中考数学知识点总结完整版第一轮
中考一轮知识点归纳总结
中考一轮知识点归纳总结中考是对初中学生学业水平的一次全面检测,考察的内容涵盖了多个学科的知识点。
为了便于学生们复习备考,现对中考一轮知识点进行归纳总结,帮助大家理清知识框架,更好地应对考试。
数学数学作为一门基础学科,在中考中占据重要的地位。
下面对中考数学的知识点进行总结:一、整数与有理数1. 整数运算:包括整数的加减乘除、绝对值等。
2. 有理数的概念:包括有理数的定义和性质。
3. 有理数之间的大小比较:包括相同符号的有理数比较大小和不同符号的有理数比较大小。
二、代数基础1. 代数字母的应用:包括对代数字母的认识及在公式和方程中的应用。
2. 一元一次方程:包括方程的定义、解方程的方法等。
3. 列式与方程:包括如何根据问题列方程和解方程。
三、几何1. 几何图形的认识:包括平面图形和立体图形的基本性质。
2. 平面图形的计算:包括平面图形的面积和周长的计算方法。
3. 空间图形的计算:包括空间图形的体积和表面积的计算方法。
四、概率与统计1. 概率的基本概念:包括事件、样本空间、概率等。
2. 计数原理:包括排列组合等计数方法。
3. 统计学:包括平均数、中位数和众数的计算方法。
英语英语作为一门国际性语言,在中考中也有着重要的地位。
以下是对中考英语的知识点进行总结:一、词汇与语法1. 词汇:包括常用词汇的掌握、词义的理解等。
2. 语法:包括主谓一致、时态、语态、被动语态、条件句等。
二、阅读理解1. 短文理解:包括根据短文内容回答问题、判断正误等。
2. 长文阅读:包括对长文的整体理解和主旨归纳。
三、写作能力1. 书面表达:包括书信、日记、作文等不同类型的写作表达。
2. 写作技巧:包括段落结构、语言表达准确性等写作要点。
四、听力技巧1. 听力理解:包括听力材料的整体理解以及细节抓取。
2. 对话和短文听写:包括对短对话和短文的听写和填空。
物理物理是一门实验性科学,它旨在研究物质和能量的基本规律。
以下是对中考物理的知识点进行总结:一、力和压力1. 力的定义:包括力的概念和力的计量单位。
2024中考数学一轮复习核心知识点精讲—圆的基本性质与圆有关的位置关系
2024中考数学一轮复习核心知识点精讲—圆的基本性质与圆有关的位置关系1.探索并了解点和圆、直线和圆以及圆和圆的位置关系.2.知道三角形的内心和外心.3.了解切线的概念,并掌握切线的判定和性质,会过圆上一点画圆的切线.考点1:点与圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:d<r⇔点P在⊙O内;d=r⇔点P在⊙O上;d>r⇔点P在⊙O外。
考点2:直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;r d=r r dd考点3:切线的性质与判定定理1、切线的判定定理:过半径外端且垂直于半径的直线是切线;两个条件:过半径外端且垂直半径,二者缺一不可即:∵MN OA ⊥且MN 过半径OA 外端∴MN 是⊙O 的切线2、性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点。
推论2:过切点垂直于切线的直线必过圆心。
以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
考点4:切线长定理切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
即:∵PA 、PB 是的两条切线∴PA PB =;PO 平分BPA∠考点5:三角形的内切圆和内心(1)三角形的内切圆与三角形的各边都相切的圆叫做三角形的内切圆。
(2)三角形的内心三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。
注意:内切圆及有关计算。
(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。
(2)△ABC 中,∠C=90°,AC=b ,BC=a ,AB=c ,则内切圆的半径r=2cb a -+。
(3)S △ABC =)(21c b a r ++,其中a ,b ,c 是边长,r 是内切圆的半径。
中考数学一轮复习知识点总结完整版
中考数学一轮复习知识点总结完整版中考数学是一个综合性较强的学科,考察的知识点广泛且涵盖面较大。
下面是中考数学一轮复习的知识点总结,希望对大家的复习有所帮助。
一、数字与运算1.自然数、整数、有理数、实数、正负数的概念和性质;2.整除与倍数的概念和性质;3.分数的概念、性质和简化;4.百分数的概念、性质和应用;5.有理数四则运算,包括加减乘除的计算和性质;6.根号的概念和性质;7.科学计数法的概念和应用。
二、代数式与方程式1.代数式的概念、字母与数的关系和计算;2.方程的概念和性质;3.一次方程和一元一次方程;4.一元一次方程的解法和应用;5.二元一次方程组;6.一元二次方程及其解法。
三、几何基本概念1.点、线、面、角的基本概念;2.平行线与垂直线的性质;3.直角三角形的基本性质;4.同位角、内错角、同旁内角的概念和性质;5.一次性证明、角度和长度的估算。
四、函数与图像1.函数和自变量、因变量的概念;2.一次函数的图像和性质;3.二次函数的图像和性质;4.函数与方程的关系;5.线性函数和二次函数的应用。
五、统计与概率1.统计调查、样本和总体;2.频数、频率和密度的概念和计算;3.四则运算和统计的应用;4.试验、样本空间、事件的概念;5.概率的定义、性质和计算;6.简单事件、必然事件、不可能事件的概念。
六、数与图的表示与分析1.数量的估算、数轴、符号表示和近似计算;2.表格和图表的读取、分析和应用;3.直方图、折线图、饼图的绘制、读取和分析。
七、三角与圆1.三角形的基本概念和性质;2.三角形的相似性;3.角的平分线与垂直平分线;4.周长、面积和体积的计算;5.圆的基本概念和性质;6.圆内接四边形的性质。
八、空间与形体1.空间直线的判定和性质;2.平面与空间直线的位置关系和夹角的判定;3.空间点距离的计算;4.空间图形的投影和旋转;5.空间图形的展开和折叠。
这是中考数学一轮复习的知识点总结,希望对同学们的复习有所帮助。
初中数学中考一轮复习专题1数与式重点、考点知识、方法总结及真题练习
在实数范围内,正数和零统称为非负数.我们已经学习过的非负数有如下三种形式:
(1)仸何一个实数 a 的绝对值是非负数,即| a |≥0; (2)仸何一个实数 a 的平方是非负数,即 a2 ≥0; (3)仸何非负数的算术平方根是非负数,即 a 0 ( a 0 ).
非负数具有以下性质: (1)非负数有最小值零; (2)有限个非负数乊和仍是非负数; (3)几个非负数乊和等于 0,则每个非负数都等于 0. 4.实数的运算
a a (a 0, b 0) bb
②.加减法
将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数丌变,
即合并同类二次根式.
【典例】
1.计算:5 +
﹣×+ ÷.
【答案】 【解析】解:原式= + ﹣
+3 ÷
=2 ﹣1+3
=2 +2.
x xy xy y
2.若 x 0 ,化简
注:单独一个字母戒一个数也是代数式.
2.代数式的分类:
3.代数式的书写规则: (1)数字不字母相乘戒字母不字母相乘,通常把乘号写作“ ”戒省略丌写,字母乊间的
顺序可以交换,但一般按字母表中的先后顺序写.数字应在字母乊前.如: 3b 丌要写成 b3 (2)在代数式中出现除法运算时,一般都变成分数和乘法来计算.如: 2a b 写成 2a
x
2
0
即
x
1 且x 2
2
.
【难度】易
【结束】
2.若
,则 ( )
A. b>3B. b<3C. b≥3D. b≤3
【答案】D.
【解析】
3 b = 3 b ,所以 3 b ≥0,即 b 3 .
中考数学知识点总结(完整版) 第一轮
中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不循环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=0 2、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
中考第一轮复习知识要点总结
中考数学第一轮基础知识要点总结一.实数⑴ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应. ⑵ 实数a 的相反数为________. 若a ,b 互为相反数,则b a += . ⑶ 非零实数a 的倒数为______. 若a ,b 互为倒数,则ab = .⑷ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数. ⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字. 2.数的开方⑴ 任何正数a 都有______个平方根,它们互为________.其中正的平方根a 叫 _______________. 没有平方根,0的算术平方根为______. ⑵ 任何一个实数a 都有立方根,记为 .⑶ =2a ⎩⎨⎧<≥=)0( )0( a a a .3. 实数的分类 和 统称实数. 4. =0a (其中a 0 且a 是 )=-pa(其中a 0)二.整式(1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的 叫做这个单项式的次数.(2) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫 做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 .(3) 整式: 与 统称整式.4. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 ___.5. 幂的运算性质: a m ²a n = ; (a m )n = ; a m ÷a n =_____; (ab)n= . 三.因式分解 1. 因式分解:就是把一个多项式化为几个整式的 的形式.分解因式要进行到每一个因式都不能再分解为止.2. 因式分解的方法:⑴ ,⑵ ,⑶ ,3. 提公因式法:=++mc mb ma __________ _________.4. 公式法: ⑴ =-22b a ⑵ =++222b ab a ,⑶=+-222b ab a .5. 十字相乘法:()=+++pq x q p x 2 . 6.因式分解的一般步骤:一“提”(取公因式),二“用”(公式). 7.易错知识辨析(1)注意因式分解与整式乘法的区别;(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式. 1.简便计算:=2271.229.7-.2.分解因式:=-x x 422____________________. 3.分解因式:=-942x ____________________. 4.分解因式:=+-442x x ____________________. 5.(08凉山)分解因式2232ab a b a -+= . 6.(08泰安)将3214x x x +-分解因式的结果是 . 四.分式1. 分式:整式A 除以整式B ,可以表示成 AB的形式,如果除式B 中含有 ,那么称 A B 为分式.若 ,则 A B 有意义;若 ,则 AB 无意义;若 ,则 AB=0. 2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的 .用式子表示为 . 3. 约分:把一个分式的分子和分母的 约去,这种变形称为分式的约分.4.通分:根据分式的基本性质,把异分母的分式化为 的分式,这一过程称为分式的通分. (1) 当x 时,分式x-13无意义; (2)当x 时,分式392--x x 的值为零. 例2 ⑴ 已知 31=-x x ,则221xx + = . ⑵(08芜湖)已知113x y -=,则代数式21422x xy yx xy y----的值为 .例3 先化简,再求值:(1)(08资阳)(212x x --2144x x -+)÷222x x-,其中x =1.⑵(08乌鲁木齐)221111121x x x x x +-÷+--+,其中1x =. 五.二次根式1.二次根式的有关概念⑴ 式子)0(≥a a 叫做二次根式.注意被开方数a 只能是 .并且根式. ⑵ 简二次根式被开方数所含因数是 ,因式是 ,不含能 的二次根式,叫做最简二次根式. (3) 同类二次根式化成最简二次根式后,被开方数 几个二次根式,叫做同类二次根式.2.二次根式的性质 ⑴; ⑵()=2a (a ≥0) ⑶ =2a ;⑶ =ab (0,0≥≥b a ); ⑷ =ba(0,0>≥b a ). 六、方程(组)和不等式(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等不是一元一次方程.(2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.当m 取什么整数时,关于x 的方程1514()2323mx x -=-的解是正整数? 解下列方程:()()()(1) 3175301x x x --+=+; (2)121253x x x-+-=-. 解下列方程组:(1){4519323a b a b +=--= (2){2207441x y x y ++=-=-例2 (08泰安)某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8∶20~12∶00,下午14∶00~16∶00,每月25天; 信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分? (2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?8. 某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元. ① 求该同学看中的随身听和书包单价各是多少元?② 某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是21,2(40)2b x b ac a-=-≥.(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.选用合适的方法解下列方程:(1))4(5)4(2+=+x x ; (2)x x 4)1(2=+; (3)22)21()3(x x -=+; (4)31022=-x x .例2 已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m 的值. 1. 一元二次方程根的判别式:关于x 的一元二次方程()002≠=++a c bx ax 的根的判别式为 . (1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 实数根,即=2,1x .(2)ac b 42-=0⇔一元二次方程有 相等的实数根,即==21x x . (3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根.3.解方程12112-=-x x 会出现的增根是( ) A .1=x B.1-=x C. 1=x 或1-=x D.2=x4.(06泸州)如果分式12-x 与33+x 的值相等,则x 的值是( )A .9B .7C .5D .3 5.(06临沂)如果3:2:=y x ,则下列各式不成立的是( )A .35=+y y x B .31=-y x y C .312=y x D .4311=++y x 6.(08宜宾)若分式122--x x 的值为0,则x 的值为( ) A. 1 B. -1 C. ±1 D.22 (08东莞)在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉昔车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.例3 某中学库存960套旧桌凳,修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务.经协商后得知:甲小组单独修理这批桌凳比乙20天;乙小组每天比甲小组多修8套;学校每天需付甲小组修理费80元,付乙小组120元.(1)求甲、乙两个木工小组每天各修桌凳多少套.(2)在修理桌凳过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有以下三种修理方案供选择:① 由甲单独修理;② 由乙单独修理;③ 由甲、乙共同合作修理.你认为哪种方案既省时又省钱?试比较说明.2.(08福建)若关于x 方程2332+-=--x mx x 无解,则m 的值是 . 3. (08黄冈)分式方程3111122=---x x 的解是 . 4. 以下是方程1211=--xxx 去分母、去括号后的结果,其中正确的是( ) A .112=--x B.112=+-x C.x x 212=+- D.x x 212=--5.(08泰安)分式方程21124x x x -=--的解是( ) A .32- B .2- C .52- D .326. (06重庆)分式方程1421-=+-x x x 的解是( ) A.71=x , 12=x B. 71=x ,12-=x C. 71-=x , 12-=x D. 71-=x 12=x8.(07玉林)今年五月,某工程队(有甲、乙两组)承包人民路中段的路基改造工程,规定若干天内完成.(1) 已知甲组单独完成这项工程所需时间比规定时间的2倍多4天,乙组单独完成这项工程所需时间比规定时间的2倍少16天.如果甲、乙两组合做24天完成,那么甲、乙两组合做能否在规定时间内完成?(2) 在实际工作中,甲、乙两组合做完成这项工程的65后,工程队又承包了东段的改造工程,需抽调一组过去,从按时完成中段任务考虑,你认为抽调哪一组最好?请说明理由.不等式的基本性质:(1)若a <b ,则a +c c b +;(2)若a >b ,c >0则ac bc (或c a c b ); (3)若a >b ,c <0则ac bc (或c a cb).5.(08义乌)不等式组312840x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )A .B .C .D .6.(08宁波)解不等式组3(2)41 1.2x x x ++⎧⎪⎨-<⎪⎩≥,7.(08安徽)解不等式组314,2 2.x x x ->⎧⎨<+⎩,并把它的解集表示在数轴上.例2(07绵阳)绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?例3 (07南充)某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用) (2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)【中考演练】 1.(08泰州)用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的 深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够 时,每次钉入木块的钉子长度是前一次的12.已知这个铁钉被敲 击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2cm ,若铁钉总长度为a cm ,则a 的取值范围是. 2.海门市三星镇的叠石桥国际家纺城是全国最大的家纺专业市场,年销售额突破百亿元.2005年5月20现购买这两种产品共80条,付款总额不超过2万元.问最多可购买羽绒被____条.3.(08苏州)6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只环保购物袋至少..应付给超市元.6. (07成都) 某校九年级三班为开展“迎2008年北京奥运会”的主题班会活动,派了小林和小明两位同学去学校附近的超市购买钢笔作为奖品,已知该超市的锦江牌钢笔每支8元,红梅牌钢笔每支4.8元,他们要购买这两种笔共40支.(1)如果他们一共带了240元,全部用于购买奖品,那么能买这两种笔各多少支?(2)小林和小明根据主题班会活动的设奖情况,决定所购买的锦江牌钢笔数量要少于红梅牌钢笔的数量的12,但又不少于红梅牌钢笔的数量的14.如果他们买了锦江牌钢笔x支,买这两种笔共花了y元,①请写出y (元)关于x (支)的函数关系式,并求出自变量x的取值范围;②请帮他们计算一下,这两种笔各购买多少支时,所花的钱最少,此时花了多少元?8.(06贵阳)某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元;(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上那种购买方案?2.3. x0.4. P(x,y)关于x轴对称的点坐标为__________,关于y轴对称的点坐标为________,关于原点对称的点坐标为___________.⑴在平面直角坐标系中,点A、B、C的坐标分别为A(-•2,1),B(-3,-1),C(1,-1).若四边形ABCD为平行四边形,那么点D的坐标是_______.(2)将点A(3,1)绕原点O顺时针旋转90°到点B,则点B•的坐标是_____.1.正比例函数的一般形式是__________.一次函数的一般形式是__________________.2. 一次函数y kx b=+的图象是经过和两点的 .3.求一次函数的解析式的方法是,其基本步骤是:⑴;⑵;⑶;⑷ .4.一次函数y kx b=+的图象与性质k>0b>0 k>0 b<0 k<0 b>0ab +例1 已知一次函数物图象经过A(-2,-3),B(1,3)两点.⑴ 求这个一次函数的解析式.⑵ 试判断点P(-1,1)是否在这个一次函数的图象上. ⑶ 求此函数与x 轴、y 轴围成的三角形的面积.例2 (08广东)某农户种植一种经济作物,总用水量y (米3)与种植时间x (天)之间的函数关系式如图所示. ⑴ 第20天的总用水量为多少米3?⑵ 当x ≥20时,求y 与x 之间的函数关系式. ⑶ 种植时间为多少天时,总用水量达到7000米3?7.(07浙江)一次函数1y kx b =+与2y x a =+的图象 如图,则下列结论:①0k <;②0a >;③当3x < 时,12y y <中,正确的个数是( )A .0B .1C .2D .3 某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.⑴ 写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式: ① 当用水量小于或等于3000吨时 ; ② 当用水量大于3000吨时 .⑵ 某月该单位用水3200吨,水费是 元;若用水2800吨,水费 元. ⑶ 若某月该单位缴纳水费1540元,则该单位用水多少吨?.中国电信公司最近推出的无线市话小灵通的通话收费标准为:前3分钟(不足3分钟按3分钟)为0.2元;3分钟后每分钟收0.1元,则一次通话实际那为x 分钟(x >3)与这次通话的费用y (元)之间的函数关系是( )A .y =0.2+0.1xB .y =0.1xC .y =-0.1+0.1xD .y =0.5+0.1x 7. 某学校组织团员举行申奥成功宣传活动,从学校骑车 出发,先上坡到达A 地后,宣传8分钟;然后下坡到B 地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A 地仍要宣传8分钟,那么他们从B 地返回学校用的时间是( ) A.45.2分钟 B.48分钟 C.46分钟 D.33分钟9. 某市的A 县和B 县春季育苗,急需化肥分别为90吨和60吨, 该市的C 县和D 县分别储存天)化肥100吨和50吨,全部调配给A 县和B 县.已知C 、D 两县运化肥到A 、B 两县的运费(元/吨)(1) 设C 县运到A 县的化肥为x 吨,求总费W(元)与x(吨)的函数关系式,并写出自变量x 的取值范围;(2) 求最低总运费,并说明总运费最低时的运送方案.1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质3.k 的几何含义:反比例函数y =kx(k ≠0)中比例系数k 的几何 意义,即过双曲线y =kx(k ≠0)上任意一点P 作x 轴、y 轴 垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 . 【典例精析】例1 某汽车的功率P 为一定值,汽车行驶时的速度v (米/秒)与它所受的牵引力F (牛)之间的函数关系如右图所示:(1)这辆汽车的功率是多少?请写出这一函数的表达式;(2)当它所受牵引力为1200牛时,汽车的速度为多少千米/时? (3)如果限定汽车的速度不超过30米/秒,则F 在什么范围内?例2 (07四川)如图,一次函数y kx b =+的图象与反比例函数my =的图象交于 (21)(1)A B n -,,,两点.(1(2)求AOB △的面积.6.(08嘉兴)某反比例函数的图象经过点(23)-,,则此函数图象也经过点( )A .(23)-,B .(33)--,C .(23),D .(46)-,7.(07江西)对于反比例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它的图象上 B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小8.(08乌鲁木齐)反比例函数6y x=-的图象位于( ) A .第一、三象限 B .第二、四象限 C .第二、三象限 D .第一、二象限 10.(07四川)如图,已知A(-4,2)、B(n ,-4)是一次函数y kx b =+的图象与反比例函数my x=的图象的两个交点. (1) 求此反比例函数和一次函数的解析式;(2) 根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.1. 二次函数2()y a x h k =-+的图像和性质a >02. 二次函数c bx ax y ++=2用配方法可化成()k h x a y +-=2的形式,其中 h = , k = .3. 二次函数2()y a x h k =-+的图像和2ax y =图像的关系.1. 抛物线()22-=x y 的顶点坐标是 .2. 请写出一个开口向上,对称轴为直线x =2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .6. (06浙江) 二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论: ①a >0; ②c >0; ③ b 2-4a c >0,其中正确的个数是( ) A. 0个 B. 1个 C. 2个 D. 3个1. 二次函数y =2x 2-4x +5的对称轴方程是x =___;当x = 时,y 有最小值是 .2. 有一个抛物线形桥拱,其最大高度为16米,跨度为40米, 现在它的示意图放在平面直角坐标系中(如右图),则此 抛物线的解析式为 .3. 某公司的生产利润原来是a 元,经过连续两年的增长达到了y 万元,如果每年增长的百分数都是x ,那么y 与x 的函数关系是( )A .y =x 2+aB .y = a (x -1)2C .y =a (1-x )2D .y =a (l +x )21. 二次函数的解析式:(1)一般式: ;(2)顶点式: ;2. 顶点式的几种特殊形式.⑴ , ⑵ , ⑶ ,(4) .3.二次函数c bx ax y ++=2通过配方可得224()24b ac b y a x a a-=++,其抛物线关于直线x = 对称,顶点坐标为( , ).⑴ 当0a >时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 ;⑵ 当0a <时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 . 例2 橘子洲头要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP ,柱子顶端P处装上喷头,由P 处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知OP =3米,喷出的水流的最高点A 距水平面的高度是4米,离柱子OP 的距离为1米.(1)求这条抛物线的解析式;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?体育测试时,初三一名高个学生推铅球,已知铅球所经过的路线为抛物线21212++-=x x y 的一部分,根据关系式回答: ⑴ 该同学的出手最大高度是多少?⑵ 铅球在运行过程中离地面的最大高度是多少? ⑶ 该同学的成绩是多少?如右图,抛物线n x x y ++-=52经过点)0,1(A ,与y 轴交于点B.(1)求抛物线的解析式;(2)P 是y 轴正半轴上一点,且△PAB 是等腰三角形,试求点P 的坐标.4.(06威海)的图像分别交于A 、B 两点,若A 点的坐标为(a ,b ),则B 点 的坐标为( )A .(a ,b )B .(b ,a )C .(-b ,-a )D .(-a ,-b )5. 二次函数y =x 2+2x -7的函数值是8,那么对应的x 的值是( ) A .3 B .5 C .-3和5 D .3和-56.下列图中阴影部分的面积与算式122)21(|43|-++-的结果相同的是( )反比例函数y =xk的图象在第一象限的分支上有一点A (3,4),P 为x 轴正半轴上的一个动点,(1)求反比例函数解析式.(2)当P 在什么位置时,△OPA 为直角三角形,求出此时P 点的坐标.10.(08枣庄)如图,在直角坐标系中放入一个边长OC 为9的矩形纸片ABCO .将纸片翻折后,点B 恰好落在x 轴上,记为B ′,折痕为CE ,已知tan ∠OB ′C =34. (1)求B ′点的坐标;(2)求折痕CE 所在直线的解析式.1.二次函数c bx ax y ++=2通过配方可得(y a x =⑴ 当0a >时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 ;⑵ 当0a <时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 . 2. 每件商品的利润P = - ;商品的总利润Q = ³ .例1 近年来,“宝胜”集团根据市场变化情况,采用灵活多样的营销策略,产值、利税逐年大幅度增长.第六销售公司2004年销售某型号电缆线达数万米,这得益于他们较好地把握了电缆售价与销售数量之间的关系.经市场调研,他们发现:这种电缆线一天的销量y (米)与售价x (元/米)之间存在着如图所示的一次函数关系,且40≤x ≤x x B F A C D ExG70.(1) 根据图象,求y与x之间的函数解析式;(2) 设该销售公司一天销售这种型号电缆线的收入为w元.① 试用含x 的代数式表示w;② 试问当售价定为每米多少元时,该销售公司一天销售该型号电缆的收入最高?最高是多少元?1. 如图所示,在直角梯形ABCD 中,∠A =∠D =90°,截取AE =BF =DG =x.已知AB =6,CD =3,AD =4;求四边形CGEF 的面积S 关于x 的函数表达式和x 的取值范围.2. (06沈阳) 某企业信息部进行市场调研发现:信息一:如果单独投资A 种产品,则所获利润A y (万元)与投资金额x (万元)之间存在正比例函数关系:A y kx =,并且当投资5万元时,可获利润2万元;信息二:如果单独投资B 种产品,则所获利润B y (万元)与投资金额x (万元)之间存在二次函数关系:2B y ax bx =+,并且当投资2万元时,可获利润2.4万元;当投资4万元,可获利润3.2万元.(1) 请分别求出上述的正比例函数表达式与二次函数表达式; (2) 如果企业同时对A 、B 两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少.3. 如图,已知矩形OABC 的长OAOC =1,将△AOC 沿AC 翻折得△APC.(1)填空:∠PCB = 度,P 点坐标为 ;(2)若P 、A 两点在抛物线y =-43x 2+bx +c 上,求b 、c 的值,并说明点C 在此抛物线上;﹡(3)在(2)中的抛物线CP 段(不包括C ,P 点)上,是否存在一点M ,使得四边形MCAP 的面积最大?若存在,求出这个最大值及此时M 点的坐标;若不存在,请说明理由.1.平均数的计算公式___________________________. 2. 加权平均数公式_____________________________.3. 中位数是___________________________,众数是__________________________. 4.极差是__________________,方差的计算公式_____________________________. 标准差的计算公式:_________________________.【典例精析】例1 我市部分学生参加了2004年全国初中数学竞赛决赛,并取得优异成绩. 已知竞赛成绩分数都是整数,试题满分为140分,参赛学生的成绩分数分布情况如下:(1) 全市共有多少人参加本次数学竞赛决赛?最低分和最高分在什么分数范围?(2) 经竞赛组委会评定,竞赛成绩在60分以上 (含60分)的考生均可获得不同等级的奖励,求我市参加本次竞赛决赛考生的获奖比例; (3) 决赛成绩分数的中位数落在哪个分数段内?(4) 上表还提供了其他信息,例如:“没获奖的人数为105人”等等. 请你再写出两条此表提供的信息.例2 (08南京)我国从2008年6月1日起执行“限塑令”.“限塑令”执行前,某校为了了解本校学生所在家庭使用塑料袋的数量情况,随机调查了10名学生所在家庭月使用塑料袋的数量,结果如下:(单位:只)65,70,85,75,85,79,74,91,81,95.(1)计算这10名学生所在家庭平均月使用塑料袋多少只? (2)“限塑令”执行后,家庭月使用塑料袋数量预计将减少50%.根据上面的计算结果,估计该校1 000名学生所在家庭月使用塑料袋可减少多少只?【中考演练】1.班长对全班学生爱吃哪几种水果作了民意调查.那么最终决定买什么水果,最值得关注的应该是统计调查数据的.(中位数,平均数,众数)2.在航天知识竞赛中,包括甲同学在内的6名同学的平均分为74分,•其中甲同学考了89分,则除甲以外的5名同学的平均分为______分. 3.某次射击训练中,一小组的成绩如下表所示:若该小组的 平均成绩为7.7环,则成绩为8环的人数是 .4.为了从甲、乙两名学生中选择一人参加电脑知识竞赛,•在相同条件下对他们的电脑知识进行了10次测验,成绩如下,(单位:分):请填写下表:5. 衡量一组数据波动大小的统计量是( )A .平均数B .众数C .中位数D .方差 6.某人今年1至5月的电话费数据如下(单位:元):60,68,78,66,80,这组数据的中位数是( ) A .66 B .67 C .68 D .787.甲乙两人在相同的条件下各射靶10次,他们的环数的方差是S 甲2=2.4,•S 乙2=3.2,则射击稳定性是( )A .甲高B .乙高C .两人一样多D .不能确定8. 李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期,收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:据调查,市场上今年樱桃的批发价是每千克15元,用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃的总收入分别是( ) A .200kg ,3000元 B .1900kg ,28 500元 C .2000kg ,30 000元 D .1850kg ,27 750元9.在“心系灾区”自愿捐款活动中,某班30名同学的捐款情况如下表:⑴ 问这个班级捐款总数是多少元? ⑵ 求这30名同学捐款的平均数.10. 为响应国家要求中小学生每天锻练1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的图1和图2,请在图1中将“乒乓球”部分的图形补充完整.1. 总体是指_________________________,个体是指_____________________,样本是指________________________,样本的个数叫做___________.图1 图22. 样本方差与标准差是衡量______________的量,其值越大,______越大.3. 频数是指________________________;频率是___________________________.4. 得到频数分布直方图的步骤_________________________________________.5. 数据的统计方法有____________________________________________.某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,,,,四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合按A B C D图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)求出D级学生的人数占全班总人数的百分比;(2)求出扇形统计图中C级所在的扇形圆心角的度数;(3)该班学生体育测试成绩的中位数落在哪个等级内;(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?例2 从某市近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘出如图所示的统计图,请结合图中的信息,解答下列问题:(1)卖出面积为110~130㎡的商品房有套,并在右图中补全统计图;(2)从图中可知,卖出最多的商品房约占全部卖出的商品房的%;(3)假如你是房地产开发商,根据以上提供的信息,你会多建住房面积在什么范围内的住房?为什么?【中考演练】1.小明将2008年北京奥运会中国男子篮球队队员的年龄情况绘制成了如图(1)所示的条形统计图,则中国男子篮球队共有_____队员.(第1题) (第2题) (第3题)2.光明中学对图书室的书分成三类:A表示科学类,B表示科技类,C表示艺术类.•它们。
精品 中考数学一轮综合复习1-10课 72页
第 4 页 共 72 页
中考数学一轮复习
19.实数 a,b 在数轴上的位置如图所示,化简|a+b|+ (b-a) =__________.
2
20.如图,实数 a 、 b 在数轴上的位置,化简
a 2 b 2 ( a b) 2 =
21.若 a是 16的平方根, b是 64的立方根,则 a b _____ . 22.通过估算,估计 73 的大小应在 ~ 之间。
定义: 性质: 立方根 立方根等于其本身的是 3 3 ; (3 a ) 3 立方根化简: a
例 1.(1)与原点距离为 2.5 个单位长度的点有 (2)到原点的距离不大于 3 的整数有 个,它们表示的有理数是 。
个,它们是:
)
4.若 x 的相反数是 3, y =5,则 x+y 的值为( A.-8
2
B.2
5.计算 3 的结果是( ) A.-9 B.9 C.-6 2 3 6.计算(-2) -(-2) 的结果是( ) A.-4 B.2 C.4 7.-2,3,-4,-5,6 这五个数中,任取两个数相乘,得的积最大的是( A.10 B.20 C.-30 8.若 m 3 (n 2)2 0 ,则 m 2n 的值为( A.-4 B.-1 9.如图,数轴上 A、B 两点所表示的两数的( A.和为正数 B.和为负数 ) C.0 ) C.积为正数
6. 9 的平方根是( 7.在“
0
A.3
2
B.±3
5 ,3.14 , 3 , 3
)
,cos 600 ,sin 450 ”这 6 个数中,无理数的个数是( C.4 个 D.5 个
A.2 个
B.3 个
2024年九年级中考数学一轮复习大纲课件
指数与对数的运算
学习指数与对数的定 义及其运算规则,掌 握它们在代数式中的
应用。
函数与关系的建立
了解函数与关系的概 念,学会建立函数关 系式并进行相关运算。
代数式的综合应用
综合运用所学知识, 解决复杂的代数式问 题,提高解决问题的
能力。
一元一次方程与不等式
反比例函数
反比例函数的图像与性质
反比例函数基础
详解反比例函数的定义、性质和图像特征
反比例函数应用
阐述反比例函数在实际问题中的应用和解题技巧
反比例函数综合
探讨反比例函数的综合问题和解题策略
函数图像的识别与应用
函数图像的特点和应用场景
函数图像的基本性质
图像变换、对称性、单调性、最值问题
函数图像的识别
• 学习如何用区间表示一元一次方程和 一元一次不等式的解集。
二元一次方程与不等式
二元一次方程和不等式的解法与应用
二元一次方程基本概念
01
介绍二元一次方程的定义、组成及解法
解二元一次方程组
02
解析二元一次方程组的解法及应用
不等式基本概念
03
阐述不等式的定义、性质及解集表示
解二元一次不等式组
04
讲解二元一次不等式组的解法及应用
中考数学一轮复习
全面提高数学素养,备战中考
目录 1.实数与函数 2.几何 3.代数 4.统计与概率 5.综合应用题 6.数学思想与方法
实数与函数
实数与函数的基础知识和应用
实数概念及运算
实数的定义、分类和运算规则
实数的分类与表 示
实数分为有理数和无理数, 有理数可以表示为分数或 整数,无理数不能表示为
2024年中考数学一轮总复习+课件++第1节 尺规作图
分别交∠α的两边
于点P,Q;
(2)作射线O'A;
已知:∠α.
(3)以点O'为圆心,
作一个
求作:
OP长为半径画弧,
角等于
∠AO'B,使
已知角
交O'A于点M;(4)以
∠AO'B=∠α
点M为圆心,PQ长
为半径画弧,交前
弧于点N;(5)过点N
作射线O'B,∠AO'B
即为所求作的角
类型
要求
作图步骤
作图步骤
图示
(1)在直线另一侧任
取点M;
(2)以点P为圆心,
PM的长为半径画
弧,交直线于A,B两
点;
(3)分别以点A,B为
1
圆心,大于 2 AB的长
为半径画弧,交点M
同侧于点N;
(4)作直线PN,PN即
为所求作的垂线
特别提醒➡【新课标】过直线外一点作这条直线的
平行线
已知与求作
步骤及原理
图示
作法:(1)过点P作
解:(1)如图:
(2)如图,设OD与AC相交于点E.∵AB是☉O的直径,
∴∠ACB=90°.
在Rt△ABC中,AC=8,BC=6,
∴AB= 2 + 2 =10.∵OD⊥AC,∴AE=CE.
又∵OA=OB,∴OE 是△ABC 的中位线.
1
∴OE=2BC=3,即点
O 到 AC 的距离为 3.
段AB的 垂直平分线 ,射线AE是∠DAC的 平分线 ;
(2)在(1)所作的图中,∠DAE的度数为 25° .
知识点2复杂作图及基本作图的应用
1.复杂作图:复杂的尺规作图都是由基本作图组成的.
中考数学第一轮复习资料(超全)
中考一轮复习第一部分数与代数第一章数与式第1讲实数第2讲代数式第3讲整式与分式第1课时整式第2课时因式分解第3课时分式第4讲二次根式第二章方程与不等式第1讲方程与方程组第1课时一元一次方程与二元一次方程组第2课时分式方程第3课时一元二次方程第2讲不等式与不等式组第三章函数第1讲函数与平面直角坐标系第2讲一次函数第3讲反比例函数第4讲二次函数第二部分空间与图形第四章三角形与四边形第1讲相交线和平行线第2讲三角形第1课时三角形第2课时等腰三角形与直角三角形第3讲四边形与多边形第1课时多边形与平行四边形第2课时特殊的平行四边形第3课时梯形第五章圆第1讲圆的基本性质第2讲与圆有关的位置关系第3讲与圆有关的计算第六章图形与变换第1讲图形的轴对称、平移与旋转第2讲视图与投影第3讲 尺规作图 第4讲 图形的相似 第5讲 解直角三角形第三部分 统计与概率第七章 统计与概率 第1讲 统计 第2讲 概率第一部分 数与代数第一章 数与式 第1讲 实数考点一、实数的概念及分类 (3分) 1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分) 1、相反数实数与它的相反数时一对数(零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= -b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
初三数学知识点归纳总结(通用5篇)
初三数学知识点归纳总结第1篇1、矩形的概念有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)具有平行四边形的一切性质。
(2)矩形的四个角都是直角。
(3)矩形的对角线相等。
(4)矩形是轴对称图形。
3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形。
(2)定理1:有三个角是直角的四边形是矩形。
(3)定理2:对角线相等的平行四边形是矩形。
4、矩形的面积:S矩形=长×宽=ab初三数学重点知识点(四)1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的.等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形;再证明它是菱形(或矩形);最后证明它是矩形(或菱形)。
初三数学知识点归纳总结第2篇第一轮数学复习主要知识点总结1第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二:平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。
中考数学知识点总结第一轮
中考数学知识点总结第一轮一、代数1.整式、分式和无理式的运算a.整式的加减乘除运算,包括多项式的加减法、乘法(乘方公式、两个一次式相乘等)、除法(辗转相除法等)b.分式的加减乘除运算,包括分式的加减法、乘法(分式乘法的特殊规则等)、除法(分式除法的特殊规则等)c.无理式的加减乘除运算,包括根号的运算(简化根式、合并同类项等)2.方程与不等式a.一元一次方程的定解过程(解方程的基本思想和方法)、一元一次方程组b.一元二次方程(解二次方程的求根公式、求解一元二次方程的方法、实根的个数等)c.一次不等式的解集表示(正数的判定、不等式的性质等)、二元一次不等式的解集表示3.函数与关系a.函数的概念和表示(输入与输出、定义域与值域等)b.函数的性质(奇偶性、单调性等)、函数的图象与坐标系中的点的关系c.函数的运算(加减乘除运算、复合运算等)、函数的应用(函数的最值、函数的增减性等)4.比例与实数a.比例的概念(比例的性质、比例的基本比较关系等)、比例的简化和扩大b.比例的应用(比例与均分、比例与图形相似、人口增长问题等)c.实数的概念和性质(有理数与无理数的判别、实数的大小关系等)二、几何1.图形的性质a.平面图形的性质(三角形的内角和、四边形的性质、平行四边形的性质等)b.立体图形的性质(立体图形的名称及构成、棱柱的性质、棱锥的性质等)2.形位关系a.平行的判定(平行线的性质及判定条件等)、垂直的判定(垂线的性质及判定条件等)b.相交角的性质(同位角、内错角、同旁内角和对顶角等)c.图形的相似性(图形相似的条件、相似比的计算、相似比例的应用等)3.平面几何运动a.平移的概念和性质(向量的概念、平移的表示方法、平移的性质等)b.旋转的概念和性质(旋转的性质、旋转角的计算、图形的旋转等)c.对称的概念和性质(对称的性质、对称图的性质、图形的对称性判定等)4.投影与视图a.简单投影图的绘制(等腰三角形的等腰直角投影图、矩形的等腰直角投影图等)b.简单视图的绘制(正视图、俯视图等)c.简单剖视图和简单半剖视图的绘制5.计量和单位换算a.长度和面积的计量(长度的计量单位、面积的计量单位等)b.体积和质量的计量(体积的计量单位、质量的计量单位等)c.单位之间的换算(长度单位之间的换算、体积单位之间的换算等)三、数据与统计1.统计调查、数据收集和整理a.统计方案的制定和实施(抽样方法及其特点、调查问卷的设计等)b.数据的搜集和整理(原始数据的整理、数据的分组与求中心值等)c.数据的表示和分析(图表的绘制、数据的分布特征等)2.数据的描述性统计a.集中趋势度量(平均数、中位数、众数等)b.离散趋势度量(极差、方差、标准差等)c.数据的位置对比和分组对比(分位数、组间比较等)3.概率与预测a.概率的概念和运算(事件的发生性、概率的表示方法等)b.事件的等可能性(样本空间、几何概型等)。
2024中考数学一轮复习核心知识点精讲—与圆有关的计算
2024中考数学一轮复习核心知识点精讲—与圆有关的计算1.掌握弧长和扇形面积计算公式;2.会利用弧长和扇形面积计算公式进弧长和扇形面积的计算考点1:圆内正多边形的计算(1)正三角形在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::1:2OD BD OB =;(2)正四边形同理,四边形的有关计算在Rt OAE ∆中进行,::OE AE OA =(3)正六边形同理,六边形的有关计算在Rt OAB ∆中进行,::2AB OB OA =.考点2:扇形的弧长和面积计算扇形:(1)弧长公式:180n Rl π=;(2)扇形面积公式:213602n R S lRπ==n :圆心角R :扇形多对应的圆的半径l :扇形弧长S :扇形面积注意:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R 为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.(4)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(5)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量.考点3:扇形与圆柱、圆锥之间联系1、圆柱:(1)圆柱侧面展开图2S S S =+侧表底=222rh rππ+C 1D 1(2)圆柱的体积:2V r hπ=2、圆锥侧面展开图(1)S S S =+侧表底=2Rr r ππ+(2)圆锥的体积:213V r hπ=注意:圆锥的底周长=扇形的弧长(180r 2Rn ΠΠ=)【题型1:正多边形和圆的有关计算】【典例1】(2023•福建)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O 的面积,可得π的估计值为,若用圆内接正十二边形作近似估计,可得π的估计值为()A.B .2C .3D .2【答案】C【解答】解:如图,AB是正十二边形的一条边,点O是正十二边形的中心,过A作AM⊥OB于M,在正十二边形中,∠AOB=360°÷12=30°,∴AM=OA=,=OB•AM==,∴S△AOB∴正十二边形的面积为12×=3,∴3=12×π,∴π=3,∴π的近似值为3,故选:C.【变式1-1】(2023•临沂)将一个正六边形绕其中心旋转后仍与原图形重合,旋转角的大小不可能是()A.60°B.90°C.180°D.360°【答案】B【解答】解:由于正六边形的中心角为=60°,所以正六边形绕其中心旋转后仍与原图形重合,旋转角可以为60°或60°的整数倍,即可以为60°,120°,180°,240°,300°,360°,不可能是90°,故选:B.【变式1-2】(2023•安徽)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE﹣∠COD=()A.60°B.54°C.48°D.36°【答案】D【解答】解:∵五边形ABCDE是正五边形,∴∠BAE==108°,∠COD==72°,∴∠BAE﹣∠COD=108°﹣72°=36°,故选:D.【变式1-3】(2023•山西)蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系中,点P,Q,M均为正六边形的顶点.若点P,Q的坐标分别为,(0,﹣3),则点M的坐标为()A.(3,﹣2)B.(3,2)C.(2,﹣3)D.(﹣2,﹣3)【答案】A【解答】解:设中间正六边形的中心为D,连接DB.∵点P,Q的坐标分别为,(0,﹣3),图中是7个全等的正六边形,∴AB=BC=2,OQ=3,∴OA=OB=,∴OC=3,∵DQ=DB=2OD,∴OD=1,QD=DB=CM=2,∴M(3,﹣2),故选:A.【变式1-4】(2023•内江)如图,正六边形ABCDEF内接于⊙O,点P在上,点Q是的中点,则∠CPQ 的度数为()A.30°B.45°C.36°D.60°【答案】B【解答】解:如图,连接OC,OD,OQ,OE,∵正六边形ABCDEF,Q是的中点,∴∠COD=∠DOE==60°,∠DOQ=∠EOQ=∠DOE=30°,∴∠COQ=∠COD+∠DOQ=90°,∴∠CPQ=∠COQ=45°,故选:B.【题型2:弧长和扇形面积的有关计算】【典例2】(2023•张家界)“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边△ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”.若等边△ABC的边长为3,则该“莱洛三角形”的周长等于()A.πB.3πC.2πD.2π﹣【答案】B【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=3,∠A=∠B=∠C=60°,∴==,∵的长==π,∴该“莱洛三角形”的周长是3π.故选:B.【变式2-1】(2022•广西)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是()A.πB.πC.πD.π【答案】B【解答】解:∵CA=CB,CD⊥AB,∴AD=DB=AB′.∴∠AB′D=30°,∴α=30°,∵AC=4,∴AD=AC•cos30°=4×=2,∴,∴的长度l==π.故选:B.【变式2-2】(2022•丽水)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m,高为2m,则改建后门洞的圆弧长是()A.m B.m C.m D.(+2)m【答案】C【解答】解:连接AC,BD,AC和BD相交于点O,则O为圆心,如图所示,由题意可得,CD=2m,AD=2m,∠ADC=90°,∴tan∠DCA===,AC==4(m),∴∠ACD=60°,OA=OC=2m,∴∠ACB=30°,∴∠AOB=60°,∴优弧ADCB所对的圆心角为300°,∴改建后门洞的圆弧长是:=(m),故选:C.【变式2-3】(2023•锦州)如图,点A,B,C在⊙O上,∠ABC=40°,连接OA,OC.若⊙O的半径为3,则扇形AOC(阴影部分)的面积为()A.πB.πC.πD.2π【答案】D【解答】解:∵∠ABC=40°,∴∠AOC=2∠ABC=80°,∴扇形AOC的面积为,故选:D.【题型3:有圆有关的阴影面积的计算】【典例3】(2023•广元)如图,半径为5的扇形AOB中,∠AOB=90°,C是上一点,CD⊥OA,CE⊥OB,垂足分别为D,E,若CD=CE,则图中阴影部分面积为()A.B.C.D.【答案】B【解答】解:连接OC,如图所示,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴∠AOB=∠ODC=∠OEC=90°,∴四边形OECD是矩形,∵CD =CE ,∴四边形OECD 是正方形,∴∠DCE =90°,△DCE 和△OEC 全等,∴S 阴影=S △DCE +S 半弓形BCE=S △OCE +S 半弓形BCE=S 扇形COB==,故选:B .【变式3-1】(2023•雅安)如图,某小区要绿化一扇形OAB 空地,准备在小扇形OCD 内种花,在其余区域内(阴影部分)种草,测得∠AOB =120°,OA =15m ,OC =10m ,则种草区域的面积为()A .B .C .D .【答案】B 【解答】解:S 阴影=S 扇形AOB ﹣S 扇形COD ==(m 2).故选:B.【变式3-2】(2023•鄂州)如图,在△ABC中,∠ABC=90°,∠ACB=30°,AB=4,点O为BC的中点,以O为圆心,OB长为半径作半圆,交AC于点D,则图中阴影部分的面积是()A.5πB.5﹣4πC.5﹣2πD.10﹣2π【答案】C【解答】解:连接OD.在△ABC中,∠ABC=90°,∠ACB=30°,AB=4,∴BC=AB=4,∴OC=OD=OB=2,∴∠DOB=2∠C=60°,∴S阴=S△ACB﹣S△COD﹣S扇形ODB=×4×4﹣﹣=8﹣3﹣2π=5﹣2π.故选:C.【变式3-3】(2022•凉山州)家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角∠BAC=90°,则扇形部件的面积为()A.米2B.米2C.米2D.米2【答案】C【解答】解:连结BC,AO,如图所示,∵∠BAC=90°,∴BC是⊙O的直径,∵⊙O的直径为1米,∴AO=BO=(米),∴AB==(米),∴扇形部件的面积=π×()2=(米2),故选:C.【题型4:圆锥的有关计算】【典例4】(2023•东营)如果圆锥侧面展开图的面积是15π,母线长是5,则这个圆锥的底面半径是()A.3B.4C.5D.6【答案】A【解答】解:设底面半径为R,则底面周长=2πR,圆锥的侧面展开图的面积=×2πR×5=15π,∴R=3.故选:A.【变式4-1】(2022•牡丹江)圆锥的底面圆半径是1,母线长是3,它的侧面展开图的圆心角是()A.90°B.100°C.120°D.150°【答案】C【解答】解:圆锥侧面展开图的弧长是:2π×1=2π,设圆心角的度数是n度.则=2π,解得:n=120.故选:C.【变式4-2】(2022•广安)蒙古包可以近似地看作由圆锥和圆柱组成.下图是一个蒙古包的示意图,底面圆半径DE=2m,圆锥的高AC=1.5m,圆柱的高CD=2.5m,则下列说法错误的是()A.圆柱的底面积为4πm2B.圆柱的侧面积为10πm2C.圆锥的母线AB长为2.25mD.圆锥的侧面积为5πm2【答案】C【解答】解:∵底面圆半径DE=2m,∴圆柱的底面积为4πm2,所以A选项不符合题意;∵圆柱的高CD=2.5m,∴圆柱的侧面积=2π×2×2.5=10π(m2),所以B选项不符合题意;∵底面圆半径DE=2m,即BC=2m,圆锥的高AC=1.5m,∴圆锥的母线长AB==2.5(m),所以C选项符合题意;∴圆锥的侧面积=×2π×2×2.5=5π(m2),所以D选项不符合题意.故选:C.【变式4-3】(2022•赤峰)如图所示,圆锥形烟囱帽的底面半径为12cm,侧面展开图为半圆形,则它的母线长为()A.10cm B.20cm C.5cm D.24cm【答案】D【解答】解:设母线的长为R,由题意得,πR=2π×12,解得R=24,∴母线的长为24cm,故选:D.一.选择题(共10小题)1.如图,五边形ABCDE是⊙O的内接正五边形,则正五边形的中心角∠COD的度数是()A.72°B.60°C.48°D.36°【答案】A【解答】解:∵五边形ABCDE是⊙O的内接正五边形,∴五边形ABCDE的中心角∠COD的度数为=72°,故选:A.2.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.,πC.2,D.2,【答案】D【解答】解:如图所示,连接OC、OB,∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OC=OB,∴△BOC是等边三角形,∴∠OBM=60°,∴OM=OB sin∠OBM=4×=2,的长==;故选:D.3.如图,⊙O的半径为1,点A、B、C都在⊙O上,∠B=45°,则的长为()A.πB.πC.πD.π【答案】C【解答】解:∵∠B=45°,∴∠AOC=90°,∵⊙O的半径为1,∴的长===π,故选:C.4.如图,AB是半圆O的直径,C、D是半圆上两点,且满足∠ADC=120°,BC=1,则的长为()A.B.C.D.【答案】A【解答】解:如图,连接OC.∵∠ADC=120°,∴∠ABC=60°,∵OB=OC,∴∠OCB=∠OBC=∠B=60°,OB=OC=BC=1,∴的长为=,故选:A.5.如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是()A.πB.2πC.4πD.6π【答案】B【解答】解:依题意知:图中三条圆弧的弧长之和=×3=2π.故选:B.6.若扇形的半径是12cm弧长是20πcm,则扇形的面积为()A.120πcm2B.240πcm2C.360πcm2D.60πcm2【答案】A【解答】解:该扇形的面积为:(cm2).故选:A.7.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°后得到△AB'C',点B经过的路径为弧BB′,若∠BAC=60°,AC=3,则图中阴影部分的面积是()A.B.C.D.3π【答案】C【解答】解:在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=3,∴∠ABC=30°.∴AB=2AC=6.根据旋转的性质知△ABC≌△AB′C′,则S△ABC=S△AB′C′,AB=AB′.∴S阴影=S扇形ABB′+S△AB′C′﹣S△ABC==.故选:C.8.如图,四边形ABCD为正方形,边长为4,以B为圆心、BC长为半径画,E为四边形内部一点,且BE⊥CE,∠BCE=30°,连接AE,则阴影部分面积()A.B.6πC.D.【答案】C【解答】解:如图,作EF⊥AB于点F,∵BE⊥CE,∠BCE=30°,∴BE=BC=2,∠CBE=60°,∴CE=BE=2,∠EBF=30°,∴EF=BE=1,∴S阴影=S扇形ABC﹣S△BCE﹣S△ABE=﹣×2×﹣×1=4π﹣2﹣2.故选:C.9.如图,圆锥的母线长为5cm,高是4cm,则圆锥的侧面展开扇形的圆心角是()A.180°B.216°C.240°D.270°【答案】B【解答】解:∵圆锥的母线长为5cm,高是4cm,∴圆锥底面圆的半径为:=3(cm),∴2π×3=,解得n=216°.故选:B.10.已知圆锥的底面半径是4,母线长是5,则圆锥的侧面积是()A.10πB.15πC.20πD.25π【答案】C【解答】解:圆锥的侧面积=×2π×4×5=20π,故选:C.二.填空题(共8小题)11.AB是⊙O的内接正六边形一边,点P是优弧AB上的一点(点P不与点A,B重合)且BP∥OA,AP 与OB交于点C,则∠OCP的度数为90°.【答案】90°.【解答】解:∵AB是⊙O的内接正六边形一边,∴∠AOB==60°,∴=30°,∵BP∥OA,∴∠OAC=∠P=30°,∴∠OCP=∠AOB+∠OAC=60°+30°=90°.故答案为:90°.12.已知正六边形的内切圆半径为,则它的周长为12.【答案】见试题解答内容【解答】解:如图,连接OA、OB,OG;∵六边形ABCDEF是边长等于正六边形的半径,设正六边形的半径为a,∴△OAB是等边三角形,∴OA=AB=a,∴OG=OA•sin60°=a×=,解得a=2,∴它的周长=6a=12.故答案为:12.13.如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧,点O是这段弧所在圆的圆心,半径OA=90m,圆心角∠AOB=80°,则这段弯路的长度为40πm.【答案】见试题解答内容【解答】解:由题意得,这段弯路的长度为,故答案为:40π.14.已知扇形的圆心角为120°,面积为27πcm2,则该扇形所在圆的半径为9cm.【答案】见试题解答内容【解答】解:∵扇形的圆心角为120°,面积为27πcm2,∴由S=得:r===9cm,故答案为:9cm.15.圆锥的侧面积是10πcm2,底面半径是2cm,则圆锥的母线长为5cm.【答案】见试题解答内容【解答】解:底面半径是2cm,则扇形的弧长是4π.设母线长是l,则×4πl=10π,解得:l=5.故答案为:5.16.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是4 cm.【答案】见试题解答内容【解答】解:∵圆心角为120°,半径为6cm的扇形的弧长==4π,∴圆锥的底面圆的周长为4π,∴圆锥的底面圆的半径为2,∴这个纸帽的高==4(cm).故答案为4.17.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是6π.【答案】见试题解答内容【解答】解:阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB为直径的半圆的面积=扇形ABB′的面积,则阴影部分的面积是:=6π,故答案为:6π.18.如图,将边长相等的正六边形和正五边形拼接在一起,则∠ABC的度数为132°.【答案】见试题解答内容【解答】解:由题意得:正六边形的每个内角都等于120°,正五边形的每个内角都等于108°,∴∠ABC=360°﹣120°﹣108°=132°,故答案为:132.一.选择题(共7小题)1.在2022年北京冬奥会开幕式和闭幕式中,一片“雪花”的故事展现了“世界大同、天下一家”的主题,让世界观众感受到中国人的浪漫,如图,将“雪花”图案(边长为4的正六边形ABCDEF)放在平面直角坐标系中,“雪花”中心与原点重合,C,F在y轴上,则顶点B的坐标为()A.(4,2)B.(4,4)C.D.【答案】C【解答】解:连接OB,OA,如图所示:∵正六边形是轴对称图形,中心与坐标原点重合,∴△AOB是等边三角形,AO=BO=AB=4,AB⊥x轴,AM=BM,∵AB=4,∴AM=BM=2,∴OM=,∴点B的坐标为:(2,2),故选:C.2.如图,正五边形ABCDE内接于⊙O,点F在弧AE上.若∠CDF=95°,则∠FCD的大小为()A.38°B.42°C.49°D.58°【答案】C【解答】解:如图,连接OE,OD,CE,∵五边形ABCDE是正五边形,∴∠CDE=(5﹣2)×180°÷5=108°,∵∠CDF=95°,∴∠FDE=∠CDE﹣∠CDF=108°﹣95°=13°,∴∠FCE=13°,∵正五边形ABCDE内接于⊙O,∴∠EOD=360°÷5=72°,∴∠ECD==36°,∴∠FCD=∠FCE+∠ECD=36°+13°=49°,故选:C.3.如图,在⊙O中,点C在优弧上,将沿BC折叠后刚好经过AB的中点D.若⊙O的半径为5,AB=4,则的长是()A.B.C.D.4π【答案】A【解答】解:连接AC,OB,OD,CD,作CF⊥AB于点F,作OE⊥CF于点E,由垂定理可知OD⊥AB于点D,AD=BD==.又OB=5,∴OD===,∵CA、CD所对的圆周角为∠CBA、∠CBD,且∠CBA=∠CBD,∴CA=CD,△CAD为等腰三角形.∴AF=DF==,又四边形ODFE为矩形且OD=DF=,∴四边形ODFE为正方形.∴,∴CE===2,∴CF=CE+EF=3=BF,故△CFB为等腰直角三角形,∠CBA=45°,∴所对的圆心角为90°,∴==.故选:A.4.如图,将直径为4的半圆形分别沿CD,EF折叠使得直径两端点A,B的对应点都与圆心O重合,则图中阴影部分的面积为()A.B.C.D.【答案】A【解答】解:连接AC,OC,OE,BE,由题意得:CD垂直平分OA,∴AC=OC,∴△OAC是等边三角形,同理△BOE是等边三角形,∴∠AOC=∠BOE=60°,∴∠COE=60°,∴弓形AMC、弓形ONC、弓形OPE的面积相等,∵圆的直径是4,∴OA=2,∴扇形OAC的面积==,△OAC的面积=OA2=,∴扇形OCE的面积=扇形OAC的面积=,∴弓形AMC的面积=扇形OAC的面积﹣△OAC的面积=﹣,∴阴影的面积=扇形OCE的面积﹣弓形AMC的面积×2=﹣2×(﹣)=2﹣.故选:A.5.如图,扇形AOB中,∠AOB=90°,点C,D分别在OA,上,连接BC,CD,点D,O关于直线BC 对称,的长为π,则图中阴影部分的面积为()A.B.C.D.【答案】A【解答】解:连接BD、OD,交BC与E,由题意可知,BD=BO,∵OD=OB,∴OD=OB=DB,∴∠BOD=60°,∵∠AOB=90°,∴∠AOD=30°,∵的长为π,∴,∴r=6,∴OB=6,∴OE==3,BE=OB=3,∴CE=OE=,+S△COE﹣S△BOE=+﹣=6π﹣3.∴阴影部分的面积=S扇形BOD故选:A.6.如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且AD∥BO,∠ABO=60°,AB=8,过点D作DC⊥BE于点C,则阴影部分的面积是()A.B.C.D.【答案】B【解答】解:如图,连接OA,∵∠ABO=60°,OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=8,∵AD∥BO,∴∠OAD=∠AOB=60°,∵OA=OD,∴△AOD是等边三角形,∴∠AOD=60°,∵△OAD与△ABD与△AOB是等底等高的三角形,∴S阴影=S扇形AOB==π.故选:B.7.如图,一个圆锥的母线长为6,底面圆的直径为8,那么这个圆锥的侧面积是()A.24πB.40πC.48πD.【答案】A【解答】解:根据题意,这个圆锥的侧面积=×8π×6=24π.故选:A.二.填空题(共5小题)8.如图,已知正方形ABCD的边长为4cm,以AB,AD为直径作两个半圆,分别取弧AB,弧AD的中点M,N,连结MC,NC,则图中阴影部分的周长为(4)cm.【答案】(4).【解答】解:解法一:如图,取AD的中点O,连接NO,设CN交AD于点E,∵N是弧AD的中点,∴NO⊥AD,∵CD⊥AD,∴NO∥CD,∴△NOE∽△CDE,∴====,∴OE=OD=,在Rt△NOE中,NE===,∴CM=CN=3NE=2,∵点M,N分别为弧AB,弧AD的中点∴弧AB,弧AD的长度和为2×=2π,∴图中阴影部分的周长为(4)cm.解法二:作NH⊥BC于点H,则CH=2,NH=6,在Rt△NHC中,NC===2,∴CM=CN=2,∵点M,N分别为弧AB,弧AD的中点∴弧AB,弧AD的长度和为2×=2π,∴图中阴影部分的周长为(4)cm.故答案为:(4).9.如图,△ABC是边长为1的等边三角形,曲线CC1C2C3C4…是由多段120°的圆心角所对的弧组成的,其中的圆心为A,半径为AC;的圆心为B,半径为BC1;的圆心为C,半径为CC2;的圆心为A,半径为AC3……,,,,…的圆心依次按点A,B,C循环,则的长是.(结果保留π)【答案】.【解答】解:∵△ABC是边长为1的等边三角形,∴AC=AC1=1,∠CAB=∠ABC=∠BCA=60°,;∴BC2=BC1=AB+AC1=2,CC3=CC2=BC2+AB=3,∠CAC1=∠C1BC2=C2CC3=120°,∴的半径为1;的半径为2;的半径为3;所对的圆心角为120°,∴的半径为n,所对的圆心角为120°,∴所在圆的半径为2023,所对的圆心角为120°,∴的长为.故答案为:.10.如图,已知矩形纸片ABCD,AD=2,,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为.【答案】见试题解答内容【解答】解:cos∠BAE=,∴∠BAE=30°,∴∠DAE=60°,∴圆锥的侧面展开图的弧长为:=π,∴圆锥的底面半径为π÷2π=.11.如图,从一块半径为20的圆形纸片上剪出一个圆心角是90°的扇形ABC,如果将剪下来的扇形ABC围成一个圆锥,则该圆锥的底面半径是.【答案】.【解答】解:连接BC,如图,∵∠BAC=90°,∴BC为⊙O的直径,即BC=20,∴AB=10,设该圆锥的底面圆的半径为r,根据题意得2πr=,解得r=,即该圆锥的底面圆的半径为m.故答案为:.12.如图,AB是圆锥底面的直径,AB=6cm,母线PB=9cm,点C为PB的中点,若一只蚂蚁从A点处出发,沿圆锥的侧面爬行到C点处,则蚂蚁爬行的最短路程为cm.【答案】cm.【解答】解:由题意知,底面圆的直径AB=6cm,故底面周长等于6πcm,设圆锥的侧面展开后的扇形圆心角为n°,根据底面周长等于展开后扇形的弧长得6π=,解得n=120°,所以展开图中∠APD=120°÷2=60°,因为半径PA=PB,∠APB=60°,故三角形PAB为等边三角形,又∵D为PB的中点,所以AD⊥PB,在直角三角形PAD中,PA=9cm,PD=cm,根据勾股定理求得AD=(cm),所以蚂蚁爬行的最短距离为cm.故答案为:cm.1.(2023•连云港)如图,矩形ABCD内接于⊙O,分别以AB、BC、CD、AD为直径向外作半圆.若AB=4,BC=5,则阴影部分的面积是()A.π﹣20B.π﹣20C.20πD.20【答案】D【解答】解:如图,连接BD,则BD过点O,在Rt△ABD中,AB=4,BC=5,∴BD2=AB2+AD2=41,S阴影部分=S以AD为直径的圆+S以AB为直径的圆+S矩形ABCD﹣S以BD为直径的圆=π×()2+π×()2+4×5﹣π×()2=+20﹣=20,故选:D.2.(2023•广安)如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC为半径画弧,交AB于点E,以点B为圆心,BC为半径画弧,交AB于点F,则图中阴影部分的面积是()A.π﹣2B.2π﹣2C.2π﹣4D.4π﹣4【答案】C【解答】解:在等腰直角△ABC中,∠ACB=90°,AC=BC=2,∴∠A=∠B=45°,+S扇形CBF﹣S△ABC∴阴影部分的面积S=S扇形CAE=×2﹣=2π﹣4.故选:C.3.(2023•上海)如果一个正多边形的中心角是20°,那么这个正多边形的边数为18.【答案】见试题解答内容【解答】解:360°÷20°=18.故这个正多边形的边数为18.故答案为:18.4.(2023•衡阳)如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是10.【答案】10.【解答】解:∵多边形是正五边形,∴正五边形的每一个内角为:×180°×(5﹣2)=108°,∴∠O=180°﹣(180°﹣108°)×2=36°,∴正五边形的个数是360°÷36°=10.故答案为:10.5.(2023•宿迁)若圆锥的底面半径为2cm,侧面展开图是一个圆心角为120°的扇形,则这个圆锥的母线长是6cm.【答案】见试题解答内容【解答】解:设圆锥的母线长为x cm,根据题意得=2π•2,解得x=6,即圆锥的母线长为6cm.故答案为6.6.(2023•徐州)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若母线长l为6cm,扇形的圆心角θ为120°,则圆锥的底面圆的半径r为2cm.【答案】2.【解答】解:由题意得:母线l=6,θ=120°,2πr=,∴r=2(cm).故答案为:2.7.(2022•广元)如图,将⊙O沿弦AB折叠,恰经过圆心O,若AB=2,则阴影部分的面积为.【答案】.【解答】解:如图,过点O作AB的垂线并延长,垂足为C,交⊙O于点D,连结AO,AD,根据垂径定理得:AC=BC=AB=,∵将⊙O沿弦AB折叠,恰经过圆心O,∴OC=CD=r,∴OC=OA,∴∠OAC=30°,∴∠AOD=60°,∵OA=OD,∴△AOD是等边三角形,∴∠D=60°,在Rt△AOC中,AC2+OC2=OA2,∴()2+(r)2=r2,解得:r=2,∵AC=BC,∠OCB=∠ACD=90°,OC=CD,∴△ACD≌△BCO(SAS),=×π×22=.∴阴影部分的面积=S扇形ADO故答案为:.8.(2023•金华)如图,在△ABC中,AB=AC=6cm,∠BAC=50°,以AB为直径作半圆,交BC于点D,交AC于点E,则弧DE的长为πcm.【答案】π.【解答】解:连接OE,OD,∵OD=OB,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠C=∠ODB,∴OD∥AC,∴∠EOD=∠AEO,∵OE=OA,∴∠OEA=∠BAC=50°,∴∠EOD=∠BAC=50°,∵OD=AB=×6=3(cm),∴的长==π(cm).故答案为:π.9.(2023•温州)图1是4×4方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为5.若点A,N,M在同一直线上,AB∥PN,DE=EF,则题字区域的面积为.【答案】5;.【解答】解:如图所示,依题意,GH=2=GQ,∵过左侧的三个端点Q,K,L作圆,QH=HL=4,又NK⊥QL,∴O在KN上,连接OQ,则OQ为半径,∵OH=r﹣KH=r﹣2,在Rt△OHQ中,OH2+QH2=QO2,∴(r﹣2)2+42=r2,解得:r=5;连接OE,取ED的中点T,连接OT,交AB于点S,连接PB,AM,过点O作OU⊥AM于点U.连接OA.由△OUN∽△NPM,可得==,∴OU=.MN=2,∴NU=,∴AU==,∴AN=AU﹣NU=2,∴AN=MN,∵AB∥PN,∴AB⊥OT,∴AS=SB,∴NS∥BM,∴NS∥MP,∴M,P,B共线,又NB=NA,∴∠ABM=90°,∵MN=NB,NP⊥MP,∴MP=PB=2,∴NS=MB=2,∵KH+HN=2+4=6,∴ON=6﹣5=1,∴OS=3,∵,设EF=ST=a,则,在Rt△OET中,OE2=OT2+TE2,即,整理得5a2+12a﹣32=0,即(a+4)(5a﹣8)=0,解得:或a=﹣4,∴题字区域的面积为.故答案为:.。
中考第一轮复习数学知识要点总结
开创中考数学 基础知识要点总结一.实数⑴ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应. ⑵ 实数a 的相反数为________. 若a ,b 互为相反数,则b a += . ⑶ 非零实数a 的倒数为______. 若a ,b 互为倒数,则ab = .⑷ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数. ⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字. 2.数的开方⑴ 任何正数a 都有______个平方根,它们互为________.其中正的平方根a 叫 _______________. 没有平方根,0的算术平方根为______. ⑵ 任何一个实数a 都有立方根,记为 . ⑶ =2a ⎩⎨⎧<≥=)0( )0( a a a .3. 实数的分类 和 统称实数. 4. =0a (其中a 0 且a 是 )=-pa(其中a 0)二.整式(1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的 叫做这个单项式的次数. (2) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫 做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 . (3) 整式: 与 统称整式.4. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 ___.5. 幂的运算性质: a m ·a n = ; (a m )n = ; a m ÷a n =_____; (ab)n= . 三.因式分解1. 因式分解:就是把一个多项式化为几个整式的 的形式.分解因式要进行到每一个因式都不能再分解为止.2. 因式分解的方法:⑴ ,⑵ ,⑶ ,3. 提公因式法:=++mc mb ma __________ _________.4. 公式法: ⑴ =-22b a ⑵ =++222b ab a , ⑶=+-222b ab a .5. 十字相乘法:()=+++pq x q p x 2 .6.因式分解的一般步骤:一“提”(取公因式),二“用”(公式). 7.易错知识辨析(1)注意因式分解与整式乘法的区别;(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式. 1.简便计算:=2271.229.7-.2.分解因式:=-x x 422____________________. 3.分解因式:=-942x ____________________.4.分解因式:=+-442x x ____________________..四.分式1. 分式:整式A 除以整式B ,可以表示成 AB的形式,如果除式B 中含有 ,那么称 A B 为分式.若 ,则 A B 有意义;若 ,则 AB 无意义;若 ,则 AB=0.2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的 .用式子表示为 . 3. 约分:把一个分式的分子和分母的 约去,这种变形称为分式的约分.4.通分:根据分式的基本性质,把异分母的分式化为 的分式,这一过程称为分式的通分.五.二次根式1.二次根式的有关概念⑴ 式子)0(≥a a 叫做二次根式.注意被开方数a 只能是 .并且根式. ⑵ 简二次根式被开方数所含因数是 ,因式是 ,不含能 的二次根式,叫做最简二次根式. (3) 同类二次根式化成最简二次根式后,被开方数 几个二次根式,叫做同类二次根式. 2.二次根式的性质 ⑴; ⑵()=2a (a ≥0) ⑶ =2a ;⑶=ab (0,0≥≥b a ); ⑷=ba(0,0>≥b a ).六、方程(组)和不等式(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等不是一元一次方程.(2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.当m 取什么整数时,关于x 的方程1514()2323mx x -=-的解是正整数? 一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是21,2(40)2b x b ac a-=-≥.(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.选用合适的方法解下列方程: 值.1. 一元二次方程根的判别式:关于x 的一元二次方程()002≠=++a c bx ax 的根的判别式为 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 实数根,即=2,1x .(2)ac b 42-=0⇔一元二次方程有 相等的实数根,即==21x x .(3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根.不等式的基本性质:(1)若a <b ,则a +c c b +;(2)若a >b ,c >0则ac bc (或c a c b ); (3)若a >b ,c <0则ac bc (或c a cb).2.3. x 0.4. P (x,y)关于x 轴对称的点坐标为__________,关于y 轴对称的点坐标为________, 关于原点对称的点坐标为___________.⑴ 在平面直角坐标系中,点A 、B 、C 的坐标分别为A (-•2,1),B (-3,-1),C (1,-1).若四边形ABCD 为平行四边形,那么点D 的坐标是_______. (2)将点A (3,1)绕原点O 顺时针旋转90°到点B ,则点B•的坐标是_____. 1.正比例函数的一般形式是__________.一次函数的一般形式是__________________.2. 一次函数y kx b =+的图象是经过 和 两点的 .3. 求一次函数的解析式的方法是 ,其基本步骤是:⑴ ; ⑵ ; ⑶ ;⑷ .4.一次函数y kx b =+的图象与性质1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k >0b >0k >0 b <0k <0 b >01. 二次函数2()y a x h k =-+的图像和性质a >02. 二次函数c bx ax y ++=2用配方法可化成()k h x a y +-=2的形式,其中 h = , k = .3. 二次函数2()y a x h k =-+的图像和2ax y =图像的关系.1. 抛物线()22-=x y 的顶点坐标是 .2. 请写出一个开口向上,对称轴为直线x =2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .1. 二次函数的解析式:(1)一般式: ;(2)顶点式: ;2. 顶点式的几种特殊形式.⑴ , ⑵ , ⑶ ,(4) .3.二次函数c bx ax y ++=2通过配方可得224()24b ac b y a x a a-=++,其抛物线关于直线x = 对称,顶点坐标为( , ).⑴ 当0a >时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 ;⑵ 当0a <时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 . 1.二次函数c bx ax y ++=2通过配方可得224()24b ac b y a x a a-=++, ⑴ 当0a >时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 ; ⑵ 当0a <时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 . 元?1.平均数的计算公式___________________________. 2. 加权平均数公式_____________________________.3. 中位数是___________________________,众数是__________________________. 4.极差是__________________,方差的计算公式_____________________________. 标准差的计算公式:_________________________.1. 总体是指_________________________,个体是指_____________________, 样本是指________________________,样本的个数叫做___________.2. 样本方差与标准差是衡量______________的量,其值越大,______越大.3. 频数是指________________________;频率是___________________________.4. 得到频数分布直方图的步骤_________________________________________.5. 数据的统计方法有____________________________________________.1.__________________叫确定事件,________________叫不确定事件(或随机事件),__________________叫做必然事件,______________________叫做不可能事件. 2._________________________叫频率,_________________________叫概率. 3.求概率的方法:(1)利用概率的定义直接求概率;(2)用树形图和________________求概率;(3)用_________________的方法估计一些随机事件发生的概率.三角形1. 两点确定一条直线,两点之间线段最短._______________叫两点间距离.2. 1周角=__________平角=_____________直角=____________.3. 如果两个角的和等于90度,就说这两个角互余,同角或等角的余角相等;如果_____________________互为补角,__________________的补角相等.4. ___________________________________叫对顶角,对顶角___________.5. 过直线外一点心___________条直线与这条直线平行.6. 平行线的性质:两直线平行,_________相等,________相等,________互补.7. 平行线的判定:________相等,或______相等,或______互补,两直线平行.8. 平面内,过一点有且只有_____条直线与已知直线垂直.一、三角形的分类:1.三角形按角分为______________,______________,_____________.2.三角形按边分为_______________,__________________.二、三角形的性质:1.三角形中任意两边之和____第三边,两边之差_____第三边2.三角形的内角和为_______,外角与内角的关系:__________________.三、三角形中的主要线段:1.___________________________________叫三角形的中位线.2.中位线的性质:____________________________________________.3.三角形的中线、高线、角平分线都是____________.(线段、射线、直线) 一.等腰三角形的性质与判定:1. 等腰三角形的两底角__________;2. 等腰三角形底边上的______,底边上的________,顶角的_______,三线合一;3. 有两个角相等的三角形是_________.二.等边三角形的性质与判定:1. 等边三角形每个角都等于_______,同样具有“三线合一”的性质;2. 三个角相等的三角形是________,三边相等的三角形是_______,一个角等于60°的_______三角形是等边三角形.三.直角三角形的性质与判定:1. 直角三角形两锐角________.2. 直角三角形中30°所对的直角边等于斜边的________.3. 直角三角形中,斜边的中线等于斜边的______.;4. 勾股定理:_________________________________________.5. 勾股定理的逆定理:_________________________________________________.1.全等三角形:____________、______________的三角形叫全等三角形.2. 三角形全等的判定方法有:_______、______、_______、______.直角三角形全等的判定除以上的方法还有________.3. 全等三角形的性质:全等三角形___________,____________.4. 全等三角形的面积_______、周长_____、对应高、______、_______相等.一、相似三角形的定义三边对应成_________,三个角对应________的两个三角形叫做相似三角形.二、相似三角形的判定方法3. 两个角对应相等的两个三角形__________.4. 两边对应成_________且夹角相等的两个三角形相似.5. 三边对应成比例的两个三角形___________.三、相似三角形的性质1. 相似三角形的对应边_________,对应角________.2. 相似三角形的对应边的比叫做________,一般用k表示.3. 相似三角形的对应角平分线,对应边的________线,对应边上的_______•线的比等于_______比,周长之比也等于________比,面积比等于_________.1.sinα,cosα,tanα定义sinα=____,cosα=_______,tanα=______ .2.特殊角三角函数值αabc1.解直角三角形的概念:在直角三角形中已知一些_______叫做解直角三角形. 2.解直角三角形的类型:已知____________;已知___________________.3.如图(1)解直角三角形的公式:(1)三边关系:__________________.(2)角关系:∠A+∠B =_____,(3)边角关系:sinA=___,sinB=____,cosA=_______. cosB=____,tanA=_____ ,tanB=_____. 4.如图(2)仰角是____________,俯角是____________. 5.如图(3)方向角:OA :_____,OB :_______,OC :_______,OD :________. 6.如图(4)坡度:AB 的坡度i AB =_______,∠α叫_____,tanα=i =____.(图2) (图3) (图4)1. 四边形有关知识⑴ n 边形的内角和为 .外角和为 .⑵ 如果一个多边形的边数增加一条,那么这个多边形的内角和增加 ,外角和增加 .⑶ n 边形过每一个顶点的对角线有 条,n 边形的对角线有 条. 2. 平面图形的镶嵌⑴ 当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个____________时,就拼成一个平面图形.⑵ 只用一种正多边形铺满地面,请你写出这样的一种正多边形____________. 3.易错知识辨析多边形的内角和随边数的增加而增加,但多边形的外角和随边数的增加没有变化,外角和恒为360 º. 1.平行四边形的性质(1)平行四边形对边______,对角______;角平分线______;邻角______. (2)平行四边形两个邻角的平分线互相______,两个对角的平分线互相______.(填“平行”或“垂直”)(3)平行四边形的面积公式____________________. 2.平行四边形的判定(1)定义法:________________________.(2)边:________________________或_______________________. (3)角:________________________. (4)对角线:________________________2. 特殊的平行四边形的判别条件成为矩形,需增加的条件是_______ _____ ; 要使成为菱形,需增加的条件是_______ _____ ; 要使矩形ABCD 成为正方形,需增加的条件是______ ____ ; 要使菱形ABCD 成为正方形,需增加的条件是______ ____ . 3. 特殊的平行四边形的性质1.梯形的面积公式是________________.2.等腰梯形的性质:边 __________________________________.角 __________________________________. 对角线 __________________________________.O A B C3. 等腰梯形的判别方法__________________________________.4. 梯形的中位线长等于__________________________. 1. 圆上各点到圆心的距离都等于 . 2. 圆是 对称图形,任何一条直径所在的直线都是它的 ;圆又 是 对称图形, 是它的对称中心. 3. 垂直于弦的直径平分 ,并且平分 ;平分弦(不是直径)的 垂直于弦,并且平分 .4. 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量 ,那么它们所对应的其余各组量都分别 .5. 同弧或等弧所对的圆周角 ,都等于它所对的圆心角的 .6. 直径所对的圆周角是 ,90°所对的弦是 .1. 点与圆的位置关系共有三种:① ,② ,③ ;对应的点到圆心的距离d 和半径r 之间的数量关系分别为:①d r ,②d r ,③d r . 2. 直线与圆的位置关系共有三种:① ,② ,③ . 对应的圆心到直线的距离d 和圆的半径r 之间的数量关系分别为: ①d r ,②d r ,③d r . 3. 圆与圆的位置关系共有五种:① ,② ,③ ,④ ,⑤ ;两圆的圆心距d 和两圆的半径R 、r (R≥r )之间的数量关系分别为:①d R -r ,②d R -r ,③ R -r d R +r ,④d R +r ,⑤d R +r.4. 圆的切线 过切点的半径;经过 的一端,并且 这条的直线是圆的切线.5. 从圆外一点可以向圆引 条切线, 相等, 相等.6. 三角形的三个顶点确定 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫 心,是三角形 的交点.7. 与三角形各边都相切的圆叫做三角形的 ,内切圆的圆心是三角形的交点,叫做三角形的 .1. 圆的周长为 ,1°的圆心角所对的弧长为 ,n °的圆心角所对的弧长为 ,弧长公式为 .2. 圆的面积为 ,1°的圆心角所在的扇形面积为 ,n °的圆心角所在的扇形面积为S= 2R π⨯ = = .3. 圆柱的侧面积公式:S=2rl π.(其中r 为 的半径,l 为 的高)4. 圆锥的侧面积公式:S=rl π.(其中r 为 的半径,l 为 的长)1. 如果一个图形沿一条直线对折,对折后的两部分能 ,那么这个图形就是 ,这条直线就是它的 .2. 如果一个图形沿一条直线折叠,如果它能与另一个图形 ,那么这两个图形成 ,这条直线就是 ,折叠后重合的对应点就是 .3. 如果两个图形关于 对称,那么对称轴是任何一对对应点所连线段的 . 4. 把一个图形绕着某一个点旋转 °,如果旋转后的图形能够与原来的图形 ,那么这个图形叫做 图形,这个点就是它的 . 5. 把一个图形绕着某一个点旋转 °,如果它能够与另一个图形 ,那么就说这两个图形关于这个点 ,这个点叫做 .这两个图形中的对应点叫做关于中心的 . 6. 关于中心对称的两个图形,对称点所连线段都经过 ,而且被对称中心所 .关于中心对称的两个图形是 图形.7. 两个点关于原点对称时,它们的坐标符号 ,即点),(y x P 关于原点的对称点1P 为 . 1. 一个图形沿着一定的方向平行移动一定的距离,这样的图形运动称为______,它是由移动的 和 所决定.2. 平移的特征是:经过平移后的图形与原图形的对应线段 ,对应 ,图形的 与 都没有发生变化,即平移前后的两个图形 ;且对应点所连的线段 .3. 图形旋转的定义:把一个图形 的图形变换,叫做旋转,叫做旋转中心, 叫做旋转角.4. 图形的旋转由 、 和 所决定.其中①旋转在旋转过程中保持不动.②旋转 分为 时针和 时针. ③旋转一般小于360º.5. 旋转的特征是:图形中每一点都绕着 旋转了 的角度,对应点到旋转中心的 相等,对应 相等,对应 相等,图形的 都没有发生变化.也就是旋转前后的两个图形 . 轴对称图形又是中心对称图形的是( )。
2022年中考数学知识点总结完整版第一轮
中考数学总复习资料代数部分第一章:实数基本知识点:一、实数旳分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一种有理数总可以写成qp 旳形式,其中p 、q 是互质旳整数,这是有理数旳重要特性。
2、无理数:初中遇到旳无理数有三种:开不尽旳方根,如2、34;特定构造旳不循环无限小数,如1.001……;特定意义旳数,如π、45sin °等。
3、判断一种实数旳数性不能仅凭表面上旳感觉,往往要通过整顿化简后才下结论。
二、实数中旳几种概念1、相反数:只有符号不同旳两个数叫做互为相反数。
(1)实数a 旳相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)旳倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数3、绝对值: (1)一种数a 旳绝对值有如下三种状况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数旳绝对值是一种非负数,从数轴上看,一种实数旳绝对值,就是数轴上表达这个数旳点到原点旳距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面旳实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 旳平方根,a 叫a 旳算术平方根。
(2)正数旳平方根有两个,它们互为相反数;0旳平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 旳立方根。
(4)一种正数有一种正旳立方根;0旳立方根是0;一种负数有一种负旳立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度旳直线称为数轴。
原点、正方向、单位长度是数轴旳三要素。
2、数轴上旳点和实数旳相应关系:数轴上旳每一种点都表达一种实数,而每一种实数都可以用数轴上旳唯一旳点来表达。
人教版本初中中考数学第一轮总结复习学习资料超全
中考数学第一轮复习资料(全套37 页)第一章实数课时 1.实数的相关观点【课前热身】1. (08 重庆) 2 的倒数是.2. (08 白银)若向南走 2m 记作2m ,则向北走 3m 记作m .3. (08 乌鲁木齐) 2 的相反数是.4.(08 南京)3的绝对值是()A.B.C. 1 .13 3 3 D 35.(08 宜昌)跟着电子制造技术的不停进步,电子元件的尺寸大幅度减小,在芯片上某种电子元件大概只占0.000 000 7(毫米2),这个数用科学记数法表示为()A.7 ×10-6B. 0.7 ×10-6C. 7 ×10-7D. 70 ×10-8【考点链接】1.有理数的意义⑴ 数轴的三因素为、和. 数轴上的点与构成一一对应.⑵实数a的相反数为________.⑶非零实数a的倒数为______. 若 a ,b互为相反数,则a b=.若 a ,b互为倒数,则ab=.(a 0)⑷绝对值 a (a 0) .(a 0)⑸ 科学记数法:把一个数表示成的形式,此中1≤a<10 的数, n 是整数.⑹一般地,一个近似数,四舍五入到哪一位,就说这个近似数精准到哪一位. 这时,从左侧第一个不是的数起,到止,所有的数字都叫做这个数的有效数字.2.数的开方⑴任何正数 a 都有______个平方根,它们互为________.此中正的平方根 a 叫_______________. 没有平方根, 0 的算术平方根为 ______.⑵任何一个实数 a 都有立方根,记为.⑶ a 2 a ( a 0) .(a 0)3. 实数的分类和统称实数 .4.易错知识辨析(1)近似数、有效数字如0.030是2个有效数字(3,0)精准到千分位;3.14×105 是 3 个有效数字;精准到千位.3.14 万是 3 个有效数字( 3,1,4 )精准到百位.(2)绝对值x 2 的解为 x2 ;而 2 2 ,但少部分同学写成22 .(3)在已知中,以非负数 a2、|a| 、 a (a ≥0) 之和为零作为条件,解决相关问题 . 【典例精析】例1在“5 0 3 20 sin 450”这 6 个数中,无理数的,3.14 ,3,3 ,cos 60个数是()A.2个B .3个C .4 个 D .5 个例 2 ⑴(06 成都) 2 的倒数是()A.2B.⑵(08 芜湖)若 1 C. 1 D.-22 2m 3 (n 2)2 0 ,则 m 2n 的值为()A. 4 B. 1 C .0 D .4⑶(07 扬州)如图,数轴上点P表示的数可能是()A. 7B.7C.3.2D. 10P3 2 1O 1 23例 3以下 法正确的选项是()A .近似数 3.9×103精准到十分位B .按科学 数法表示的数 8.04×105其原数是 80400C .把数 50430 保存 2 个有效数字得 5.0×104.D .用四舍五入获取的近似数 8.1780 精准到 0.001 【中考演 】1. (08 常州) -3 的相反数是 ______,- 1的 是 _____,2 -1 =______, ( 1)2008. 22. 某种部件, 明要求是φ20±0.02 mm (φ 表示直径, 位:毫米), ,一 个部件的直径是 19.9 mm , 部件.(填“合格” 或“不合格”)3.以下各数中:- 3,1 ,0,3,364,0.31,22,2,2.161 161 161⋯,427(- 2 005 )0是无理数的是 ___________________________.4.(08 湘潭 ) 全球人民踊 四川汶川灾区人民捐钱,到 6 月 3 日止各地共捐钱 423.64元,用科学 数法表示捐钱数 __________元.(保存两个有效数字) 5.(06 北京)若 m 3 ( n 1) 2 0 , m n 的 . 6. 2.40 万精准到 __________位,有效数字有 __________个.7. (06 州) 1的倒数是 ( )5A .1B .1C . 5D .5558.(06 )点 A 在数 上表示 +2,从 A 点沿数 向左平移3 个 位到点 B , 点 B所表示的 数是()A .3B .-1C .5D .-1或39.( 08 州 ) 假如□+ 2=0,那么“□”内 填的 数是()A .1B .1 22C . 1D .2210.(08 梅州)以下各 数中,互 相反数的是()A.2和1B .-2 和-1C .-2 和|-2|D .2和1 2 2 211.(08 无) 16 的算平方根是()A.4B. - 4C. ±4D.1612. (08 郴州)数a、b在数上的地点如所示, a 与 b 的大小关系是()a o bA.a > b B.a = b C . a < b D .不可以判断13.若 x 的相反数是3,│ y│= 5, x+y 的()A .-8B .2C .8 或-2D .-8或214.(08 湘潭 ) 如,数上 A、B两点所表示的两数的()A. 和正数B. 和数C. 正数D. 数A B- 3 O2.数的运算与大小比【前身】1.(08 大)某天的最高气温 6°C,最低气温- 2°C,同天的最高气温比最低气温高 __________°C.2. (07 晋江)算: 3 1 _______.3. (07 阳)比大小: 2 3.(填“,或”符号)4.算 32的果是()A. -9B. 9C. -6D.65. (08巴中)以下各式正确的选项是()A.33 B.23 6 .(3)3 . ( π 2)0 0C D6.若“!”是一种数学运算符号,而且1!= 1,2!= 2×1=2,3!= 3×2×1= 6,4!= 4×3×2×1,⋯,100!的()98!A. 50B. 99!C. 9900D.2 !49【考点链接】1. 数的乘方 a n ,此中 a 叫做,n 叫做.2. a0 (此中 a 0 且 a 是) a p (此中 a 0)3. 实数运算先算,再算,最后算;假如有括号,先算里面的,同一级运算依据从到的次序挨次进行 .4.实数大小的比较⑴数轴上两个点表示的数,的点表示的数总比的点表示的数大.⑵正数0,负数0,正数负数;两个负数比较大小,绝对值大的绝对值小的.5.易错知识辨析在较复杂的运算中,不注意运算次序或许不合理使用运算律,进而使运算出现错误.如 5÷1×5. 5【典例精析】例1计算:⑴(08 龙岩) 20080+|- 1|-3 cos30°+(1)3;2⑵3 2 ( 2)2 2sin 60 .例 2计算: ( 1) 1 23 0.125 20090 | 1| .2﹡例 3已知 a 、 b 互为相反数, c 、 d 互为倒数,求| a b |4m 3cd 的值. 2m 2 1【中考操练】输入 x1. (07 盐城 ) 依据以下图的程序计算,平方乘以 2若输入 x 的值为1,则输出 y 的值为.减去 42. 比较大小:7 _____ 3 .1010 3. (08 江西)计算 (-2)2-(-2) 3的结果是(A. -4B. 2C. 4D. 12m 的绝对值是2,不然若结果大于0 输出 y)4. (08 宁夏 ) 以下各式运算正确的选项是()A .2-1=- 1B .23= 6C .22·23=26D .(2 3) 2=2625. -2,3,-4,-5,6 这五个数中,任取两个数相乘,得的积最大的是()A.10B .20C.- 30D .186. 计算:⑴(08 南宁) ( 1)01tan 452 14 ;2⑵(08 年郴州)(1)2 (3 2)0 2sin 30 3 ;2⑶ (08 莞 ) cos 60 21 (2008)0.7. 有律摆列的一列数:2,4,6,8,10,12,⋯它的每一可用式子2n (n 是正整数)来表示.有律摆列的一列数:1, 2,3, 4,5, 6,7, 8,⋯(1)它的每一你可用怎的式子来表示?(2)它的第 100 个数是多少?(3)2006 是不是列数中的数?假如是,是第几个数?8.有一种“二十四点”的游,其游是:任取1 至 13 之的自然数四个,将个四个数(每个数用且只用一次)行加减乘除四运算,使其果等于24.比如: 1,2,3,4,可作运算:(1+2+3)×4=24.(注意上述运算与 4 ×(2 +3+1)作相同方法的运算 . “超英豪” 目中有以下:四个有理数3,4,-6,10,运用上述写出三种不一样方法的运算,使其果等于24,(1)_______________________,(2)_______________________,(3)_______________________.还有四个数 3,- 5,7,- 13,可通运算式( 4)_____________________,使其结果等于 24.第二章代数式课时 3.整式及其运算【课前热身】1. 1 x2y 的系数是,次数是. 32. (08 遵义)计算:( 2a)2 a .3. (08 双柏)以下计算正确的选项是()A.x5 x5 x10B. x5·x5 x10 C .(x5)5 x10 D .x20 x2 x10 4. (08湖州)计算( x)2 x3所得的结果是()A.x5 .x5C . x6D. x6B5. a ,b 两数的平方和用代数式表示为()A. a2 b2B. (a b)2C. a b2D. a2 b6.某工厂一月份产值为a万元,二月份比一月份增加 5%,则二月份产值为()A. ( a 1) ·5%万元B. 5 % a 万元C.(1+5 %) a 万元D.(1+5%)2 a【考点链接】1. 代数式:用运算符号(加、减、乘、除、乘方、开方)把或表示连结而成的式子叫做代数式 .2. 代数式的值:用取代代数式里的字母,依据代数式里的运算关系,计算后所得的叫做代数式的值 .3. 整式( 1)单项式:由数与字母的构成的代数式叫做单项式(单唯一个数或也是单项式) . 单项式中的叫做这个单项式的系数;单项式中的所有字母的叫做这个单项式的次数 .(2) 多项式:几个单项式的叫做多项式 . 在多项式中,每个单项式叫做多项式的, 此中次数最高的项的叫做这个多项式的次数 . 不含字母的叫做.(3) 整式:与称整式 .4. 同:在一个多式中,所含相同而且相同字母的也分相等的叫做同 . 归并同的法是___.5. 的运算性 : a m·a n= ; (a m) n= ; a m÷a n=_____; (ab) n= .6.乘法公式:(1) (a b)(c d ) ;(2)(a+b)(a -b) =;(3) (a +b) 2=;(4)(a -b) 2=.7.整式的除法⑴ 式除以式的法:把、分相除后,作商的因式;于只在被除武里含有的字母,同它的指数一同作商的一个因式.⑵多式除以式的法:先把个多式的每一分除以,再把所得的商.【典例精析】例 1 (08 木)若a 0 且a x 2 , a y 3 , a x y的()A.1B.1C.2D.3 3 2例 2 (06 广)按以下程序算,把答案写在表格内:n平方+nn-n答案⑴ 填写表格:入 n3出答案1 12—2—3⋯1⋯⑵ 将中算程序用代数式表达出来,并予化.例 3 先化,再求:(1)(08 江西) x (x +2)-(x+1)(x-1),此中 x=-1;2(2) ( x 3)2 ( x 2)( x 2) 2x2,此中 x 1 .3【中考演】1. 算 (-3a 3) 2÷a2的果是 ( )A. -9a 4B. 6a 4C. 9a 2D. 9a42. (06 泉州)以下运算中,果正确的选项是()A. x3·x3 x6B. 3x2 2x2 5x4C. ( x2)3 x5 D .( x y)2 x2 y23. (08 庄)已知代数式3x2 4x 6 的,24 x 6的()9 x3A.18 B .12 C .9 D .74. 若2x3y m与3x n y2 是同, m + n =____________.5.察下边的式: x,-2x ,4x3,-8x 4,⋯⋯ . 依据你的律,写出第7 个式子是.6.先化,再求:⑴(a 2b)(a 2b) ab 3( ab) ,此中 a2 ,b1;⑵(x y)2 2 y(x y),此中x1, y2 .﹡7.(08 巴中)大家必定熟知杨辉三角(Ⅰ),察看以下等式(Ⅱ)111121133114641 .......................................Ⅰ(a b)1 a b(a b)2 a2 2ab b2(a b)3 a3 3a2b 3ab2 b3(a b)4 a4 4a3b 6a2b2 4ab3 b4Ⅱ依据前面各式规律,则( a b)5.课时 4.因式分解【课前热身】1. (06 温州)若 x-y=3,则 2x-2y=.2. (08 茂名)分解因式: 3 x2-27= .3.若x2 ax b ( x 3)( x 4), 则 a ,b .4. 简易计算: 20082 2009 2008 =.5. (08 东莞)以下式子中是完整平方式的是()A.a2 ab b 2B. a2 2a 2 C. a2 2b b2D. a2 2a 1【考点链接】1.因式分解:就是把一个多项式化为几个整式的的形式.分解因式要进行到每一个因式都不可以再分解为止.2. 因式分解的方法:⑴,⑵,⑶,⑷.3. 提公因式法: ma mb mc __________ _________.4. 公式法 : ⑴a2 b2 ⑵ a 2 2ab b2 ,⑶ a 2 2ab b2 .5. 十字相乘法: x 2 p q x pq .6.因式分解的一般步骤 : 一“提”(取公因式),二“用”(公式).7.易错知识辨析(1)注意因式分解与整式乘法的差别;(2)完整平方公式、平方差公式中字母,不单表示一个数,还能够表示单项式、多项式 .【典例精析】例 1 分解因式:⑴(08 聊城) ax3 y axy3 2ax2 y2__________________.⑵(08 宜宾) 3y2-27=___________________.⑶(08 福州) x2 4x 4 _________________.⑷ (08 宁波 ) 2x2 12x 18 .例 2 已知a b 5, ab 3 ,求代数式 a3b 2a2b2 ab3的值.【中考操练】1.简易计算:7.292-2.712.2.分解因式: 3.分解因式: 4.分解因式:2x 24x ____________________.4x 29 ____________________.x 24x 4. 5. (08 凉山)分解因式 ab 2 2a 2b a 3.6.(08 泰安)将1x x 3 x 2 分解因式的结果是.47. (08 中山)分解因式 am an bm bn =__________; 8.(08 安徽 ) 以下多项式中,能用公式法分解因式的是( )A .x 2-xyB .x 2+xyC .x 2-y 2D .x 2+y 29.以下各式从左到右的变形中,是因式分解的为()A . x(a b) ax bxB . x 2 1 y 2( x 1)( x 1) y 2C . x 2 1 (x 1)( x 1). c x(a b) cD ax bx﹡10. 以下图,边长为 a,b 的矩形,它的周长为 14,面积为 10,求 a 2b ab 2 的值.ba11.计算: (1)992;11 1 1 12 ) . (2) (1 2 )(1 2 )(1 4 2) (1 9 2 )(110 2 3﹡12.已知 、 b 、 是△ ABC 的三边,且知足a4 2 c2 b4 2 2,试判断△的bacacABC形状 . 阅读下边解题过程:解:由 a 4 b 2c 2 b 4 a 2 c 2 得:a 4b 4a 2 c 2b 2c 2①a 2b 2 a 2 b 2c 2 a 2 b 2②即 a 2 b 2 c 2③∴△ ABC 为 Rt △。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学知识点总结完整版第一轮Company Document number:WTUT-WT88Y-W8BBGB-中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不循环无限小数,如……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a叫实数a的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
实数和数轴上的点是一一对应的关系。
四、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。
2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。
五、实数的运算1、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
可使用加法交换律、结合律。
2、减法:减去一个数等于加上这个数的相反数。
3、乘法:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。
(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。
4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。
(2)除以一个数等于乘以这个数的倒数。
(3)0除以任何数都等于0,0不能做被除数。
5、乘方与开方:乘方与开方互为逆运算。
6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。
无论何种运算,都要注意先定符号后运算。
六、有效数字和科学记数法1、科学记数法:设N>0,则N= a×n10(其中1≤a<10,n为整数)。
2、有效数字:一个近似数,从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。
精确度的形式有两种:(1)精确到那一位;(2)保留几个有效数字。
例题:例1、已知实数a、b在数轴上的对应点的位置如图所示,且a 。
b化简:a b b a a --+-例2、若333)43(,)43(,)43(--=-=-=c b a ,比较a 、b 、c 的大小。
例3、若22+-b a 与互为相反数,求a+b 的值例4、已知a 与b 互为相反数,c 与d 互为倒数,m 的绝对值是1,求2m cd mb a +-+的值。
例5、计算:(1)199********.08⨯ (2)222121⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛+e e e e代数部分第二章:代数式基础知识点:一、代数式1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。
单独一个数或者一个字母也是代数式。
2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。
3、代数式的分类:⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧无理式分式多项式单项式整式有理式代数式 二、整式的有关概念及运算1、概念(1)单项式:像x 、7、y x 22,这种数与字母的积叫做单项式。
单独一个数或字母也是单项式。
单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。
单项式的系数:单项式中的数字因数叫单项式的系数。
(2)多项式:几个单项式的和叫做多项式。
多项式的项:多项式中每一个单项式都叫多项式的项。
一个多项式含有几项,就叫几项式。
多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。
不含字母的项叫常数项。
升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到大(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
(3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。
2、运算(1)整式的加减:合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。
去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号。
添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“–”号,括到括号里的各项都变号。
整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。
(2)整式的乘除:幂的运算法则:其中m 、n 都是正整数同底数幂相乘:n m n m a a a +=⋅;同底数幂相除:n m n m a a a -=÷;幂的乘方:mn n m a a =)(积的乘方:n n n b a ab =)(。
单项式乘以单项式:用它们系数的积作为积的系数,对于相同的字母,用它们的指数的和作为这个字母的指数;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
单项式乘以多项式:就是用单项式去乘多项式的每一项,再把所得的积相加。
多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
单项除单项式:把系数,同底数幂分别相除,作为商的因式,对于只在被除式里含有字母,则连同它的指数作为商的一个因式。
多项式除以单项式:把这个多项式的每一项除以这个单项,再把所得的商相加。
乘法公式:平方差公式:22))((b a b a b a -=-+;完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-三、因式分解1、因式分解概念:把一个多项式化成几个整式的积的形式,叫因式分解。
2、常用的因式分解方法:(1)提取公因式法:)(c b a m mc mb ma ++=++(2)运用公式法:平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±(3)十字相乘法:))(()(2b x a x ab x b a x ++=+++(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。
(5)运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x ,则有:))((212x x x x a c bx ax --=++3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。
(4)最后考虑用分组分解法。
四、分式1、分式定义:形如B A 的式子叫分式,其中A 、B 是整式,且B 中含有字母。
(1)分式无意义:B=0时,分式无意义; B ≠0时,分式有意义。
(2)分式的值为0:A=0,B ≠0时,分式的值等于0。
(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。
方法是把分子、分母因式分解,再约去公因式。
(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。
分式运算的最终结果若是分式,一定要化为最简分式。
(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。
(6)最简公分母:各分式的分母所有因式的最高次幂的积。
(7)有理式:整式和分式统称有理式。
2、分式的基本性质:(1))0(的整式是≠⋅⋅=M MB M A B A ;(2))0(的整式是≠÷÷=M MB M A B A (3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算:(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。
(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。
(3)除:除以一个分式等于乘上它的倒数式。
(4)乘方:分式的乘方就是把分子、分母分别乘方。
五、二次根式1、二次根式的概念:式子)0(≥a a 叫做二次根式。
(1)最简二次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽方的因式的二次根式叫最简二次根式。
(2)同类二次根式:化为最简二次根式之后,被开方数相同的二次根式,叫做同类二次根式。
(3)分母有理化:把分母中的根号化去叫做分母有理化。
(4)有理化因式:把两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式(常用的有理化因式有:a 与a ;d c b a +与d c b a -)2、二次根式的性质:(1) )0()(2≥=a a a ;(2)⎩⎨⎧<-≥==)0()0(2a aa a a a ;(3)b a ab ⋅=(a ≥0,b ≥0);(4))0,0(≥≥=b a ba b a 3、运算:(1)二次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根式。
(2)二次根式的乘法:ab b a =⋅(a ≥0,b ≥0)。
(3)二次根式的除法:)0,0(≥≥=b a ba b a二次根式运算的最终结果如果是根式,要化成最简二次根式。