平面向量的应用课件课件
第六章第二节平面向量的基本定理及坐标表示课件共49张PPT
![第六章第二节平面向量的基本定理及坐标表示课件共49张PPT](https://img.taocdn.com/s3/m/72f43214e418964bcf84b9d528ea81c758f52e3e.png)
设正方形的边长为
1
,
则
→ AM
= 1,12
,
→ BN
=
-12,1 ,A→C =(1,1),
∵A→C =λA→M +μB→N
=λ-12μ,λ2 +μ ,
λ-12μ=1, ∴λ2 +μ=1,
解得λμ= =6525, .
∴λ+μ=85 .
法二:由A→M
=A→B
+12
→ AD
,B→N
=-12
→ AB
+A→D
栏目一 知识·分步落实 栏目二 考点·分类突破 栏目三 微专题系列
栏目导引
课程标准
考向预测
1.理解平面向量的基本定理及其意义. 考情分析: 平面向量基本定理及
2.借助平面直角坐标系掌握平面向量 其应用,平面向量的坐标运算,向
的正交分解及其坐标表示.
量共线的坐标表示及其应用仍是
3.会用坐标表示平面向量的加法、减 高考考查的热点,题型仍将是选择
A.(-2,3)
B.(2,-3)
C.(-2,1)
D.(2,-1)
D [设 D(x,y),则C→D =(x,y-1),2A→B =(2,-2),根据C→D =2A→B , 得(x,y-1)=(2,-2),
即xy= -21, =-2, 解得xy= =2-,1, 故选 D.]
2.(2020·福建三明第一中学月考)已知 a=(5,-2),b=(-4,-3),若
解析: ∵ma+nb=(2m+n,m-2n)=(9,-8), ∴2mm-+2nn==9-,8, ∴mn==52., ∴m-n=2-5=-3. 答案: -3
考点·分类突破
⊲学生用书 P93
平面向量基本定理及其应用
(1)(多选)(2020·文登区期中)四边形 ABCD 中,AB∥CD,∠A=90°,
《平面向量应用举例》高一年级下册PPT课件
![《平面向量应用举例》高一年级下册PPT课件](https://img.taocdn.com/s3/m/50e0ea5e876fb84ae45c3b3567ec102de2bddf8f.png)
第二章 平面向量
[解析] 以 B 为原点,BC 所在直线为 x 轴,建立如图所示的平面直角坐标
系.
∵AB=AC=5,BC=6, ∴B(0,0),A(3,4),C(6,0), 则A→C=(3,-4). ∵点 M 是边 AC 上靠近点 A 的一个三等分点, ∴A→M=31A→C=(1,-43),
8
∴M(4,3),
第二章 平面向量
(3)证明线段的垂直问题,如证明四边形是矩形、正方形,判断两直线(线 段)是否垂直等,常运用向量垂直的条件:a⊥b⇔a· b=0(或 x1x2+y1y2=0)
_______________________________.
a· b cosθ=|a ||b|
(4)求与夹角相关的问题,往往利用向量的夹角公式________________.
第二章 平面向量
∴B→M=(4,8).
3
假设在 BM 上存在点 P 使得 PC⊥BM, 设B→P=λB→M,且 0<λ<1, 即B→P=λB→M=λ(4,83)=(4λ,83λ), ∴C→P=C→B+B→P=(-6,0)+(4λ,83λ)=(4λ-6,83λ). ∵PC⊥BM,∴C→P· B→M=0,
第二章 平面向量
[解析] A→B=(7-20)i+(0-15)j=-13i-15j, (1)F1所做的功 W1=F1· s=F1· A→B =(i+j)· (-13i-15j)=-28; F2 所做的功 W2=F2· s=F2· A→B =(4i-5j)· (-13i-15j)=23. (2)因为 F=F1+F2=5i-4j, 所以 F 所做的功 W=F· s=F· A→B =(5i-4j)· (-13i-15j)=-5.
1.判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”.
《平面向量的运算》平面向量及其应用 PPT教学课件 (向量的数量积)
![《平面向量的运算》平面向量及其应用 PPT教学课件 (向量的数量积)](https://img.taocdn.com/s3/m/e1a00570326c1eb91a37f111f18583d048640f57.png)
返回导航 上页 下页
向量 a 在向量 b 上的投影向量的求法 将已知量代入 a 在 b 方向上的投影向量公式|a|cos θ e(e 是与 b 方向相同的单位向量, 且 e=|bb|)中计算即可.
必修第二册·人教数学A版
返回导航 上页 下页
2.已知|a|=4,|b|=6,a 与 b 的夹角为 60°,则向量 a 在向量 b 上的投影向量是________. 解析:向量 a 在向量 b 上的投影向量是|a|cos 60°|bb|=4×12×16b=13b. 答案:13b
我们称上述变换为向量 a 向向量 b 投影 ,A→1B1叫做向量 a 在向量 b 上的 投影向量 .
必修第二册·人教数学A版
返回导航 上页 下页
(2)如图,在平面内任取一点 O,作O→M=a,O→N=b,设 与 b 方向相同的单位向量为 e,a 与 b 的夹角为 θ,过点 M 作直线 ON 的垂线,垂足为 M1,则O→M1= |a|ecos θ . 特别地,当 θ=0 时,O→M1= |a|e . 当 θ=π 时,O→M1= -|a|e . 当 θ=π2时,O→M1=0.
返回导航 上页 下页
必修第二册·人教数学A版
⑥cos θ=|aa|·|bb|.
必修第二册·人教数学A版
返回导航 上页 下页
知识点五 平面向量数量积的性质
预习教材,思考问题
根据实数乘法的运算律,类比得出向量数量积的运算律,如下表,这些结果正确吗?
运算律 实数乘法
平面向量数量积
交换律
ab=ba
a·b=b·a
结合律
(ab)c=a(bc)
(a·b)·c=a·(b·c) (λa)·b=a·(λb)=λ(a·b)
解析:(2a+3b)·(3a-2b) =6a2-4a·b+9b·a-6b2 =6|a|2+5a·b-6|b|2 =6×42+5×4×7·cos 120°-6×72 =-268.
高中数学第2章平面向量7向量应用举例7.1点到直线的距离公式7.2向量的应用举例课件北师大版必修
![高中数学第2章平面向量7向量应用举例7.1点到直线的距离公式7.2向量的应用举例课件北师大版必修](https://img.taocdn.com/s3/m/6807f44953ea551810a6f524ccbff121dd36c530.png)
知识点一 向量在物理中的应用
1.人骑自行车的速度为 v1,风速为 v2,则逆风行驶的速度 为( )
A.v1-v2 C.v1+v2
B.v2-v1 D.|v1|-|v2|
答案:C
2.若向量O→F1=(1,1),O→F2=(-3,-2)分别表示两个力→F1,
→F2,则|→F1+→F2|为(
)
A.(5,0)
【方法总结】 用向量的方法解决相关的物理问题,要将 相关物理量用几何图形表示出来;再根据它的物理意义建立数 学模型,将物理问题转化为数学问题求解;最后将数学问题还 原为物理问题.
如图所示,用两根分别长 5 2 米和 10 米的绳子,将 100 N 的物体吊在水平屋顶 AB 上,平衡后,G 点 距屋顶距离恰好为 5 米,求 A 处所受力的大小(绳子的质量忽略 不计).
解:设A→D=a,A→B=b,则B→D=a-b,A→C=a+b. 而|B→D|2=a2-2a·b+b2=|a|2-2a·b+|b|2=5- 2a·b=4,所以 2a·b=1. 又|A→C|2=|a+b|2=a2+2a·b+b2=|a|2+2a·b+ |b|2=5+2a·b=6, 所以|A→C|= 6, 即 AC= 6.
第二章 平面向量
§7 向量应用举例 7.1 点到直线的距离公式
7.2 向量的应用举例
课前基础梳理
自主学习 梳理知识
|学 习 目 标| 1.能运用向量的有关知识解决解析几何中直线方程的问 题,以及在平面几何中的线段平行、垂直、相等等问题. 2.能运用向量的有关知识解决物理中有关力、速度、功等 问题.
B.(-5,0)
C. 5
D.- 5
答案:C
知识点二 向量在解析几何中的应用
3.已知直线 l:mx+2y+6=0,向量(1-m,1)与 l 平行,则
《平面向量的应用》平面向量及其应用 PPT教学课件 (第二课时正弦定理)
![《平面向量的应用》平面向量及其应用 PPT教学课件 (第二课时正弦定理)](https://img.taocdn.com/s3/m/d8ec99e96e1aff00bed5b9f3f90f76c660374c60.png)
必修第二册·人教数学A版
返回导航 上页 下页
同理,过点 C 作与C→B垂直的单位向量 m,可得sinc C=sinb B. 因此sina A=sinb B=sinc C. 在钝角三角形中的这个边角关系也成立.
必修第二册·人教数学A版
知识梳理 正弦定理
返回导航 上页 下页
必修第二册·人教数学A版
法二:由sina A=cobs B=cocs C 得sina A=cobs B=cocs C,① 把 a=2Rsin A,b=2Rsin B,c=2Rsin C 代入①, 得 2R=2Rtan B=2Rtan C, ∴tan B=tan C=1, 又 0°<B<180°,0°<C<180°, ∴B=C=45°,A=90°, ∴△ABC 为等腰直角三角形.
必修第二册·人教数学A版
课前 • 自主探究
返回导航 上页 下页
课堂 • 互动探究
课后 • 素养培优
课时 • 跟踪训练
必修第二册·人教数学A版
返回导航 上页 下页
[教材提炼] 知识点一 正弦定理 预习教材,思考问题 (1)在△ABC 中,若 A=30°,B=45°,AC=4,你还能直接运用余弦定理求出边 BC 吗?
返回导航 上页 下页
2.在△ABC 中,A=45°,B=30°,a=10,则 b=( )
A.5 2
B.10 2
C.10 6
D.5 6
解析:由正弦定理sina A=sinb B得 b=assiinnAB=10s×insi4n5°30°=5 2.
答案:A
必修第二册·人教数学A版
返回导航 上页 下页
3.在△ABC 中,若 A=30°,a=2,b=2 3,则此三角形解的个数为( )
第六章平面向量及其应用章末总结课件(人教版)
![第六章平面向量及其应用章末总结课件(人教版)](https://img.taocdn.com/s3/m/39b66e2332687e21af45b307e87101f69f31fb0f.png)
2
2
由 b=3 及余弦定理 b =a +c -2accos B,
2
2
得 9=a +c -ac.
所以 a= ,c=2 .
规律总结
解三角形就是已知三角形中的三个独立元素(至少一条边)求出其他元素的
过程.三角形中的元素有基本元素(边和角)和非基本元素(中线、高、角平
分线、外接圆半径和内切圆半径),解三角形通常是指求未知的元素,有时
∠
=
(-∠)
=
在△ABC 中,BC=5,
2
2
2
2
2
由余弦定理得 AC =AB +BC -2AB·BC·cos B=8 +5 -2×8×5×=49,
所以 AC=7.
=3,
题型四
正、余弦定理的综合应用
[例 4] (2021·山西运城模拟)△ABC 的角 A,B,C 的对边分别为 a,b,c,已知
所以 tan B= ,又 0<B<π,所以 B=.
[例 3] 在△ABC 中,内角 A,B,C 的对边分别为 a,b,c,且 bsin A= acos B.
(2)若b=3,sin C=2sin A,求a,c的值.
解:(2)由 sin C=2sin A 及=,得 c=2a,
→
→
所以=2,即 D 错误.故选 AB.
→
→
→
(2)如图所示,正方形 ABCD 中,M 是 BC 的中点,若=λ+μ,则λ+μ等于
(
)
(A)
(B)
(C)
→
→
→
(D)2
最新人教A版高一数学必修二课件:6.4.3平面向量的应用正弦定理
![最新人教A版高一数学必修二课件:6.4.3平面向量的应用正弦定理](https://img.taocdn.com/s3/m/20c564050166f5335a8102d276a20029bd646316.png)
【解析】由题意得:sinb B=sinc C,
所以 sin B=bsicn C=
6× 3
3 2=
2 2.
因为 b<c,所以 B=45°.所以 A=180°-B-C=75°.
| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
第六章 平面向量及其应用
(2)解:因为sina A=sinc C,
| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
第六章 平面向量及其应用
2.满足 B=60°,AC=12,BC=k 的△ABC 恰有一个,则 k 的取值
范围是
()
A.k=8 3
B.0<k≤12
C.k≥12
D.0<k≤12 或 k=8 3
【答案】D
| 自学导引 |
a (2)sin
A=sinb
B=sinc
C=sin
a+b+c A+sin B+sin
C=_____2_R_____;
(3)a=__2_R__si_n__A__,b=__2_R__si_n__B__,c=__2_R_s_in__C___;
a
b
c
(4)sin A=___2_R___,sin B=___2_R___,sin C=___2_R___.
数学 必修第二册 配人版A版
第六章 平面向量及其应用
| 课堂互动 |
| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
第六章 平面向量及其应用
《平面向量的概念》平面向量及其应用 PPT教学课件
![《平面向量的概念》平面向量及其应用 PPT教学课件](https://img.taocdn.com/s3/m/84259828fe00bed5b9f3f90f76c66137ef064f60.png)
必修第二册·人教数学A版
返回导航 上页 下页
知识梳理
名称 大小 方向
零向量 0
任意的
单位向量 1 规定了方向
必修第二册·人教数学A版
返回导航 上页 下页
知识点五 向量的关系 预习教材,思考问题 (1)向量由其模和方向所确定.对于两个向量 a,b,就其模等与不等,方向同与不同 而言,有哪几种可能情形?
必修第二册·人教数学A版
返回导航 上页 下页
探究三 相等向量与共线向量 [例 3] 如图,四边形 ABCD 为边长为 3 的正方形,把各边三等分后,共有 16 个交 点,从中选取两个交点作为向量,则与A→C平行且长度为 2 2的向量个数有________ 个.
必修第二册·人教数学A版
返回导航 上页 下页
[解析] 如图所示,满足与A→C平行且长度为 2 2的向量有A→F,F→A, E→C,C→E,G→H,H→G,→IJ,→JI共 8 个.
[答案] 8
必修第二册·人教数学A版
返回导航 上页 下页
相等向量与共线向量的探求方法 (1)寻找相等向量:先找与表示已知向量的有向线段长度相等的向量,再确定哪些是 同向共线. (2)寻找共线向量:先找与表示已知向量的有向线段平行或共线的线段,再构造同向 与反向的向量,注意不要漏掉以表示已知向量的有向线段的终点为起点,起点为终 点的向量. 提醒:与向量平行相关的问题中,不要忽视零向量.
[自主检测] )
B.拉力 D.压强
解析:拉力既有大小又有方向,是向量,其余均是数量.
答案:B
必修第二册·人教数学A版
返回导航 上页 下页
2.下列说法正确的是( ) A.数量可以比较大小,向量也可以比较大小 B.向量的模可以比较大小 C.模为 1 的向量都是相等向量 D.由于零向量的方向不确定,因此零向量不能与任意向量平行
人教高中数学必修二A版《平面向量的应用》平面向量及其应用教学说课复习课件(平面几何中的向量方法)
![人教高中数学必修二A版《平面向量的应用》平面向量及其应用教学说课复习课件(平面几何中的向量方法)](https://img.taocdn.com/s3/m/0f31413cb94ae45c3b3567ec102de2bd9605de2b.png)
必修第二册·人教数学A版
返回导航 上页 下页
探究二 平面向量在几何求值中的应用
[例 2] (1)已知边长为 2 的正六边形 ABCDEF,连接 BE,CE,
点 G 是线段 BE 上靠近 B 的四等分点,连接 GF,则G→F·C→E( )
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
的合力的大小为( )
课件
课件
课件
课件
A.5 课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
N
B.5 2 N
C.5 3 N
D.5 6 N
解析:两个力的合力的大小为|F1+F2|= F21+F22+2F1·F2=5 6(N). 答案:D
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
①选取基底;②用基底表示相关向量;③利用向量的线性运算或数量积找相应关系;
④把几何问题向量化.
(2)向量的坐标运算法的四个步骤:
基底表示,利用向量的运算法则、运算律或性质计算.
②坐标法:建立平面直角坐标系,实现向量的坐标化,将几何问题中的长度、垂直、
平行、夹角等问题转化为代数运算.
2024年高考数学一轮复习(新高考版)《平面向量的综合应用》课件ppt
![2024年高考数学一轮复习(新高考版)《平面向量的综合应用》课件ppt](https://img.taocdn.com/s3/m/19fe330db94ae45c3b3567ec102de2bd9705de1d.png)
C.-38
D.-14
1 2 3 4 5 6 7 8 9 10 11 12
建立如图所示的平面直角坐标系,设P(x,y), 则A(0,0),B(1,0),C(1,2), 所以P→B=(1-x,-y), P→A+P→C=(-x,-y)+(1-x,2-y)=(1-2x,2-2y), 故(P→A+P→C)·P→B=(1-2x)(1-x)+(2-2y)(-y)=2x-342+2y-122-58, 所以当 x=34,y=12时,平面向量与复数
§5.4 平面向量的综合 应用[培优课]
题型一 平面向量在几何中的应用
例 1 (1)如图,在△ABC 中,cos∠BAC=14,点 D 在线段 BC 上,且 BD =3DC,AD= 215,则△ABC 的面积的最大值为____1_5__.
设△ABC的内角A,B,C所对的边分别为a,b,c, 因为 BD=3DC,A→D=14A→B+34A→C, 又 AD= 215,cos∠BAC=14, 所以A→D2=14A→B+34A→C2=116c2+196b2+38bccos∠BAC =116c2+196b2+332bc,
试用
a,b
表示D→E为__32_b_-__12_a_,若A→B⊥D→E,则∠ACB
π 的最大值为___6___.
D→E=C→E-C→D=32b-12a, A→B=C→B-C→A=b-a, 由A→B⊥D→E得(3b-a)·(b-a)=0,
即3b2+a2=4a·b, 所以 cos∠ACB=|aa|·|bb|=34b|2a+||ba| 2≥24|3a||a|b|||b|= 23,
又145=116c2+196b2+332bc=41c2+43b2+332bc≥2×14c×43b+332bc=1352bc, 当且仅当c=3b时,等号成立. 所以 bc≤8,又 sin∠BAC= 415, 所以 S△ABC=12bcsin∠BAC≤12×8× 415= 15.
2024版中职数学平面向量的概念ppt课件
![2024版中职数学平面向量的概念ppt课件](https://img.taocdn.com/s3/m/6c6f8b06f6ec4afe04a1b0717fd5360cba1a8da7.png)
01向量的定义向量是既有大小又有方向的量,通常用有向线段表示。
02向量的表示方法向量可以用小写字母或大写字母加箭头表示,如$vec{a}$或$overset{longrightarrow}{AB}$。
03向量的模向量的大小称为向量的模,记作$|vec{a}|$,模长是一个非负实数。
向量定义及表示方法03向量的模长等于有向线段的长度,可以通过勾股定理或三角函数计算。
向量的模长向量与正方向(通常是x 轴正方向)的夹角称为向量的方向角,记作$theta$,取值范围是$[0, pi]$或$[0, 180^circ]$。
方向角向量与坐标轴正方向的夹角的余弦值称为向量的方向余弦,可以通过方向角计算得到。
方向余弦向量模长与方向角模长为0的向量称为零向量,记作$vec{0}$,零向量没有方向。
零向量单位向量相反向量模长为1的向量称为单位向量,单位向量具有确定的方向。
与给定向量大小相等、方向相反的向量称为相反向量,记作$-vec{a}$。
030201零向量、单位向量和相反向量向量共线与平行关系向量共线如果两个向量在同一直线上或者平行于同一直线,则称这两个向量共线。
共线向量满足$vec{a} = kvec{b}$($k$为实数)。
向量平行如果两个向量的方向相同或相反,则称这两个向量平行。
平行向量满足$vec{a} parallel vec{b}$。
共线与平行的关系在平面内,共线的向量一定平行,但平行的向量不一定共线。
加法定义两个向量相加,即将它们的对应分量相加得到新的向量。
几何意义向量的加法满足平行四边形法则或三角形法则,即两个向量相加的结果可以表示为以这两个向量为邻边的平行四边形的对角线,或者可以表示为将其中一个向量的终点连接到另一个向量的起点的向量。
01减法定义02几何意义两个向量相减,即将被减数的各分量减去减数的对应分量得到新的向量。
向量的减法可以表示为将减数向量的终点连接到被减数向量的起点的向量,这个向量与减数向量方向相反,大小相等。
平面向量的概念PPT课件
![平面向量的概念PPT课件](https://img.taocdn.com/s3/m/0b20a8a0541810a6f524ccbff121dd36a32dc428.png)
04
平面向量数量积概念及性 质
数量积定义及几何意义
数量积定义
两个向量的数量积是一个标量,等于它们模长的乘积与它们夹 角余弦的乘积。
几何意义
数量积反映了两个向量的相对位置和角度关系,正值表示同向, 负值表示反向,零表示垂直。
数量积性质及运算规律
性质
满足交换律、分配律、结合律,与标量乘法相容等。
运算规律
向量坐标与点坐标关系
向量坐标
向量坐标是由起点指向终点的有 向线段,在直角坐标系中可以用
两个坐标值表示。
点坐标
点坐标是直角坐标系中点的位置表 示,同样可以用两个坐标值表示。
关系
向量坐标与点坐标密切相关,向量 的起点和终点坐标可以决定向量的 坐标,而点的坐标可以用来表示向 量的起点或终点。
向量运算坐标表示法
坐标法求解向量问题
求解向量坐标
通过已知点的坐标和向量的关系,可以 求解向量的坐标。
求解向量模长
通过向量的坐标可以计算向量的模长, 进而求解与模长相关的问题。
求解向量夹角
通过向量的坐标可以计算向量的夹角, 进而求解与夹角相关的问题。
求解向量运算结果
通过向量的坐标表示法可以求解向量的 加法、减法和数乘运算结果。
向量运算满足基本定律
加法结合律
(a + b) + c = a + (b + c)
数乘结合律
(kl)a = k(la)
加法交换律
a+b=b+a
数乘分配律
k(a + b) = ka + kb
向量共线定理,使得b = λa
03
平面向量坐标表示法
直角坐标系中向量表示方法
《平面向量的应用》课件
![《平面向量的应用》课件](https://img.taocdn.com/s3/m/568310860408763231126edb6f1aff00bed5702d.png)
向量的模表示向量的长度,可以通过坐标表示计算得出。具体计算公式为$sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$,其中$(x_1, y_1)$和$(x_2, y_2)$分别是向量的起点和终点的坐标。
向量加法和数乘可以通过坐标表示进行计算,遵循平行四边形法则和数乘的分配律。
详细描述
总结词
向量的大小或模定义为向量起点到终点的距离。
总结词
向量的模是表示向量大小的数值,可以通过勾股定理计算得到。向量的模具有几何意义,表示向量起点到终点的距离。
详细描述
向量小。
总结词
向量的加法是将两个有向线段首尾相接,形成一个新的有向线段。数乘则是将一个向量放大或缩小,保持方向不变。通过向量的加法和数乘,可以组合多个向量,形成复杂的向量关系。
平面向量的应用实例
03
速度和加速度
在匀速圆周运动和平抛运动等物理问题中,可以利用平面向量表示速度和加速度,进而分析运动规律。
力的合成与分解
通过向量加法、数乘和向量的数量积、向量的向量积等运算,可以方便地表示出力的合成与分解过程,进而分析物体的运动状态。
力的矩
矩是一个向量,可以利用平面向量表示力矩,进而分析转动效果。
总结词:平面向量在解决几何问题中具有广泛的应用,如向量的加法、减法、数乘等运算可以用于解决长度、角度、平行、垂直等问题。
总结词:平面向量在解决代数问题中具有广泛的应用,如向量的模长、向量的数量积、向量的向量积等运算可以用于解决方程组、不等式等问题。
总结词
通过平面直角坐标系,可以将向量表示为有序实数对。
详细描述
在平面直角坐标系中,任意一个向量可以由其起点和终点的坐标确定,并表示为有序实数对。例如,向量$overset{longrightarrow}{AB}$可以表示为$(x_2 - x_1, y_2 - y_1)$。
高中数学A版必修第二册专题一平面向量的综合应用-课件
![高中数学A版必修第二册专题一平面向量的综合应用-课件](https://img.taocdn.com/s3/m/8c827b04dcccda38376baf1ffc4ffe473268fd57.png)
3
3
m, ∠AOB 内,且∠AOC=30°,所以设 C
3
m ,m>0,由O→C=xO→A+yO→B(x,y∈R),可得 m,
3
m =
m=x,
x=m,
x(1,0)+y(0,3).由向量的坐标运算可得
3m=3y,即 3
y=
93m,所以yx=
m 3 =3
m
9
3.故选 C.
专题1 平面向量的综合应用
刷难关
k-λ=0,
k=1, k=-1,
所以
解得
或
又因为λ>0,所以 k=1.
λk-1=0, λ=1, λ=-1,
专题1 平面向量的综合应用
刷难关
13 ,
16.已知向量 a=( 3,-1),b= 2 2 .
(1)求与 a 平行的单位向量 c; (2)设 x=a+(t2+3)b,y=-k·ta+b,若存在 t∈[0,2],使得 x⊥y 成立,求 k 的取值范围.
3
3
2
2
1 cos∠DAB=- ,所以∠DAB=120°.故选 C.
2
专题1 平面向量的综合应用
刷难关
8.在边长为 1 的正方形 ABCD 中,M 为边 BC 的中点,点 E 在线段 AB 上运动,则E→C·E→M的取值范围是
(C)
1 ,2
A. 2
3 0, B. 2
13 ,
C. 2 2
D.[0,1]
1 |C→D|的取值范围为__(_2_,__1__].
解析
如图.∵E 为 Rt△ABC 中斜边 AB 的中点,AB=2,∴CE=1.∵C→D·C→E=1,即|C→D|·|C→E|·cos∠ECD=1,
1-7 平面向量的应用举例(教学课件)——高中数学湘教版(2019)必修二
![1-7 平面向量的应用举例(教学课件)——高中数学湘教版(2019)必修二](https://img.taocdn.com/s3/m/0d88844b178884868762caaedd3383c4bb4cb495.png)
(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;
(3)把运算结果“翻译”成几何关系.
4.几何法和坐标法
(1)几何法:
①选取适当的基(夹角、模易知),将题中涉及的向量用基表示;
②利用向量的运算法则、运算律或性质计算;
2
3
2
3
6
2
由
又O为和 的公共点,∴ 点E,O,F在同一直线上.
1
= = .
2
高中数学
必修第二册
湖南教育版
3.平面几何中的长度问题
例 3 如图所示,四边形ABCD是正方形,BE∥AC,AC=CE,EC的延长线交BA的延长线于点F.
求证:AF=AE.
证明
如图,建立平面直角坐标系,设正方形的边长为1,则A(-1,1),B(0,1).
(2)计算得出1 2 + 1 2=0,从而得到⊥ ;
(3)给出几何结论AB⊥CD.
高中数学
必修第二册
湖南教育版
跟踪训练
1-1
(1)若M为△ABC所在平面内一点,且满足(- )·(+ - 2)=0,则△ABC为( B )
A.直角三角形
B.等腰三角形
C.等边三角形
D.等腰直角三角形
证明:(方法1)∵ 在等腰直角三角形ABC中,∠ACB=90°,∴ 2|AC|= 2|BC|=|AB|.
1
2
2
3
2
3
2
3
1
3
∵=- = - ,=+ =+ =+ (- )= + ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(x1,y1)=λ(x2,y2),即
(3)夹角公式cosθ=
ab
| a || b(0| °≤θ≤180°).
(4)模长公式|a|= | a |2 x2 y(2a=(x,y)).
(5)数量积性质|a•b|≤|a|•|b|.
2.向量应用的分类概述
(1)应用平面向量解决函数与不等式的问题,是以函数和不等 式为背景的一种向量描述,它需要掌握向量的概念及基本 运算,并能根据题设条件构造合适的向量,利用向量的“数 ”、“形”两重性解决问题.
答案:D
3.将y
2cos
x 3
6
的图象按向量a
4
,
2
.平移,
则
平移后所得图象的解析式为( )
A.y
2cos
x 3
4
2
B.y
2cos
x 3
4
2
C.y
2cos
x 3
12
2
D.y
2cos
x 3
12
2Leabharlann 析:函数y2cos
x 3
6
的图象按向量a
4
,
2
平
移后所得图象解析式为y
2cos
1 3
x
4
6
2
2cos
1 3
x
4
2, 所以选A.
答案:A
4.若直线2x-y+c=0按向量a=(1,-1)平移后与圆x2+y2=5相切, 则c的值为( )
A.1005
B.1010
C.2010
D.2015
解析:由题意知A、B、C三点共线,则a2+a2009=1.
∴S2010=
=1005×1=1005.故选A.
答案:A 2010(a1 a2010 )
2
类型一
利用向量解决平面几何问题
解题准备:一般情况下,用向量解决平面几何问题,要用不共线 的向量表示题目所涉及的所有向量,再通过向量的运算法 则和性质解决问题.
第二十六讲平面向量的应用
回归课本
1.向量应用的常用结论 (1)两个向量垂直的充要条件 符号表示:a⊥b⇔a·b=0. 坐标表示:设a=(x1,y1),b=(x2,y2),则a⊥b⇔x1x2+y1y2=0.
(2)两个向量平行的充要条件
符号表示:若a∥b,b≠0,则a=λb.
坐标表示:设a=(x1,y1),b=(x2,y2),则a∥b 或x1yxy121 -x2yxy212=, 0.
A.8或-2
B.6或-4
C.4或-6
D.2或-8
解析:直线2x-y+c=0,按a=(1,-1)平移后得直线
2(x-1)-(y+1)+c=0,即2x-y-3+c=0,
由d=r,得 答案:A
| c 3 | 5得, c=8或-2.
5
5.已知等差数列{an}的前n项和为Sn,若 OB a2 OA+a2009 ,且A、BO、CC三点共线(该直线不过点O),则S2010等于( )
3
答案:B
2.(2010 天津)如图,在 ABC中, AD AB, BC 3BD,| AD | 1, 则AC AD ( )
A.2 3 C. 3
3
B. 3 2
D. 3
解析 :因为AC BC BA 3BD BA,所以AC AD ( 3BD BA) AD 3BD AD BA AD, 又AD AB,所以BA AD 0,所以AC AD 3BD AD, 又BD AD AB,所以AC AD 3BD AD 3( AD AB) AD 3 AD2 AB AD 3.
(4)平面向量在平面几何中的应用,是以平面几何中的基本图 形(三角形、平行四边形、菱形等)为背景,重点考查平面向量 的几何运算(三角形法则、平行四边形法则)和几何图形的 基本性质.
(5)平面向量在物理力学等实际问题中的应用,是以实际问题 为背景,考查学科知识的综合及向量的方法.
注意:(1)在解决三角形形状问题时,回答要全面、准确,处理四 边形问题时,要根据平行四边形或矩形、菱形、正方形及梯 形的性质处理.
(2)用向量处理物理问题时,一般情况下应画出几何图形,结合 向量运算与物理实际进行解决.
考点陪练
1.(2010 湖北)已知 ABC和点M满足MA MB MC 0. 若存在实数m使得AB AC mAM成立,则m ( ) A.2 B.3 C.4 D.5
解析:由MA MB MC 0得点M是 ABC的重心, AM 1 (AB AC), AB AC 3AM , m 3,选B.
用向量方法解决平面几何问题的“三步曲”: ①建立平面几何与向量的联系,用向量表示问题中涉及的几
何元素,将平面几何问题转化为向量问题; ②通过运算,研究几何元素之间的关系,如距离、夹角等问题; ③把运算结果“翻译”成几何关系.
【典例1】如图,正方形OABC两边AB、BC的中点分别为D和 E,求∠DOE的余弦值.
2
4
OA OC, AB CB,OA OC 0, AB CB 0.
AB OC,OA CB,
AB
OC
2
AB
|
AB
|2 ,OA
CB
2
OA
|
OA
|2 ,
OD OE | AB |2 , 又 | OD |2 | OA |2 | AD |2
| AB |2 1 | AB |2 5 | AB |2,| OE |2 | OD | 2.
[分析]把∠DOE转化为向量夹角.
[解]解法一 : OD OA AD OA 1 AB,OE 2
OC CE OC 1 CB. 2
OD OE (OA 1 AB) (OC 1 CB)
2
2
OA OC 1 ( AB OC OA CB) 1 AB CB.
(2)平面向量与三角函数的整合,仍然是以三角题型为背景的 一种向量描述,它需要根据向量的运算性质将向量问题转 化为三角函数的相关知识来解答,三角知识是考查的主体.
(3)平面向量在解析几何中的应用,是以解析几何中的坐标为 背景的一种向量描述,它主要强调向量的坐标运算,将向量 问题转化为坐标问题,进而利用直线和圆锥曲线的位置关 系的相关知识来解答,坐标的运算是考查的主体.