新课标1高考压轴卷数学(文1)含解析
新课标高考压轴卷(一)文科数学 Word版含答案[ 高考]
绝密*启用前KS5U2013新课标高考压轴卷(一)文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2.问答第Ⅰ卷时.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时.将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.已知集合A={}{}|1,|12,x x B x x >=-<<则(C R A )B=A .{}|1x x >-B .{}|11x x -<≤C .{}|12x x -<<D .{}|12x x <<2. i 是虚数单位,复数ii+12的实部为 A .2 B .2- C .1 D .1-3.已知函数f(x)=20082cos (2000)32(2000)x x x x π-⎧≤⎪⎨⎪>⎩,则f[f (2013)]= AB .C .1D . -14.已知椭圆方程22143x y +=,双曲线的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率为B.C.2D.35.从{}1,2,3,4,5中随机选取一个数为a 从{}2,3,4中随机选取一个数b ,则b a >的概率是A.45B.35C.25D.156.若某程序框图如图所示,则该程序运行后输出的值是A .2B .3C .4D .57. 已知动点P(m,n)在不等式组400x y x y x +≤⎧⎪-≥⎨⎪≥⎩表示的平面区域内部及其边界上运动,则35n z m -=-的最小值是 A.4B.3C.53D.138. 一个几何体的三视图如图所示,其中主视图和左视图是腰长为4的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则该球的表面积是A .π12B .π24C .π32D .π489. 设向量()()cos ,1,2,sin a b αα=-=,若a b ⊥,则tan 4πα⎛⎫- ⎪⎝⎭等于 A.13-B.13C.3-D.310. 若m 是2和8的等比中项,则圆锥曲线221y x m+=的离心率是 ( )A .2B C .2D .2211. 已知函数()()()1222,log ,log x f x x g x x x h x x =+=-=123,,x x x ,则123,,x x x 的大小关系是 A.123x x x >>B.213x x x >>C.132x x x >>D.321x x x >>12. 已知偶函数)(x f 在R 上的任一取值都有导数,且),2()2(,1)1('-=+=x f x f f 则曲线)(x f y =在5-=x 处的切线的斜率为A.2B.-2C.1D.-1第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须作答,第22-24题为选考题,考生根据要求作答. 二.填空题:本大题共4小题,每小题5分.13. 某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人)学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样的方法,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为 . 14. 在△ABC中,角A ,B ,C所对的边分别为a ,b ,c ,若222s i n As i n Cn B s i n A s i n C+-,则角B 为 15. 若两个非零向量a ,b 满足||2||||a b a b a=-=+,则向量a b +与a 的夹角为16.已知函数,给出下列四个说法: ①若,则;②的最小正周期是; ③在区间上是增函数; ④的图象关于直线对称. 其中说法正确的序号为三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)设{}n a 是公差大于零的等差数列,已知12a =,23210a a =-. (Ⅰ)求{}n a 的通项公式; (Ⅱ)设{}n b 是以函数24siny x π=的最小正周期为首项,以3为公比的等比数列,求数列{}n n a b -的前n 项和n S .18.(本小题满分12分)某普通高中共有教师360人,分为三个批次参加研修培训,在三个批次中男、女教师人数如下表所示:已知在全体教师中随机抽取1名,抽到第二、三批次中女教师的概率分别是0.15、0.1. (Ⅰ)求,,x y z 的值;(Ⅱ)为了调查研修效果,现从三个批次中按1:60的比例抽取教师进行问卷调查,三个批次被选取的人数分别是多少?(Ⅲ)若从(Ⅱ)中选取的教师中随机选出两名教师进行访谈,求参加访谈的两名教师“分别来自两个批次”的概率.19.(本小题满分12分)如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB .(1) 求证:CE ⊥平面PAD ;(11)若PA =AB =1,AD =3,CD CDA =45°,求四棱锥P-ABCD 的体积.20.(本小题满分12分)给定抛物线2:4C y x =,F 是抛物线C 的焦点,过点F 的直线l 与C 相交于A 、B 两点,O 为坐标原点.(Ⅰ)设l 的斜率为1,求以AB 为直径的圆的方程; (Ⅱ)设2FA BF =,求直线l 的方程.21.(本小题满分12分)已知322()2f x x ax a x =+-+.(Ⅰ)若1a =,求曲线)(x f y =在点))1(,1(f 处的切线方程; (Ⅱ)若0,a ≠ 求函数()f x 的单调区间; (Ⅲ)若不等式22ln ()1x x f x a '≤++恒成立,求实数a 的取值范围.请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清楚题号.22.(本小题满分10分)选修4-1:几何证明选讲如图,AB 是⊙O 的一条切线,切点为B ,ADE 、CFD 都是⊙O 的割线,AC =AB . (1)证明:AC 2=AD ·AE (2)证明:FG ∥AC23. (本小题满分10分)选修4—4;坐标系与参数方程在直角坐标系xOy 中,曲线C 的参数方程为2(1x tt y t =+⎧⎨=+⎩为参数),以该直角坐标系的原点O 为极点,x 轴的正半轴为极轴的极坐标系下,曲线P 的方程为24cos 30ρρθ-+=.(Ⅰ)求曲线C 的普通方程和曲线P 的直角坐标方程;(Ⅱ)设曲线C 和曲线P 的交点为A 、B ,求||AB .24.(本小题满分10分)选修4—5:不等式选讲 已知函数()12f x x x m =++-- (I )当5=m 时,求()0f x >的解集;(II )若关于x 的不等式()2f x ≥的解集是R ,求m 的取值范围.参考答案1.【答案】B【解析】(){1}R A x x =≤ð,所以(){11}R A B x x =-<≤ð,选B.2.【答案】C【解析】222(1)221+21(1)(1)2i i i i i i i i i --===++-,所以实部是1,选C.3.【答案】D【解析】201320085(2013)2232f -===,所以322[(2013)](32)2cos2cos 133f f f ππ====-,选D. 4.【答案】C【解析】由题意知双曲线的焦点在x 轴上.椭圆的一个焦点为(1,0),椭圆实轴上的一个顶点为(2,0),所以设双曲线方程为22221x y a b-=,则1,2a c ==,所以双曲线的离心率为2ce a ==,选C. 5.【答案】C【解析】从两个集合中各选1个数有15种,满足b a >的数有,(1,2),(1,3),(2,3),(1,4),(2,4),(3,4)共有6个,所以b a >的概率是62155=,选C. 6.【答案】C【解析】第一次循环,63,22n i ===,第二次,3354,3n i =⨯-==,第三次循环44,22i n ===满足条件输出4i =,所以选C. 7.【答案】D【解析】做出不等式组对应的平面区域OAB .因为35n z m -=-,所以z 的几何意义是区域内任意一点(,)P x y 与点(5,3)M 两点直线的斜率.所以由图象可知当直线经过点AM 时,斜率最小,由40x y x y +=⎧⎨-=⎩,得22x y =⎧⎨=⎩,即(2,2)A ,此时321523AM k -==-,所以35n z m -=-的最小值是13,选D. 8.【答案】D【解析】由三视图可知该几何体是有一条侧棱垂直于底面的四棱锥.其中底面ABCD 是边长为4的正方形,高为44=的半径为2448ππ=.选D. 9.【答案】B【解析】因为a b ⊥,所以2c os s i n a b αα=-=,即t a n 2α=.所以t a n 1211t a n ()41t a n 123πααα---===++,选B. 10.【答案】C【解析】因为m 是2和8的等比中项,所以216m =,所以4m =±,当4m =时,圆锥曲线为椭圆2214y x +=,当4m =-时,圆锥曲线为双曲线2214y x -=,离心C. 11.【答案】D【解析】由()()()12220log 0log 0x f x x g x x x h x x =+==-===,,得1222,log ,log x x x x x =-==在坐标系中分别作出2,,x y y x ==-12,log ,y x y x ==2log ,y x y =由图象可知110x -<<,201x <<,31x >,所以321x x x >>,选D.12.【答案】D【解析】由(2)(2),f x f x +=-得(4)(),f x f x +=可知函数的周期为4,又函数)(x f 为偶函数,所以(2)(2)=(2)f x f x f x +=--,即函数的对称轴为2x =,所以(5)(3)(1)f f f -==,所以函数在5-=x 处的切线的斜率'(5)'(1)1k f f =-=-=-,选D.13.【答案】30【解析】由题意知,12304515120a=++,解得30a =.14.【答案】6π【解析】由正弦定理可得222a cb +-=,所以222cos 2ac b B ac +-===以6B π=.15.【答案】3π【解析】由a b a b +=-得,222222a a b b a a b b +⋅+=-⋅+,即0a b ⋅=.由2a b a +=,得22224a a b b a +⋅+=,即223b a =,所以3b a =,所以22()a b a a a b a +⋅=+⋅=,所以向量a b +与a 的夹角的余弦值为2()1cos 22a b a aa b aa aθ+⋅===+⋅⋅,所以3πθ=.16.【答案】③④【解析】函数1()sin cos sin 22f x x x x ==,若12()=()f x f x -,即1211sin 2=sin 222x x -,所以12sin 2=sin 2x x -,即12sin 2=sin(2)x x -,所以122=22x x k π-+或122=22,x x k k Z ππ-+∈,所以①错误;2,ω=所以周期2T ππω==,所以②错误;当44x ππ-≤≤时,222x ππ-≤≤,函数递增,所以③正确;当34x π=时,313131()s i n 2)=s i n =424222f πππ=⨯-(为最小值,所以④正确,所以说法正确的序号为③④. 17.【答案】解:(Ⅰ)设{}n a 的公差为d ,则()12112210a a d a d ⎧=⎪⎨+=+-⎪⎩ 解得2d =或4d =-(舍)…………………………………………………………………5分 所以2(1)22n a n n =+-⨯= ………………………………………………………………6分 (Ⅱ)21cos 24sin 42xy x ππ-==⨯2cos 22x π=-+其最小正周期为212ππ=,故首项为1;……………………………………………………7分 因为公比为3,从而13n n b -= ……………………………………………………………8分 所以123n n n a b n --=-故()()()011234323n n S n -=-+-++-()2213213n n n +-=--211322nn n =++-⋅………………………………………………12分 18. 【答案】(Ⅰ)3600.1554,3600.136x y =⨯==⨯=360865436946624z =-----= -----------3分(Ⅱ)由题意知,三个批次的人数分别是180,120,60,所以被选取的人数分别为3,2,1.-------------5分(Ⅲ)第一批次选取的三个教师设为123,,A A A ,第二批次的教师为12,B B ,第三批次的教师设为C ,则从这6名教师中随机选出两名教师的所有可能组成的基本事件空间为{1213111212321222313231212,,,,,,,,,,,,,,}A A A A AB AB AC A A A B A B A C A B A B A C B B BC B C Ω=共15个 ------------8分“来自两个批次”的事件包括{111121212223132312,,,,,,,,,,}AB AB AC A B A B A C A B A B A C BC B C Ω=共11个,---10分 所以“来自两个批次”的概率1115p =. -----12分 19.【答案】(1)证明:因为PA ⊥平面ABCD,CE ⊂平面ABCD,所以PA ⊥CE,因为AB ⊥AD,CE ∥AB,所以CE ⊥AD,又PA ⋂AD=A,所以CE ⊥平面PAD …………5分(2)解:由(1)可知CE ⊥AD,在直角三角形ECD 中,DE=CD cos 451⋅=,CE=CD sin 451⋅=. 又因为AB=CE=1,AB ∥CE,所以四边形ABCE 为矩形,所以ABCD ABCE BCD S S S ∆=+=12AB AE CE DE ⋅+⋅=15121122⨯+⨯⨯=,又PA ⊥平面ABCD,PA=1,所以四棱锥P-ABCD 的体积等于115513326ABCD S PA ⋅=⨯⨯=………….12分 20. 【答案】(Ⅰ)解:()24,1,0,y x F =∴又直线l 的斜率为1,∴直线∴l 的方程为:1y x =-,代入24y x =,得:2610x x -+=,由根与系数的关系得:121261x x x x +=⎧⎨⋅=⎩,易得AB 中点即圆心的坐标为()3,2,又128,4AB x x p r =++=∴=,∴所求的圆的方程为:()()223216x y -+-=.^……………………4分(Ⅱ)2,2,F A B F F A B F =∴=而()()11221,,1,FA x y BF x y =-=--,()12121212x x y y -=-⎧∴⎨=-⎩,直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为: ()1y k x =-,代入24y x =,得:()2222240k x k x k -++=,由根与系数的关系得: 212212241k x x k x x ⎧++=⎪⎨⎪⋅=⎩,()12121x x -=-,∴1211x x =⎧⎨=⎩或12212x x =⎧⎪⎨=⎪⎩,∴k =± ∴直线l的方程为:)1y x =±-.……………………12分21.【答案】解:(Ⅰ) ∵ 1=a ∴2)(23+-+=x x x x f ∴ 123)(2-+='x x x f ……1分∴ =k 4)1(='f , 又3)1(=f ,所以切点坐标为)3,1( ∴ 所求切线方程为)1(43-=-x y ,即014=--y x . …………3分(Ⅱ)22()32()(3)f x x ax a x a x a '=+-=+-由()0f x '= 得x a =- 或3a x =…………4分 (1)当0a >时,由()0f x '<, 得3a a x -<<. 由()0f x '>, 得x a <-或3a x > 此时()f x 的单调递减区间为(,)3a a -,单调递增区间为(,)a -∞-和(,)3a +∞. …………5分(2)当0a <时,由()0f x '<,得3a x a <<-. 由()0f x '>,得3a x <或x a >- 此时()f x 的单调递减区间为(,)3a a -,单调递增区间为(,)3a -∞和(,)a -+∞. 综上:当0a >时,()f x 的单调递减区间为(,)3aa -, 单调递增区间为(,)a -∞-和(,)3a +∞ 当0a <时,()f x 的单调递减区间为(,)3a a - 单调递增区间为(,)3a -∞和(,)a -+∞. …………7分(Ⅲ)依题意),0(+∞∈x ,不等式22ln ()1x x f x a '≤++恒成立, 等价于123ln 22++≤ax x x x 在(0,)+∞上恒成立 可得x x x a 2123ln --≥在(0,)+∞上恒成立 ………………9分 设()x x x x h 2123ln --=, 则()()()22'213121231x x x x x x h +--=+-= ………………10分令0)(='x h ,得11,-3x x ==(舍)当10<<x 时,0)(>'x h ;当1>x 时,0)(<'x h 当x 变化时,)(),(x h x h '变化情况如下表:∴ 当1=x 时,()x h 取得最大值, ()x h max =-2 2-≥∴a∴ a 的取值范围是[)+∞-,2. ………12分22.【答案】(Ⅰ)∵AB 是⊙O 的一条切线,∴AE AD AB ⋅=2.又∵AB AC =,∴AE AD AC ⋅=2 …… 5分(Ⅱ)∵AE AD AC ⋅=2,∴ACAE AD AC =,又∵CAE DAC ∠=∠, ∴CAD ∆∽EAC ∆ ∴AEC ACD ∠=∠.又∵四边形DEGF 是⊙O 的内接四边形,∴AEC CFG ∠=∠ ∴CFG ACD ∠=∠∴AC FG //. …… 10分23.【答案】解:(Ⅰ)曲线C 的普通方程为01=--y x ,曲线P 的直角坐标方程为03422=+-+x y x . ……5分(Ⅱ)曲线P 可化为1)2(22=+-y x ,表示圆心在)0,2(,半径=r 1的圆,则圆心到直线C 的距离为2221==d ,所以2222=-=d r AB .……10分 24.【答案】解:(I )由题设知:5|2||1|>-++x x ,不等式的解集是以下三个不等式组解集的并集:⎩⎨⎧>-++≥5212x x x ,或⎩⎨⎧>+-+<≤52121x x x ,或⎩⎨⎧>+---<5211x x x , 解得函数)(x f 的定义域为),3()2,(+∞--∞ ; …………(5分) (II )不等式()2f x ≥即2|2||1|+>-++m x x ,∵R ∈x 时,恒有3|)2()1(||2||1|=--+≥-++x x x x ,不等式2|2||1|+≥-++m x x 解集是R ,∴32≤+m ,m 的取值范围是]1,(-∞. …………(10分)。
2019届全国卷Ⅰ高考压轴卷 数学文科
2019届高三全国卷Ⅰ高考压轴卷数学文科(一)★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(,)|1,01A x y y x x ==+≤≤,集合{}(,)|2,010B x y y x x ==≤≤,则集合AB =( )A .{}1,2B .{}|01x x ≤≤C .(){}1,2D .∅2. 已知复数z 满足(2)3i z i -=+,则||(z = )AB .5C D .103.下列函数中,与函数的单调性和奇偶性一致的函数是( )A. B. C. D.4.某学校上午安排上四节课,每节课时间为40分钟,第一节课上课时间为,课间休息10分钟.某学生因故迟到,若他在之间到达教室,则他听第二节课的时间不少于10分钟的概率为( )A.51 B. 103 C. 52 D. 54 5.函数()23sin cos f x x x x =+的最小正周期是( )A. 4πB. 2πC. πD.2π6.若01a b <<<,则b a , a b , log b a , 1log ab 的大小关系为( ) A. 1log log b a b aa b a b >>> B. 1log log a b b ab a b a >>>C. 1log log b a b aa ab b >>> D. 1log log a b b aa b a b >>>7. 若实数x ,y 满足条件10262x y x y x y ⎧⎪⎪⎨+⎪⎪+⎩…………,则2z x y =-的最大值为( )A .10B .6C .4D .2-8. 已知双曲线22221(0,0)x y a b a b-=>>,四点1(4,2)P ,2(2,0)P ,3(4,3)P -,4(4,3)P 中恰有三点在双曲线上,则该双曲线的离心率为( ) AB .52CD .729. 执行如图所示的程序框图,则输出的结果为( ) A .7B .9C .10D .1110.一个几何体的三视图如图所示,则该几何体的最长棱的长度为( )A. B. 5C.D. 611. ABC ∆中,5AB =,10AC =,25AB AC =,点P 是ABC ∆内(包括边界)的一动点,且32()55AP AB AC R λλ=-∈,则||AP 的最大值是( )ABCD12. 在四面体ABCD 中,1AB BC CD DA ====,AC =,BD =面积(S = ) A .4πB .83πC .43πD .2π二、填空题:本大题共4小题,每小题5分.13.数列{}n a 中,148,2a a ==且满足.212(*)n n n a a a n N ++=-∈,数列{}n a 的通项公式 14. 已知()f x 是R 上的偶函数,且在[0,)+∞单调递增,若(3)f a f -<(4),则a 的取值范围为 .15.在ABC ∆中,角的对边分别为,AaB b B c cos cos cos 与是-的等差中项且,ABC ∆的面积为34,则的值为__________.16.已知抛物线x y C 4:=的焦点是,直线交抛物线于两点,分别从两点向直线作垂线,垂足是,则四边形的周长为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)在右图所示的四边形ABCD 中,∠BAD =90°, ∠BCD =150°,∠BAC =60°,AC =2,AB =3+1.ABCD(Ⅰ)求BC ;(Ⅱ)求△ACD 的面积. (18)(本小题满分12分)二手车经销商小王对其所经营的某一型号二手汽车的使用年数x (0<x ≤10)与销售价格y (单位:万元/辆)进行整理,得到如下的对应数据:(Ⅰ)试求y 关于x 的回归直线方程;(参考公式:b ˆ=ni =1∑x i y i -nx-y -n i =1∑x 2i -nx-2,a ˆ=y --b ˆx -.)(Ⅱ)已知每辆该型号汽车的收购价格为w =0.05x 2-1.75x +17.2万元,根据(Ⅰ)中所求的回归方程,预测x 为何值时,小王销售一辆该型号汽车所获得的利润z 最大? (19)(本小题满分12分)在四棱锥P -ABCD 中,△P AD 为等边三角形,底面ABCD 等腰梯形,满足AB ∥CD ,AD =DC = 12AB =2,且平面P AD ⊥平面ABCD .(Ⅰ)证明:BD ⊥平面P AD ; (Ⅱ)求点C 到平面PBD 的距离. (20)(本小题满分12分)已知动点P 到直线l :x =-1的距离等于它到圆C :x 2+y 2-4x +1=0的切线长(P 到切点的距离).记动点P 的轨迹为曲线E . (Ⅰ)求曲线E 的方程;(Ⅱ)点Q 是直线l 上的动点,过圆心C 作QC 的垂线交曲线E 于A ,B 两点,问是否存在常数λ,使得|AC |·|BC |=λ|QC |2?若存在,求λ的值;若不存在,说明理由. 21.(本小题满分12分)已知函数f (x )=ln (mx )-x +1,g (x )=(x -1)e x -mx ,m >0. (Ⅰ)若f (x )的最大值为0,求m 的值;(Ⅱ)求证:g (x )仅有一个极值点x 0,且 12ln (m +1)<x 0<m .请考生在第(22),(23)题中任选一题作答,如果多做,则按所做的第一题记分.作P答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,M (-2,0).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,A (ρ,θ)为曲线C 上一点,B (ρ,θ+ π3),|BM |=1. (Ⅰ)求曲线C 的直角坐标方程; (Ⅱ)求|OA |2+|MA |2的取值范围.23.(本小题满分10分)选修4-5:不等式选讲 已知a >b >c >d >0,ad =bc . (Ⅰ)证明:a +d >b +c ;(Ⅱ)比较a a b b c d d c 与a b b a c c d d 的大小.KS5U2019全国卷Ⅰ高考压轴卷数学文科(一)答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C【解析】根据题意可得,12y x y x =+⎧⎨=⎩,解得12x y =⎧⎨=⎩,满足题意01x ≤≤,所以集合A B =(){}1,2.故选C .2. 【答案】C【解析】:(2)3i z i -=+,3213iz i i+∴=-=+,||z ∴=.故选:C . 3.【答案】D 【解析】函数即是奇函数也是上的增函数,对照各选项:为非奇非偶函数,排除 ;为奇函数,但不是上的增函数,排除 ;为奇函数,但不是上的增函数,排除 ;为奇函数,且是上的增函数,故选D.4.【答案】A【解析】由题意知第二节课的上课时间为 ,该学生到达教室的时间总长度为分钟,其中在 进入教室时,听第二节的时间不少于分钟,其时间长度为分钟,故所求的概率515010= ,故选A. 5.【答案】C【解析】 因为()21cos233sin cos sin222x f x x x x x -=+=+3sin2cos2222262x x x π⎛⎫=-+=-+⎪⎝⎭, 所以其最小正周期为222T w πππ===,故选C. 6.【答案】D【解析】因为01a b <<<,所以10a a b b a a >>>>.log log 1b b a b >>.01a <<,所以11a >,1log 0a b <.综上: 1log log a b b aa b a b >>>. 7.【答案】B .【解析】:先根据实数x ,y 满足条件10262x y x y x y ⎧⎪⎪⎨+⎪⎪+⎩…………画出可行域如图,做出基准线02x y =-,由图知,当直线2z x y =-过点(3,0)A 时,z 最大值为:6.故选:B .8. 【答案】C【解析】:根据双曲线的性质可得3(4,3)P -,4(4,3)P 中在双曲线上, 则1(4,2)P 一定不在双曲线上,则2(2,0)P 在双曲线上,2a ∴=,221691a b -=,解得23b =,2227c a b ∴=+=,c ∴,c e a ∴==故选:C . 9. 【答案】B【解析】:模拟程序的运行,可得: 11,313i S lg lg ===->-,否;1313,51355i S lg lg lg lg ==+==->-,否;1515,71577i S lg lg lg lg ==+==->-,否;1717,91799i S lglg lg lg ==+==->-,否; 1919,11191111i S lg lg lg lg ==+==-<-,是,输出9i =, 故选:B . 10.【答案】C【解析】 由三视图可知,该几何体是四棱锥P ABCD -,如图所示, 其中侧棱PD ⊥平面,2,3,4ABCD AD CD PD ===,则5,PA PC PB ======,,故选C . 11. 【答案】B .【解析】ABC ∆中,5AB =,10AC =,25AB AC =, 510cos 25A ∴⨯⨯=,1cos 2A =,60A ∴=︒,90B =︒; 以A 为原点,以AB 所在的直线为x 轴,建立如图所示的坐标系, 如图所示,5AB =,10AC =,60BAC ∠=︒,(0,0)A ∴,(5,0)B ,(5C ,,设点P 为(,)x y ,05x 剟,0y 剟3255AP AB AC λ=-,(x ∴,3)(55y =,20)(55λ-,(32λ=-,)-,∴32x y λ=-⎧⎪⎨=-⎪⎩,3)y x ∴=-,①直线BC 的方程为5x =,②, 联立①②,得5x y =⎧⎪⎨=⎪⎩此时||AP 最大,||AP ∴ 故选:B .12. 【答案】D 【解析】:如下图所示,1AB BC CD DA ====,BD =由勾股定理可得222AB AD BD +=,222BC CD BD +=,所以,90BAD BCD ∠=∠=︒,设BD 的中点为点O ,则122OA OB OC OD BD =====,则点O 为四面体ABCD 的外接球球心,且该球的半径为2R =因此,四面体ABCD 的表面积为22442S R πππ==⨯=.故选:D .二、填空题:本大题共4小题,每小题5分. 13.【答案】=102n a n -【解析】 由题意,211n n n n a a a a +++-=-,所以{}n a 为等差数列.设公差为d , 由题意得2832d d =+⇒=-,得82(1)102n a n n =--=-. 14.【答案】17a -<<. 【解析】:()f x 是R 上的偶函数,且在[0,)+∞单调递增,∴不等式(3)f a f -<(4)等价为(|3|)f a f -<(4),即|3|4a -<,即434a -<-<,得17a -<<,即实数a 的取值范围是17a -<<,故答案为:17a -<< 15.【答案】54.【解析】由A a B b B c cos cos cos 与是-的等差中项,得A aB b B c cos cos cos 2+=- . 由正弦定理,得A A B B B C cos sin cos sin cos sin 2+=-,A B B A B C cos cos )sin(cos sin 2⋅+=- ,由C B A sin )sin(=+ 所以21cos -=A ,32π=A . 由34sin 21==∆A bc S ABC ,得16=bc . 由余弦定理,得16)(cos 22222-+=-+=c b A bc c b a ,即54=+c b ,故答案为54.16.【答案】.【解析】由题知,,准线的方程是.设,由,消去,得 . 因为直线 经过焦点,所以 . 由抛物线上的点的几何特征知,因为直线的倾斜角是 ,所以 ,所以四边形 的周长是,故答案为.三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)【答案】(Ⅰ)6(Ⅱ)在S △ACD =1【解析】(Ⅰ)在△ABC 中,由余弦定理得BC 2=AB 2+AC 2-ABCD2AB ·AC cos ∠BAC =6, 所以BC =6.(Ⅱ)在△ABC 中,由正弦定理得BC sin ∠BAC =AC sin ∠ABC ,则sin ∠ABC =22 ,又0°<∠ABC <120°,所以∠ABC =45°,从而有∠ACB =75°,由∠BCD =150°,得∠ACD =75°,又∠DAC =30° ,所以△ACD 为等腰三角形, 即AD =AC = 2,故S △ACD =1.(18)(本小题满分12分)【答案】(Ⅰ)^y =-1.45x +18.7(Ⅱ)x =3【解析】(Ⅰ)由已知:x -=6,y -=10,5i =1∑x i y i =242,5i =1∑x 2i=220, ^b =ni =1∑x i y i -nx-y -n i =1∑x 2i -nx-2=-1.45,a ˆ=y --^bx-=18.7;所以回归直线的方程为^y =-1.45x +18.7 (Ⅱ)z =-1.45x +18.7-(0.05x 2-1.75x +17.2)=-0.05x 2+0.3x +1.5 =-0.05(x -3)2+1.95,所以预测当x =3时,销售利润z 取得最大值.(19)(本小题满分12分)【答案】(Ⅰ)见解析(Ⅱ)32【解析】(Ⅰ)在梯形ABCD 中,取AB 中点E ,连结DE ,则 DE ∥BC ,且DE =BC .故DE = 12AB ,即点D 在以AB 为直径的圆上,所以BD ⊥AD .因为平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,BD 平面ABCD , 所以BD ⊥平面P AD .(Ⅱ)取AD中点O,连结PO,则PO⊥AD,因为平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,所以PO⊥平面ABCD.由(Ⅰ)可知△ABD和△PBD都是直角三角形,所以BD=AB2-AD2=23,于是S△PBD=12PD•BD=23,S△BCD=12BC•CD•sin120°=3,易得PO=3,设C到平面PBD的距离为h,由V P-BCD=V C-PBD得13S△PBD•h=13S△BCD•PO,解得h=3 2.(20)(本小题满分12分)【答案】(1)y2=6x (Ⅱ)λ=4 3【解析】(Ⅰ)由已知得圆心为C(2,0),半径r=3.设P(x,y),依题意可得| x+1 |=(x-2)2+y2-3,整理得y2=6x.故曲线E的方程为.(Ⅱ)设直线AB的方程为my=x-2,则直线CQ的方程为y=-m(x-2),可得Q(-1,3m).设A(x1,y1),B(x2,y2).将my=x-2代入y2=6x并整理得y2-6my-12=0,那么y1y2=-12,…8分则|AC|·|BC|=(1+m2) | y1y2 |=12(1+m2),|QC|2=9(1+m2).即|AC|·|BC|=43|QC|2,所以λ=4 3.21.(本小题满分12分)【答案】(Ⅰ)m=1(Ⅱ)见解析【解析】(Ⅰ)由m>0得f(x)的定义域为(0,+∞),f'(x)=1x-1=1-xx,当x=1时,f'(x)=0;当0<x<1时,f'(x)>0,f(x)单调递增;当x>1时,f'(x)<0,f(x)单调递减.故当x=1时,f(x)取得最大值0,则f(1)=0,即ln m=0,故m=1.(Ⅱ)g'(x)=x e x-m,令h(x)=x e x-m,则h'(x)=(x+1)e x,当x=-1时,h'(x)=0;当x<-1时,h'(x)<0,h(x)单调递减;当x>-1时,h'(x)>0,h(x)单调递增.故当x=-1时,h(x)取得最小值h(-1)=-e-1-m<0.当x<-1时,h(x)<0,h(x)无零点,注意到h(m)=m e m-m>0,则h(x)仅有一个零点x0,且在(-1,m)内.由(Ⅰ)知ln x≤x-1,又m>0,则12ln(m+1)∈(0,12m).而h(12ln(m+1))=h(ln m+1)=m+1ln m+1-m<m+1(m+1-1)-m=1-m+1<0,则x0>12ln(m+1),故h(x)仅有一个零点x0,且12ln(m+1)<x0<m.即g(x)仅有一个极值点x0,且12ln(m+1)<x0<m.22.(本小题满分10分)【答案】(Ⅰ)(x+1)2+(y-3)2=1(Ⅱ)[10-43,10+43].【解析】(Ⅰ)设A(x,y),则x=ρcosθ,y=ρsinθ,所以x B=ρcos(θ+π3)=12x-32y;y B=ρsin(θ+π3)=32x+12y,故B(12x-32y,32x+12y).由|BM|2=1得(12x-32y+2)2+(32x+12y)2=1,整理得曲线C的方程为(x+1)2+(y-3)2=1.(Ⅱ)圆C :⎩⎨⎧x =-1+cos α,y =3+sin α(α为参数),则|OA |2+|MA |2=43sin α+10, 所以|OA |2+|MA |2∈[10-43,10+43].23.(本小题满分10分)选修4-5:不等式选讲【答案】(Ⅰ)见解析(Ⅱ)见解析【解析】(Ⅰ)由a >b >c >d >0得a -d >b -c >0,即(a -d )2>(b -c )2, 由ad =bc 得(a -d )2+4ad >(b -c )2+4bc ,即(a +d )2>(b +c )2,故a +d >b +c .(Ⅱ)a a b b c d d c a b b a c c d d =( a b )a -b ( c d )d -c =( a b )a -b ( d c)c -d , 由(Ⅰ)得a -b >c -d ,又a b >1,所以( a b )a -b >( a b )c -d ,即( a b )a -b ( d c )c -d >( a b )c -d ( d c )c -d =(ad bc)c -d =1, 故a a b b c d d c >a b b a c c d d .。
2018全国I卷高考压轴卷 文科数学 Word版含答案
2018全国卷Ⅰ高考压轴卷文科数学本试卷共23题(含选考题)。
全卷满分150分。
考试用时120分钟。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若集合{}1,2lg<=⎭⎬⎫⎩⎨⎧-==x x N x x y x M ,则=⋂N C M R (A ))2,0( (B )(]2,0 (C )[)2,1 (D )()+∞,0 2. 若a R ∈,则“1=a ”是“()10a a -=”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件3. 若复数z 满足(1﹣i )z=2+3i (i 为虚数单位),则复数z 对应点在( ) A .第一象限B .第二象限C .第三象限D .第四象限4. 已知数列{}n a 的前n 项和22n S n n =+,则数列11{}n n a a +⋅的前6项和为( )A .215 B .415 C.511D .1011 5. 在区间[-1,1]上任选两个数x y 和,则221x y +≥的概率为( ) A .14π-B .128π- C. 18π- D .124π- 6. 过直线23y x =+上的点作圆2246120x y x y +-++=的切线,则切线长的最小值为( )A.[] 7. 已知1x ,2x (12x x <)是函数x x x f ln 11)(--=的两个零点, 若()1,1a x ∈,()21,b x ∈,则A .()0f a <,()0f b <B .()0f a <,()0f b >C .()0f a >,()0f b >D .()0f a >,()0f b <8. F 1,F 2分别是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于A 、B 两点.若△ABF 2是等边三角形,则该双曲线的离心率为 (A )2 (B )3 (C )5 (D )79. 若程序框图如图所示,则该程序运行后输出k 的值是( )A .5B .6 C.7 D .810. 在ABC △中,60A ∠=,3AB AC ==,D 是ABC △所在平面上的一点. 若3BC DC =,则DB AD ⋅=A. 1-B. 2-C. 5D.9211. 有人发现,多看手机容易使人变冷漠,下表是一个调查机构对此现象的调查结果:附:K 2=附表:P(K 2≥k 0) 0.050 0.010 k 03.841 6.635则认为多看手机与人冷漠有关系的把握大约为A. %99B. %5.97C. %95D. %9012. 已知函数2||33()()(3)(3)3x x f x g x b f x x x -≤⎧⎪==--⎨-->⎪⎩,,函数,,其中b R ∈,若函数()()y f x g x =-恰有4个零点,则实数b 的取值范围是( )A. 11(,)4-+∞ B. 11(3,)4--C. 11(,)4-∞-D. (3,0)-二、填空题:本题共4小题,每小题5分,共20分。
2024年高考数学(新高考压轴卷)(全解全析)
2024年高考压轴卷【新高考卷】数学·全解全析一、单选题1.已知集合105x A x x ⎧⎫+=≥⎨⎬-⎩⎭,(){}22log 16B x y x ==-,则()R A B ⋂=ð()A .()1,4-B .[]1,4-C .(]1,5-D .()4,52.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是()A .1784π3B .1884π3C .2304π3D .2504π33.如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有()种.A .10B .20C .60D .120【答案】A【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果.【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=.故选:A.4.已知等比数列{}n a 的各项均为负数,记其前n 项和为n S ,若6467813,8S S a a a -=-=-,则2a =()A .-8B .-16C .-32D .-485.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是()A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤6.已知函数2()log f x x =,则对任意实数,a b ,“0a b +≤”是“()()0f a f b +≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件故选:C.7.已知0.50.2a =,cos2b =,lg15c =,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<8.从椭圆22:1(0)x y C a b a b+=>>外一点()00,P x y 向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P关于椭圆C 的极线,其方程为00221x x y ya b+=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.已知非零复数1z ,2z 在复平面内对应的点分别为1Z ,2Z ,O 为坐标原点,则下列说法正确的是()A .若1211z z -=-,则12=z z B .若1212z z z z +=-,则120OZ OZ ⋅=C .若1212z z z z +=-,则120z z ⋅=D .若1212z z z z +=+,则存在实数t ,使得21z tz =10.已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为B,C分别为AE,FD的中点,BD=)⊥A.BE CDB.BE与平面DCE所成角的余弦值为15C.四面体ABCD的内切球半径为30D.四面体ABCD的外接球表面积为8π【点睛】11.对于数列{}n a (N n a +∈),定义k b 为1a ,2a ,…,k a 中最大值(1,2,,k n =⋅⋅⋅)(N n +∈),把数列{}n b 称为数列{}n a 的“M 值数列”.如数列2,2,3,7,6的“M 值数列”为2,2,3,7,7,则()A .若数列{}n a 是递减数列,则{}n b 为常数列B .若数列{}n a 是递增数列,则有n na b =C .满足{}n b 为2,3,3,5,5的所有数列{}n a 的个数为8D .若()1()2N n n a n -+=-∈,记n S 为{}n b 的前n 项和,则1001002(21)3S =-三、填空题12.已知向量()1,1,4a b == ,且b 在a 上的投影向量的坐标为()2,2--,则a 与b的夹角为.13.已知公比q 大于1的等比数列{}n a 满足135a a +=,22a =.设22log 7n n b a =-,则当5n ≥时,数列{}n b 的前n 项和n S =.14.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过点2F 且斜率为34-的直线与C 交于,A B两点.若112AF F F ⊥,则C 的离心率为;线段AB 的垂直平分线与x 轴交于点D ,则22BF DF =.5.【点睛】方法点睛:椭圆求离心率或者范围关键是找到关于,a c 的齐次式求得.四、解答题15.如图,在平面四边形ABCD ,已知1BC =,3cos 5BCD ∠=-.(1)若AC 平分BCD ∠,且2AB =,求AC 的长;(2)若45CBD ∠=︒,求CD 的长.16.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为221AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【详解】(1)分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB A O ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.17.某学校为了解本学期学生参加公益劳动的情况,从学校内随机抽取了500名高中学生进行在线调查,收集了他们参加公益劳动时间(单位:小时)分配情况等数据,并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)为进一步了解这500名学生参加公益劳动时间的分配情况,从参加公益劳动时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人.记参加公益劳动时间在(14,16]内的学生人数为X ,求X 的分布列和期望;(2)以调查结果的频率估计概率,从该学校所有高中学生中随机抽取20名学生,用“20()P k ”表示这20名学生中恰有k 名学生参加公益劳动时间在(10,12](单位:小时)内的概率,其中0,1,2,,20k = .当20()P k 最大时,写出k 的值.18.已知双曲线(22:10,0x y C a b a b-=>>)的左右焦点分别为12,F F ,C 的右顶点到直线2:a l x c =的距离为1,双曲线右支上的点到1F 的最短距离为3(1)求双曲线C 的方程;(2)过2F 的直线与C 交于M 、N 两点,连接1MF 交l 于点Q ,证明:直线QN 过x 轴上一定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.19.函数()e xf x a x=-图像与x 轴的两交点为()()()1221,0,0A x B x x x >,(1)令()()ln h x f x x x =-+,若()h x 有两个零点,求实数a 的取值范围;(2)证明:121x x <;(3)证明:当5a ≥时,以AB 为直径的圆与直线)1y x =+恒有公共点.(参考数据:0.25 2.5e 1.3e 12.2≈≈,)。
2016新课标Ⅰ高考数学压轴卷文带解析
2016新课标Ⅰ高考数学压轴卷(文带解析)2016新课标Ⅰ高考压轴卷文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.设集合,则()A.B.C.D.2.如果复数的实部和虚部相等,则等于()(A)(B)(C)(D)3.下列有关命题的说法正确的是().A.命题“若xy=0,则x=0”的否命题为“若xy=0,则x≠0”B.命题“若cosx=cosy,则x=y”的逆否命题为真命题C.命题“∃x∈R,使得2x2-10”的否定是“∀x∈R,均有2x2-10”D.“若x+y=0,则x,y互为相反数”的逆命题为真命题4.已知公差不为0的等差数列满足成等比数列,为数列的前项和,则的值为()A、B、C、2D、35.以正方形的一条边的两个端点为焦点,且过另外两个顶点的椭圆与双曲线的离心率之积为A.B.C.D.6.如图是秦九韶算法的一个程序框图,则输出的为A.的值B.的值C.的值D.的值7.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x为A.1.2B.1.6C.1.8D.2.48.设是双曲线的焦点,P是双曲线上的一点,且3||=4||,△的面积等于A.B.C.24D.489.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象的相邻两对称中心的距离为π,且f(x +)=f(-x),则函数y=f(-x)是().A.奇函数且在x=0处取得最小值B.偶函数且在x=0处取得最小值C.奇函数且在x=0处取得最大值D.偶函数且在x=0处取得最大值10已知函数,则关于的不等式的解集为()A、B、C、D、11.已知实数x,y满足2x-y+6≥0,x+y≥0,x≤2,若目标函数z=-mx+y的最大值为-2m+10,最小值为-2m-2,则实数m的取值范围是()A.[-1,2]B.[-2,1]C.[2,3]D.[-1,3]12.已知函数与图象上存在关于轴对称的点,则的取值范围是()A.B.C.D.第Ⅱ卷注意事项:须用黑色墨水签字笔在答题卡上作答。
高考压轴卷文科数学试卷一
一、选择题(本大题共12小题,每小题5分,共60分)1. 已知函数$f(x)=ax^2+bx+c$的图象开口向上,对称轴为$x=1$,且过点$(0,1)$,则$a$、$b$、$c$的值分别为()A. $1, -2, 1$B. $1, 2, 1$C. $-1, 2, 1$D. $-1, -2, 1$2. 在三角形ABC中,AB=AC,角BAC=60°,点D、E分别在BC、AC上,且BD=BE,则角AED的度数为()A. 30°B. 45°C. 60°D. 90°3. 设集合A={x|x≥-1},集合B={x|x≤2},则集合A与集合B的交集为()A. {x|x≤-1}B. {x|x≤2}C. {x|-1≤x≤2}D. 空集4. 已知函数$f(x)=x^3-3x+2$,若存在实数$x_0$,使得$f(x_0)=0$,则$x_0$的取值范围是()A. $(-\infty, 1)$B. $(1, +\infty)$C. $(-\infty, 0)$D. $(0,+\infty)$5. 下列各数中,不是有理数的是()A. $\sqrt{2}$B. $\frac{1}{3}$C. $-1.234$D. $0.1010010001...$6. 已知数列$\{a_n\}$满足$a_1=1$,$a_{n+1}=a_n+2n$,则数列$\{a_n\}$的前$n$项和$S_n$为()A. $n^2-n$B. $n^2+n$C. $n^2-2n$D. $n^2+2n$7. 已知向量$\vec{a}=(2,3)$,$\vec{b}=(1,4)$,则$\vec{a}\cdot\vec{b}$的值为()A. 10B. 15C. 20D. 258. 在平面直角坐标系中,点P的坐标为$(3,4)$,点Q在直线$x+y=5$上,且$\angle PQO=90°$,则点Q的坐标为()A. $(1,4)$B. $(2,3)$C. $(4,1)$D. $(5,0)$9. 已知等差数列$\{a_n\}$的前$n$项和为$S_n$,若$a_1+a_2+a_3=9$,$a_1+a_4+a_5=15$,则数列$\{a_n\}$的公差为()A. 1B. 2C. 3D. 410. 已知函数$f(x)=\frac{1}{x^2-1}$,则函数$f(x)$的对称中心为()A. $(1,0)$B. $(-1,0)$C. $(0,1)$D. $(0,-1)$11. 在等腰三角形ABC中,AB=AC,角BAC=120°,则角B的度数为()A. 30°B. 45°C. 60°D. 75°12. 已知数列$\{a_n\}$满足$a_1=2$,$a_{n+1}=2a_n-1$,则数列$\{a_n\}$的通项公式为()A. $a_n=2^n-1$B. $a_n=2^n+1$C. $a_n=2^n-2$D. $a_n=2^n+2$二、填空题(本大题共8小题,每小题5分,共40分)13. 若函数$f(x)=ax^2+bx+c$的图象开口向上,对称轴为$x=1$,且过点$(0,1)$,则$a$、$b$、$c$的值分别为______。
新高考全国1卷数学(经典版)(全)多种方法解析压轴题
新高考全国1卷数学(经典版)(全)多种方法解析压轴题
构造函数,不等式放缩,泰勒展开:两个方法解析2022年高考新全国1卷数学试题第7题
填空压轴题:全方位解析2022年新高考全国1卷数学试题第8题
多角度解析2022年新高考全国1卷数学试题第11题
特殊化,常规推导:从两个不同方向解析2022年新高考全国1卷数学试题第12题
两圆公切线问题——几何法,代数法:两个角度解析2022年新高考全国1卷数学试题第14题
判别式,分离参数:从两个不同角度解析2022年新高考全国1卷数学试题第15题
几何法,代数法,结论秒杀法:三种方法解析2022年新高考全国1卷数学试题第16题
方法三:使用结论
使用前作《圆锥曲线焦半径与焦点弦相关40多个结论在2015-2021年高考数学试题中的应用》中的推论2.1.2 .
2022年高考新全国1卷数学试题第21题(多种方法解析)——探究圆锥曲线张角模型中三角形面积问题以及相关定理应用
注:也可以使用到角公式求直线的斜率.
多种方法解析2022年高考新全国1卷数学试题第22题。
2017-2018届新课标1高考压轴卷文科数学试题及答案
2017-2018新课标1高考压轴卷文科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},则∁U(M∪N)=()2. 复数的共轭复数是a+bi(a,b∈R),i是虛数单位,则点(a,b)为()3. 的值为()4. 函数f(x)=log2(1+x),g(x)=log2(1﹣x),则f(x)﹣g(x)是()5. 某市有400家超市,其中大型超市有40家,中型超市有120家,小型超市有240家.为了掌握各超市的营业情况,要从中抽取一个容量为20的样本.若采用分层抽样的方法,抽取的中型超市数是()A.4B.6C.7D.126.一个空间几何体的三视图如右图所示,其中主视图和侧视图都是半径为1的圆,且这个几何体是球体的一部分,则这个几何体的表面积为( )A.3πB.4πC.6πD.8π7. 已知函数的图象(部分)如图所示,则ω,φ分别为()B.D.8. “”是“数列{a n}为等比数列”的()D9. 在△ABC中,角A、B、C的对边分别为a、b、c,如果cos(2B+C)+2sinAsinB<0,那么三边长a、b、c之间满足的关系是().10. 等腰Rt△ACB,AB=2,.以直线AC为轴旋转一周得到一个圆锥,D为圆锥底面一点,BD⊥CD,CH⊥AD于点H,M为AB中点,则当三棱锥C﹣HAM的体积最大时,CD的长为()B[11.定义域为R的偶函数f(x)满足∀x∈R,有f(x+2)=f(x)﹣f (1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18.若函数y=f(x)﹣log a(x+1)至少有三个零点,则a的取值范围是(),,,,)12. 设双曲线﹣=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A、B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若=λ+μ(λ,μ∈R),λμ=,则该双曲线的离心率为()B.C.题卡的相应位置. 13. 函数22631y x x =++的最小值是14.执行如图所示的程序框图,则输出的结果S 是________.15.已知平行四边形ABCD 中,点E 为CD 的中点,=m ,=n (m•n ≠0),若∥,则=___________________.16. 设不等式组表示的平面区域为M ,不等式组表示的平面区域为N .在M 内随机取一个点,这个点在N内的概率的最大值是________________.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.17.已知(3,cos())a x ω=- ,(sin(b x ω= ,其中0ω>,函数()f x a b =⋅的最小正周期为π.(1)求()f x 的单调递增区间;(2)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .且()2Af =,a =,求角A 、B 、C 的大小.18. 下表给出了从某校500名12岁男生中用简单随机抽样得出的120人的身高资料(单位:厘米):(1)在这个问题中,总体是什么?并求出x 与y 的值;(2)求表中x 与y 的值,画出频率分布直方图及频率分布折线图;(3)试计算身高在146~154cm 的总人数约有多少?19.在四棱锥P -ABCD 中,AB ∥DC ,AB ⊥平面PAD , PD =AD ,AB =2DC ,E 是PB 的中点.求证:(1)CE ∥平面PAD ; (2)平面PBC ⊥平面PAB .20.在平面直角坐标系xOy 中,从曲线C 上一点P 做x 轴和y 轴的垂线,垂足分别为N M ,,点)0,(),0,(a B a A -(a a ,0>为常数),且02=+⋅λ(0≠λ)(1)求曲线C 的轨迹方程,并说明曲线C 是什么图形;(2)当0>λ且1≠λ时,将曲线C 绕原点逆时针旋转︒90得到曲线1C ,曲线C 与曲线1C 四个交点按逆时针依次为G F E D ,,,,且点D 在一象限 ①证明:四边形DEFG 为正方形; ②若D F AD ⊥,求λ值.21. 设函数3211()(0)32a f x x x ax a a -=+-->. (1)若函数)(x f 在区间(-2,0)内恰有两个零点,求a 的取值范围; (2)当a =1时,求函数)(x f 在区间[t ,t +3]上的最大值.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.已知AB 是圆O 的直径,C 为圆O 上一点,CD ⊥AB 于点D ,弦BE 与CD 、AC 分别交于点M 、N ,且MN = MC(1)求证:MN = MB ;(2)求证:OC ⊥MN 。
2021年高考压轴卷 数学(文科) 含解析
2021年高考压轴卷数学(文科)含解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知,其中是实数,是虚数单位,则的共轭复数为()A. B. C. D.2.已知函数,,且,,,则的值为A.正B.负C.零D.可正可负3.已知某几何体的三视图如下,则该几何体体积为()A.4+ B.4+ C.4+ D.4+4.如图所示为函数的部分图像,其中A,B两点之间的距离为5,那么( )A.-1 B.C.D.15.(5分)已知两条不重合的直线m、n和两个不重合的平面α、β,有下列命题:①若m⊥n,m⊥α,则n∥α;②若m⊥α,n⊥β,m∥n,则α∥β;③若m、n是两条异面直线,mα,nβ,m∥β,n∥α,则α∥β;④若α⊥β,α∩β=m,nβ,n⊥m,则n⊥α.其中正确命题的个数是()A.1B.2C.3D.46.设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为A. B.C. D.7. 已知A,B两点均在焦点为F的抛物线y2=2px(p>0)上,若,线段AB的中点到直线的距离为1,则p的值为()A.1B.1或3 C.2D.2或68. 已知f(x)=x3﹣6x2+9x﹣abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.其中正确结论的序号是()A.①③B.①④C.②③D.②④二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡的相应位置.9.已知集合{}{}22,1,3,3,21,1A a aB a a a=+-=--+,若,则实数的值为________________.10.已知如图所示的流程图(未完成),设当箭头a指向①时输出的结果S=m,当箭头a指向②时,输出的结果S=n,求m+n的值.11.若是等差数列的前项和,且,则的值为.12. 某市有400家超市,其中大型超市有40家,中型超市有120家,小型超市有240家.为了掌握各超市的营业情况,要从中抽取一个容量为20的样本.若采用分层抽样的方法,抽取的中型超市数是________________.13.在平面直角坐标系中,过坐标原点的一条直线与函数的图象交于P、Q两点,则线段PQ长的最小值是_______14.设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.15.已知向量)4cos,4(cos),1,4sin3(2xxnxm==.记(I)求的周期;(Ⅱ)在ABC中,角A、B、C的对边分别是a、b、c,且满足(2a—c)B=b,若,试判断ABC的形状.16. 某校要从2名男同学和4名女同学中选出2人担任羽毛球比赛的志愿者工作,每名同学当选的机会均相等.(Ⅰ)求当选的2名同学中恰有l名男同学的概率;(Ⅱ)求当选的2名同学中至少有1名女同学的概率.17. 如图,在四棱台ABCD﹣A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.(1)求证:B1B∥平面D1AC;(2)求证:平面D1AC⊥平面B1BDD1.18.已知椭圆的左右焦点分别为,点为短轴的一个端点,.(Ⅰ)求椭圆的方程;(Ⅱ)如图,过右焦点,且斜率为的直线与椭圆相交于两点,为椭圆的右顶点,直线分别交直线于点,线段的中点为,记直线的斜率为.求证:为定值.19.已知数列的各项均为正数,记,,.(Ⅰ)若,且对任意,三个数组成等差数列,求数列的通项公式.(Ⅱ)证明:数列是公比为的等比数列的充分必要条件是:对任意,三个数组成公比为的等比数列.20.已知函数,,令.(Ⅰ)当时,求的极值;(Ⅱ)当时,求的单调区间;(Ⅲ)当时,若对,使得恒成立,求的取值范围.xx北京市高考压轴卷数学文word版参考答案1.【答案】D【解析】故选D.2.【答案】B【解析】∵,∴函数在R上是减函数且是奇函数,∵,∴,∴,∴,∴,同理:,,∴.3.【答案】A【解析】该几何体是一个圆柱与一个长方体的组成,其中重叠了一部分,所以该几何体的体积为.故选A.4.【答案】A.【解析】5.【答案】C【解析】①若m⊥n,m⊥α,则n可能在平面α内,故①错误②∵m⊥α,m∥n,∴n⊥α,又∵n⊥β,∴α∥β,故②正确③过直线m作平面γ交平面β与直线c,∵m、n是两条异面直线,∴设n∩c=O,∵m∥β,mγ,γ∩β=c∴m∥c,∵mα,cα,∴c∥α,∵nβ,cβ,n∩c=O,c∥α,n∥α∴α∥β;故③正确④由面面垂直的性质定理:∵α⊥β,α∩β=m,nβ,n⊥m,∴n⊥α.故④正确故正确命题有三个,故选C6. 【答案】C.【解析】由,得:,即,令,则当时,,即在是减函数,,,,在是减函数,所以由得,,即,故选7.【答案】B.【解析】分别过A、B作交线l:x=﹣的垂线,垂足分别为C、D,设AB中点M在准线上的射影为点N,连接MN,设A(x1,y1),B(x2,y2),M(x0,y0)根据抛物线的定义,得∴梯形ACDB中,中位线MN=()=2,可得x0+=2,x∵线段AB的中点M到直线的距离为1,可得|x0﹣|=1∴|2﹣p|=1,解之得p=1或3故选:B8.【答案】C.【解析】求导函数可得f′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3)∵a<b<c,且f(a)=f(b)=f(c)=0.∴a<1<b<3<c设f(x)=(x﹣a)(x﹣b)(x﹣c)=x3﹣(a+b+c)x2+(ab+ac+bc)x﹣abc ∵f(x)=x3﹣6x2+9x﹣abc∴a+b+c=6,ab+ac+bc=9∴b+c=6﹣a∴bc=9﹣a(6﹣a)<∴a2﹣4a<0∴0<a<4∴0<a<1<b<3<c∴f(0)<0,f(1)>0,f(3)<0∴f(0)f(1)<0,f(0)f(3)>0故选C.9. 【答案】a=-1.【解析】①若a-3=-3,则a=0,此时:,,与题意不符,舍②若2a-1=-3,则a=-1,此时:,,a=-1③若a2+1=-3,则a 不存在综上可知:a=-110. 【答案】20.【解析】当箭头指向①时,计算S 和i 如下.i =1,S =0,S =1;i =2,S =0,S =2;i =3,S =0,S =3;i =4,S =0,S =4;i =5,S =0,S =5;i =6结束.∴S=m =5.当箭头指向②时,计算S 和i 如下.i =1,S =0, S =1;i =2,S =3;i =3,S =6;i =4,S =10;i =5,S =15;i =6结束.∴S=n =15.∴m+n =20.11. 【答案】44【解析】由83456786520S S a a a a a a -=++++==,解得,又由12. 【答案】6.【解析】每个个体被抽到的概率等于 =,而中型超市有120家,故抽取的中型超市数是 120×=613.【答案】4.【解析】设过坐标原点的一条直线方程为,因为与函数的图象交于P 、Q 两点,所以,且联列解得,所以4PQ ==≥ 14. 【答案】【解析】(1)a=1时,代入题中不等式明显不成立.(2)a ≠1,构造函数y 1=(a ﹣1)x ﹣1,y 2=x 2﹣ax ﹣1,它们都过定点P (0,﹣1). 考查函数y 1=(a ﹣1)x ﹣1:令y=0,得M (,0),∴a >1;考查函数y 2=x 2﹣ax ﹣1,显然过点M (,0),代入得:,解之得:a=,或a=0(舍去).故答案为:15. 【解析】211()cos cos cos 4442222x x x x x f x +=++(I )(Ⅱ 根据正弦定理知:()2cos cos (2sin sin )cos sin cos a c B b C A C B B C -=⇒-=12sin cos sin()sin cos 23A B B C A B B π⇒=+=⇒=⇒= ∵ ∴ 或或而,所以,因此ABC 为等边三角形.……………12分16. 【解析】(I )所有的选法共有=15种,当选的2名同学中恰有1名男同学的选法有•=8种,∴当选的2名同学中恰有1名男同学的概率为 .(II )所有的选法共有=15种,当选的2名同学中恰有2名女同学的选法有=6种,当选的2名同学中恰有1名女同学的选法有•=8种,故当选当选的2名同学中至少有1名女同学的选法有6+8=14种,故当选的2名同学中至少有1名女同学的概率为.17. 【解析】证明:(1)设AC∩BD=E,连接D1E,∵平面ABCD∥平面A1B1C1D1.∴B1D1∥BE,∵B1D1=BE=,∴四边形B1D1EB是平行四边形,所以B1B∥D1E.又因为B1B⊄平面D1AC,D1E⊂平面D1AC,所以B1B∥平面D1AC(2)证明:侧棱DD1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥DD1.∵下底ABCD是正方形,AC⊥BD.∵DD1与DB是平面B1BDD1内的两条相交直线,∴AC⊥平面B1BDD1∵AC⊂平面D1AC,∴平面D1AC⊥平面B1BDD1.18.【解析】(Ⅰ)由条件…………2分故所求椭圆方程为. …………4分(Ⅱ)设过点的直线方程为:. …………5分由可得:…………6分因为点在椭圆内,所以直线和椭圆都相交,即恒成立.设点,则. …………8分因为直线的方程为:,直线的方程为:,………9分令,可得,,所以点的坐标. ………10分直线的斜率为…………12分所以为定值. …………13分19. 【解析】 (Ⅰ) 因为对任意,三个数是等差数列,所以. ………1分所以, ………2分即. ………3分所以数列是首项为1,公差为4的等差数列. ………4分所以. ………5分(Ⅱ)(1)充分性:若对于任意,三个数组成公比为的等比数列,则. ………6分所以得即. ………7分因为当时,由可得, ………8分所以.因为,所以.即数列是首项为,公比为的等比数列, ………9分(2)必要性:若数列是公比为的等比数列,则对任意,有. ………10分因为,所以均大于.于是12)2311212(......(),()......n n n nq a a a a a a B n q A n a a a a a a +++++++===++++++ ………11分231)342231231(......(),()......n n n n q a a a a a a C n q B n a a a a a a ++++++++++===++++++ ………12分 即==,所以三个数组成公比为的等比数列.………13分综上所述,数列是公比为的等比数列的充分必要条件是:对任意n ∈N ﹡,三个数组成公比为的等比数列. ………14分 20. 【解析】@" '26601 67E9 柩39188 9914 餔39465 9A29 騩B$ Mx23029 59F5 姵27941 6D25 津。
2019年全国卷Ⅰ高考压轴卷数学文科Word版含解析
2019全国卷Ⅰ高考压轴卷数学文科(一)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(,)|1,01A x y y x x ==+≤≤,集合{}(,)|2,010B x y y x x ==≤≤,则集合A B I =( )A .{}1,2B .{}|01x x ≤≤C .(){}1,2D .∅2. 已知复数z 满足(2)3i z i -=+,则||(z = ) A .5B .5C .10D .103.下列函数中,与函数的单调性和奇偶性一致的函数是( )A. B. C. D.4.某学校上午安排上四节课,每节课时间为40分钟,第一节课上课时间为,课间休息10分钟.某学生因故迟到,若他在之间到达教室,则他听第二节课的时间不少于10分钟的概率为( ) A.51 B. 103 C. 52 D. 545.函数()23sin 3sin cos f x x x x =+的最小正周期是( )A. 4πB. 2πC. πD.2π6.若01a b <<<,则b a , a b , log b a , 1log ab 的大小关系为( ) A. 1log log b a b aa b a b >>> B. 1log log a b b ab a b a >>>C. 1log log b a b aa ab b >>> D. 1log log a b b aa b a b >>>7. 若实数x ,y 满足条件10262x y x y x y ⎧⎪⎪⎨+⎪⎪+⎩…………,则2z x y =-的最大值为( )A .10B .6C .4D .2-8. 已知双曲线22221(0,0)x y a b a b-=>>,四点1(4,2)P ,2(2,0)P ,3(4,3)P -,4(4,3)P 中恰有三点在双曲线上,则该双曲线的离心率为( ) A 5 B .52C 7D .729. 执行如图所示的程序框图,则输出的结果为( )A .7B .9C .10D .1110.一个几何体的三视图如图所示,则该几何体的最长棱的长度为( )A. 252911. ABC ∆中,5AB =,10AC =,25AB AC =u u u r u u u rg ,点P 是ABC ∆内(包括边界)的一动点,且32()55AP AB AC R λλ=-∈u u u r u u u r u u u r,则||AP u u u r 的最大值是( )A 33B 37C 39D 4112. 在四面体ABCD 中,1AB BC CD DA ====,62AC =,2BD =,则它的外接球的面积(S = ) A .4πB .83πC .43πD .2π二、填空题:本大题共4小题,每小题5分.13.数列{}n a 中,148,2a a ==且满足.212(*)n n n a a a n N ++=-∈,数列{}n a 的通项公式 14. 已知()f x 是R 上的偶函数,且在[0,)+∞单调递增,若(3)f a f -<(4),则a 的取值范围为 .15.在ABC ∆中,角的对边分别为,AaB b B c cos cos cos 与是-的等差中项且,ABC ∆的面积为34,则的值为__________.16.已知抛物线x y C 4:=的焦点是,直线交抛物线于两点,分别从两点向直线作垂线,垂足是,则四边形的周长为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)在右图所示的四边形ABCD 中,∠BAD =90°, ∠BCD =150°,∠BAC =60°,AC =2,AB =3+1.(Ⅰ)求BC ;(Ⅱ)求△ACD 的面积. (18)(本小题满分12分)二手车经销商小王对其所经营的某一型号二手汽车的使用年数x (0<x ≤10)与销售价格y (单位:万元/辆)进行整理,得到如下的对应数据:使用年数 2 4 6 8 10 售价16139.57 4.5(Ⅰ)试求y 关于x 的回归直线方程;(参考公式:b ˆ=ni =1∑x i y i -nx -y-n i =1∑x 2i -nx-2,a ˆ=y --b ˆx -.)(Ⅱ)已知每辆该型号汽车的收购价格为w =0.05x 2-1.75x +17.2万元,根据(Ⅰ)中所ABCD求的回归方程,预测x 为何值时,小王销售一辆该型号汽车所获得的利润z 最大? (19)(本小题满分12分)在四棱锥P -ABCD 中,△PAD 为等边三角形,底面ABCD 等腰梯形,满足AB ∥CD ,AD =DC =12AB =2,且平面PAD ⊥平面ABCD . (Ⅰ)证明:BD ⊥平面PAD ; (Ⅱ)求点C 到平面PBD 的距离. (20)(本小题满分12分)已知动点P 到直线l :x =-1的距离等于它到圆C :x 2+y 2-4x +1=0的切线长(P 到切点的距离).记动点P 的轨迹为曲线E . (Ⅰ)求曲线E 的方程;(Ⅱ)点Q 是直线l 上的动点,过圆心C 作QC 的垂线交曲线E 于A ,B 两点,问是否存在常数λ,使得|AC |·|BC |=λ|QC |2?若存在,求λ的值;若不存在,说明理由. 21.(本小题满分12分)已知函数f (x )=ln (mx )-x +1,g (x )=(x -1)e x-mx ,m >0. (Ⅰ)若f (x )的最大值为0,求m 的值;(Ⅱ)求证:g (x )仅有一个极值点x 0,且 12ln (m +1)<x 0<m .请考生在第(22),(23)题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,M (-2,0).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,A (ρ,θ)为曲线C 上一点,B (ρ,θ+ π3),|BM |=1. (Ⅰ)求曲线C 的直角坐标方程; (Ⅱ)求|OA |2+|MA |2的取值范围.23.(本小题满分10分)选修4-5:不等式选讲 已知a >b >c >d >0,ad =bc . (Ⅰ)证明:a +d >b +c ;(Ⅱ)比较a a b b c d d c与a b b a c c d d的大小.P2019全国卷Ⅰ高考压轴卷数学文科(一)答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C【解析】根据题意可得,12y x y x =+⎧⎨=⎩,解得12x y =⎧⎨=⎩,满足题意01x ≤≤,所以集合A B I =(){}1,2.故选C .2. 【答案】C【解析】:(2)3i z i -=+Q ,3213iz i i+∴=-=+,||10z ∴=.故选:C . 3.【答案】D 【解析】函数即是奇函数也是上的增函数,对照各选项:为非奇非偶函数,排除 ;为奇函数,但不是上的增函数,排除 ;为奇函数,但不是上的增函数,排除 ;为奇函数,且是上的增函数,故选D.4.【答案】A【解析】由题意知第二节课的上课时间为 ,该学生到达教室的时间总长度为分钟,其中在 进入教室时,听第二节的时间不少于分钟,其时间长度为分钟,故所求的概率515010= ,故选A. 5.【答案】C【解析】 因为()21cos233sin 3sin cos 3sin222x f x x x x x -=+=+ 3333sin23sin 226x x x π⎛⎫=+=-+⎪⎝⎭ 所以其最小正周期为222T w πππ===,故选C. 6.【答案】D【解析】因为01a b <<<,所以10a a bb a a >>>>.log log 1b b a b >>.01a <<,所以11a >,1log 0a b <.综上: 1log log a b b aa b a b >>>. 7.【答案】B .【解析】:先根据实数x ,y 满足条件10262x y x y x y ⎧⎪⎪⎨+⎪⎪+⎩…………画出可行域如图,做出基准线02x y =-,由图知,当直线2z x y =-过点(3,0)A 时,z 最大值为:6.故选:B .8. 【答案】C【解析】:根据双曲线的性质可得3(4,3)P -,4(4,3)P 中在双曲线上, 则1(4,2)P 一定不在双曲线上,则2(2,0)P 在双曲线上, 2a ∴=,221691a b-=,解得23b =,2227c a b ∴=+=,7c ∴,7c e a ∴==C . 9. 【答案】B【解析】:模拟程序的运行,可得: 11,313i S lg lg ===->-,否;1313,51355i S lg lg lg lg ==+==->-,否;1515,71577i S lg lg lg lg ==+==->-,否;1717,91799i S lglg lg lg ==+==->-,否;1919,11191111i S lg lg lg lg ==+==-<-,是,输出9i =, 故选:B . 10.【答案】C【解析】 由三视图可知,该几何体是四棱锥P ABCD -,如图所示, 其中侧棱PD ⊥平面,2,3,4ABCD AD CD PD ===,则5,PA PC PB =====,C . 11. 【答案】B .【解析】ABC ∆中,5AB =,10AC =,25AB AC =u u u r u u u rg ,510cos 25A ∴⨯⨯=,1cos 2A =,60A ∴=︒,90B =︒; 以A 为原点,以AB 所在的直线为x 轴,建立如图所示的坐标系, 如图所示,5AB =Q ,10AC =,60BAC ∠=︒,(0,0)A ∴,(5,0)B ,(5C ,,设点P 为(,)x y ,05x 剟,0y 剟Q 3255AP AB AC λ=-u u u r u u u r u u u r,(x ∴,3)(55y =,20)(55λ-,(32λ=-,)-,∴32x y λ=-⎧⎪⎨=-⎪⎩,3)y x ∴=-,①直线BC 的方程为5x =,②, 联立①②,得5x y =⎧⎪⎨=⎪⎩此时||AP u u u r最大,||AP ∴= 故选:B .12. 【答案】D 【解析】:如下图所示,1AB BC CD DA ====Q ,2BD =由勾股定理可得222AB AD BD +=,222BC CD BD +=, 所以,90BAD BCD ∠=∠=︒,设BD 的中点为点O ,则1222OA OB OC OD BD =====, 则点O 为四面体ABCD 的外接球球心,且该球的半径为2R = 因此,四面体ABCD 的表面积为22244()2S R πππ==⨯=.故选:D . 二、填空题:本大题共4小题,每小题5分. 13.【答案】=102n a n -【解析】 由题意,211n n n n a a a a +++-=-,所以{}n a 为等差数列.设公差为d , 由题意得2832d d =+⇒=-,得82(1)102n a n n =--=-. 14.【答案】17a -<<.【解析】:()f x Q 是R 上的偶函数,且在[0,)+∞单调递增,∴不等式(3)f a f -<(4)等价为(|3|)f a f -<(4),即|3|4a -<,即434a -<-<,得17a -<<,即实数a 的取值范围是17a -<<,故答案为:17a -<<15.【答案】54.【解析】由A a B b B c cos cos cos 与是-的等差中项,得A aB b B c cos cos cos 2+=- . 由正弦定理,得A A B B B C cos sin cos sin cos sin 2+=-,A B B A B C cos cos )sin(cos sin 2⋅+=- ,由C B A sin )sin(=+ 所以21cos -=A ,32π=A . 由34sin 21==∆A bc S ABC ,得16=bc . 由余弦定理,得16)(cos 22222-+=-+=c b A bc c b a ,即54=+c b ,故答案为54.16.【答案】.【解析】由题知,,准线 的方程是. 设,由,消去, 得 . 因为直线 经过焦点,所以 . 由抛物线上的点的几何特征知,因为直线的倾斜角是 ,所以 ,所以四边形 的周长是,故答案为.三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分) 【答案】(Ⅰ)6(Ⅱ)在S △ACD =1【解析】(Ⅰ)在△ABC 中,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC cos∠BAC =6, 所以BC =6.(Ⅱ)在△ABC 中,由正弦定理得BC sin∠BAC =AC sin∠ABC ,则sin∠ABC =22,又0°<∠ABC <120°,所以∠ABC =45°,从而有∠ACB =75°,由∠BCD =150°,得∠ACD =75°,又∠DAC =30°,所以△ACD 为等腰三角形, 即AD =AC = 2,故S △ACD =1.(18)(本小题满分12分)【答案】(Ⅰ)^y =-1.45x +18.7(Ⅱ)x =3ABCD【解析】(Ⅰ)由已知:x -=6,y -=10,5i =1∑x i y i =242,5i =1∑x 2i =220,^b =ni =1∑x i y i -nx -y-ni =1∑x 2i -nx-2=-1.45,a ˆ=y --^bx-=18.7;所以回归直线的方程为^y =-1.45x +18.7 (Ⅱ)z =-1.45x +18.7-(0.05x 2-1.75x +17.2)=-0.05x 2+0.3x +1.5 =-0.05(x -3)2+1.95,所以预测当x =3时,销售利润z 取得最大值.(19)(本小题满分12分)【答案】(Ⅰ)见解析(Ⅱ)32【解析】(Ⅰ)在梯形ABCD 中,取AB 中点E ,连结DE ,则DE ∥BC ,且DE =BC .故DE = 12AB ,即点D 在以AB 为直径的圆上,所以BD ⊥AD .因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BD 平面ABCD , 所以BD ⊥平面PAD .PO BDC(Ⅱ)取AD 中点O ,连结PO ,则PO ⊥AD ,因为平面PAD ⊥平面ABCD , 平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD . 由(Ⅰ)可知△ABD 和△PBD 都是直角三角形, 所以BD =AB 2-AD 2=23,于是S △PBD =1 2PD •BD =23,S △BCD = 12BC •CD •sin120°=3, 易得PO =3,设C 到平面PBD 的距离为h ,由V P-BCD =V C-PBD 得 1 3S △PBD •h = 1 3S △BCD •PO , 解得h =32.(20)(本小题满分12分)【答案】(1)y 2=6x (Ⅱ)λ= 4 3【解析】(Ⅰ)由已知得圆心为C (2,0),半径r =3.设P (x ,y ),依题意可得 | x +1 |=(x -2)2+y 2-3,整理得y 2=6x .故曲线E 的方程为. (Ⅱ)设直线AB 的方程为my =x -2,则直线CQ 的方程为y =-m (x -2),可得Q (-1,3m ).设A (x 1,y 1),B (x 2,y 2). 将my =x -2代入y 2=6x 并整理得y 2-6my -12=0,那么y 1y 2=-12, …8分 则|AC |·|BC |=(1+m 2) | y 1y 2 |=12(1+m 2),|QC |2=9(1+m 2).即|AC |·|BC |= 4 3|QC |2,所以λ= 4 3.21.(本小题满分12分)【答案】(Ⅰ)m =1(Ⅱ)见解析【解析】(Ⅰ)由m >0得f (x )的定义域为(0,+∞),f '(x )= 1 x -1=1-x x,当x =1时,f '(x )=0; 当0<x <1时,f '(x )>0,f (x )单调递增;当x >1时,f '(x )<0,f (x )单调递减.故当x =1时,f (x )取得最大值0,则f (1)=0,即ln m =0,故m =1.(Ⅱ)g '(x )=x e x -m ,令h (x )=x e x -m ,则h '(x )=(x +1)e x,当x =-1时,h '(x )=0;当x <-1时,h '(x )<0,h (x )单调递减;当x >-1时,h '(x )>0,h (x )单调递增.故当x =-1时,h (x )取得最小值h (-1)=-e -1-m <0.当x <-1时,h (x )<0,h (x )无零点,注意到h (m )=m e m -m >0,则h (x )仅有一个零点x 0,且在(-1,m )内.由(Ⅰ)知ln x ≤x -1,又m >0,则 1 2ln (m +1)∈(0, 1 2m ). 而h ( 1 2ln (m +1))=h (ln m +1) =m +1ln m +1-m <m +1(m +1-1)-m=1-m +1<0,则x 0> 1 2ln (m +1), 故h (x )仅有一个零点x 0,且 1 2ln (m +1)<x 0<m . 即g (x )仅有一个极值点x 0,且 1 2ln (m +1)<x 0<m . 22.(本小题满分10分)【答案】(Ⅰ)(x +1)2+(y -3)2=1(Ⅱ)[10-43,10+43].【解析】(Ⅰ)设A (x ,y ),则x =ρcos θ,y =ρsin θ,所以x B =ρcos (θ+ π 3)= 1 2x -32y ;y B =ρsin (θ+ π 3)=32x + 1 2y , 故B ( 1 2x -32y ,32x + 1 2y ). 由|BM |2=1得( 1 2x -32y +2)2+(32x + 1 2y )2=1, 整理得曲线C 的方程为(x +1)2+(y -3)2=1.(Ⅱ)圆C :⎩⎨⎧x =-1+cos α,y =3+sin α(α为参数),则|OA |2+|MA |2=43sin α+10, 所以|OA |2+|MA |2∈[10-43,10+43].23.(本小题满分10分)选修4-5:不等式选讲【答案】(Ⅰ)见解析(Ⅱ)见解析【解析】(Ⅰ)由a >b >c >d >0得a -d >b -c >0,即(a -d )2>(b -c )2, 由ad =bc 得(a -d )2+4ad >(b -c )2+4bc ,即(a +d )2>(b +c )2,故a +d >b +c . (Ⅱ)a a b b c d d ca b b a c c d d =( a b )a -b ( c d )d -c =( a b )a -b ( d c)c -d, 由(Ⅰ)得a -b >c -d ,又 ab >1,所以( a b )a -b >( a b )c -d , 即( ab )a -b ( dc )c -d >( a b )c -d ( d c )c -d =(ad bc )c -d=1, 故a a b b c d d c >a b b a c c d d .。
2024年高考数学试题(新课标I卷)解析版
2024年高考数学试题(新课标I 卷)一、选择题:本大题共8小题,每小题5分,共计40分.每小题给出的四个选项中,只有一个选项是正确的.1.已知集合A =x |-5<x 3<5 ,B ={-3,-1,0,2,3},则A ∩B =A.{-1,0} B.{2,3}C.{-3,-1,0}D.{-1,0,2}【答案】A【解析】A =(-35,35)⇒A ∩B ={-1,0},选A.2.若zz -1=1+i ,则z =A.-1-i B.-1+iC.1-iD.1+i【答案】C【解析】z z -1=1+i ⇒z =1+i i =1-i ,选C.3.已知向量a =0,1 ,b =2,x ,若b ⊥b -4a ,则x =A.-2 B.-1C.1D.2【答案】D【解析】b ⊥b -4a ⇒2×2+x (x -4)=0⇒x =2,选D.4.已知cos α+β =m ,tan αtan β=2,则cos α-β =A.-3m B.-m3C.m 3D.3m【答案】A【解析】αcos βcos -αsin βsin =m ,αsin βsin =2αcos βcos ⇒αcos βcos =-m ,αsin βsin =-2m ,所以cos α-β =αcos βcos +αsin βsin =-3m ,选A.5.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为A.23π B.33πC.63πD.93π【答案】B【解析】如图所示,h =3,圆锥母线长l =r 2+3,h h rrl由题知23πr =πr r 2+3⇒r =3⇒V 锥=13×π×32×3=33π.选B.6.已知函数f x =-x 2-2ax -a ,x <0,e x +ln x +1 ,x ≥0 在R 上单调递增,则实数a 的取值范围是A.(-∞,0]B.-1,0C.-1,1D.[0,+∞)【答案】B 【解析】由题知-a ≥0,-a ≤1⇒-1≤a ≤0,选B.7.当x ∈0,2π 时,曲线y =sin x 与y =2sin (3x -π6)的交点个数为A.3 B.4C.6D.8【答案】C【解析】作出两个函数的图象,2π3π2ππ2Oxy 由图知,两个函数的交点个数为6,选C.【总结】五点作图法,处理作图,好像没有其他解法.8.已知函数f x 的定义域为R ,f x >f x -1 +f x -2 ,且当x <3时,f x =x ,则下列结论中一定正确的是A.f 10 >100 B.f 20 >1000C.f 10 <1000D.f 20 <10000【答案】B【解析】由已知得f (1)=1,f (2)=2,思路一:常规推理+计算因为f x >f x -1 +f x -2 ,所以f (3)>3,f (4)>5,f (5)>8,f (6)>13,f (7)>21,f (8)>34,f (9)>55,f (10)>89,f (11)>144,f (12)>233,f (13)>377,f (14)>610,f (15)>987,f (16)>1597,f (17)>2584,f (18)>4181,f (19)>6765,f (20)>10946,⋯,所以f (20)>f (19)>⋯>f (16)>1000,选B.思路二:推理+估算由题知,当x >3时,f (x )上不封顶,C ,D 错误;f (3)>3,f (4)>5,f (5)>8,f (6)>13,f (7)>21,f (8)>34,f (9)>55,f (10)>89,当x >4时,f (x )>f x -1 +f x -2 >2f (x -2),所以f (20)>2f (18)>22f (16)>⋯>25f (10)>1000,A 错误,B 正确;故选B.【总结】需要耐心的计算.二、多选题:本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值x=2.1,样本方差s 2=0.01,已知该种植区以往的亩收入X 服从正态分布N 1.8,0.12 ,假设推动出口后的亩收入Y 服从正态分布x ,s 2,则(若随机变量Z 服从正态分布N μ,σ2 ,则P Z <μ+σ ≈0.8413)A.P X >2 >0.2 B.P X >2 <0.5C.P Y >2 >0.5 D.P Y >2 <0.8【答案】BC【解析】画个图,对于X :μ=1.8,σ=0.1;对于Y :μ=2.1,σ=0.1,1.81.7 1.92.12.0 2.22.0由题知P (X <1.9)=0.8413,所以P (X >2)<P (x >1.9)=0.1587<0.2<0.5,A 错误,B 正确;因为P (Y <2.2)=0.8413,所以P Y >2 =P Y <2.2 =0.8413>0.8>0.5,C 正确,D 错误;故选BC.10.设函数f x =x -1 2x -4 ,则A.x =3是f x 的极小值点B.当0<x <1时,f x <f x 2C.当1<x <2时,-4<f 2x -1 <0D.当-1<x <0时,f 2-x >f x【答案】ACD【解析】f '(x )=2(x -1)(x -4)+(x -1)2=3(x -1)(x -3),作出f (x )的图象如图所示,x =1x =3所以x =1是f x 的极大值点,x =3是f x 的极小值点,A 正确;当0<x <1时,f (x )在(0,1)↗,因为x >x 2,所以f (x )>f (x 2),B 错误;当1<x <2时,t =2x -1∈(1,3),因为f (t )在(1,3)↘,所以f (t )∈(-4,0),即-4<f 2x -1 <0,C 正确;当-1<x <0时,x -1<0,f 2-x -f x =(x -1)2(-2-x )-x -1 2x -4 =-2(x -1)3>0,所以f 2-x >f x ,D 正确;综上,选ACD.【总结】选项B 用了单调性法,选项C 转化为值域,选项D 用了最常见的作差法.11.造型Ժ可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O ,且C 上的点满足横坐标大于-2,到点F 2,0 的距离与到定直线x =a a <0 的距离之积为4,则OxyFA.a =-2B.点22,0 在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点x 0,y 0 在C 上时,y 0≤4x 0+2【答案】ABD 【解析】如图所示,OxyFx =aP对于A ,由题知,O 到点F 的距离等于与到定直线x =a a <0 的距离之积为4,所以(-a )∙2=4,解得a =-2,A 正确;对于B ,设点P (x ,y )是曲线C 上任意一点,则(x +2)(x -2)2+y 2=4,即(x -2)2+y 2=(4x +2)2,因为(22-2)2=(422+2)2,所以点22,0 在C 上,B 正确;对于C ,因为y 2=(4x +2)2-(x -2)2,记f (x )=(4x +2)2-(x -2)2,x >0,所以f '(x )=-32(x +2)3-2(x -2)=2[-16(x +2)3+2-x ],发现f (2)=1,f '(2)=-12<0,所以存在0<x 1<2,使得当x ∈(x 1,2)时,f '(x )<0,所以f (x )在(x 1,2)↘,所以f (x )>f (2)=1,即f (x )的最大值一定大于1,C 错误;对于D ,y 02=(4x 0+2)2-(x 0-2)2≤(4x 0+2)2,所以y 0≤4x 0+2,D 正确;综上,选ABD.【总结】本题相对要难一点,选出来一个答案不难.三、填空题:本大题共3小题,每小题5分,共计15分.12.设双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,过F 2作平行于y 轴的直线交C 于A ,B两点,若F 1A =13,AB =10,则C 的离心率为.【答案】32【解析】由题知|F 1F 2|=2c =12,F 2A =b 2a =5,c 2=a 2+b2 ,解得a =4,b =25,c =6,所以C 的离心率e =c a =32.13.若曲线y =e x +x 在点0,1 处的切线也是曲线y =ln x +1 +a 的切线,则a =.【答案】2ln 【解析】设f (x )=e x +x ,g (x )=ln x +1 +a ,则f '(x )=e x +1,g '(x )=1x +1,即f '(0)=2,所以f (x )在(0,1)处的切线方程为l :y -1=2(x -0),即y =2x +1,设l 与g (x )相切于点A (x 0,(x 0+1)ln +a ),则g '(x 0)=1x 0+1=2,解得x 0=-12,所以(-12+1)ln +a =0,解得a =2ln .14.甲乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8.两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上的数字大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用),则四轮比赛后,甲的总得分不小于2的概率为.【答案】12【解析】因为甲出1一定输,要使甲的总分不小于2,则甲得3分或得2分.第一类:甲得3分只有一种可能:1-8,3-2,5-4,7-6.第二类:甲得2分(1)甲出3和出5赢,其余输,共1种:3-2,5-4,1-6,7-8;(2)甲出3和出7赢,其余输,共3种:3-2,7-6,1-4,5-8;3-2,7-4,1-6,5-8;3-2,7-4,1-8,5-6;(3)甲出5和出7赢,其余输,共7种:5-4,7-6,1-2,3-8;5-4,7-2,1-6,3-8;5-4,7-2,1-8,3-6;5-2,7-6,1-4,3-8;5-2,7-6,1-8,3-4;5-2,7-4,1-6,3-8;5-2,7-4,1-8,3-6;所以甲的总得分不小于2的共有12种可能,所以所求的概率p =12A 44=12.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin C =2cos B ,a 2+b 2-c 2=2ab .(1)求B ;(2)若△ABC 的面积为3+3,求c .【答案】(1)B =π3;(2)2 2.【解析】(1)因为a 2+b 2-c 2=2ab ,所以C cos =a 2+b 2-c 22ab =2ab 2ab=22,因为0<C <π,所以C =π4,又sin C =2cos B ,所以22=2B cos ,即B cos =12,因为0<B <π,所以B =π3.(2)方法一:由(1)知A =π-B -C =5π12,所以A sin =(π6+π4)sin =6+24,因为a A sin =b B sin =cCsin =k >0,所以S =12ac B sin =12k 2A sin B sin C sin =12k 2∙6+24∙32∙22=3+3,所以k 2=16,即k =4,所以c =k C sin =4×22=2 2.16.(15分)已知A 0,3 和P (3,32)为椭圆C :x 2a 2+y 2b2=1a >b >0 上两点.(1)求椭圆C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求直线l 的方程.【答案】(1)12;(2)x -2y =0或3x -2y -6=0.【解析】(1)由题知b =3,9a 2+94b2=1,解得a =23,b =3 ,所以c =a 2-b 2=3,所以椭圆C的离心率e=ca=12.(2)由(1)知,椭圆C的方程为x212+y29=1.O xyPABD当直线l的斜率不存在时,B(3,-32),此时S=92,不满足题意;当直线l的斜率存在时,设l:y=k(x-3)+3 2,代入x212+y29=1,整理得(3+4k2)x2-8k(3k-32)x+36k2-36k-27=0,设B(x1,y1),由韦达定理得3+x1=8k(3k-32)3+4k2,3x1=36k2-36k-273+4k2所以|BP|=1+k2|x1-3|=1+k2(8k(3k-32)3+4k2)2-364k2-4k-33+4k2=43k2+13k2+9k+2744k2+3,点A到直线PB的距离h2=|3k+32|k2+1,所以△ABP的面积S=12|BP|∙h2=|3k+32|k2+1=9,解得k=12或32,所以直线l的方程为y=12x或y=32x-3.综上,直线l的方程为x-2y=0或3x-2y-6=0.17.(15分)如图,四棱锥P-ABCD中,P A⊥底面ABCD,P A=AC=2,BC=1,AB=3.(1)若AD⊥PB,证明:AD⎳平面PBC;(2)若AD⊥DC,且二面角A-CP-D的正弦值为427,求AD.AB CDP 【答案】(1)略;(2)3.【解析】(1)证明:因为P A ⊥底面ABCD ,BC ⊂底面ABCD ,所以P A ⊥BC ,P A ⊥AD ,因为AC =2,BC =1,AB =3,所以AB 2+BC 2=AC 2,即AB ⊥BC ,又P A ∩AB =A ,P A ,AB ⊂平面P AB ,所以BC ⊥平面P AB ,因为PB ⊥AD ,P A ∩PB =P ,P A ,PB ⊂平面P AB ,所以AD ⊥平面P AB ,所以AD ⎳BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC ,所以AD ⎳平面PBC .(2)过D 作DQ ⊥平面ABCD ,以DA ,DC ,DQ 分别为x ,y ,z 轴,建立空间直角坐标系D -xyz ,A BCDPz xyQ设DA =a ,DC =b ,则D (0,0,0),A (a ,0,0),C (0,b ,0),P (a ,0,2),且a 2+b 2=4,①所以AC =(-a ,b ,0),AP =(0,0,2),DC =(0,b ,0),DP =(a ,0,2),设平面APC 的一个法向量为n 1=(x 1,y 1,z 1),则AC∙n 1=0,AP ∙n 1=0 ,即-ax 1+by 1=0,2z 1=0 ,令x 1=b ,则n 1=(b ,a ,0),设平面PCD 的一个法向量为n 2=(x 2,y 2,z 2),则DC∙n 2=0,DP ∙n 2=0 ,即by 2=0,ax 1+2z 1=0 ,令x 1=2,则n 2=(2,0,-a ),所以‹n 1,n 2›cos =n 1∙n 2|n 1||n 2|=2ba 2+b 2a 2+4=ba 2+4,设二面角A -CP -D 的平面角为θ,则θsin =427,所以|θcos |=|‹n 1,n 2›cos |=b a 2+4=17,即7b 2=a 2+4,②由①②得a =3,b =1,所以AD =a = 3.【总结】本题建系可以设两个变量,也可以设一个变量,注意运算.18.(17分)已知函数f x =lnx2-x+ax +b x -1 3.(1)若b =0,且f x ≥0,求a 的最小值;(2)证明:曲线y =f x 是中心对称图形;(3)若f x >-2当且仅当1<x <2,求b 的取值范围.【答案】(1)-2;(2)略;(3)[-23,+∞).【解析】(1)由x2-x>0,得0<x <2,所以f (x )的定义域为(0,2),当b =0时,f (x )=ln x 2-x +ax ,f '(x )=1x +12-x +a ≥0,因为1x +12-x ≥(1+1)2x +2-x =2,当且仅当x =1时取等号,所以f '(x )min =2+a ≥0,解得a ≥-2,所以a 的最小值为-2;(2)发现f (1)=a ,猜测f (x )关于(1,a )对称,下面尝试证明此结论,因为f (1+x )+f (1-x )=ln 1+x 1-x +a (1+x )+bx 3+ln 1-x1+x+a (1-x )+b -x 3=2a ,所以f (x )关于(1,a )对称.(3)当且仅当1<x <2时f (x )>-2,则f (1)=a =-2,所以f (x )=ln x2-x-2x +b x -1 3,f '(x )=1x +12-x -2+3b (x -1)2=(x -1)22(2-x )+3b (x -1)2=(x -1)2[2x (2-x )+3b ]~2x (2-x )+3b ,发现f '(1)=2+3b ≥0,则b ≥-23,当b ≥-23时,2x (2-x )+3b ≥2x (2-x )-2=2(x -1)22(2-x )≥0,即f '(x )≥0,所以f (x )在(0,2)↗,因为f (1)=-2,所以f (x )>-2=f (1)⇔1<x <2,符合题意;当b <-23时,则2x (2-x )∈[2,+∞),f '(x )∈[3b +2,+∞),存在1<x 1<2,使得当x ∈(1,x 1)时,f '(x )<0,f (x )在(1,x 1)↘,所以f (x )<f (1)=-2,不符合题意;综上,实数b 的取值范围是[-23,+∞).19.(17分)设m 为正整数,数列a 1,a 2,⋯,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,⋯,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使得数列a 1,a 2,⋯,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,⋯,a 4m +2是2,13 -可分数列;(3)从1,2,⋯,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,⋯,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)(1,2),(5,6),(1,6);(2)略;(3)略.【解析】(1)对于特殊的情况,我们不难分析出来,要么一边删除2个,要么两边各删除1个,所以满足题意的(i ,j )为:(1,2),(5,6),(1,6).(2)下标和项是成等差的充要条件,即m ,n ,k 成等差⇔a m ,a n ,a k 成等差(证明略).首先我们证明,当m =3时成立,那么m ≥3时都会成立.当m =3时,4m +2=14,那么当m >3时,整个{a n }可以拆成两段,为1≤n ≤14和n >14,不管m 取值如何,都有4m -12个数,也就是可以分成m -3组,而这m -3组只要按照原来的顺序依次分组,显然都是等差数列.如:m =6,前面14个按照m =3分组,后面的按照顺序,每4个一组,显然这样分满足题意.下面证明m =3时成立,可以采用列举法,只要有一种方法成立就行,去掉i =2,j =13,可以分为{1,4,7,10},{5,8,11,14},{3,6,9,12}这三组,满足题意.(3)设在给定m 的情况下,(i ,j )的组数为b m ,当m 变成m +1时,数列就变成了a 1,a 2,a 3,a 4,a 5,⋯,a 4m +2,a 4m +3,a 4m +4,a 4m +5,a 4m +6,这里可以分成3组,前4个一组即{a 1,a 2,a 3,a 4},中间的一组,后4个一组即{a 4m +3,a 4m +4,a 4m +5,a 4m +6},此时我们要在这里面删除2个数,那么会有以下几种情况:一、两个都在中间中间有4m -2个数,且为等差数列,删除2个的话,总数为b m -1种;二、一个在第一组,一个在中间组或两个都在第一组第一组和中间组连起来,会变成4m +2个数的等差数列,这里面总共有b m 种方法,但是要去掉两个都在中间的情况,共有b m -b m -1种;三、一个在中间组,一个在最后一组,或者都在最后一组和上面一样,也是共有b m -b m -1种;四、一个在第一组,一个在最后一组此时,将a 1,a 4m +6同时删除是肯定可以的,这算一种;然后,从(2)的结果来看,把a 2,a 4m +5同时删除也是可以的,因为m =3成立之后,当m >3时,只是相当于往中间加了4个连续的等差数而已,其它是不变的,这也算一种.综上,就会有b m +1≥b m -1+2(b m -b m -1)+2=2b m -b m -1+2,因为b 0=0,b 1=3,所以b m ≥m 2+2m ,如果你是随便删除,总共有C 24m +2=8m 2+6m +1种,所以P m =b m C 24m +2≥m 2+2m 8m 2+6m +1>18.。
2023高考压轴卷——数学(文)(全国乙卷)含解析
KS5U2023全国乙卷高考压轴卷数学试题(文科)(考试时间:120分钟满分:150分)第I 卷(满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U =R ,集合{1,0,1,2,3}M =-,{R |1}N x x =∈>,则下面Venn 图中阴影部分表示的集合是()A.(,1)-∞B.(,1]-∞C.{1,0}- D.{1,0,1}-2.设复数z 满足i 4i 0z ++=,则||z =()A.B.4C.D.3.已知双曲线()222210,0x y a b a b-=>>0y ±=,则双曲线的离心率为()A.B.4C.2D.154.考拉兹猜想是引人注目的数学难题之一,由德国数学家洛塔尔·考拉兹在20世纪30年代提出,其内容是:任意给定正整数s ,如果s 是奇数,则将其乘3加1;如果s 是偶数,则将其除以2,所得的数再次重复上面步骤,最终都能够得到1.下边的程序框图演示了考拉兹猜想的变换过程.若输入s 的值为5,则输出i 的值为()A.4B.5C.6D.75.若1:310l x my --=与23(2)31:0m x l y +-+=是两条不同的直线,则“1m =”是“12l l ∥”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.已知数列{}n a 为等差数列,其前n 项和为n S ,*n ∈N ,若1020S =,则56a a +=()A .0B .2C .4D .87.中国空间站的主体结构包括天和核心舱、问天实验舱和梦天实验舱,假设空间站要安排甲,乙,丙,丁4名航天员开展实验,其中天和核心舱安排2人,问天实验舱与梦天实验舱各安排1人,则甲乙两人安排在同一个舱内的概率为()A.16B.14C.13D.128.已知角π,π2θ⎛⎫∈ ⎪⎝⎭,角()0,2πα∈,α终边上有一点()cos ,cos θθ,则α=().A.θB.π2θ+ C.π4D.5π49.已知函数()e xf x x =,若()12f x ax a ≥-恒成立,则实数a 的最大值为()A .121e 2-B .e 1+C .2eD .e 4+10.抛物线()2:20C y px p =>的焦点为F ,A 为抛物线C 上一点,以F 为圆心,FA 为半径的圆交抛物线C 的准线l 于M ,N 两点,MN =,则直线AF 的斜率为()A.1±B.C.D.11.设5log 15a =,7log 21b =,252c =,则()A.b a c << B.c<a<b C.c b a<< D.a c b<<12.在直三棱柱111ABC A B C -中,AB AC ⊥,12AB AC AA ===,P 为该三棱柱表面上一动点,若1CP B P =,则P 点的轨迹长度为()A. B.C.D.第II 卷(非选择题共90分)本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须作答.第22题、第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,满分20分.把KS5U 答案填在答题卡上的相应位置.13.已知向量()1,2AB =-,()2,5B t t C =+ ,若A 、B 、C 三点共线,则t =_____.14.如图,圆柱1OO 的轴截面是正方形,AB 是底面圆的直径,AD 是母线,点C 是AB 的中点,则异面直线AB 与CD 所成角的余弦值为________.15.已知数列{}n a 前n 项和22n n n S +=,记2n an b =,若数列{}n a 中去掉数列{}n b 中的项后,余下的项按原来顺序组成数列{}n c ,则数列{}n c 的前50项和为________.16.已知()f x 是定义在R 上的奇函数,且函数图象关于直线2x =对称,对x ∀∈R ,()()22f x f ≤=,则以下结论:①()4f x +为奇函数;②()2f x +为偶函数;③()42f =-;④在区间()2,0-上,()f x 为增函数.其中正确的序号是______.三、解答题:本大题共6小题,满分70分.解答应写出文字说明、证明过程或演算步骤.17.《中国统计年鉴2021》数据显示,截止到2020年底,我国私人汽车拥有量超过24千万辆.下图是2011年至2020年十年间我国私人汽车拥有量y(单位:千万辆)折线图.(注:年份代码1-10分别对应年份2011-2020)(1)由折线图能够看出,可以用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(2)建立y 关于t 的线性回归方程(系数精确到0.01),并预测2022年我国私人汽车拥有量.参考数据:15.5y =,()()101160.1i i i tty y =--=∑,()1021311.4i i y y =-=∑,()102182.5i i t t=-=∑,159.8≈160.3≈.参考公式:相关系数()()nii tty y r --=∑,线性回归方程ˆˆˆy bt a =+中,斜率和截距的最小二乘估计公式分别为()()()1122211ˆnnii i i i i nni ii i tty y t y ntybt t tnt====---==--∑∑∑∑,ˆˆa y bt=-.18.已知函数()()2ππ2sin sin cos 44f x x x x x ⎛⎫⎛⎫=++-- ⎪ ⎪⎝⎭⎝⎭.(1)求函数()f x 的对称中心及最小正周期;(2)若π3π,88θ⎛⎫∈-⎪⎝⎭,()65f θ=,求tan θ的值.19.如图,在矩形ABCD 中,2AB AD ==M 为边AB 的中点,以CM 为折痕把BCM 折起,使点B 到达点P 的位置,使得3PMB π∠=,连结PA ,PB ,PD .(1)证明:平面PMC ⊥平面AMCD ;(2)求点M 到平面PAD 的距离.20.已知函数2()sin 1,f x x a x a R =--∈.(1)设函数()()g x f x '=,若()y g x =是区间0,2π⎡⎤⎢⎥⎣⎦上的增函数,求a 的取值范围;(2)当2a =时,证明函数()f x 在区间(0,)π上有且仅有一个零点.21.已知抛物线()2:20C x py p =>的焦点为F ,点E 在C 上,以点E 为圆心,EF 为半径的圆的最小面积为π.(1)求抛物线C 的标准方程;(2)过点F 的直线与C 交于M ,N 两点,过点M ,N 分别作C 的切线1l ,2l ,两切线交于点P ,求点P 的轨迹方程.请考生在第22、23题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B 铅笔在答题卡上,将所选题号对应的方框涂黑.选修4-4:坐标系与参数方程22.在直角坐标系xOy 中,直线l的参数方程为11x y ⎧=⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为2(0)cos 2,a a R ρθρ=>∈.(1)求直线l 的极坐标方程和曲线C 的直角坐标方程;(2)若直线()4R πθρ=∈与直线l 交于点M ,直线()6R πθρ=∈与曲线C 交于点,A B ,且AM BM ⊥,求实数a 的值.选修4-5:不等式选讲23.已知函数()221f x x x =-++.(1)求函数()f x 的最小值;(2)设0a >,0b >,若()f x 的最小值为m ,且221a b m +=-,求2a b +的最大值.【KS5U 答案1】D【分析】根据Venn 图,明确阴影部分表示的集合的含义,即可求得KS5U 答案.【KS5U 解析】由题意,可知Venn 图中阴影部分表示的集合是(){1,0,1}U M N =- ð,故选:D 【KS5U 答案2】A【分析】由复数的四则运算结合几何意义得出||z .【KS5U 解析】224i 4i 14i,||ii i z z --+===-+=-A 【KS5U 答案3】B【分析】求出ba的值,利用双曲线的离心率公式可求得该双曲线的离心率的值.【KS5U 解析】双曲线的渐近线方程为b y x a=±=,所以,ba =,因此,该双曲线的离心率为4e ===.故选:B.【KS5U 答案4】B【分析】根据程序框图列举出算法循环的每一步,即可得出输出结果.【KS5U 解析】第一次循环,15Z 22s =∈不成立,35116s =⨯+=,011i =+=,1s =不成立;第二次循环,18Z 2s =∈成立,11682s =⨯=,112i =+=,1s =不成立;第三次循环,14Z 2s =∈成立,则1842s =⨯=,213i =+=,1s =不成立;第四次循环,12Z 2s =∈成立,则1422s =⨯=,314i =+=,1s =不成立;第五次循环,11Z 2s =∈成立,则1212s =⨯=,415i =+=,1s =成立.跳出循环体,输出5i =.故选:B.【KS5U 答案5】C【分析】由题意解出12l l ∥时m 的值后判断【KS5U 解析】若12l l ∥,则3(3)3(2)m m ⨯-=-⨯+,解得1m =或3m =-而3m =-时,12l l ,重合,故舍去则“1m =”是“12l l ∥”的充要条件。
2024年新课标Ⅰ卷高考数学考前押题试卷附答案解析
2024年新课标Ⅰ卷高考数学考前押题试卷(考试时间:120分钟;试卷满分:150分)第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}{}{3,Z ,06A x x n n B x x ==∈=≤≤,则A B = ()A .{1,2}B .{3,6}C .{0,1,2}D .{0,3,6}2.若角α的终边位于第二象限,且1sin 2α=,则πsin 2α⎛⎫+= ⎪⎝⎭()A .12B .12-CD.3.双曲线2221(0)y x m m-=>的渐近线方程为2y x =±,则m =()A .12B .22CD .24.已知在ABC 中,点D 在边BC 上,且5BD DC = ,则AD =()A .1566AB AC + B .1566AC AB +uuur uu u r C .1455AB AC + D .4155AB AC+ 5.函数()21ex x f x -=的图象大致为()A.B.C .D.6.三个相同的圆柱的轴线123,,l l l ,互相垂直且相交于一点O ,底面半径为1.假设这三个圆柱足够的长,P 同时在三个圆柱内(含表面),则OP 长度最大值为()A .1B.2C.D.27.甲、乙两人进行一场游戏比赛,其规则如下:每一轮两人分别投掷一枚质地均匀的骰子,比较两者的点数大小,其中点数大的得3分,点数小的得0分,点数相同时各得1分.经过三轮比赛,在甲至少有一轮比赛得3分的条件下,乙也至少有一轮比赛得3分的概率为()A .209277B .210277C .211277D .2122778.已知数列{}n a 的前n 项和为n S,且()1142,N 2n n n n n a a *-=+≥∈,若11a =,则()A .202431,2S ⎛⎫∈ ⎪⎝⎭B .20243,22S ⎛⎫∈ ⎪⎝⎭C .202452,2S ⎛⎫∈ ⎪⎝⎭D .20245,32S ⎛⎫∈ ⎪⎝⎭二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数12,z z ,下列结论正确的有()A .若120z z ->,则12z z >B .若2212z z =,则12=z z C .1212z z z z ⋅=⋅D .若11z =,则12i z +的最大值为310.如图,点,,A B C 是函数()()sin (0)f x x ωϕω=+>的图象与直线32y =相邻的三个交点,且ππ,0312BC AB f ⎛⎫-=-= ⎪⎝⎭,则()A .4ω=B .9π182f ⎛⎫=⎪⎝⎭C .函数()f x 在ππ,32⎛⎫⎪⎝⎭上单调递减D .若将函数()f x 的图象沿x 轴平移θ个单位,得到一个偶函数的图像,则θ的最小值为π2411.已知椭圆22143x y +=的左右焦点分别为12,F F ,过1F 的直线l 交椭圆于,P Q 两点,则()A .2PF Q △的周长为4B .1PF 的取值范围是[]1,3C .PQ 的最小值是3D .若点,M N 在椭圆上,且线段MN 中点为()1,1,则直线MN 的斜率为34-第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分.12.写出一个同时具有下列性质①②③的函数()f x :,①()()()1212f x x f x f x =;②当()0,x ∈+∞时,()f x 为增函数;③()f x 为R 上偶函数.13.甲、乙两选手进行围棋比赛,如果每局比赛甲获胜的概率为23,乙获胜的概率为13,采用三局两胜制,则在甲最终获胜的情况下,比赛进行了两局的概率为.14.若关于x 的方程()2e e x xx a x +=存在三个不等的实数根,则实数a 的取值范围是.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步棸.15.已知函数()e xf x =.(1)求曲线()y f x =在0x =处的切线l 与坐标轴围成的三角形的周长;(2)若函数()f x 的图象上任意一点P 关于直线1x =的对称点Q 都在函数()g x 的图象上,且存在[)0,1x ∈,使()()2e f x x m g x -≥+成立,求实数m 的取值范围.16.为促进全民阅读,建设书香校园,某校在寒假面向全体学生发出“读书好、读好书、好读书”的号召,并开展阅读活动.开学后,学校统计了高一年级共1000名学生的假期日均阅读时间(单位:分钟),得到了如下所示的频率分布直方图,若前两个小矩形的高度分别为0.0075,0.0125,后三个小矩形的高度比为3:2:1.(1)根据频率分布直方图,估计高一年级1000名学生假期日均阅读时间的平均值(同一组中的数据用该组区间的中点值为代表);(2)开学后,学校从高一日均阅读时间不低于60分钟的学生中,按照分层抽样的方式,抽取6名学生作为代表分两周进行国旗下演讲,假设第一周演讲的3名学生日均阅读时间处于[80,100)的人数记为ξ,求随机变量ξ的分布列与数学期望.17.如图,在三棱柱111ABC A B C -中,1AA 与1BB 12AB AC A B ===,1AC BC ==(1)证明:平面11A ABB ⊥平面ABC ;(2)若点N 在棱11A C 上,求直线AN 与平面11A B C 所成角的正弦值的最大值.18.已知,A B 是椭圆22:14x E y +=的左,右顶点,点()(),00M m m >与椭圆上的点的距离的最小值为1.(1)求点M 的坐标.(2)过点M 作直线l 交椭圆E 于,C D 两点(与,A B 不重合),连接AC ,BD 交于点G .(ⅰ)证明:点G 在定直线上;(ⅱ)是否存在点G 使得CG DG ⊥,若存在,求出直线l 的斜率;若不存在,请说明理由.19.已知数列{}n a 的前n 项和为n S ,满足23n n S a +=;数列{}n b 满足121n n b b n ++=+,其中11b =.(1)求数列{}{},n n a b 的通项公式;(2)对于给定的正整数()1,2,,i i n = ,在i a 和1i a +之间插入i 个数12,,,i i ii c c c ,使1,i i a c ,21,,,i ii i c c a + 成等差数列.(i )求11212212n n n nn T c c c c c c =+++++++ ;(ii )是否存在正整数m ,使得21123123m m m m b a m b T +-++---恰好是数列{}n a 或{}n b 中的项?若存在,求出所有满足条件的m 的值;若不存在,说明理由.1.D【分析】利用交集的定义即可求解.【详解】依题意,}{}{{}3,Z 060,3,6A B x x n n x x ⋂==∈⋂≤≤=.故选:D.2.D【分析】根据已知条件利用诱导公式确定πsin cos 2αα⎛⎫+= ⎪⎝⎭,再根据角α所属象限确定cos α=-,即可求解.【详解】由诱导公式有:πsin cos 2αα⎛⎫+= ⎪⎝⎭,因为角α的终边位于第二象限,则cos 2α=-,所以πsin cos 22αα⎛⎫+== ⎪⎝⎭.故选:D.3.D【分析】借助渐近线的定义计算即可得.【详解】由题意可得21m =,又0m >,故2m =.故选:D.4.A【分析】根据向量的线性运算即可.【详解】在ABC 中,BC AC AB =-,又点D 在边BC 上,且5BD DC =,则()55156666AD AB BD AB BC AB AC AB AB AC =+=+=+-=+ ,故选:A.5.A【分析】利用导数判断函数的单调性即可得到函数的大致图象.【详解】易知R x ∈,因为()()12ex x x f x --'=,令()0f x '=,得0x =,或2x =,则()(),02,x ∞∞∈-⋃+时,()0f x '<,()0,2x ∈时,()0f x '>,所以()f x 在(),0∞-和(2,)+∞上单调递减,在()0,2上单调递增,所以选项A 符合题意,故选:A.6.B【分析】根据给定条件,构造以线段OP 为体对角线的长方体,再求出OP 的最大值.【详解】令直线123,,l l l 两两确定的平面分别为,,αβγ,显然,,αβγ两两垂直,把三个圆柱围成的几何体等分为8个部分,由对称性知,考查其中一个部分,当线段OP 在平面α或β或γ内时,1OP =,当线段OP 不在,,αβγ的任意一个内时,线段OP 可视为一长方体的体对角线,要OP 最长,当且仅当此长方体为正方体,其中一个表面正方形在α内,对角线长为1,边长即正方体的棱长为22,体对角线长为22所以OP 长度最大值为2.故选:B 7.B【分析】先根据古典概型得出一轮游戏中,甲得3分、1分、0分的概率.进而求出三轮比赛,在甲至少有一轮比赛得3分的概率,以及事件三轮比赛中,事件甲乙均有得3分的概率.即可根据条件概率公式,计算得出答案.【详解】用(),a b 分别表示甲、乙两人投掷一枚骰子的结果,因为甲、乙两人每次投掷均有6种结果,则在一轮游戏中,共包含6636⨯=个等可能的基本事件.其中,甲得3分,即a b >包含的基本事件有()()()()()()()()()()()()()()()2,1,3,1,3,2,4,1,4,2,4,3,5,1,5,2,5,3,5,4,6,1,6,2,6,3,6,4,6,5,共15个,概率为1553612p ==.同理可得,甲每轮得0分的概率也是512,得1分的概率为16.所以每一轮甲得分低于3分的概率为57111212p -=-=.设事件A 表示甲至少有一轮比赛得3分,事件B 表示乙至少有一轮比赛得3分,则事件A 表示经过三轮比赛,甲没有比赛得分为3分.则()333377C 1212P A ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()()37138511121728P A P A ⎛⎫=-=-= ⎪⎝⎭.事件AB 可分三类情形:①甲有两轮得3分,一轮得0分,概率为221355125C 1212576P ⎛⎫⎛⎫=⨯⨯=⎪ ⎪⎝⎭⎝⎭;②甲有一轮得3分,两轮得0分,概率为212355125C 1212576P ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭;③甲有一轮得3分,一轮得0分,一轮得1分,概率为33355125A 12126144P ⨯⨯⨯==.所以()12312512525175576576144288P AB P P P =++=++=175288=,所以()()()175210288|13852771728P AB P B A P A ===.故选:B .8.A【分析】先对1n a)22n ≥+≥()*21N n n ≥-∈,进而()()()()211111223212232121n a n n n n n n ⎛⎫≤<=-≥ ⎪----⎝⎭-,应用裂项相消法即可求解.【详解】因为11a =,则211402na a =+>,即20a >,结合()1142,N 2n n nn n a a *-=+≥∈,可得0n a >,则()221112422222n n n n n n a a a --⎛⎫⎛⎫-==+≥+≥ ⎝⎝,)22n≥+≥()22n≥,22,…()22n≥,()21n≥-()()21212n n n+-=-≥,当1n=1=()*21Nn n≥-∈,所以()()()()211111223212232121na nn n n nn⎛⎫≤<=-≥⎪----⎝⎭-,所以()1111111113131112335232122122212 nS an n n n⎛⎫⎛⎫<+-+-+⋅⋅⋅+-=+-=-<⎪ ⎪----⎝⎭⎝⎭,故202432S<,因为0na>,所以202412202411S a a a a=++⋅⋅⋅+>=,所以2024312S<<.故选:A.【点睛】数列与不等式结合,关键是看能不能求和,不能的要对通项公式进行放缩后进行. 9.BCD【分析】利用特殊值判断A选项;由复数的运算判断BCD.【详解】若复数122i,1iz z=+=+,满足12z z->,但这两个虚数不能比大小,A选项错误;若2212z z=,则2212z z-=,即()()1212z z z z+-=,得12z z=或12z z=-,所以12=z z,B选项正确;设()11111i R,z a b a b=+∈,()22222i R,z a b a b=+∈,则()()()()12112212121221i i iz z a b a b a a b b a b a b⋅=++=-++,12||z z⋅==12||||z z==,所以1212z z z z⋅=⋅,C选项正确;若11z=,得22111a b+=,有111a-≤≤,111b-≤≤,则12i3z+===≤,1b=时取等号,则12i z +的最大值为3,D 选项正确.故选:BCD.10.ACD【分析】令()f x =,,A B C x x x 根据π3BC AB -=求得4ω=,根据π012f ⎛⎫-= ⎪⎝⎭求得()f x 的解析式,再逐项验证BCD 选项.【详解】令()()sin 2f x x ωϕ=+得,π2π3x k ωϕ+=+或2π2π3x k ωϕ+=+,Z k ∈,由图可知:π2π3A x k ωϕ+=+,π2π+2π3C x k ωϕ+=+,2π2π3B x k ωϕ+=+,所以1π2π3C B BC x x ω⎛⎫=-=-+ ⎪⎝⎭,1π3B A AB x x ω=-=⋅,所以π12π2π33BC AB ω⎛⎫=-=-+ ⎪⎝⎭,所以4ω=,故A 选项正确,所以()()sin 4f x x ϕ=+,由π012f ⎛⎫-= ⎪⎝⎭且π12x =-处在减区间,得πsin 03ϕ⎛⎫-+= ⎪⎝⎭,所以ππ2π3k ϕ-+=+,Z k ∈,所以4π2π3k =+ϕ,Z k ∈,所以()4π4ππsin 42πsin 4sin 4333f x x k x x ⎛⎫⎛⎫⎛⎫=++=+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,9π9ππ1sin 8232f ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭,故B 错误.当ππ,32x ⎛⎫∈ ⎪⎝⎭时,π5ππ42π333x ⎛⎫+∈+ ⎪⎝⎭,因为sin y t =-在5ππ,2π33t ⎛⎫∈+ ⎝⎭为减函数,故()f x 在ππ,32⎛⎫⎪⎝⎭上单调递减,故C 正确;将函数()f x 的图象沿x 轴平移θ个单位得()πsin 443g x x θ⎛⎫=-++ ⎪⎝⎭,(0θ<时向右平移,0θ>时向左平移),()g x 为偶函数得ππ4π32k θ+=+,Z k ∈,所以ππ244k θ=+,Z k ∈,则θ的最小值为π24,故D 正确.故选:ACD.11.BCD【分析】利用椭圆的定义可判定A ,利用焦半径公式可判定B ,利用椭圆弦长公式可判定C ,利用点差法可判定D.【详解】由题意可知椭圆的长轴长24a =,左焦点()11,0F -,由椭圆的定义可知222221148PF Q C PF QF PQ PF QF PF QF a =++=+++== ,故A 错误;设()()1122,,,P x y Q x y ,11142PF x ===+,易知[][]112,242,6x x ∈-⇒+∈,故B 正确;若PQ 的斜率存在,不妨设其方程为:y kx k =+,联立椭圆方程()2222221438412043x y k x k x k y kx k ⎧+=⎪⇒+++-=⎨⎪=+⎩,则2122212284341243k x x k k x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩,所以223334343PQ k k ===+>++,若PQ 的斜率不存在,则其方程为=1x -,与椭圆联立易得3PQ =,显然当PQ 的斜率不存在时,min 3PQ =,故C 正确;设()()3344,,,M x y N x y ,易知()()()()2233343443342244143043143x y x x x x y y y y x y ⎧+=⎪+-+-⎪⇒+=⎨⎪+=⎪⎩34343434343434PQ y y y y y y k x x x x x x +-+⇒⋅=-=⋅+-+,若MN 中点为()1,1,则3443324PQ x x y y k +=+=⇒=-,故D 正确.故选:BCD12.()2f x x =(答案不唯一)【分析】利用基本初等函数的性质,逐一分析各性质即可得解.【详解】由性质①可联想到幂函数,由性质②可知该幂函数的指数大于0,由性质③可考虑将该幂数函数的自变量加上绝对值,或指数为偶数,或指数为分式形式且分子为偶数,综上,可考虑()()0af x x a =>或()af x x =(a 为正偶数)或()nm f x x =(n 为偶数,0nm>),不妨取2a =,得()2f x x =.故答案为:()2f x x =(答案不唯一).13.35##0.6【分析】根据题意,设甲获胜为事件A ,比赛进行两局为事件B ,根据条件概率公式分别求解()P A 、()P AB 的值,进而计算可得答案.【详解】根据题意,设甲获胜为事件A ,比赛进行两局为事件B ,()P A 122221220C 3333327=⨯+⨯⨯⨯=,22224()C 339P AB =⨯⨯=,故4()1239(|)20()20527P AB P B A P A ====.故答案为:35.14.1e ,e ∞⎛⎫-+ ⎪⎝⎭【分析】0x =不是方程的根,当0x ≠时,变形为e e x x x a x =-,构造()e ex x xf x x =-,0x ≠,求导得到函数单调性,进而画出函数图象,数形结合得到答案.【详解】当0x =时,()e 0xx a x +=,2e 1x =,两者不等,故0不是方程的根,当0x ≠时,e ex x xa x =-,令()e ,0xg x x x =≠,则()()2e 1x x g x x ='-,当0x <,01x <<时,()0g x '<,()g x 单调递减,当1x >时,()0g x '>,()g x 单调递增,且当0x <时,()0g x <,当0x >时,()0g x >,画出()e ,0xg x x x=≠的图象如下:令()e xxh x =,0x ≠,则()1e xxh x ='-,当0x <,01x <<时,()0h x '>,()h x 单调递增,当1x >时,()0h x '<,()h x 单调递减,且当0x <时,()0h x <,当0x >时,()0h x >,画出()e xxh x =,0x ≠的函数图象,如下:令()e e x x x f x x =-,0x ≠,则()()()22e 11e 11e e x x x x x x f x x x x -⎛⎫-=-=-+ ⎝'⎪⎭,由于2e 10ex x x +>在()(),00,∞∞-⋃+上恒成立,故当0x <,01x <<时,()0f x '<,()e e x xxf x x =-单调递减,当1x >时,()0f x '>,()e ex x xf x x =-单调递增,其中()11e ef =-,从()(),g x h x 的函数图象,可以看出当x →-∞时,()f x ∞→+,当0x <且0x →时,()f x ∞→-,画出函数图象如下,要想e ex x xa x =-有三个不同的根,则1e ,e a ∞⎛⎫∈-+ ⎪⎝⎭.故答案为:1e ,e ∞⎛⎫-+ ⎪⎝⎭【点睛】方法点睛:对于求不等式成立时的参数范围问题或函数零点,一般有三个方法,一是分离参数法,使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.15.(1)2(2)(,∞--【分析】(1)根据导数的几何意义求切线方程,进而求得l 与x 轴的交点与y 轴的交点,计算可得结果;(2)根据对称性求函数()g x 的解析式,将问题转化为存在[)0,1x ∈,使2e e 2e x x x m ---≥成立,构造函数()2e e 2e x xF x x -=--,转化为函数的最值问题并求解.【详解】(1)由()e x f x =,得()()01,e xf f x '==,所以切线l 的斜率(0)1k f '==.所以切线l 的方程为1y x -=,即1y x =+.令0x =,得1y =,令0y =,得=1x -,所以切线l 与x 轴交于点(1,0)-,与y 轴交于点(0,1),所以切线l 与坐标轴围成的三角形的周长为112+=.(2)设(,)Q x y ,则(2,)P x y -,由题意知(2,)P x y -在()f x 的图象上,所以2e x y -=,所以()2e xg x -=.由()()2e f x x m g x -≥+,得()()2e f x g x x m --≥,即2e e 2e x x x m ---≥,因为存在[)0,1x ∈,使()()2e f x x m g x -≥+成立,所以存在[)0,1x ∈,使2e e 2e x x x m ---≥成立,设()2e e 2e x x F x x -=--,则()2e e 2e x xF x -='+-,又()2e 0F x ≥'=,当且仅当1x =时等号成立,所以()F x 单调递增,所以当[)0,1x ∈时,()(1)2e F x F <=-,可得2e m <-,即实数m 的取值范围是(,2e).∞--16.(1)67(分钟)(2)分布列见解析;期望为1【分析】(1)根据平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和求解;(2)依题意求出随机变量ξ的分布列,并利用数学期望公式求解.【详解】(1)由题知:各组频率分别为:0.15,0.25,0.3,0.2,0.1,日均阅读时间的平均数为:300.15500.25700.3900.21100.167⨯+⨯+⨯+⨯+⨯=(分钟)(2)由题意,在[60,80),[80,100),[100,120]三组分别抽取3,2,1人ξ的可能取值为:0,1,2则304236C C 1(0)C 5P ξ===2142363(1)5C C P C ξ===1242361(2)5C C P C ξ===所以ξ的分布列为:ξ012P153515()1310121555E ξ=⨯+⨯+⨯=17.(1)证明见解析(2)427【分析】(1)利用等腰三角形的性质作线线垂直,结合线段长度及勾股定理判定线线垂直,根据线面垂直的判定与性质证明即可;(2)建立合适的空间直角坐标系,利用空间向量计算线面角结合基本不等式求最值即可.【详解】(1)取棱1A A 中点D ,连接BD ,因为1AB A B =,所以1BD AA ⊥因为三棱柱111ABCA B C -,所以11//AA BB ,所以1BD BB ⊥,所以BD =因为2AB =,所以1AD =,12AA =;因为2AC =,1A C =22211AC AA A C +=,所以1AC AA ⊥,同理AC AB ⊥,因为1AA AB A = ,且1AA ,AB ⊂平面11A ABB ,所以AC ⊥平面11A ABB ,因为AC ⊂平面ABC ,所以平面11A ABB ⊥平面ABC ;(2)取AB 中点O ,连接1AO ,取BC 中点P ,连接OP ,则//OP AC ,由(1)知AC ⊥平面11A ABB ,所以OP ⊥平面11A ABB 因为1AO 平面11A ABB ,AB ⊂平面11A ABB ,所以1OP A O ⊥,OP AB ⊥,因为11AB A A A B ==,则1A O AB⊥以O 为坐标原点,OP ,OB ,1OA 所在的直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系O xyz -,则(0,1,0)A -,1A,1(0,B ,(2,1,0)C -,可设点(N a =,()02a ≤≤,()110,2,0A B =,(12,1,A C =-,(AN a =,设面11A B C 的法向量为(,,)n x y z =,得1110202n A B yn A C x y ⎧⋅==⎪⎨⋅==-⎪⎩ ,取x =0y =,2z =,所以n =设直线AN 与平面11A B C 所成角为θ,则sin cos ,n AN n AN n AN θ⋅=<>=⋅=若0a =,则21sin 7θ=,若0a≠,则42sin 7θ==,当且仅当4a a=,即2a =时,等号成立,所以直线AN 与平面11A B C427.18.(1)()3,0;(2)(ⅰ)证明见解析;(ⅱ)存在,【分析】(1)设()00,P x y ,利用两点间距离公式得PM =然后根据330,22m m ≤分类讨论求解即可;(2)(ⅰ)设直线()()1122:3,,,,l x ty C x y D x y =+,与椭圆方程联立方程,结合韦达定理得121265y y ty y +=-,写出直线AC ,BD 的方程,进而求解即可;(ⅱ)由题意点G 在以AB为直径的圆上,代入圆的方程求得4,33G ⎛± ⎝⎭,写出直线AC 的方程,与椭圆联立,求得点C 的坐标,进而可得答案.【详解】(1)设()00,P x y 是椭圆上一点,则220044x y +=,因为()022PM x =-≤≤,①若min 30,12m PM <≤=,解得0m =(舍去),②若min3,12m PM >=,解得1m =(舍去)或3m =,所以M 点的坐标位()3,0.(2)(ⅰ)设直线()()1122:3,,,,l x ty C x y D x y =+,由22314x ty x y =+⎧⎪⎨+=⎪⎩,得()224650t y ty +++=,所以12122265,44t y y y y t t +=-=++,所以121265y y ty y +=-,①由216800t ∆=->,得t >t <,易知直线AC 的方程为()1122y y x x =++,②直线BD 的方程为()2222y y x x =--,③联立②③,消去y ,得()()()()121212221211212552221x y ty y ty y y x x x y ty y ty y y ++++===--++,④联立①④,消去12ty y ,则()()12212155265526y y y x x y y y -+++==---++,解得43x =,即点G 在直线43x =上;(ⅱ)由图可知,CG DG ⊥,即AG BG ⊥,所以点G 在以AB 为直径的圆上,设4,3G n ⎛⎫ ⎪⎝⎭,则22443n ⎛⎫+= ⎪⎝⎭,所以3n =±,即4,3G ⎛ ⎝⎭.故直线AC的方程为)2y x =+,直线AC 的方程与椭圆方程联立,得291640x x +-=,因为2A x =-,所以412929C x ⎛⎫=-⋅-= ⎪⎝⎭,所以C y =故l MC k k ==19.(1)()1*1,3n n n a b n n -⎛⎫==∈ ⎪⎝⎭N (2)(i )323223n nn T +=-⨯;(ii )存在,1m =【分析】(1)根据,n n S a 的关系式可得{}n a 是首项为1,公比为13的等比数列,再根据121n n b b n ++=+可分别对{}n b 的奇数项和偶数项分别求通项公式可得()1*1,3n n n a b n n -⎛⎫==∈ ⎪⎝⎭N ;(2)(i )利用定义可求得新插入的数列公差()231n nd n =-+,求得23nk n nc =并利用错位相减法即可求出323223n nn T +=-⨯;(ii )求得1211132313123m m m m m m b a m m m b T ++-+-+=+-+---,易知对于任意正整数m 均有1131313m m m m +-+<≤-+,而1113n n a -⎛⎫=≤ ⎪⎝⎭,所以不是数列{}n a 中的项;又()*n b n n =∈N ,分别对其取值为1132,313m mm m +-+=-+时解方程可求得1m =.【详解】(1)由23n n S a +=①,当2n ≥时,1123n n S a --+=②,①-②得()11120.23n n n n n a a a a a n --+-=∴=≥,当1n =时,11123,1a a a +=∴=,{}n a ∴是首项为1,公比为13的等比数列,故()1*13n n a n -⎛⎫=∈ ⎪⎝⎭N ,由121n n b b n ++=+③.由11b =得22b =,又1223n n b b n +++=+④.④-③得22n n b b +-=,{}n b 的所有奇数项构成首项为1,公差为2的等差数列:所有偶数项构成首项为2,公差为2的等差数列.得()()()*212n 11221,2122,n n b n n b n n b n n -=+-⨯=-=+-⨯=∴=∈N .综上可得()1*1,3n n n a b n n -⎛⎫==∈ ⎪⎝⎭N ;(2)(i )在n a 和1n a +之间新插入n 个数12,,,n n nn c c c ,使121,,,,,n n n nn n a c c c a + 成等差数列,设公差为n d ,则()()111123321131nn n n n n a a d n n n -+⎛⎫⎛⎫- ⎪ ⎪-⎝⎭⎝⎭===-+-++,则111122(1)2,33(1)33(1)23n nnk n n nk n n n n k k n n n n c a kd c n n --=+⎛⎫=+=-∴=-⋅= ⎪++⎝⎭∑.112122122122333n n n nn nn T c c c c c c ⎛⎫=+++++++=+++ ⎪⎝⎭⑤则23111223333n n n T +⎛⎫=+++ ⎪⎝⎭ ⑥⑤-⑥得:21111112111233332211333333313n n n n n n n n n T +++⎛⎫-⨯ ⎪+⎛⎫=+++=-=-⎪ ⎪⎝⎭ ⎪-⎝⎭,所以可得323223n nn T +=-⨯(ii )由(1)()1*1,3n n n a b n n -⎛⎫==∈ ⎪⎝⎭N ,又323223n nn T +=-⨯,由已知1211132313123m m m m m m b a m m m b T ++-+-+=+-+---,假设11313m mm m +-+-+是数列{}n a 或{}n b 中的一项,不妨设()()()()1*130,,113313m m mm k k m k m k m +-+=>∈∴--=-⋅-+N ,因为()*10,30mm m -≥>∈N ,所以13k <≤,而1113n n a -⎛⎫=≤ ⎪⎝⎭,所以11313m mm m +-+-+不可能是数列{}n a 中的项.假设11313m mm m +-+-+是{}n b 中的项,则*k ∈N .当2k =时,有13m m -=,即113m m -=,令()()()111123,13333m m m m m m m m f m f m f m ++---+=+-=-=,当1m =时,()()12f f <;当2m ≥时,(1)()0,(1)(2)(3)(4)f m f m f f f f +-<<>>> ,由()()110,29f f ==知1113m m +-=无解.当3k =时,有10m -=,即1m =.所以存在1m =使得113313mm m m +-+=-+是数列{}n b 中的第3项;又对于任意正整数m 均有1131313m m m m +-+<≤-+,所以4k ≥时,方程11313m mm k m +-+=-+均无解;综上可知,存在正整数1m =使得21123123m m m m b a m b T +-++---是数列{}n b 中的第3项.【点睛】关键点点睛:求解是否存在正整数m ,使得21123123m m m m b a m b T +-++---恰好是数列{}n a 或{}n b 中的项时,关键是限定出1131313m mm m +-+<≤-+,再对数列{}n a 的取值范围进行限定可得不是数列{}n a 中的项,再由{}n b 只能取得正整数可知只需讨论113213mm m m +-+=-+或3有无解即可求得结论.。
2024年新高考一卷数学压轴题
2024年新高考一卷数学压轴题一、设函数f(x) = ax3 + bx2 + cx + d,若f(x)在x=1和x=2处取得极值,且f(1) = 1,f(2) = 4,则a的取值范围是:A. (-∞, -1) ∪ (1, +∞)B. (-1, 0) ∪ (0, 1)C. (-∞, -2) ∪ (2, +∞)D. (-2, 0) ∪ (0, 2)(答案)A解析:本题考查函数极值的应用,通过求导得到极值条件,结合给定的函数值,可以解出a 的取值范围。
二、在三角形ABC中,角A,B,C的对边分别为a,b,c,若a = 2,b = 3,cosC = -1/2,则三角形ABC的面积是:A. 3√3/2B. 3√3C. 3/2D. 3(答案)B解析:本题考查余弦定理和三角形面积公式的应用,通过余弦定理求出c的值,再结合三角形面积公式求出面积。
三、设等差数列{an}的前n项和为Sn,若a1 = 1,S3 = -3,则S_n / (2n) 的最大值是:A. 1/2B. 1/4C. 1/8D. 1/16(答案)C解析:本题考查等差数列和等比数列的性质,通过等差数列的求和公式求出Sn,再结合等比数列的性质求出S_n / (2n)的最大值。
四、在平面直角坐标系xOy中,直线l: x + y - 1 = 0与圆C: x2 + y2 - 2x - 2y + 1 = 0交于A,B两点,则线段AB的长度是:A. √2B. 2C. √6D. 2√2(答案)A解析:本题考查直线与圆的位置关系,通过求出圆心到直线的距离,再结合圆的半径和勾股定理求出线段AB的长度。
五、设函数f(x) = ex - ax - 1,若f(x) ≥ 0在R上恒成立,则a的取值范围是:A. [0, 1]B. (0, 1]C. [1, +∞)D. (1, +∞)(答案)B解析:本题考查函数单调性和最值的应用,通过求导判断函数的单调性,再结合函数的最值求出a的取值范围。
普通高等学校招生全国统一考试文科数学压轴卷参考答案.docx
高中数学学习材料马鸣风萧萧*整理制作2016年普通高等学校招生全国统一考试·压轴卷 参考答案文科数学(新课标全国Ⅰ卷)一、选择题1. A2. D3. A4. C5. D6. D7. B8. C9. B 10. C 11. B 12. A 二、填空题13. 01=+-y x 14. 35 15. 26π+ 16. 3部分解析:7、解:所求的空间几何体是以原点为球心,为半径的球位于第一卦限的部分,体积为,故选B9、解:由题意,不妨设69a t =,511a t =,则公差2d t =-,其中0t >,因此10a t =,11a t =-,即当10n =时,n S 取得最大值. 故选B.13141836ππ⨯⨯=10、解:由题意,求函数11ln 22y x x x=+--的零点,即为求两个函数11ln 22x x x =-++的交点,可知等号左侧11ln 22x x x=-++为增函数,而右侧为减函数,故交点只有一个,当2x =时,11ln 22x x x<-++,当x e =时,11ln 22x x x >-++,因此函数11ln 22y x x x =+--的零点在(2,)e 内. 故选C. 15、解:因为D C B A ,,,四点共圆,所以π=∠+∠B D ,在ABC △和ADC △中,由余弦定理可得: D D cos 53253)cos(582582222⨯⨯⨯-+=-⨯⨯⨯-+π将21cos -=D 代入可得49)21(53253222=-⨯⨯⨯-+=AC ,故答案为7.16、解:因为)0(1422>b by x =-,所以2=a ,由双曲线的定义得421=-PF PF ,所以162212221=⋅-+PF PF PF PF ,因为双曲线在第一象限的一点P 满足2121F F OP =,所以21PF PF ⊥,所以222214c PF PF =+,所以82221-=⋅c PF PF ,所以P y c PF PF ⋅⋅=⋅2212121,所以c c y P 4-=,因为]2,1(∈e ,所以]2,1(2∈c,即]4,2(∈c ,因为函数x x y 4-=在),0(+∞上是增函数,所以3444)(max =-=P y .三、解答题17、(1)由678927a a a =可得7881027a a a a =,即71027a a =,设{}n a 的公比为q ,则3107127a q a ==,故13q =, 所以{}n a 的通项公式为1111()33n n n a --==(2)321323111111()log log (2)(22)4(1)41n n n b a a n n n n n n ++=-=-=-=-----++,所以11111111(1)()()(1)422314144n nS n n n n ⎡⎤=--+-++-=--=-⎢⎥+++⎣⎦ 18、解:(Ⅰ)根据散点图,lg D a b I =+适合作为声音强度D 关于声音能量I 的回归方程令i i I w lg =,先建立D 关于I 的线性回归方程,由于1051.01.5)())((ˆ1012101==---=∑∑==i ii i iw wD D w wb∴7.160ˆˆ=-=w b D a∴D 关于w 的线性回归方程是:7.16010ˆ+=w D∴D 关于I 的线性回归方程是:7.160lg 10ˆ+=I D(Ⅱ)点P 的声音能量12I I I =+,∵10211041=+I I 101010211212121241410()()10(5)910I I I I I I I I I I I ---∴=+=++=++≥⨯, 根据(Ⅰ)中的回归方程,点P 的声音强度D 的预报值:607.609lg 107.160)109lg(10ˆ10>+=+⨯=-D, ∴点P 会受到噪声污染的干扰. 19、(1)证明:如图,过点D 作DO BC ⊥交BC 于点O . 因为平面ABC ⊥平面BCD ,DO ⊂平面BCD ,DO BC ⊥, 且平面ABC平面BCD BC =,所以DO ⊥平面ABC 又AE ⊥平面ABC , 所以//AE DO又DO ⊂平面BCD ,AE ⊄平面BCD , 所以//AE 平面BCD(2)连接AO ,由题意知//DE 平面ABC ,AE ⊥平面ABC ,所以四边形AODE 是矩形,所以DE ⊥平面BCD .因为AD 与BD ,CD 所成角的余弦值均为24, 所以BD CD =,所以O 为BC 中点,所以221,3CD a AD a =+=+.ACD ∆中,2AC =,所以222cos AC AD AD CD ADC =-∠,即222224312314a a a a =+++-⨯++⨯, 即2223122a a a ++=,解得21a =,故1a =,所以113213323D BECE BCD V V --==⨯⨯⨯⨯=20、解:(Ⅰ)由0)(>x f 得01>--x me x ,即有x ex m 1+>令x e x x u 1)(+=,则x ex x u -=)(/, 令00)(/<⇒>x x u ,00)(/>⇒<x x u∴)(x u 在)0,(-∞上单调递增,在),0(+∞上单调递减。
2023高考压轴卷——数学(新高考I卷)(PDF版)
2023新高考I 卷 高考压轴卷数学一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数i2iz =+,i 为虚数单位,则z 的共轭复数为( ) A. 12i 55+ B. 12i 55- C. 21i 55+D.21i 55-2. 已知集合{}1,2A =,{}2,4B =,{},,yC z z x x A y B ==∈∈ ,则C 中元素的个数为( )A. 1B. 2C. 3D. 43. “3a =”是“直线30ax y +-=与()3240x a y +-+=平行”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分又不必要条件4. 已知函数()1221,0,,0,x x f x x x ⎧-≤⎪=⎨⎪>⎩若()3f m =,则m 的值为( )A. B. 2 C. 9 D. 2或95. ()412x x x ⎛⎫++ ⎪⎝⎭的展开式中,常数项为( )A. 2B. 6C. 8D. 126. 济南市洪家楼天主教堂于2006年5月被国务院列为全国重点文物保护单位.它是典型的哥特式建筑.哥特式建筑的特点之一就是窗门处使用尖拱造型,其结构是由两段不同圆心的圆弧组成的对称图形.如图2,AC 和BC 所在圆的圆心都在线段AB 上,若rad ACB θ∠=,AC b =,则AC 的长度为( )A2sin 2bθθB.2cos2bθθC.sin 2bθθ D.2cos2bθθ7. 如图,△ABC 是边长为3的等边三角形,D 在线段BC 上,且2BD DC =,E 为线段AD 上一点,若ABE △与ACD △的面积相等,则BE AC ⋅的值为( )A. 14B. 14-C.34D. 34-8. 已知数列11,21,12,31,22,13,41,32,23,14,…,其中每一项的分子和分母均为正整数.第一项是分子与分母之和为2的有理数;接下来两项是分子与分母之和为3的有理数,并且从大到小排列;再接下来的三项是分子与分母之和为4的有理数,并且从大到小排列,依次类推.此数列第n 项记为n a ,则满足5n a =且20n ≥的n 的最小值为( )A. 47B. 48C. 57D. 58二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 袋中装有除颜色外完全相同的1个红球和2个白球,从袋中不放回的依次抽取2个球.记事件A =“第一次抽到的是白球”,事件B =“第二次抽到的是白球”,则( ) A. 事件A 与事件B 互斥 B. 事件A 与事件B 相互独立 C. ()23P B =D. ()1|2P A B =10. 已知函数()2sin cos 2f x x x x =+,则下列说法正确的是( ) A. 函数()f x 的最小正周期为π B. 函数()f x 的对称轴方程为512x k π=π+(k ∈Z ) C. 函数()f x 的图象可由sin 2y x =的图象向右平移6π个单位长度得到D. 方程()f x =[0,10]内有7个根 11. 过抛物线24y x =焦点F 的直线交抛物线于A ,B 两点(A 在第一象限),M 为线段AB 的中点.M 在抛物线的准线l 上的射影为点N ,则下列说法正确的是( ) A. AB 的最小值为4 B. NF AB ⊥C. △NAB 面积的最小值为6D. 若直线AB 的斜率为3AF FB =uu u r uu r12. 已知函数()ln xf x x =,e 是自然对数的底数,则( ) A. ()f x 的最大值为1eB. π2π2ln33ln π3ln 2>>C. 若1221ln ln =x x x x ,则212e x x +=D. 对任意两个正实数12,x x ,且12x x ≠,若()()12f x f x =,则212e x x >三、填空题:本题共4小题,每小题5分,共20分.13. 2022年4月24日是第七个“中国航天日”,今年的主题是“航天点亮梦想”.某校组织学生参与航天知识竞答活动,某班8位同学成绩如下:7,6,8,9,8,7,10,m .若去掉m ,该组数据的第25百分位数保持不变,则整数()110m m ≤≤的值可以是___________(写出一个满足条件的m 值即可).14. 若抛物线212x y =上的一点P 到坐标原点O 的距离为P 到该抛物线焦点的距离为__________.15. 在高为2的直三棱柱111ABC A B C -中,AB ⊥AC ,若该直三棱柱存在内切球,则底面△ABC 周长的最小值为___________.16. 已知函数()()ln 0af x x ax a x=++>,则函数()f x 的最小值为___________;若关于x 的方程ln ln e e 0x x a x aa x--+--=有且仅有一个实根,则实数a 的取值范围是___________. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 从某企业的某种产品中随机抽取100件,测量这些产品的一项质量指标值,由测量结果制成如图所示的频率分布直方图.(1)求这100件产品质量指标值的样本平均数x (同一组数据用该区间的中点值作代表);(2)已知某用户从该企业购买了3件该产品,用X 表示这3件产品中质量指标值位于[]35,45内的产品件数,用频率代替概率,求X 的分布列.18. 记△ABC 中,角,,A B C 所对边分别为,,a b c ,且3cos 2sin sin C A B =(1)求sin sin sin CA B的最小值;(2)若π,6A a ==c 及△ABC 的面积.19. 在底面为正三角形的三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,160CBB ∠=︒,124AA AB ==.(1)证明:111B C AC ⊥;(2)求二面角1C AB A --的余弦值.20. 已知{}n a 是递增的等差数列,1518a a +=,1a ,3a ,9a 分别为等比数列{}n b 的前三项. (1)求数列{}n a 和{}n b 的通项公式;(2)删去数列{}n b 中的第i a 项(其中123i =,,, ),将剩余的项按从小到大的顺序排成新数列{}n c ,求数列{}n c 的前n 项和n S .21.已知椭圆22195x y +=的右顶点为A ,左焦点为F ,过点F 作斜率不为零的直线l 交椭圆于M ,N 两点,连接AM ,AN 分别交直线92x =-于P ,Q 两点,过点F 且垂直于MN 的直线交直线92x =-于点R .(1)求证:点R 为线段PQ 的中点;(2)记M P R △,MPN △,NRQ △的面积分别为1S ,2S ,3S ,试探究:是否存在实数λ使得213S S S λ=+?若存在,请求出实数λ的值;若不存在,请说明理由.22.已知函数()1ln 1x f x a x x -=-+. (1)当1a =时,求函数()f x 的单调区间; (2)若()()()()22ln 110g x a x x x a =---≠有3个零点1x ,2x ,3x ,其中123x x x <<.(ⅰ)求实数a 的取值范围;(ⅱ)求证:()()133122a x x -++<.【 答案1】B 【 答案2】C 【 答案3】A 【 答案4】C 【 答案5】D 【 答案6】A 【 答案7】D 【 答案8】C 【 答案9】CD 【 答案10】ACD 【 答案11】ABD 【 答案12】ABD【 答案13】7或8或9或10(填上述4个数中任意一个均可) 【 答案14】5【 答案16】 ①. 2a ②. 1,e ⎛⎫+∞ ⎪⎝⎭【 答案17】【分析】(1)根据平均数的求法,求得平均数. (2)利用二项分布的知识求得X 的分布列.【小问1 解析】由已知得:100.01510200.04010300.02510400.0201025x =⨯⨯+⨯⨯+⨯⨯+⨯⨯=. 【小问2 解析】因为购买一件产品,其质量指标值位于[]35,45内的概率为0.2, 所以()3,0.2XB ,所以0,1,2,3X =.()()3010.20.512P X ==-=,()()2131C 0.210.20.384P X ==⨯⨯-=,()()2232C 0.210.20.096P X ==⨯⨯-=,()330.20.008P X ===,所以X 的分布列为【 答案18】(1);(2)5, 【分析】(1)先利用题给条件求得tan tan 3A B =,再利用均值定理即可求得sin sin sin CA B的最小值;(2)先求得sin 1414B B ==,再利用正弦定理即可求得c 及ABC 的面积. 【小问1 解析】因为3cos 2sin sin C A B =,所以()3cos cos sin sin 2sin sin A B A B A B --=, 即sin sin 3cos cos A B A B =,因为cos cos 0A B ≠,所以tan tan 3A B =, 所以sin sin cos cos sin tan tan sin sin sin sin tan tan C A B A B A B A B A B A B++==11tan tan A B =+≥=(当且仅当tan tan A B ==.)所以sin sin sin C A B 的最小值为【小问2 解析】因为π6A =,由(1)得,3tan tan B A==因为()0,πB ∈,所以sin ,cos 14B B ==,所以()π1sin sin sin cos 62214C B A B B B ⎛⎫=+=+=+= ⎪⎝⎭,由正弦定理sin sin a c A C =,得sin 1451sin 2a C c A===,所以ABC的面积为11sin 52214ac B =⨯=. 【 答案19】【分析】(1)求出1B C ,利用勾股定理证明111B C B C ⊥,再根据面面垂直的性质可得1B C ⊥平面111A B C ,再根据线面垂直的性质即可得证;(2)以1B 为原点,1B C ,11B C 所在直线分别为x 轴,y 轴建立空间直角坐标系,利用向量法即可求出答案. 【小问1 解析】证明:因为160CBB ∠=︒,124AA AB ==,所以22211112cos 12B C BC BB BC BB CBB =+-⋅⋅∠=,则1B C =所以2221111B C B C CC +=,即111B C B C ⊥,因为平面ABC ∥平面111A B C ,平面ABC ⊥平面11BCC B , 所以平面111A B C ⊥平面11BCC B , 因为平面111A B C Ç平面1111BCC B B C =, 所以1B C ⊥平面111A B C ,又11AC ⊂平面111A B C , 所以111B C AC ⊥; 【小问2 解析】解:如图,以1B 为原点,1B C ,11B C 所在直线分别为x 轴,y 轴建立空间直角坐标系, 则()10,0,0B,()C,()2,0B -,(1A ,所以(11B A =,()12,0B B =-, 设平面1ABA 的法向量为()1,,n x y z =,则1111100n B A n B B ⎧⋅=⎪⎨⋅=⎪⎩,即020y y ⎧+=⎪⎨-=⎪⎩,取x =1,则()11,3,1n =-, 又因为x 轴⊥平面ABC ,所以取平面ABC 的法向量()21,0,0n =u u r,所以112122cos ,15n n n n n n ⋅===, 由图可知,二面角为锐角, 所以二面角1C AB A --的余弦值为【 答案20】(1)3n a n =,3nn b =(2)2123126271,1362713,? 13n n n n n S n --⎧⎛⎫-⎪ ⎪⎝⎭⎪⎪=⎨⎛⎫⎪-⎪⎪⎝⎭⎪+⎩为偶数为奇数 【分析】(1)根据题意可列出方程组,求得等差数列的公差,继而求得等比数列的首项和公比,即得答案;(2)删去数列{}n b 中的第i a 项(其中123i =,,, )后,求和时讨论n 的奇偶性,并且分组求和,即可求得答案. 【小问1 解析】设数列{}n a 的公差为()0d d >,数列{}n b 的公比为q ,由已知得()()11211141828a a d a d a a d ++=⎧⎪⎨+=+⎪⎩,解得13a =,3d = ,所以3n a n =; 所以113b a ==,313a q a ==,所以3n n b =. 【小问2 解析】由题意可知新数列{}n c 为:1b ,2b ,4b ,5b ,…, 则当n 为偶数时1425323122n n n S b b b b b b ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫=+++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭222231273127627112712713n n n⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=+=--, 则当n 为奇数时,1231211131132226271313n n n n n n n n n S S c S b S b ------+⎛⎫- ⎪⎝⎭⎛⎫- ⎪⎝⎭=+=+=+=+,综上:2123126271,1362713,13n n n n n S n --⎧⎛⎫-⎪ ⎪⎝⎭⎪⎪=⎨⎛⎫⎪-⎪⎪⎝⎭⎪+⎩为偶数为奇数 .【 答案21】(1)()3,0A ,()2,0F -, 设:2l x my =-,()11,M x y ,()22,N x y ,联立222195x my x y =-⎧⎪⎨+=⎪⎩,得()225920250m y my +--=,则1222059m y y m +=+, 1222559y y m -=+,(2分)直线()11:33y AM y x x =--, 令92x =-得()111523y y x =--,所以()11159,223y P x ⎛⎫-- ⎪ ⎪-⎝⎭, 同理,()22159,223y Q x ⎛⎫-- ⎪ ⎪-⎝⎭.所以()()121212121515152323255P Q y y y y y y x x my my ⎛⎫+=--=-+ ⎪----⎝⎭()()12122121225152525my y y y m y y m y y -+=-⋅-++222222501001559595251002255959m mm m m m m m m --++=-⋅=--+++.直线():2RF y m x =-+,令92x =-得52m y =,所以95,22R m ⎛⎫- ⎪⎝⎭, 则2P Q R y y y +=,点R 为线段PQ 的中点.(2)由(1)知,()212230159m MN y y m +=-==+,又RF ==所以()()3222275112259m S RF MN m +=⋅⋅=+. 而13121219191992222422S S PR x QR x PQ x x +=⋅⋅++⋅⋅+=⋅⋅+++ ()()()12121215151542525y y m y y my my =-+⋅++-- ()()1212212127558525y y m y y m y y m y y -=⋅++-++()()322222225120559459m m m m +=+=++, 所以21332S S S =+. 故存在32λ=使得213S S S λ=+.【 答案22】(1)当1a =时,()1ln 1x f x x x -=-+,()()()22212111x f x x x x x +'=-=++, 则()0f x '>在()0,+∞恒成立,所以()f x 在()0,+∞单调递增, 故()f x 的单调递增区区间为()0,+∞,无单调递减区间. (2)(ⅰ)()()()()()()222211l ln 1111n x g x a x x x x a x x f x x -⎛⎫=--=- ⎪+⎝⎭=---, ()10g =,()10f =,则()f x 除1外还有两个零点,()()()()22222211ax a x a a f x x x x x +-+'=-=++,令()()()2220h x ax a x a x =+-+>, 当0a <时,()0h x <在()0,+∞恒成立,则()0f x '<, 所以()f x 在()0,+∞单调递减,不满足,舍去;当0a >时,要是()f x 除1外还有两个零点,则()f x 不单调, 所以()h x 存在两个零点,所以()222240a a ∆=-->,解得102a <<, 当102a <<时,设()h x 的两个零点为(),m n m n <, 则220m n a+=->,1mn =,所以01m n <<<.当()0,x m ∈时,()0h x >,()0f x '>,则()f x 单调递增; 当(),x m n ∈时,()0h x <,()0f x '<,则()f x 单调递减; 当(),x n ∈+∞时,()0h x >,()0f x '>,则()f x 单调递增; 又()10f =,所以()0f m >,()0f n <,而()11111121011a aaaae ef eee ------=--=-<++,且11ae-<,()1111121011a aa a e fe e -=-=>++,且11a e >,所以存在()11,a x e m -∈,()13,a x n e ∈,使得()()130f x f x ==, 即()()()()221ln 10g x a x x x a =---≠有3个零点1x ,21x =,3x .综上,实数a 的取值范围为10,2⎛⎫ ⎪⎝⎭. (ⅱ)因为()11111ln ln ln 1111x x x f a x a x a x f x x x x x---⎛⎫=--=--=-+=- ⎪++⎝⎭+, 所以若()0f x =,则10f x ⎛⎫=⎪⎝⎭,所以131x x =. 当1x >时,先证明不等式()2231ln 41x x x x ->++恒成立,设()()2231ln 41x x x x x ϕ-=-++,则()()()()()422221211104141x x x x x x x x x x ϕ++-'=-=>++++, 所以函数()x ϕ在()1,+∞上单调递增,于是()()10x ϕϕ>=,即当1x >时,不等式()2231ln 41x x x x ->++恒成立.由()30f x =,可得()23332333311ln 141a x x a x x x x --=>+++, 因为31x >,所以()32333311141a x x x x +>+++, 即()223334131x x a x ++>+,两边同除以3x , 得()3313133311432432x a x x x a x x x x ⎛⎫++>++⇒++>++ ⎪⎝⎭,所以()()133122a x x -++<.。
新课标高考压轴卷文
11.
3
A.
2
B. 5
sin
C. 3
,若
a
C. 32
b
,则
D.3
C.
已知函数 f x 2x x, g x x log1 x, h x log2 x x 的零点分别为
x1, x2 , x3 ,则 x1, x2 , x3 的大小关系是
A. x1 x2 x3
等于
D. 48
()
D. 3 或 5 22
D. x3 x2 x1
D.-1
乐器组
a
20
.
sin2 A sin2 C sin2 B 3 sin A sin C ,则角 B 为
15.
若两个非零向量 a , b 满足|
16.已知函数
;②
的图象关于直线
a
b
||
a
D.
1
3
D.5
D. -1
9.
A. 1
视图是腰长为 4 的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,
则该球的表面积是
A.12
设向量 a
3
cos, 1,b
1
B.
3
B. 24
2,
10. 若 m 是 2 和 8 的等比中项,则圆锥曲线 x2 y2 1的离心率是 m
,给出下列四个说法:
的最小正周期是 ; ③
三、解答题:解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分 12 分)
b
对称. 其中说法正确的序号为
设{an}是公差大于零的等差数列,已知 a1 2 , a3 a22 10 .
2020届全国卷Ⅰ高考压轴卷 数学(文)(解析版)
2020新课标1高考压轴卷数学(文)一、选择题(本题共12道小题,每小题5分,共60分.在每小题的四个选项中,只有一项是符合题目要求的)1.已知集合{}{}228023A x x x B x x =+-≥=-<<,,则A∩B= ( ).A. (2,3)B. [2,3)C.[-4,2]D. (-4,3)2.已知(1i)(2i)z =+-,则2||z =( ) A. 2i + B. 3i + C. 5 D. 103.若向量a r =13,22⎛⎫- ⎪ ⎪⎝⎭,|b r |=23,若a r ·(b r -a r )=2,则向量a r 与b r 的夹角为( )A.6πB.4π C.3π D.2π 4.已知某几何体的三视图如图所示,则该几何体的体积为A. 8B. 12C. 16D. 245. 甲、乙二人参加普法知识竞答共有10个不同的题目,其中6个选择题,4个判断题,甲、乙二人依次各抽一题,则甲乙两人中至少有一人抽到选择题的概率是( ) A .1115B .1315C .35D .10136.我国古代名著《庄子g 天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )A. 17?,,+1i s s i i i ≤=-=B. 1128?,,2i s s i i i ≤=-=C 17?,,+12i s s i i i≤=-=D. 1128?,,22i s s i i i≤=-=7.已知变量x ,y 满足约束条件1031010x y x y x y +-≤⎧⎪-+≥⎨⎪--≤⎩,则2z x y =+的最大值为( )A. 1B. 2C. 3D. 48. 已知等差数列{}n a 的前n 项和为n S ,47109,a a a ++=14377S S -=,则使n S 取得最小值时n 的值为( ) A .7B .6C .5D .49.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3,23,sin a c b A ===cos 6a B π⎛⎫+ ⎪⎝⎭,则b=( ) A. 1B.2C.3D.510..若直线220(0,0)ax by a b -+=>>被圆014222=+-++y x y x 截得弦长为4,则41a b +的最小值是( ) A. 9B. 4C.12D.1411.已知抛物线2:2(0)C y px p =>的焦点为F ,点(00,222p M x x ⎛⎫> ⎪⎝⎭是抛物线C 上一点,以点M 为圆心的圆与直线2p x =交于E ,G 两点,若1sin 3MFG ∠=,则抛物线C 的方程是( )A. 2y x =B. 22y x = C. 24y x =D. 28y x =12.已知函数1,0(),0x x mf x e x -⎧=⎪=⎨⎪≠⎩,若方程23()(23)()20mf x m f x -++=有5个解,则m 的取值范围是() A. (1,)+∞ B. (0,1)(1,)⋃+∞C. 31,2⎛⎫ ⎪⎝⎭D. 331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭U 二、填空题(本题共4道小题,每小题5分,共20分)13.已知()0,θπ∈,且2sin()410πθ-=,则tan2θ=________. 14. 已知双曲线()222210,0x y a b a b-=>>的左顶点为A ,右焦点为F ,点()0,B b ,双曲线的渐近线上存在一点P ,使得A ,B ,F ,P 顺次连接构成平行四边形,则双曲线C 的离心率e =______.15. 已知数列{}n a 满足12a =,132n n a a +=+,令()13log n a nb +=,则数列11n n b b +⎧⎫⎨⎬⎩⎭的前2020项的和2020S =__________.16.如图,已知六棱锥P-ABCDEF 的底面是正六边形,PA ⊥平面ABC ,2PA AB =,给出下列结论:①PB AE ⊥;②直线//BC 平面PAE ; ③平面PAE ⊥平面PDE ;④异面直线PD 与BC 所成角为45°;⑤直线PD与平面PAB所成角的余弦值为10.其中正确的有_______(把所有正确的序号都填上)三.解答题(本大题共6小题.解答题应写出文字说明、证明过程或演算步骤)17.(本小题12分)△ABC中,内角A、B、C所对的边分别为a、b、c,已知24sin4sin sin22 2A BA B-+=+(1)求角C的大小;(2)已知4b=,△ABC的面积为6,求边长c的值.18. (本小题12分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,122BC CD AB===,∠ABC=∠BCD=90°,E为PB的中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016新课标Ⅰ高考压轴卷、数学文一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M={﹣1,0,1},N={﹣1,0},则M∩N=()A.{﹣1,0,1} B.{﹣1,0} C.{﹣1,1} D.{1,0}2.已知i为虚数单位,若复数(1+ai)(2+i)是纯虚数,则实数a等于()A.2 B.C. D.﹣23.设y1=,y2=,y3=,则()A.y3<y2<y1B.y1<y2<y3C.y2<y3<y1D.y1<y3<y24.已知双曲线C1:﹣=1(a>0,b>0)的右焦点F也是抛物线C2:y2=2px(p>0)的焦点,C1与C2的一个交点为P,若PF⊥x轴,则双曲线C1的离心率为( ) A.+1 B.2C.2﹣1 D.+15.执行如图所示的程序框图,若输出的b的值为4,则图中判断框内①处应填()A.2 B.3 C.4 D.56.已知实数a,b满足a2+b2=1,设函数f(x)=x2﹣6x+5,则使f(a)≥f(b)得概率为( )A.+B.+C.D.7.将函数h(x)=2sin(2x+)的图象向右平移个单位,再向上平移2个单位,得到函数f(x)的图象,则函数f(x)的图象与函数h(x)的图象()A.关于直线x=0对称 B.关于直线x=1对称C.关于点(1,0)对称D.关于点(0,1)对称8.某几何体的三视图如图所示,则该几何体的体积是()A.23π B.2πC.223π D. π9.已知双曲线(a>0,b>0)的焦点F1(﹣c,0)、F2(c,0)(c>0),过F2的直线l交双曲线于A,D两点,交渐近线于B,C两点.设+=,+=,则下列各式成立的是()A.||>|| B.||<|| C.|﹣|=0 D.|﹣|>010.若直线(m+l)x+(n+l)y﹣2=0(m,n∈R)与圆(x﹣l)2+(y﹣1)2=1相切,则m+n的取值范围是()A.B.C.D.11.数列{a n}为等差数列,且a1+a7+a13=4,则a2+a12的值为()A.B.C.2 D.412.已知f(x)为R上的减函数,则满足f(||)<f(1)的实数x的取值范围是()A.(﹣1,1)B.(0,1) C.(﹣1,0)∪(0,1) D.(﹣∞,﹣1)∪(1,+∞)二.填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.设p:方程x2+2mx+1=0有两个不相等的正根;q:方程x2+2(m-2)x-3m+10=0无实根,则使p或q为真,p且q为假的实数m的取值范围是________.14.在三棱锥A﹣BCD中,侧棱AB、AC、AD两两垂直,△ABC,△ACD,△ADB的面积分别为,,,则三棱锥A﹣BCD的外接球的体积为.15.为了了解2015届高三学生的身体状况,抽取了部分男生的体重,将所得的数据整理后,画出了频率分布直方图(如图).已知图中从左到右的前3个小组的频率之比为1:2:3,第2小组的频数为12,则抽取的男生人数是.16.已知直线l:y=ax+1﹣a(a∈R).若存在实数a使得一条曲线与直线l有两个不同的交点,且以这两个交点为端点的线段长度恰好等于|a|,则称此曲线为直线l的“绝对曲线”.下面给出四条曲线:①y=﹣2|x﹣1|②y=x2③(x﹣1)2+(y﹣1)2④x2+3y2=4其中,可以被称为直线l的“绝对曲线”的是.(请将符合题意的序号都填上)三.解答题(解答应写出文字说明,证明过程或演算步骤)17.在锐角△ABC中,角A,B,C的对边分别为a,b,c且sin2A﹣cosA=0.(1)求角A的大小;(2)若b=,sinB=sinC,求a.18.四棱锥P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD中点,PA=2AB=2.(Ⅰ)求证CE∥平面PAB;(Ⅱ)求三棱锥P﹣ACE体积.19.下面的茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为13,乙组数据的平均数是16.8.(Ⅰ)求x,y的值;(Ⅱ)从成绩不低于10分且不超过20分的学生中任意抽取3名,求恰有2名学生在乙组的概率.20.已知焦点在x 轴上的椭圆+=1(a>b>0),焦距为2,长轴长为4.(Ⅰ)求椭圆的标准方程;(Ⅱ)过点O作两条互相垂直的射线,与椭圆交于A,B两点.(1)证明:点O到直线AB的距离为定值,并求出这个定值;(2)求|AB|的最小值.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22. (本小题满分10分)选修4-1:几何证明选讲如图,已知△ABC中的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,且AE=AF.(1)证明:B,D,H,E四点共圆;(2)证明:CE平分∠DEF.23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C的极坐标方程是2cosρθ=,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是3/2x m y t⎧=+⎪⎨⎪=⎩.求曲线C的直角坐标系方程与直线l的普通方程.设点P(m,0),若直线l与曲线C交于A,B两点,且|PA|·|PB|=1,求实数m的值.24.(本题满分10分)选修4-5:不等式选讲已知函数f(x)=|x﹣2|(1)解不等式xf(x)+3>0;(2)对于任意的x∈(﹣3,3),不等式f(x)<m﹣|x|恒成立,求m的取值范围.2016新课标Ⅰ高考压轴卷数学文Word版试卷答案1. B【考点】交集及其运算.【专题】集合.【分析】由M与N,求出两集合的交集即可.【解答】解:∵M={﹣1,0,1},N={﹣1,0},∴M∩N={﹣1,0},故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.A【考点】复数的代数表示法及其几何意义.【专题】计算题.【分析】利用复数的运算法则进行化简,然后再利用纯虚数的定义即可得出.【解答】解:∵复数(1+ai)(2+i)=2﹣a+(1+2a)i是纯虚数,∴,解得a=2.故选A.【点评】熟练掌握复数的运算法则、纯虚数的定义是解题的关键.3.B【考点】指数函数的单调性与特殊点.【专题】计算题.【分析】构造函数y=0.5x和,利用两个函数的单调性进行比较即可.【解答】解:因为y=0.5x为减函数,而,所以y2<y3,又因为是R上的增函数,且0.4<0.5,所以y1<y2,所以y1<y2<y3故选B【点评】本题考查比较大小知识、指数函数和幂函数的单调性等知识,属基本知识的考查.4.A考点:抛物线的简单性质;双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的方程算出其焦点为F(,0),得到|PF|=p.设双曲线的另一个焦点为F′,由双曲线的右焦点为F算出双曲线的焦距|FF′|=p,△TFF′中利用勾股定理算出|MF′|=p,再由双曲线的定义算出2a=(﹣1)p,利用双曲线的离心率公式加以计算,可得答案.解答:解:抛物线y2=2px的焦点为F(,0),由MF与x轴垂直,令x=,可得|MF|=p,双曲线﹣=1的实半轴为a,半焦距c,另一个焦点为F',由抛物线y2=2px的焦点F与双曲线的右焦点重合,即c=,可得双曲线的焦距|FF′|=2c=p,由于△MFF′为直角三角形,则|MF′|==p,根据双曲线的定义,得2a=|MF′|﹣|MF|=p﹣p,可得a=()p.因此,该双曲线的离心率e===.故选:A.点评:本题给出共焦点的双曲线与抛物线,在它们的交点在x轴上射影恰好为抛物线的焦点时,求双曲线的离心率.着重考查了抛物线和双曲线的定义与标准方程、简单几何性质等知识,属于中档题.5.A【考点】程序框图.【专题】算法和程序框图.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量b的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当a=1时,b=1不满足输出条件,故应执行循环体,执行完循环体后,b=2,a=2;当a=2时,b=2不满足输出条件,故应执行循环体,执行完循环体后,b=4,a=3;当a=3时,b=4满足输出条件,故应退出循环,故判断框内①处应填a≤2,故选:A【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.6.D考点:几何概型.专题:计算题;概率与统计.分析:函数f(x)=x2﹣6x+5,使f(a)≥f(b),则(a﹣b)(a+b﹣6)≥0,作出图象,即可得出结论.解答:解:函数f(x)=x2﹣6x+5,使f(a)≥f(b),则(a﹣b)(a+b﹣6)≥0,如图所示,使f(a)≥f(b)得概率为,故选:D.点评:本题主要考查了几何概型,简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.7.D【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】通过函数图象的平移得到函数f(x)的解析式为f(x)=2sin(2x﹣)+2.对于选项A,h(x)的图象关于x=0的对称图象对应的解析式为h(﹣x)=2sin(﹣2x+)≠f(x),选项A错误;对于选项B,h(x)的图象关于x=1的对称图象对应的解析式为h(2﹣x)=2sin(4﹣2x+)=﹣2sin(2x﹣4﹣)≠f(x),选项B错误;对于选项C,h(x)的图象关于点(1,0)的对称图象对应的解析式为﹣h(2﹣x)=﹣2sin (4﹣2x+)=2sin(2x﹣4﹣)≠f(x),选项C错误;对于选项D,h(x)的图象关于点(0,1)的对称图象对应的解析式为2﹣h(﹣x)=2﹣2sin (﹣2x+)=2sin(2x﹣)+2,选项D正确.【解答】解:将函数h(x)=2sin(2x+)的图象向右平移个单位,再向上平移2个单位,得到函数f(x)的图象的解析式为f(x)=2sin[2(x﹣)+]+2=2sin(2x﹣)+2.∵f(x)+h(﹣x)=2sin(2x﹣)+2+2sin(﹣2x+)=2,∴f(x)=2﹣h(﹣x)=2×1﹣h(2×0﹣x).则函数f(x)的图象与函数h(x)的图象关于点(0,1)对称.故选:D.【点评】本题考查y=Asin(ωx+φ)型函数的图象变换,三角函数的平移原则为左加右减上加下减,解答此题的关键是熟记y=f(x)的图象与y=2b﹣f(2a﹣x)的图象关于(a,b)对称,是中档题.8.A【知识点】空间几何体的表面积与体积空间几何体的三视图与直观图【试题解析】该几何体是半个圆锥,故故答案为:A9.C【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】特殊化,取过F2垂直于x轴的直线l交双曲线于A,D两点,交渐近线于B,C两点,可得+==2, +==2,即可得出结论.【解答】解:取过F2垂直于x轴的直线l交双曲线于A,D两点,交渐近线于B,C两点,则+==2, +==2,∴|﹣|=0..故选:C【点评】特殊化是我们解决选择、填空题的常用方法.10.D考点:直线与圆的位置关系.专题:计算题;直线与圆.分析:由圆的标准方程找出圆心坐标和半径r,由直线与圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关系式,整理后利用基本不等式变形,设m+n=x,得到关于x的不等式,求出不等式的解集得到x的范围,即为m+n的范围.解答:解:由圆的方程(x﹣1)2+(y﹣1)2=1,得到圆心坐标为(1,1),半径r=1,∵直线(m+1)x+(n+1)y﹣2=0与圆相切,∴圆心到直线的距离d==1,整理得:m+n+1=mn≤,设m+n=x,则有x+1≤,即x2﹣4x﹣4≥0,∵x2﹣4x﹣4=0的解为:x1=2+2,x2=2﹣2,∴不等式变形得:(x﹣2﹣2)(x﹣2+2)≥0,解得:x≥2+2或x≤2﹣2,则m+n的取值范围为(﹣∞,2﹣2]∪[2+2,+∞).故选:D.点评:此题考查了直线与圆的位置关系,涉及的知识有:点到直线的距离公式,基本不等式,以及一元二次不等式的解法,利用了转化及换元的思想,当直线与圆相切时,圆心到直线的距离等于圆的半径,熟练掌握此性质是解本题的关键.11.B考点:等比数列的通项公式;等差数列的通项公式.专题: 等差数列与等比数列. 分析: 由等差数列的性质结合已知求得,进一步利用等差数列的性质求得a 2+a 12的值.解答: 解:∵数列{a n }为等差数列,且a 1+a 7+a 13=4, ∴3a 7=4,,则a 2+a 12=.故选:B .点评: 本题考查等差数列的通项公式,考查等差数列的性质,是基础的计算题. 12.C【考点】函数单调性的性质. 【分析】由函数的单调性可得||与1的大小,转化为解绝对值不等式即可.【解答】解:由已知得解得﹣1<x <0或0<x <1,故选C【点评】本题主要考查函数单调性的应用:利用单调性解不等式,其方法是将函数值的大小关系转化为自变量的大小关系. 13.(-∞,-2]∪[-1,3)令f (x )=x 2+2mx +1.则由f (0)>0,且-b2a>0,且Δ>0,求得m <-1,∴p :m ∈(-∞,-1).q :Δ=4(m -2)2-4(-3m +10)<0⇒-2<m <3. 由p 或q 为真,p 且q 为假知,p 、q 一真一假.①当p 真q 假时,⎩⎪⎨⎪⎧m <-1,m ≤-2或m ≥3,即m ≤-2;②当p 假q 真时,⎩⎪⎨⎪⎧m ≥-1,-2<m <3,即-1≤m <3.∴m 的取值范围是m ≤-2或-1≤m <3. 14.π考点:球内接多面体;球的体积和表面积. 专题:空间位置关系与距离.分析:利用三棱锥侧棱AB 、AC 、AD 两两垂直,补成长方体,两者的外接球是同一个,长方体的对角线就是球的直径,求出长方体的三度,从而求出对角线长,即可求解外接球的体积.解答:解:三棱锥A﹣BCD中,侧棱AB、AC、AD两两垂直,补成长方体,两者的外接球是同一个,长方体的对角线就是球的直径,设长方体的三度为a,b,c,则由题意得:ab=,ac=,bc=,解得:a=,b=,c=1,所以球的直径为:=所以球的半径为,所以三棱锥A﹣BCD的外接球的体积为=π故答案为:π点评:本题考查几何体的外接球的体积,三棱锥转化为长方体,两者的外接球是同一个,以及长方体的对角线就是球的直径是解题的关键所在.15.48考点:频率分布直方图.专题:常规题型.分析:根据前3个小组的频率之比为1:2:3,可设前三组的频率为x,2x,3x,再根据所以矩形的面积和为1建立等量关系,求出x,最后根据样本容量等于频数除以频率求出所求.解答:解:由题意可设前三组的频率为x,2x,3x,则6x+(0.0375+0.0125)×5=1解可得,x=0.125所以抽取的男生的人数为故答案为:48.点评:频率分布直方图:小长方形的面积=组距×,各个矩形面积之和等于1,样本容量等于频数除以频率等知识,属于基础题.16.②③④考点:函数与方程的综合运用.专题:函数的性质及应用.分析:若存在实数a使得一条曲线与直线l有两个不同的交点,且以这两个交点为端点的线段长度恰好等于|a|,则称此曲线为直线l的“绝对曲线”,分别进行判定是否垂直a即可.解答:解:①由直线y=ax+1﹣a,可知此直线过点A(1,1),y=﹣2|x﹣1|=,如图所示,直线l与函数y=﹣2|x﹣1|的图象只能由一个交点,故不是“绝对曲线”;②y=x2与l:y=ax+1﹣a联立,解得或,此两个交点的距离=|a|,化为(a﹣2)2(1+a2)﹣a2=0,令f(a)=(a﹣2)2(1+a2)﹣a2,则f(1)=2﹣1=1>0,f(2)=0﹣4<0,因此函数f(a)在区间(1,2)内存在零点,即方程(a﹣2)2(1+a2)﹣a2=0,有解.故此函数的图象是“绝对曲线”;③(x﹣1)2+(y﹣1)2=1是以(1,1)为圆心,1为半径的圆,此时直线l总会与此圆由两个交点,且两个交点的距离是圆的直径2,∴存在a=±2满足条件,故此函数的图象是“绝对曲线”;④把直线y=ax+1﹣a代入x2+3y2=4得(3a2+1)x2+6a(1﹣a)x+3(1﹣a)2﹣4=0,∴x1+x2=,x1x2=.若直线l被椭圆截得的弦长是|a|,则a2=(1+a2)[(x1+x2)2﹣4x1x2]=(1+a2){ ﹣4×},化为﹣=0,令f(a)=,而f(1)=﹣4<0,f(3)=﹣>0.∴函数f(a)在区间(1,3)内有零点,即方程f(a)=0有实数根,而直线l过椭圆上的定点(1,1),当a∈(1,3)时,直线满足条件,即此函数的图象是“绝对曲线”.综上可知:能满足题意的曲线有②③④.故答案为:②③④点评:本题主要考查了直线与圆锥曲线的位置关系的运用,属于难题.17.【考点】正弦定理.【专题】解三角形.【分析】(1)已知等式利用二倍角的正弦函数公式化简,整理求出sinA的值,即可确定出A 的度数;(2)已知等式利用正弦定理化简,把b的值代入求出c的值,利用余弦定理列出关系,将b,c,cosA的值代入即可求出a的值.【解答】解:(1)由sin2A﹣cosA=0,得2sinAcosA﹣cosA=0,即cosA(2sinA﹣1)=0得cosA=0或sinA=,∵△ABC为锐角三角形,∴sinA=,则A=;(2)把sinB=sinC,由正弦定理得b=c,∵b=,∴c=1,由余弦定理得:a2=b2+c2﹣2bccosA=3+1﹣2××1×=1,解得:a=1.【点评】此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.18.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【专题】综合题;空间位置关系与距离.【分析】(Ⅰ)延长DC、AB交于N,连接PN,证明EC∥PN,利用线面平行的判定定理证明CE∥平面PAB;(Ⅱ)证明CD⊥平面PAC,求出E到平面PAC距离,即可求三棱锥P﹣ACE体积.【解答】(Ⅰ)证明:延长DC、AB交于N,连接PN∵∠NAC=∠DAC=60°,AC⊥CD,∴C为ND中点.∵E为PD中点,∴EC∥PN.∵EC⊄平面PAB,PN⊂平面PAB,∴EC∥平面PA B…(2)解:∵PA⊥平面ABCD,∴PA⊥CD,∵CD⊥AC,CA∩PA=A∴CD⊥平面PAC,∵E为PD中点,∴E到平面PAC距离为,∵,∴…【点评】本题考查证明线面平行、线面垂直的方法,考查三棱锥P﹣ACE体积,正确运用线面平行的判定定理是解题的关键.19.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【专题】概率与统计.【分析】(Ⅰ)根据中位数平均数的定义求出即可;(Ⅱ)分别计算成绩不低于10分且不超过20分的学生中任意抽取3名的取法种数,和恰有2名学生在乙组取法种数,代入古典概型概率公式,可得答案【解答】解:(Ⅰ)甲组五名学生的成绩为9,12,10+x,24,27.乙组五名学生的成绩为9,15,10+y,18,24.因为甲组数据的中位数为13,乙组数据的平均数是16.8所以10+x=13,9+15+10+y+18+24=16.8×5所以x=3,y=8;(Ⅱ)成绩不低于且不超过的学生中共有5名,其中甲组有2名,用A,B表示,乙组有3名,用a,b,c表示,从中任意抽取3名共有10种不同的抽法,分别为(A,B,a),(A,B,b),(A,B,c),(A,a,b),(A,a,c),(A,b,c),(B,a,b),(B,a,c),(B,b,c),(a,b,c)恰有2名学生在乙组共有6种不同抽法,分别为(A,a,b),(A,a,c),(A,b,c),(B,a,b),(B,a,c),(B,b,c)所以概率为P==.【点评】本题考查了古典概型概率计算公式,茎叶图,掌握古典概型概率公式:概率=所求情况数与总情况数之比是解题的关键20.【考点】直线与圆锥曲线的关系;椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)首先根据条件求出椭圆的方程,(Ⅱ)(1)用分类讨论的方法先设直线的特殊形式,再设一般式,建立直线和椭圆的方程组,再利用韦达定理的应用求出关系量,(2)用三角形的面积相等,则利用点到直线的距离求出定值,最后利用不等式求出最小值.【解答】解:(Ⅰ),所以:则:b2=a2﹣c2=1所以椭圆的标准方程为:解:(Ⅱ)(1)设A(x1,y1),B(x2,y2),证明:①当直线AB的斜率不存在时,则△AOB为等腰直角三角形,不妨设直线OA:y=x将y=x代入,解得所以点O到直线AB的距离为,②当直线AB的斜率存在时,设直线AB的方程为y=kx+m,代入椭圆联立消去y得:(1+4k2)x2+8kmx+4m2﹣4=0则:,因为OA⊥OB,所以:x1x2+y1y2=0,x1x2+(kx1+m)(kx2+m)=0即所以:,整理得:5m 2=4(1+k 2), 所以点O 到直线AB 的距离=综上可知点O 到直线AB 的距离为定值.解:(2)在Rt△AOB 中,利用三角形面积相等, 利用点O 到直线AB 的距离为d , 则:d•|AB|=|OA|•|O B|又因为2|OA|•|OB|≤|OA|2+|OB|2=|AB|2,所以|AB|2≥2d•|AB| 所以|AB|≥,当|OA|=|OB|时取等号,即|AB|的最小值是【点评】本题考查的知识要点:椭圆标准方程的求法,直线和曲线的位置关系,点到直线的距离,韦达定理的应用,不等式的应用.属于中档题型. 21.(Ⅰ)设()()()ln 1,h x f x g x x x x =+=-+'()ln .h x x ∴=由'()0,(0,1)h x x <∈得;由'()0,(1,)h x x >∈+∞得()h x 在(0,1)单调递减,在(1,)+∞单调递增.(Ⅱ)(法一)由()()ln f x g x x ≤+,得(1)ln (1)(1)x x ax x -≤--, 因为1,x ≥ 所以:ⅰ)当1x =时,.a R ∈ⅱ)当1x >时,可得ln 1x ax ≤-,令()ln 1h x ax x =--,则只需()ln 10h x ax x =--≥即可.因为1'()h x a x=-.且 101x <<ⅰ)当0a ≤时,()0h x '<,得()h x 在(1,)+∞单调递减,且可知()20h e ae =-<这与()ln 10h x ax x =--≥矛盾,舍去;[ⅱ)当1a ≥时, ()0h x '>得()ln 1h x ax x =--在(1,)+∞上是增函数,此时()ln 1(1)10h x ax x h a =-->=-≥.iii )当01a <<时,可得 ()h x 在1(1,)a 单调递减,在1(,)a+∞单调递增,min 1()()ln 0h x h a a∴==<矛盾。