃烧,助燃空气从小炉口喷出的速度、厚度及与燃料喷出的交角、助燃空气的温度、燃油雾化的程度、油枪在小炉内的布置等因素不仅决定了火焰形状、燃料燃烧状况,而且还影响到火焰对玻璃熔池的热辐射。

目前小炉设计仍以实践经验为主,一个成功的设计者应能用燃烧理论、火焰传热理论去分析、应用和总结实践经验。

(1)小炉下倾角一般在18—35°范围内选用,燃油小炉一般选用22—25°,燃烧天然气和干气的小炉下倾角可以大些。

在实际生产行中油枪有5°左右的上仰角,在采用天然气和干气时的仰角还要更大些,其目的是让火焰与玻璃液面平行。

(2)小炉喷出口速度(或小炉出口面积),由于燃油雾化后喷入窑炉空间的燃烧过程中伴随着油雾的气化过程,因此燃料混合物喷出的速度大,气化膨胀的阻
力也大,油类燃料在窑内的停留时间一般比天然气燃料的时间长,因此燃油小炉喷出的速度可以稍低。

当改用天然气时,如果喷出速度太低,会造成燃烧不完全。

小炉喷出口速度一般参照小炉喷出口处相应温度的空气速度来进行计算比较合适。

小炉喷出的助燃空气要有一定的容积厚度,取其宽高比为2—3.5。

为了使火焰不直接冲刷胸墙,两座小炉内侧间距应不小于0.6,小炉外侧与胸墙间距不小于0.3。

燃烧器布置在小炉下面,一般为2—3只,烧嘴间距为0.4—0.5m。

采用天然气和干气燃烧时,如蓄热池宽度小于6m,燃气喷嘴最好放在小炉两侧,不然容易产生不完全燃烧。

3.蓄热室热工计算
目前对蓄热室的研究比较多,可以通过热工计算进行设计。

由于热气流在冷却过程中由上而下的流向,可以使同一截面的气流温度趋于均匀,而气体被加热时由下而上的流动又使截面间气体的温度也趋向均匀,采用立式蓄热室的气流正符合这种规则,而且具
有占地少、容易清灰的优点,被广泛采用。

蓄热室的热工计算包括蓄热室热平衡和蓄热室传热计算,二者的结果必须相符。

即热平衡中空气吸收的热量,必须在传热中实现,否则。

相关文档
最新文档