等离子弧焊与切割及其他焊接技术

合集下载

四种焊接技术的区别

四种焊接技术的区别

四种焊接技术的区别
焊接技术有很多种,如电阻焊、氩弧焊、电了束焊、等离子焊等。

那么跟它们有什么区别和不同呢?
1)、电阻焊:它用来焊接薄金属件,在两个电极间夹紧被焊工件通过大的电流熔化电极接触的表面,即通过工件电阻发热来实施焊接。

工件易变形,电阻焊通过接头两边焊合,而激光焊只从单边进行,电阻焊所用电极需经常维护以清除氧化物和从工件粘连着的金属,激光焊接薄金属搭接接头时并不接触工件,再者,光束还可进入常规焊难以焊及的区域,焊接速度快。

2)、氩弧焊:使用非消耗电极与保护气体,常用来焊接薄工件,但焊接速度较慢,且热输入比激光焊大很多,易产生变形。

3)、等离子弧焊:与氩弧类似,但其焊炬会产生压缩电弧,以提高弧温和能量密度,它比氩弧焊速度快、熔深大,但逊于激光焊。

4)、电子束焊:它靠一束加速高能密度电子流撞击工件,在工件表面很小密积内产生巨大的热,形成小孔效应,从而实施深熔焊接。

电子束焊的主要缺点是需要高真空环境以防止电子散射,设备复杂,焊件尺寸和形状受到真空室的限制,对韩件装配质量要求严格,非真空电子束焊也可实施,但由于电子散射而聚焦不好影响效果。

电子束焊还有磁偏移和X 射线问题,由于电子带电,会受磁场偏转影响,故要求电子束焊工件焊前去磁处理。

X射线在高压下特别强,需对操作人员实施保护。

激光焊接则不需真空室和对工件焊前进行去磁处理,它可在大气中进行,也没有防X射线问题,所以可在生产线内联机操作,也可焊接磁性材料。

第十一章 第十一章 等离子弧焊接与切割

第十一章  第十一章 等离子弧焊接与切割

第十一章等离子弧焊接与切割第一节等离子弧概述一、等离子弧原理等离子弧是自由电弧压缩而成的。

电弧通过水冷喷嘴、限制其直径,称机械压缩。

水冷内壁温度较低,紧贴喷嘴内壁的气体温度也极低,形成了一定厚度的冷气膜,冷气膜进一步迫使弧柱截面减小,称热压缩。

弧柱截面的缩小,使电流密度大为提高,增强了磁收缩效应,称磁压缩。

在三种压缩的作用下,等离子弧的能量集中(能量密度可达105~106W/cm2),温度高(弧柱中心温度18000~24000K),焰流速度大(可达300m/s)。

这些特性使得等离子弧广泛应用于焊接、喷涂、堆焊及切割。

二、等离子弧的特点由于等离子弧的特性,与钨极氩弧焊相比,有以下特点:(1)等离子弧能量集中、温度高,对于大多数金属在一定厚度范围内都能获得小孔效应,可以得到充分熔透、反面成形均匀的焊缝。

(2)电弧挺度好,等离子弧的扩散角仅5°左右,基本上是圆柱形,弧长变化对工件上的加热面积和电流密度影响比较小。

所以,等离子弧焊弧长变化对焊缝成形的影响不明显。

(3)焊接速度比钨极氩弧焊快。

(4)能够焊接更细、更薄加工件。

(5)其设备比较复杂、费用较高,工艺参数调节匹配也比较复杂。

三、等离子弧的类型按电源连接方式,等离子弧有非转移型、转移型和联合型三种形式。

(一)联合型等离子弧工作时,非转移型弧和转移弧同时存在,称为联合型等离子弧。

主要用于微束等离子弧焊和粉末堆焊等。

(二)非转移型等离子弧钨极接电源负极,喷嘴接电源正极,等离子弧体产生在钨极和喷嘴之间,在离子气流压送下,弧焰从喷嘴中喷出,形成等离子焰。

(三)转移型等离子弧钨极接电源负极,工件接电源正极,等离子弧体产生于钨极与工件之间。

转移弧难以直接形成,必须先引燃非转移弧,然后才能过渡到转移弧。

金属焊接、切割几乎均采用转移型弧。

四、适用范围1、操作方式等离子弧焊适于手工和自动两种操作,可以焊接连续或断续的焊缝。

焊接时可添加或不添加填充金属。

2、被焊金属一般TIG能焊的大多数金属,均可用等离子弧焊接,如碳钢、不锈钢、铜合金、镍及其合金、钛及其合金等。

(完整版)等离子焊接理论、操作与故障处理

(完整版)等离子焊接理论、操作与故障处理

一、等离子弧焊接方法及工艺特点1.等离子焊接原理等离子态是除固态、液态、气态之外的第四种物质存在形态。

等离子焊接是从钨级氩弧焊的基础上发展起来的一种高能焊接方法。

钨级氩弧焊是自由电弧,而等离子电弧是压缩电弧。

等离子弧是离子气被电离产生高温离子化气体,并经过水冷喷嘴,受到压缩,从而导致电弧的截面积变小,电流密度增大,电弧温度增高。

等离子电弧能量密度可达105-106W/cm2,比自由电弧(约105W/cm2以下)高,其温度可达18000-24000K,也高于自由电弧(5000-8000K)很多。

因此,等离子电弧挺度比自由电弧好,指向性好,喷射有力,熔透能力强,可比自由电弧一次焊透更厚的金属。

因此,等离子电弧焊接与电子束(能量密度105W/mm2)、激光束(能量密度105W/mm2)焊接一同被称为高能密度焊接。

等离子焊接示意图如下图:等离子焊接原理示意图2.等离子电弧的种类等离子电弧主要分为三种类型:◆非转移型等离子电弧主要用于非金属材料的焊接。

◆转移型等离子电弧主要用于金属材料的焊接。

◆联合型等离子电弧主要用于微束等离子的焊接。

3.等离子基本焊接方法按焊缝成型原理,等离子焊接有两种基本的焊接方法:熔透型和小孔型等离子焊接。

◆熔透型等离子焊接在焊接过程中离子气较小,弧柱的压缩程度较弱,只熔透工件,但不产生小孔效应的等离子焊接方法。

其焊缝成型原理与氩弧焊类似,主要用于薄板焊接及厚板多层焊。

◆小孔型等离子焊接利用小孔效应实现等离子弧焊接的方法称为小孔型等离子焊接。

由于等离子具有能量集中﹑电弧力强的特点,在适当的参数条件下,等离子弧可以直接穿透被焊工件,形成一个贯穿工件厚度方向的小孔,小孔周围的液体金属在电弧力﹑液态金属表面张力以及重力下保持平衡,随着等离子弧在焊接方向移动,熔化金属沿着等离子弧周围熔池壁向熔池后方流动,并逐渐凝固形成焊逢,小孔也跟着等离子弧向前移动,如下图所示。

小孔效应示意图小孔效应的优点在于可以单道焊接厚板,一次焊透双面成型。

焊接方法分类

焊接方法分类

焊接方法分类焊接方法分类一般都根据热源的性质、形成接头的状态及是否采用加压来划分。

1、熔化焊熔化焊是将焊件接头加热至熔化状态,不加压力完成焊接的方法。

它包括气焊、电弧焊、电渣焊、激光焊、电子束焊、等离子弧焊、堆焊和铝热焊等。

2、压焊压焊是通过对焊件施加压力(加热或不加热)来完成焊接的方法。

它包括爆炸焊、冷压焊、摩擦焊、扩散焊、超声波焊、高频焊和电阻焊等。

3、钎焊钎焊是采用比母材熔点低的金属材料作钎料,在加热温度高于钎料低于母材熔点的情况下,利用液态钎料润湿母材,填充接头间隙,并与母材相互扩散实现连接焊件的方法。

它包括硬钎焊、软钎焊等。

焊接的特点及应用一、焊接的特点1、节约金属材料,产品密封性好2、以小拼大,化复杂为简单3、便于制造双金属结构缺点是焊缝处的力学性能有所降低,个别焊接方法的焊接质量检验仍有困难。

二、焊接的应用1、制造金属结构2、制造金属零件或毛坯3、连接电器导线焊条电弧焊电弧是两带电导体之间持久而强烈的气体放电现象。

1.电弧的形成(1)焊条与工件接触短路短路时,电流密集的个别接触点被电阻热Q=I2Rt所加热,极小的气隙的电场强度很高。

结果:①少量电子逸出。

②个别接触点被加热、熔化,甚至蒸发、汽化。

③出现很多低电离电位的金属蒸汽。

(2)提起焊条保持恰当距离在热激发和强电场作用下,负极发射电子并作高速定向运动,撞击中性分子和原子使之激发或电离。

结果:气隙间的气体迅速电离,在撞击、激发和正负带电粒子复合中,其能量转换,发出光和热。

2.电弧的构造与温度分布电弧由三部分构成,即阴极区(一般为焊条端面的白亮斑点)、阳极区(工件上对应焊条端部的溶池中的薄亮区)和弧柱区(为两电极间空气隙)。

3、电弧稳定燃烧的条件(1)应有符合焊接电弧电特性要求的电源a)当电流过小时,气隙间气体电离不充分,电弧电阻大,要求较高的电弧电压,方能维持必需的电离程度。

b)随着电流增大,气体电离程度增加,导电能力增加,电弧电阻减小,电弧电压降低。

2024年等离子弧焊接及切割的安全操作技术(2篇)

2024年等离子弧焊接及切割的安全操作技术(2篇)

2024年等离子弧焊接及切割的安全操作技术1.等离子弧焊接和切割用电源的空载电压较高,尤其在乎操作时,有电击妁危险。

因此:(1)电源在使用时必须可靠接地。

(2)焊枪枪体或割枪枪体与手触摸部分必须可靠绝缘。

(3)可以采用较低电压引燃非转移弧后再接通较高电压的转移弧回路。

(4)如果起动开关装在手把上,必须对外露开关套上绝缘橡胶管,避免手直接接触开关。

(5)等离子弧焊接和切割用喷嘴及电极的寿命相对较短,要经常更换,更换时要保证电源处于断开状态。

2.防电弧光辐射等离子弧较其他电弧的光辐射强度更大,尤其是紫外线强度,故对皮肤损伤严重,操作者在焊接和切割时必须戴上良好的面罩、手套,颈部也要保护。

面罩上除具有黑色目镜外,最好加上吸收紫外线的镜片。

自动操作时,可在操作者与操作区之间设置防护屏。

等离子弧切割时,可采用水下切割方法,利用水来吸收光辐射。

3.防高频和射线等离子弧焊接和切割都采用高频振荡器引弧,但高频对人体有一定的危害。

引弧频率选择在20~60kHz较为合适,还要求工件接地可靠,转移弧引弧后,立即可靠地切断高频振荡器电源。

等离子弧焊接和切割采用钍钨极时,同钨极氩弧焊一样,要注意射线的危害。

4.防灰尘和烟气等离子弧焊接和切割过程中伴随有大量气化的金属蒸气、臭氧、氮氧化物等。

尤其切割时,由于气体流量大,致使工作场地上的灰尘大量扬起,这些烟气和灰尘对操作工人的呼吸道、肺等产生严重影响。

因此要求工作场地必须配罩良好的通风设备措施。

切割时,在栅格工作台下方还可安置排风装置,也可以采取水中切割方法。

5.防噪声等离子弧会产生高强度、高频率的噪声,尤其采用大功率等离子弧切割时,其噪声更大,这对操作者的听觉系统和神经系统非常有害。

要求操作者必须戴耳塞,或可能的话,尽量采用自动化切割,使操作者在隔音良好的操作室内工作,也可以采取水中切割方法,利用水来吸收噪声。

2024年等离子弧焊接及切割的安全操作技术(2)等离子弧焊接及切割是一种广泛应用于工业领域的高温焊接与切割技术,它能够提供高强度、高精度的焊接与切割效果。

第5讲 等离子弧焊及切割简介

第5讲 等离子弧焊及切割简介

第5讲等离子弧焊及切割等离子弧是利用等离子枪将阴极(如钨极)和阳极之间的自由电弧压缩成高温、高电离度、高能量密度及高焰流速度的电弧。

等离子弧可用于焊接、喷涂、堆焊及切割。

本章只介绍焊接及切割。

1 等离子弧工作原理1.1等离子弧的形式等离子枪按用途可分为焊枪及割枪,枪的主要组成部分及术语如图1所示。

切割用枪无保护气体2及保护气罩6。

压缩喷嘴5是等离子枪的关键部件,一般需用水冷。

喷嘴孔径dn及孔道长度l0是压缩喷嘴的两个主要尺寸。

喷嘴内通的气体称离子气。

中性的离子气在喷嘴内电离后使喷嘴内压力增加,所以喷嘴内壁与电极4之间的空间称增压室。

电离了的离子气从喷嘴流出时受到孔径限制,使弧柱截面变小,该孔径对弧柱的压缩作用称机械压缩。

水冷喷嘴内壁表面有一层冷气膜,电弧经过孔道时,冷气膜一方面使喷嘴与弧柱绝缘,另一方面使弧柱有效截面进一步收缩,这种收缩称热收缩。

弧柱电流自身磁场对弧柱的压缩作用称磁收缩。

在机械压缩与热收缩的作用下,弧柱电流密度增加,磁收缩随之增强,如电流不变,弧柱电场强度及弧压降都随电流密度增加而增加,所以等离子弧(也称压缩电弧)的电弧功率及温度明显高于自由电弧。

图2a所示的对比中,等离子弧的电弧温度比自由电弧高30%,电弧功率高100%。

由于电离后的离子气仍具有流体的性质,受到压缩从喷嘴孔径喷射出的电弧带电质点的运动速度明显提高(可达300m/s),所以等离子弧具有较小的扩散角及较大的电弧挺度(图2b),这也是等离子弧最突出的优点。

电弧挺度是指电弧沿电极轴线的挺直程度。

等离子弧具有的电弧力、能量密度及电弧挺度等与加工有关的物理性能取决于下列五个参数:1)电流;2)喷嘴孔径的几何尺寸;3)离子气种类;4)离子气流量;5)保护气种类;调整以上五个参数可使等离子弧适应不同的加工工艺。

如在切割工艺中,应选择大电流、小喷嘴孔径、大离子气量及导热好的离子气,以便使等离子弧具有高度集中的热量及高的焰流速度。

等离子弧焊

等离子弧焊

等离子弧焊等离子弧焊成品等离子弧焊是利用等离子弧作为热源的焊接方法。

气体由电弧加热产生离解,在高速通过水冷喷嘴时受到压缩,增大能量密度和离解度,形成等离子弧。

它的稳定性、发热量和温度都高于一般电弧,因而具有较大的熔透力和焊接速度。

形成等离子弧的气体和它周围的保护气体一般用氩。

根据各种工件的材料性质,也有使用氦或氩氦、氩氢等混合气体的。

目录基本信息工作方式过程特点应用等离子弧焊接和切割各种焊接方法及设备等离子弧焊设备国外焊接技术最新进展等离子弧焊的工艺参数等离子弧焊直接金属成形技术的工艺研究等离子焊优点等离子弧的特性合金材料的等离子弧焊•超薄壁管子的微束等离子弧焊安全防护技术基本信息缩写abbr. :PAW.[军] Plasma-Arc Welding, 等离子弧焊——简明英汉词典工作方式等离子弧有两种工作方式。

一种是“非转移弧”,电弧在钨极与喷嘴之间燃烧,主要用於等离子喷镀或加热非导电材料;另一种是“转移弧”,电弧由辅助电极高频引弧后,电弧燃烧在钨极与工件之间,用於焊接。

形成焊缝的方式有熔透式和穿孔式两种。

前一种形式的等离子弧只熔透母材,形成焊接熔池,多用於0.8~3毫米厚的板材焊接;后一种形式的等离子弧只熔穿板材,形成钥匙孔形的熔池,多用於 3~12毫米厚的板材焊接。

此外,还有小电流的微束等离子弧焊,特别适合於0.02~1.5毫米的薄板焊接。

等离子弧焊接属于高质量焊接方法。

焊缝的深/宽比大,热影响区窄,工件变形小,可焊材料种类多。

特别是脉冲电流等离子弧焊和熔化极等离子弧焊的发展,更扩大了等离子弧焊的使用范围。

过程特点操作方式等离子弧焊与TIG焊十分相似,它们的电弧都是在尖头的钨电极和工件之间形成的。

但是,通过在焊炬中安置电极,能将等离子弧从保护气体的气囊中分离出来,随后推动等离子通过孔型良好的铜喷管将弧压缩。

通过改变孔的直径和等离子气流速度,可以实现三种操作方式:1、微束等离子:0.1~15A在很低的焊接电流下,材苁褂梦⑹?壤胱踊<词乖诨〕け浠?怀??0mm时,柱状弧仍能保持稳定。

焊接技术

焊接技术

4
9.1
9.1.5
焊接工艺基础
焊接接头组织和性能
4. 热影响区 (1)熔合区:化学成分不均匀,组 织粗大,往往是粗大的过热组织或 粗大的淬硬组织,使强度下降,塑 性、韧性极差,产生裂纹和脆性破 坏,性能是热影响区中最差的(承 载能力) (2)过热区:最高加热温度11000C 以上的区域,晶粒粗大,甚至产生 过热组织。塑性和韧性明显下降, 是热影响区中机械性能最差的部位 (产生裂纹)
3
9.1
9.1.5
焊接工艺基础
焊接接头组织和性能
1. 焊接温度场 2. 焊接接头的组成 焊缝金属+热影响区 3. 焊缝金属 焊接热源向前移去后,熔池液体金属迅速冷却结晶,结晶从熔池底部未 熔化的半个晶粒开始,垂直熔合线向熔池中心生长,呈柱状树枝晶 焊缝组织是从液体金属结晶的铸态组织,晶粒粗大,成分偏析,组织 不致密。但由于熔池小,冷却快,化学成分控制严格,碳、硫、磷都 较低,并含有一定合金元素,故可使焊缝金属的力学性能不低于母材
第九章
焊接
焊接:通常是指金属的焊接。是通过加热或加压,或两者同时并用,使 两个分离的物体产生原子间结合力而连接成一体的成形方法 根据焊接过程中加热程度和工艺特点的不同,焊接方法可以分为三大类: (1)熔化焊。将工件焊接处局部加热到熔化状态,形成熔池(通常还 加入填充金属),冷却结晶后形成焊缝,被焊工件结合为不可分离 的整体。 (2)压力焊。在焊接过程中无论加热与否,均需要对工件施加压力, 使工件在固态或半固态的状态下实现连接。 (3)钎焊。采用熔点低于被焊金属的钎料(填充金属)熔化之后,填 充接头间隙,并与被焊金属相互扩散实现连接。钎焊过程中被焊工 件不熔化,且一般没有塑性变形。
16
9.2
常用焊接方法与工艺

高级焊工技术培训(等离子弧焊接)介绍

高级焊工技术培训(等离子弧焊接)介绍

质量管理部
焊接方向 2 3
4 1 5
穿孔型
质量管理部
穿孔型等离子弧焊接所适用的厚度
材料 不锈钢 钛及钛 合金 镍及镍 合金 低合金 钢 低碳钢
焊接厚度限 值/mm
8
12
6
7
8
质量管理部
2) 熔入型等离子弧焊接 采用较小的等离子气流量,等离子流力小,电弧 穿透能力低。 ( 1 )只能熔化工件,形不成小孔,与 TIG 焊相 似。 (2)适用于薄板、多层焊的盖面焊及角焊缝的 焊接。
质量管理部
2.等离子弧的类型 1)非转移型电弧 非转移型电弧燃烧在钨极与喷嘴之间,焊接时电源 正极接水冷铜喷嘴,负极接钨极,工件不接到焊接回 路上;依靠高速喷出的等离子气将电弧带出。 这种电弧适用于焊接或切割较薄的金属及非金
属。
质量管理部
2)转移型电弧 转移型电弧直接燃烧在钨极与工件之间,焊 接时首先引燃钨极与喷嘴间的非转移弧,然后将 电弧转移到钨极与工件之间;在工作状态下,喷 嘴不接到焊接回路中。 这种电弧用于焊接较厚的金属。
2)径向:
压缩程度低。
质量管理部
4.双弧 正常条件下,转移型电弧在钨极与工件之间产 生,在某些异常情况下,会产生一个与正常电弧并 联的燃烧在钨极–喷嘴以及喷嘴-工件之间的串弧, 这种现象叫双弧。
1)双弧产生机理: 冷器膜击穿理论
质量管理部
2)双弧产生的原因及防止措施: (1)在电流一定的条件下,喷嘴压缩孔径太小或压缩 孔道的长度过大,内缩长度过大。
质量管理部
5.喷嘴离工件的距离 距离过大,熔透能力降低,距离过小则造成喷嘴 堵塞。一般取3~8mm。与钨极氩弧焊相比,喷嘴距离 变化对焊接质量的影响不太敏感。
质量管理部

焊接方法与设备使用 教学课件 ppt 作者 邱葭菲 主编 第6单元 等离子弧焊及切割

焊接方法与设备使用 教学课件 ppt 作者 邱葭菲 主编 第6单元 等离子弧焊及切割

小提示
在等离子弧的三种压缩作用中,喷嘴孔 径的机械压缩作用是前提;热收缩作用则 是电弧被压缩的主要原因;磁收缩作用是 必然存在的,它对电弧的压缩也起到一定 的作用。
• 2.等离子弧的特点 • (1)温度高、能量高度集中 • 温度极高达16000℃~33000℃,并且截面 很小,能量密度高度集中。 • (2)电弧挺度好、燃烧稳定 • 自由电弧的扩散角度约为45°,等离子弧 扩散角仅为5°,电弧挺度好,燃烧稳定。 • (3)具有很强的机械冲刷力 • 高压气流通过喷嘴细通道喷出时,可达到 很高的速度甚至可超过声速,等离子弧有 很强的机械冲刷力。
• 二、等离子弧的分类及应用 • 根据电极的不同接法,等离子弧可以分为转移弧、非转移 弧、联合型弧三种。 • (1)非转移弧 • 电极接负极,喷嘴接正极,焊件不接电源,等离子弧在电 极和喷嘴内表面之间燃烧并从喷嘴喷出。加热能量和温度 较转移弧低,主要用于喷涂、焊接、切割较薄的金属和非 金属材料。 • (2)转移弧 • 电极接负极,焊件接正极,电弧首先在电极与喷嘴之间引 燃,当电极与焊件间加上一个较高的电压后,再转移到电 极与焊件间,使电极与焊件间产生等离子弧,这个电弧就 称为转移弧。电弧热有效利用率大为提高,可用作中、厚 板的切割、焊接和堆焊的热源。 • (3)联合型弧 • 转移弧和非转移弧同时存在的电弧称为联合型弧。主要用 于微束等离子弧焊接和粉末等离子弧堆焊。
图6-2 等离子弧的类型 a)非转移弧 b)转移弧 c)联合型弧
• 三、等离子弧的双弧 • 正常的等离子弧应稳定 地在钨极和工件之间燃 烧,如图6-3中弧1。但 由于某些原因往往还会 在钨极和喷嘴及喷嘴和 工件之间产生与主弧并 列的电弧(弧2和弧 3),这种现象就称为 双弧现象。
图6-3 双弧现象 1—主弧 2、3-并列弧

教看懂手工电弧焊、氩弧焊、气体保护焊、等离子切割区别和用途

教看懂手工电弧焊、氩弧焊、气体保护焊、等离子切割区别和用途

教看懂手工电弧焊、氩弧焊、气体保护焊、等离子切割区别和用途焊接砖家2018-01-16 22:55:56氩弧焊(TIG)TIG和MIG焊接的区别1、TIG焊一般是一手持焊枪,另一只手持焊丝,适合小规模操作和修补的手工焊。

2、MIG和MAG,焊丝通过自动送丝机构从焊枪送出,适合自动焊,当然也可以用手工。

3、 MIG和MAG的区别主要在保护气体。

设备近似,但前者一般用氩气保护,适合焊接有色金属;后者在氩气里一般掺二氧化碳活性气体,适合焊接高强钢和高合金钢。

4、TIG、MIG都是惰性气体保护焊,俗称氩弧焊。

惰性气体可以是氩或者氦,但是氩便宜,所以常用,于是惰性气体弧焊一般称为氩弧焊。

钨极惰性情体保护焊是以钨或钨的合金作为电极材料,在惰性气体的保护下,利用电极与母材金属(工件)之间产生的电弧热熔化母材和填充焊丝的焊接过程。

英文称为GTAW——Gas Tungsten Arc Welding 或TIG——Tungsten Inert Gas Welding手弧焊(STICK)手弧焊(STICK)焊条手弧焊,英文是Shielded Arc Welding(缩写SMAW),其原理是:在药皮焊条和母材间产生电弧,利用电弧热融化焊条和母材的焊接方法。

焊条外层覆盖焊药,遇热融化,具有使电弧稳定、形成溶渣、脱氧、精炼等作用。

焊条手弧焊焊接原理图焊接电源使用具有下降特性的交流电焊机或直流电弧焊机。

一般使用交流电弧焊机,特别要求电弧稳定性时使用直流电弧焊机。

主要特点:焊接操作简单焊钳轻,移动方便,适用作业范围广熔化极气保焊(CO2)熔化极气保焊(CO2/MAG/MIG)消耗电极式气体保护焊接,英文是Gas metal Arc Welding(缩写 GMAW)MAG 焊接: metal Active Gas Welding(Active Gas: 活性气体) MIG 焊接: metal Inert Gas Welding,(Inert Gas: 惰性气体)根据保护气体的种类,大体分为MAG焊接和MIG焊接。

焊接方法有哪几种

焊接方法有哪几种

焊接方法焊接:通常是指金属的焊接。

是通过加热或加压,或两者同时并用,使两个分离的物体产生原子间结合力而连接成一体的成形方法。

分类:根据焊接过程中加热程度和工艺特点的不同,焊接方法可以分为三大类。

(1)熔焊。

将工件焊接处局部加热到熔化状态,形成熔池(通常还加入填充金属),冷却结晶后形成焊缝,被焊工件结合为不可分离的整体。

常见的熔焊方法有气焊、电弧焊、电渣焊、等离子弧焊、电子束焊、激光焊等。

(2)压焊。

在焊接过程中无论加热与否,均需要加压的焊接方法。

常见的压焊有电阻焊、摩擦焊、冷压焊、扩散焊、爆炸焊等。

(3)钎焊。

采用熔点低于被焊金属的钎料(填充金属)熔化之后,填充接头间隙,并与被焊金属相互扩散实现连接。

钎焊过程中被焊工件不熔化,且一般没有塑性变形。

焊接生产的特点:(1)节省金属材料,结构重量轻。

(2)以小拼大、化大为小,制造重型、复杂的机器零部件,简化铸造、锻造及切削加工工艺,获得最佳技术经济效果。

(3)焊接接头具有良好的力学性能和密封性。

(4)能够制造双金属结构,使材料的性能得到充分利用。

应用:焊接技术在机器制造、造船工业、建筑工程、电力设备生产、航空及航天工业等应用十分广泛。

不足:焊接技术也还存在一些不足之处,如焊接结构不可拆卸,给维修带来不便;焊接结构中会存在焊接应力和变形;焊接接头的组织性能往往不均匀,并会产生焊接缺陷等。

各种焊接技术介绍一、电弧焊电弧:一种强烈而持久的气体放电现象,正负电极间具有一定的电压,而且两电极间的气体介质应处在电离状态。

引燃焊接电弧时,通常是将两电极(一极为工件,另一极为填充金属丝或焊条)接通电源,短暂接触并迅速分离,两极相互接触时发生短路,形成电弧。

这种方式称为接触引弧。

电弧形成后,只要电源保持两极之间一定的电位差,即可维持电弧的燃烧。

电弧特点:电压低、电流大、温度高、能量密度大、移动性好等,一般20~30V的电压即可维持电弧的稳定燃烧,而电弧中的电流可以从几十安培到几千安培以满足不同工件的焊接要求,电弧的温度可达5000K以上,可以熔化各种金属。

等离子切割

等离子切割

五、等离子弧切割
(一)工作原理
等离子弧切割是一种常用的金属和非金属材料切割工艺方法。它利用高速、高温和高能的等离子气流来加热和熔化被切割材料,并借助内部的或者外部的高速气流或水流将熔化材料排开直至等离子气流束穿透背面而形成割口。
等离子弧坑的温度高,远远超过所有金属以及非金属的熔点。因此,等离子弧切割过程不是依靠氧化反应,而是靠熔化来切割材料,因而比氧化切割方法的适用范围大得多,能够切割绝大部分金属和非金属材料。
下降或垂直下降特性的整流电源或弧焊发电机均可作为等离子弧焊接电源。用纯氩作为离子气时,电源空载电压只需65~80V;用氢、氩混合气时,空载电压需110~120V。
大电流等离子弧都采用等离子弧,用高频引燃非转移弧,然后转移成转移弧。
30A以下的小电流微束等离子弧焊接采用混合型弧,用高频或接触短路回抽引弧。由于非转移弧在非常焊接过程中不能切除因此一般要用两个独立的电源。
经过三种压缩效应压缩的等离子弧的能量、能量密度以及等离子气流的速度取决于等离子气体的种类及流量,喷嘴形状参数和所施加给等离子弧的电能。
等离子弧切割方法除一般型外,派生的型式有水再压缩等离子弧切割、空气等离子弧切割或水再压缩空气等离子弧切割方法。
图5—5 等离子弧焊机供气系统实例
六、等离子弧焊接工艺参数
小孔型等离子弧焊接时,焊接过程中确保小孔的稳定,是获得优质焊缝的前提。影响小孔稳定性的主要工艺参数有:离子气流量、焊接电流及焊接速度,其次为喷嘴距离和保护气体流量。
(一)离子气流量
离子气流量增加,可使等离子流力和熔透能力增大。在其它条件不变时,为了形成小孔,必须要有足够的离子气流量。但是离子气流量过大也不好,会使小孔直径过大而不能保证焊缝成形。喷嘴孔径确定后,离子气流量大小视焊接电流和焊接速度而定,即离子气流量、焊接电流和焊接速度三者之间要有适当匹配。

等离子弧焊原理及操作安全

等离子弧焊原理及操作安全

等离⼦弧焊原理及操作安全等离⼦弧焊原理及操作安全什么是等离⼦弧焊?试述等离⼦弧的产⽣⽅法。

借助⽔冷喷嘴对电弧的拘束作⽤,获得⾼能量浓度的等离⼦弧进⾏焊接的⽅法称为等离⼦弧焊。

等离⼦弧是⾃由电弧压缩⽽成,它是通过以下三种压缩作⽤获得的,机械压缩效应⽰意图见图22。

1.机械压缩将电弧强制通过具有⼩孔径喷嘴的孔道,使电弧受到压缩。

2.热压缩当等离⼦⽓体(Ar、N⽓)以⼀定的速度和流量经喷嘴时,靠近电弧⼀侧的⽓体通过弧柱,吸收⼤量热量⽽电离,成为等离⼦弧的⼀个组成部分。

但是靠近喷嘴内壁的⽓体,由于受到喷嘴强烈的冷却作⽤,形成⼀个冷⽓套,迫使弧柱截⾯进⼀步缩⼩称为热压缩。

3.磁压缩弧柱电流是⼀束平⾏的同向电流线,必然产⽣往内的收缩⼒。

当电弧受到机械压缩和热压缩之后,截⾯缩⼩,因⽽电流密度增⼤,由此产⽣的电磁收缩⼒必然增⼤,形成磁压缩。

试述等离⼦弧的类型。

按电源连接⽅式的不同,等离⼦弧有⾮转移型、转移型和联合型三种形式见图23。

⑴⾮转移型等离⼦弧钨极接电源负端,焊件接电源正端,等离⼦弧体产⽣在钨极与喷嘴之间,在等离⼦⽓体压送下,弧柱从喷嘴中喷出,形成等离⼦焰。

⑵转移型等离⼦弧钨极接电流负端,焊件接电流正端,等离⼦弧产⽣的钨极和焊件之间。

因为转移弧能把更多的热量传递给焊件,所以⾦属焊接、切割⼏乎都是采⽤转移型等离⼦弧。

⑶联合型等离⼦弧⼯作时⾮转移弧和转移弧同时并存,故称为联合型等离⼦弧。

⾮转移弧起稳定电弧和补充加热的作⽤,转移弧直接加热焊件,使之熔化进⾏焊接。

主要⽤于微束等离⼦弧焊和粉末堆焊。

56 试述转移型等离⼦弧的产⽣⽅法。

为建⽴转移型等离⼦弧,应将钨极接电源负极,喷嘴和焊件同时接正极,转移型弧⽰意图见图24。

⾸先接通钨极与喷嘴之间的电路,引燃钨极与喷嘴之间的电弧,接着迅速接通钨极和焊件之间的电路,使电弧转移到钨极和焊件之间直接燃烧,同时切断钨极和喷嘴之间的电路,转移型等离⼦弧就正式建⽴。

在正常⼯作状态下,喷嘴不带电,在开始引燃时产⽣的等离⼦弧,只是作为建⽴转移弧的中间媒介。

TIG焊,等离子焊,电子束焊,高频感应焊、双丝焊概述

TIG焊,等离子焊,电子束焊,高频感应焊、双丝焊概述

非熔化极气体保护焊(TIG焊)综述传统TIG焊由于其电极的载流能力有限,电弧功率受到一定限制,使得焊缝熔深浅、焊接速度小,尤其是用于中等厚度的焊接结构时需要开坡口并要进行多层焊,因此其使用受到一定限制。

热丝TIG焊是于 1956年在传统TIG焊基础上发展起来的一种优质、高效、节能的焊接工艺,其基本原理就是在焊丝送进熔池之前,对焊丝进行加热使其达到一定的预热温度,最终实现高速高效焊接的目的。

而对焊丝的加热不仅可以提高焊接速度,而且可以明显改善熔敷率,并且调整了焊接熔池的热输入量,加快了填充丝的熔化速度,降低了母材的稀释率,扩大了传统TIG焊焊接工艺方法的适应性和应用范围,具有较高的经济价值。

目前,在国内外热丝TIG焊已经在压力容器、锅炉、高温阀门、高压管道、石化装置、海洋采油设备、军械制造和航空航天工程等高端工业部门用于碳钢、低合金钢、高合金钢、不锈钢和镍基合金等重要焊接部件的焊接。

也适用于钛合金、铝及其合金等材料的焊接。

过去,围绕着焊丝的加热方法及进一步提高其熔敷效率和扩大其适用范围,已开发出许多具体的热丝TIG焊方法,主要分类如图1所示。

热丝TIG焊按照焊丝的数量可分为单丝和双丝两种;单丝时按照加热方法的不同分为电阻加热、电弧加热、高频感应加热三种;而且还开发出主要用于大厚板焊接的窄间隙热丝TIG焊、用于薄板堆焊和表面熔敷的超高速热丝TIG焊及新型热丝TIG焊。

1单丝热丝TIG焊1.1电阻加热单丝热丝TIG焊日本Hori等提出的热丝TIG焊装置中热丝的加热方式就是电阻加热,将热丝电源的两极分别接在焊丝和工件上,利用电流流过焊丝所产生的电阻热来加热焊丝。

设焊丝的伸出长度为e,焊丝的横截面积为S,焊丝材料的电阻率为ρ,焊丝的加热电流为Iw,则在焊丝上产生的电阻热功率PR为PR=(I2-ρe)/S可看出,当焊丝的直径很大、焊丝材料的电阻率很低时,电阻加热的功率将达不到焊丝加热的预热温度,故此方法只适用于大电阻率、较细焊丝加热的情形。

等离子焊接技术及其应用

等离子焊接技术及其应用

等离子焊接技术及其应用0 引言随着现代工业的迅速发展, 不锈钢由于具有外表华丽、耐蚀性能优良和可冷、热加工的性能, 在食品/医疗设备、石化压力容器、不锈钢管道、染整设备、储运罐箱、特种船舶和航空航天等行业中倍受青睐。

目前中国可年产近900 万t 不锈钢, 有望成为世界第一大不锈钢生产、制造大国, 作为产品生产的主要技术之一的焊接技术也开始由原来的手工焊接技术向高效的自动焊接技术转变, 这其中应用最为广泛就是等离子焊接技术。

在国外, 等离子工艺技术已在不锈钢中、薄板制造中得到了大量普及应用。

1 等离子焊接原理1.1 等离子焊接定义等离子焊接是通过高度集中的等离子束流获得必要的熔化母材能量的焊接过程。

通常等离子电弧的能量取决于等离子气体的流量、焊枪喷嘴的压缩效果和使用电流大小。

普通电弧射流速度为80~150 m/s, 等离子电弧的射流速度可以达到300~2 000 m/s, 等离子电弧由于受到压缩, 能量密度可达105~106W/cm2 而自由状态下TIG 电弧能量密度为50~100W/mm2, 弧柱中心温度在24 000 K以上, 而TIG 电弧弧柱中心温度在5 000~8 000 K 左右[1]。

因此, 等离子电弧焊接与电子束(能量密度105W/mm2)、激光束(能量密度105W/mm2)焊接同被称为高能密度焊接。

等离子焊接及穿孔示意如图1所示。

图1 等离子焊接及其穿孔示意1.2 等离子电弧的分类按电源连接方式分类, 等离子电弧分非转移弧、转移弧和联合型电弧三种形式[1]。

三种形式都是钨极接负, 工件或喷嘴接正。

非转移型电弧是在钨极与喷嘴之间形成电弧,在等离子气流压送下, 弧焰从喷嘴中喷出, 形成等离子焰[1], 主要适合于导热性较好的材料焊接。

但由于电弧能量主要通过喷嘴, 因此喷嘴的使用寿命较短, 能量不宜过大, 不太适合于长时间的焊接, 这种形式较少应用在焊接。

转移型电弧是在喷嘴与工件之间形成电弧, 由于转移弧难以直接形成, 先在钨极与喷嘴之间形成小的非转移弧, 然后过渡到转移弧, 形成转移电弧时, 非转移弧同时切断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等离子弧焊与切割及其他焊接技术
等离子弧焊与切割及其他焊接技术
等离子弧焊原理、设备及材料
等离子弧焊接与切割是在钨极氩弧焊的基础上形成的,是焊接领域中较有发展前途的一种先进工艺。

等离子弧焊接利用等离子弧的高温,可以焊接电弧焊所不能焊接的金属材料,甚至解决了氩弧焊所不能解决的极薄金属焊接问题;可以切割氧—乙炔焰不能切割的难熔金属和非金属。

一、等离子弧的形成及类型
1.等离子弧的形成
焊条电弧焊所形成的电弧(图8—1a)未受到外界的约束,弧柱的直径随电弧电流及电压的变化而变化。

能量不是高度集中,温度限制在5 730~7730℃,故称为自由电弧。

如果对自由电弧的弧柱进行强迫"压缩",就能将导电截面收缩得比较小,从而使能量更加集中,弧柱中气体充分电离。

这样的电弧称为等离子弧。

对自由电弧的弧柱进行强迫压缩作用通称"压缩效应"。

"压缩效应"有如下3 种形式
(1)机械压缩效应如图8--1b所示,在钨极(负极)和焊件(正极)之间加上1个较高的电压,通过激发使气体电离形成电弧,此时用一定压力的气体作用于弧柱,强迫其通过水冷喷嘴细孔,弧柱便受到机械压缩,使弧柱截面积缩小,称为机械压缩效应。

(2)热收缩效应如图8—1c 所示,当电弧通过水冷喷嘴,同时又受到不断送给的高速等离子气体流(氩气、氮气、氢气等)的冷却作用,使弧柱外围形成一个低温气流层,电离度急剧下降,迫使弧柱导电截面进一步缩小,电流密度进一步提高,弧柱的这种收缩称为热收缩效应。

(3)磁收缩效应电弧弧柱受到机械压缩和产生热收缩效应后,喷嘴处等离子弧的电流密度大大提高。

若把电弧看成一束平行的同向电流线,则其自身磁场所产生的电磁力,使之相互吸引,由此而产生电磁收
缩力,这种磁收缩作用迫使电弧更进一步的受到压缩,如图8—1d所示。

在以上3 种效应的作用下,弧柱被压缩到很细的程度,弧柱内气体也得到了高度的电离,温度高达16000~33000℃,能量密度剧增,而且电弧挺度好,具有很强的机械冲刷力,形成高能束的等离子弧。

2.等离子弧的类型
根据电源的不同接法,等离子弧可以分为非转移型弧、转移型弧、联合型弧3 种。

(1)非转移型弧钨极接电源负极,喷嘴接电源正极。

等离子弧在钨极与喷嘴内表面之间产生(图8—2a),连续送入的等离子气体穿过电弧空间,形成从喷嘴喷出的等离子焰。

这种等离子弧产生于钨极与喷嘴之间,工件本身不通电,而是被间接加热熔化,其热量的有效利用率不高,故不宜用于较厚材料的焊接和切割。

(2)转移型弧钨极接电源负极,工件和喷嘴接电源正极。

首先、在钨极和喷嘴之间引燃小电弧,随即接通钨极与工件之间的电路,再切断喷嘴与钨极之间的电路,同时钨极与喷嘴间的电弧熄灭,电弧转移到钨极与工件间直接燃烧,这类电弧称为转移型弧(图8—2b)。

这种等离子弧可以直接加热工件,提高了热量有效利用率,故可用于中等厚度以上工件的焊接与切割。

(3)联合型弧转移型弧和非转移型弧同时存在的等离子弧称为联合型弧(图8—2c)。

联合型弧的2个电弧分别由2 个电源供电。

主电源加在钨极和工件间产生等离子弧,是主要焊接热源。

另一个电源加在钨极和喷嘴间产生小电弧。

称为维持电弧。

维持电弧在整个焊接过程中连续燃烧,其作用是维持气体电离。

即在种因响下等离子弧中断时,依靠维持电弧可立即使等离子弧复燃。

联合型弧主要用干网等离子焊接和粉末材料的喷焊。

二、等离子弧焊接
等离子弧焊接是指借助水冷喷嘴对电弧的约束作用,获得较高能量密度的等离子弧进行焊接的方法。

它是利用特殊构造的等离子弧焊枪所产生的高达几万摄氏度的高温等离子弧,有效地熔化焊件而实现焊接的过程,如图8—3 所示。

1.等离子弧焊接方法
等离子弧焊接有3种基本方法∶小孔型等离子弧焊、熔透型等离子弧焊、微束型等离子弧焊。

(1)小孔型等离子弧焊小孔型等离子弧焊又称为穿孔、锁孔或穿透焊。

其焊缝成形原理如图8—4 所示。

利用等离子弧能量密度大、电弧挺度好的特点,将焊件的焊接处完全熔透,并产生1个贯穿焊件的小孔。

在表面张力的作用下,熔化金属不会从小孔中滴落下去(小孔效应)。

随着焊枪的前移,小孔在电弧后锁闭,形成完全熔透的焊缝。

小孔型等离子弧焊采用的焊接电流范围在100~300 A,适宜于焊接2~8 mm 厚度的合金钢板材,可以不开坡口和背面不用衬垫进行单面焊双面成形。

(2)熔透型等离子弧焊当等离子气流量较小、弧柱压缩程度较弱时,等离子弧在焊接过程中只熔透焊件,但不产生小孔效应的熔焊过程称为熔透型等离子弧焊,主要用于薄板单面焊双面成形及厚板的多层焊。

(3)微束型等离子弧焊采用30 A 以下的焊接电流进行熔透型的等离子弧焊,称为微束型等离子弧焊。

当焊接电流小于10 A 时,电弧不稳定,所以往往采用联合型弧的形式,即使焊接电流小到0.05~10
A 时,电弧仍有较好的稳定性。

它一般用来焊接细丝和箔材
2.等离子弧焊接设备
手工等离子弧焊接设备由焊接电源、焊枪、控制系统、气路系统和水路系统等部分组成。

其外部线路连接如图8—5所示。

(1)焊接电源一般采用具有垂直下降外特性或陡降外特性的弧焊电源,以防止烟电流因弧长的变化而变化,从而获得均匀、稳定的熔深及焊缝外形尺寸。

一般不采用交清源,只采用直流电源正接。

与钨极氩弧焊相比,等离子弧焊所需的电源空载电压较高。

电源空载电压根据所用等离子气体而定,采用氩气作为等离子气体时,空载电压尽65~80 V;当采用氩气和氢气或氩气与其他双原子的混合气体作为等离子气体时,电源终电压应为110~120 V。

(2)焊枪等离子弧焊枪主要由上枪体、下枪体、压缩喷嘴、中间绝缘体及冷却套组成,如图8—6 所示。

其中,最关键的部件为喷嘴及电极。

焊枪是等离子弧焊设备中的关键组成部分(又称为等离子弧发生器),对等离子弧的性能及焊接过程的稳定性起着决定性作用。

焊枪安装与使用是否正确,直接影响焊枪的使用性能和寿命、焊接过程稳定性以及焊缝成形质量等。

1)喷嘴喷嘴是等离子弧焊枪的关键零件,它的结构类型和尺寸以及与钨极的相互位置对等离子弧性能起决定性作用。

钨极、喷嘴与工件的相互位置及主要尺寸如图8—7 所示。

大部分等离子弧焊枪采用圆柱形压缩孔道,而收敛扩散型压缩孔道有利于电弧的稳定。

2)电极与喷嘴同轴度电极偏心会使等离子弧偏斜,影响焊缝成形和喷嘴使用寿命。

这也是造成双弧的主要原因之一。

在使用过程中,可以通过观测高频引弧的火花在电极四周分布的情况来检查同轴度,如图8—9 所示。

一般高频火花布满四周80% 以上,其同轴度才满足要求。

3)钨极与喷嘴同心为了保证焊接电弧稳定,不产生双弧,钨极应与喷嘴保持同心,而且钨极的内缩长度L g要合适。

钨极的内缩长度L g (图8—10)对电弧压缩作用有影响。

l g增大时,压缩作用大,但l g过长易引起双弧。

一般取l g=l0±(0.2~0.5)mm。

(3)控制系统控制系统的作用是控制焊接设备的各个部分按照预定的程序进入、退出工作状态。

整个设备的控制电路通常由高频发生器控制电路、送丝电动机拖动电路、焊接小车或专用工装控制电路以及程控电路等组成。

程序控制电路控制等离子气预通时间、等离子气流递增时间、保护气预通时间、高频引弧及电弧转移、焊件预热时间、电流衰减熄弧、延迟停气等。

(4)气路系统等离子弧焊接设备的气路系统较复杂,由等离子气路部分、正面保护气路部分及反面保护气路部分等组成,而等离子气路部分还必须能够进行衰减控制。

为此,等离子弧焊设备气路一般采用两路供给,其中一路可经气阀放空,以实现等离子气体的衰减控制。


用氩气与氢气的混合气体作为等离子气体时,气路中最好设有专门的引弧气路,以降低对电源空载电压的要求。

(5)水路系统由于等离子弧的温度在10 000℃以上,为了防止烧坏喷嘴并增加对电弧的压缩作用,必须对电极及喷嘴进行有效的水冷却。

冷却水的流量不得小于3L/min,水压不小于0.15~0.2 MPa。

水路系统中应设有水压开关,在水压达不到要求时,切断供电回路。

3.等离子弧焊所用材料
(1)气体所采用的气体分为离子气体和保护气体。

大电流等离子弧焊时,离子气体和保护气体用同一种气体,否则影响等离子弧的稳定性。

而小电流等离子弧焊时,离子气体一律用氩气;保护气体可以用Ar,或者可以用Ar(95%)+H,(5%)的混合气体、Ar (95%~80%)+CO2(5%-20%)混合气体等。

保护气体加入CO2有利于消除焊缝内气孔,并能改善焊缝表面成形。

但C02不宜加入过多,否则引起熔池下塌、飞溅增加。

(2)电极和极性一般采用铈钨极作为电极,焊接不锈钢、合金钢、钛合金、镍合金等采用直流正接。

焊接铝、镁合金时,采用直流反接,并使用水冷铜电极。

为了便于引弧和提高等离子弧的稳定性,一般电极端部磨成60°的尖角。

电流小、钨极直径较大时锥角可磨得更小一些。

电流大、钨极直径大的可磨成圆台形、圆台尖锥形、球形等,以减少烧损。

钨极的端部形状如图8—11 所示。

职业考试资料汇总11 / 11。

相关文档
最新文档